
RT-DATA: A real-time data acquisition
framework

Guillem Castro I Olivares

Director: Xavier Franch

Degree in Informatics Engineering

Specialization in Software Engineering

1st July 2019

Copyright © 2019, Guillem Castro Olivares

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0

International License. To view a copy of this license, please visit

http://creativecommons.org/licenses/by-sa/4.0/. You are free to copy, share,

redistribute, adapt and remix this work for any purpose, even commercially, as long as

you give appropriate credit and redistribute your contributions under the same license.

http://creativecommons.org/licenses/by-sa/4.0/

Abstract

In the last few years the popularity of Internet of Things solutions has grown to

unsuspected levels. With the popularization of low-cost low-power embedded devices

like Arduino or Raspberry Pi, the “Do It Yourself” community has been developing very

interesting solutions for home automation and others.

Furthermore, we at Cosmic Research, have seen a great opportunity (as many other

companies and research institutions have done) to use these same devices to be the

brain of our data acquisition systems.

The purpose of this project is to build an easy-to-use software framework that can be

used to implement simple data acquisition systems.

page 4

Resum

En els últims anys la popularitat de les solucions de la internet de les coses ha crescut

fins a nivells mai vists. Amb la popularització dels dispositius encastats de baix cost i

consum com l’Arduino o la Raspberry Pi, la comunitat “Do It Yourself” (fes-ho tú mateix)

ha estat desenvolupant solucions molt interessants dins del món de la domòtica i

d’altres.

A més, a Cosmic Research hem vist una gran oportunitat (igual que d’altres

organitzacions i grups de recerca) d’utilitzar els mateixos dispositius com a cervell dels

nostres sistemes d’adquisició de dades.

El propòsit d’aquest projecte és de construir un framework software fàcil d’utilitzar que

pugui ser utilitzat per implementar sistemes d’adquisició de dades.

page 5

Resumen

En los últimos años la popularidad de las soluciones de la internet de las cosas ha crecido

hasta niveles insospechados. Con la popularización de los dispositivos encastados de

bajo coste y consumo, hemos visto como la comunidad “Do It Yourself” (hazlo tu mismo)

ha estado desarrollando soluciones muy interesantes dentro del mundo de la

automatización del hogar y otros.

Además, en Cosmic Research hemos visto la oportunidad (igual que han hecho otras

organizaciones y grupos de investigación) de utilizar los mismos dispositivos como el

cerebro de nuestros sistemas de adquisición de datos.

El propósito de este proyecto es el de construir un framework software fácil de utilizar

que permita implementar sistemas de adquisición de datos.

page 6

Table of contents

Abstract .. 3

Resum ... 4

Resumen ... 5

1. Introduction and context .. 10

1.1. Introduction ... 10

1.2. Context ... 11

1.3. State-of-the-art .. 14

1.4 Stakeholders ... 16

2. Scope and methodology ... 17

2.1. Scope .. 17

2.2. Methodology .. 19

3. Planification and resources .. 22

3.1. Task description ... 22

3.2. Initial plan .. 23

3.3. Final plan .. 26

3.4. Resources ... 28

3.5. Metrics ... 28

4. Budget and cost .. 30

4.1. Project budget.. 30

4.2. Project costs ... 33

5. Involved technologies ... 35

5.1. Linux ... 35

5.2. C++ ... 38

5.3. SQLite ... 38

5.4. I2C, SPI and UART ... 39

page 7

5.5. JSON ... 41

6. Requirements analysis .. 43

6.1. User stories .. 43

6.2. Non-functional requirements .. 56

7. Design and architecture ... 59

7.1. Logical architecture .. 59

7.2. Layer’s design ... 60

8. Implementation .. 62

8.1. Events management .. 64

8.2. Sensors management .. 68

8.3. Control ... 74

8.4. Serialization .. 77

8.5. IO .. 80

8.6. Timestamping .. 85

8.7. Concurrency ... 87

8.8. Configuration ... 90

9. Verification and validation ... 95

10. Laws, regulations and licenses ... 98

10.1. Laws and regulations ... 98

10.2. Licenses .. 99

11. Sustainability and social commitment ... 100

11.1. Environmental sustainability ... 100

11.2. Economical sustainability... 101

11.3. Social sustainability .. 101

11.4. Sustainability matrix .. 102

12. Conclusions ... 104

page 8

12.1. Future work .. 104

13. Bibliography .. 106

Table of figures

Figure 1 Simplified data acquisition system architecture .. 12

Figure 2 Distributed control system architecture .. 13

Figure 3 Initial scheduling ... 25

Figure 4 Final scheduling .. 27

Figure 5 Burndown chart .. 29

Figure 6 Velocity chart .. 29

Figure 7 Kernel space and user space .. 36

Figure 8 System calls with device files ... 37

Figure 9 Logical architecture in layers .. 60

Figure 10 Package diagram ... 63

Figure 11 Data class .. 64

Figure 12 Broker and listeners .. 65

Figure 13 Sequence diagram for the dispatch method .. 66

Figure 14 Sequence diagram for the subscribe method .. 66

Figure 15 Sensor and SensorsManager .. 69

Figure 16 Sequence diagram for the fetch method ... 70

Figure 17 Sequence diagram for the read method and example 71

Figure 18 State and StateManager ... 75

Figure 19 Sequence diagram of the handle method .. 76

Figure 20 Serializable and SerializedObject.. 77

Figure 21 Writer and writers .. 80

Figure 22 Data buses .. 83

Figure 23 The 'concurrent' package ... 87

Figure 24 SchedulingPolicy enumeration ... 88

Figure 25 Configuration package .. 91

Figure 26 Configuration tree .. 91

file:///C:/Users/guill/Google%20Drive/TFG/Memoria.docx%23_Toc12299120

page 9

Figure 27 Sequence diagram of the at method from class JSONConfiguration 93

Figure 28 Failed and successful builds .. 95

page 10

1. Introduction and context

1.1. Introduction

In the last few years the popularity of IoT (Internet of Things) and DIY (Do-It-Yourself)

solutions using low cost and low power platforms has grown to unsuspected levels.

According to a report by Transparency Market Research [1], the expected compound

annual growth rate for the IoT market is of 20.55% between the years 2016 and 2024.

More so, some scientific and academic institutions are starting to use the same

embedded platforms IoT solutions use for the implementation of their scientific

experiments. For example, EPICS (Experimental Physics and Industrial Control System),

a library to create real-time distributed systems used by scientific institutions from

around the world, has been reported to be used with Raspberry Pi, a popular low cost

mini-computer [2].

In recent years new technologies and platforms have appeared to reduce the cost and

time of developing these systems. In the software segment most systems are still being

developed using one-time solutions, although some components could be reused in

more than one system.

This project did not begin because of an innovative idea from its author, but from a real

necessity. For the last 3 years I’ve been part of Cosmic Research, a project that aims to

launch a rocket into space. One of the most critical part of a rocket is its telemetry and

control system. I am currently in charge of implementing this system for Bondar, our

next rocket that will reach an apogee of 15 km approximately.

This project begun because we needed a reusable software framework that allowed us

to implement the telemetry system for Bondar and its successors, and to implement a

data acquisition system for our motor test bench. The only difference between these

two systems is the collected data, so both systems can share the same implementation

for the major part of its software components.

These two systems are not very different to what we are used to see in the IoT industry.

They all gather data from a set of sensors, dispatch it to a remote location, and

sometimes they use it to activate some kind of actuators.

page 11

1.2. Context

Before explaining the project in detail, it is important to introduce some concepts that

will help to understand it, and that will be part of the discussion about the project. I will

also introduce the major stakeholders and the role they will play.

1.2.1. Data acquisition

Data acquisition is the process of sampling signals that represent measures from the real

world and then converting them into values that can be processed by a computer. The

typical components of a data acquisition system are [3],

• A real-world source of data. Normally a physical phenomenon or property, like

temperature, speed or even position.

• A sensor that converts the physical property to an electrical signal. It can be

either digital or analogic signals. Digital signals transfer the data encoded in bits

while analogic signals normally transfer the data encoded with the voltage level.

• An analogic-to-digital signal converter (ADC). As computers are not able to

understand analogic signals, ADCs are used to convert them to a digital signal

that the computer will be able to understand.

• A computer that will perform the sampling of the sensor and process the

acquired values.

In Figure 2 you can see the architecture of a simplified data acquisition system with two

sensors, one analogic and one digital, an anlogic-to-digital converter and a computer.

page 12

Figure 1 Simplified data acquisition system architecture

The hardware used to perform the data acquisition will vary between systems, although

PLCs (Programmable Logic Controllers) and microcontrollers are almost always used as

computers.

In the software part, there is no standard library or platform, but some of the most

popular are EPICS and ROS (Robot Operating System) that I will introduce later. It’s not

uncommon to implement data acquisition systems using general purpose languages like

C++ or even Java, without using any kind of existing framework or library.

1.2.2. Control Systems

Control systems are systems in charge of managing or controlling the behaviour of other

devices. Typically control systems use data acquisition systems to obtain input data that

will be used either directly by the system or by an operator to control the behaviour of

the managed devices.

Control systems are everywhere in our lives and we interact with them daily. For

example, home thermostats are a simple example of it. The thermostat acquires

temperature data from a temperature sensor and uses it to control the heating system.

page 13

This kind of systems usually use a low-cost low-power hardware and software

specifically designed to perform such task, as its operation is not critical, and delays are

acceptable.

But normally when we talk about control systems, we are usually talking about industrial

control systems, such as the ones used at factories or at power plants. These systems

usually use PLCs or other high-end industrial computers. Software-wise, DCSs are usually

implemented using existing libraries and frameworks like EPICS.

Large control systems, as in big factories or large scientific facilities, are implemented in

a distributed manner [4]. Distributed control systems (DCS) are structured in different

levels, as can be seen in Figure 2.

Figure 2 Distributed control system architecture1

Levels 0 (devices and sensors) and 1 (PLCs and industrial computers) are in fact control

systems by itself, called direct control systems. Higher levels include operator

supervision and coordination and scheduling. This can range from human-machine

interfaces to algorithms that perform automated actions.

1 Original work from Daniele Pugliesi, distributed under Creative Commons 3.0. Originally uploaded to
Wikimedia Commons.
https://commons.wikimedia.org/wiki/File:Functional_levels_of_a_Distributed_Control_System.svg

https://commons.wikimedia.org/wiki/File:Functional_levels_of_a_Distributed_Control_System.svg

page 14

SCADAs (Supervisory Control and Data Acquisition) are very similar to DCS and is the

most common type of industrial control system. They are the combination of data

acquisition and control systems, a communication infrastructure and a human-machine

interface (HMI). The most common human-machine interfaces are graphical user

interfaces (GUI).

The HMIs are used by the operators of the industrial facility to supervise all the systems

in a plant, from water tanks levels to the current status of a steam valve. SCADAs allow

direct control of all the devices by the operator.

1.3. State-of-the-art

In the field of data acquisition and control systems it shall come to no surprise that there

is an infinite amount of different solutions. All of them with different levels of complexity

and even targeted for different applications.

I’ve selected two open-source frameworks that can be used to implement data

acquisition and control systems, EPICS and ROS.

1.3.1. EPICS (Experimental Physics and Industrial Control System)

EPICS is an open-source set of tools and libraries that can be used to implement

distributed soft real-time control systems [5]. It is mainly targeted to scientific

institutions, such as the Argonne National Laboratory, or ITER.

EPICS has three main components,

• OPI (Operator Interface). A workstation that presents the data managed by

EPICS to the operator.

• IOC (Input Output Controller). A computer that will perform the data acquisition

and exposes the data as records. Each record type has a fixed set of fields.

• A local network (LAN). This network is used to allow the communication

between the IOCs and OPIs. This LAN supports an infinite number of OPIs and

IOCs, as long as the network is not saturated.

Other hosts connected to the network can also access the data provided by the IOCs,

and even modify it using a mechanism called Channel Access (CA). It uses a server client

page 15

model where IOCs act as the server. OPIs are, in fact, Channel Access clients subscribed

to the records provided by CA servers.

EPICS follows an event-driven paradigm which means that CA clients instead of polling

IOCs, they can request subscribe to record types. When new records are produced or

when a change is produces, all subscribed CA clients are notified.

The usage of EPICS in Cosmic Research projects was quickly discarded, as it is targeted

at big distributed control systems, such as the ones at CERN or ITER.

1.3.2. ROS (Robot Operating System)

The Robot Operating System is a software framework for building robots [6]. Despite its

name, ROS is not an operative system. ROS is targeted to much smaller systems than

EPICS and is targeted to embedded platforms, although it also supports building

distributed control systems. Each ROS instance is a node, and one host can contain more

than one node.

ROS also follows a publish-subscribe paradigm, somewhat similar to the event-driven

paradigm from EPICS. Data is distributed in messages, and each message is published to

a topic. When a ROS node publishes a message to a topic, all subscribed nodes are

notified. This means that it is not limited to robots and can also be used to implement

data acquisition systems.

Messages are specified in its own file using C-like syntax. At compile-time an external

tool converts the message specification to the target language. ROS supports both C++

and Python.

For data storage and logging ROS provides bags. ROS automatically stores messages

from selected topics in raw files. They can be later analysed, processed and replayed.

ROS also provides an interface to store messages in standard databases, like SQLite or

PostgreSQL.

ROS also provides a several tools and libraries to implement robot features, like the

Robot Geometry Library, the Robot Description Library, and a diagnostics library.

page 16

ROS was mainly discarded because it does not provide a standard interface to define

sensor nor data acquisition implementations, which makes it harder to reuse them

between systems. This is one of the main requirements that we had, to be able to reuse

as much code as possible between systems.

Furthermore, not providing a standard interface for sensors makes harder for non-

proficient users to implement data acquisition systems, even simple ones.

1.4 Stakeholders

As happens with all projects there is a set of people that will be affected by it. These are

the most relevant ones,

• The developer, myself. I will be the only developer for this project which means

that I will do all the planning, implementation and testing.

• The project director, Xavier Franch. He is a full professor from the ESSI

department of the UPC. He is also part of the GESSI research group. He will be

my guidance through all the project giving me advice.

• Cosmic Research will be the primary user of the framework. The requirements

provided by its engineers will be fundamental on the design of the framework.

They will use it to implement a telemetry system for a rocket, and the electronics

for a motor test bench.

• Other users. Other research groups, companies or even technology enthusiast

might want to use this framework to implement their data acquisition systems.

This framework can be used in a variety of different environments from rockets

to drones, or even to implement some IoT solutions.

• Beneficiaries. People that will benefit directly or indirectly with the systems built

with the framework, or from the research made with those systems.

2. Scope and methodology

After a brief introduction to the subject and to the context of this project, it is the

moment to explain in more detail the scope and the methodology of the project.

2.1. Scope

At the start of the project, after talking with the stakeholders, I made a list of objectives

for the project. During the execution no major changes have been made.

Let’s take a look at the original scope of the project and the changes it has suffered.

2.1.1. Original scope

As explained in the introduction, the objective of this project is to implement a reusable

software framework that can be used to implement data acquisition systems for low-

cost low-power embedded environments. Also, it will be possible to use it to implement

simple control systems, or to implement the levels 0 and 1 of a distributed control

system or SCADA.

It is required that it has real-time capabilities, with very low delays between the data

acquisition and the decision process execution. It must also provide mechanisms to

implement such decision processes.

The framework will be responsible of the management of the system’s sensors, the data

acquired by them, the dispatch of the data to any interested actor (including remote

hosts or databases) and the execution of different decision and control processes.

It would be desirable that it provides interfaces to interface with common-used sensors,

databases or file systems to store the acquired data, and some communication protocols

to send it to remote or local hosts.

The framework will be implemented in C++ and must provide full C++ interfaces without

being necessary to use external tools or languages (except for the compilation process).

It shall be noted that although all platforms have a working C/C++ compiler, not all might

be compatible with a specific library or tool. Furthermore, it must provide a

configuration mechanism so that it is possible to modify some configurations

page 18

parameters (such as the sampling interval of a sensor) without having to recompile the

whole system.

As not all the expected users of this framework are proficient at C++ or even at

programming, it shall provide simple interfaces and help libraries that make easier the

implementation of data acquisition and control systems. Obviously, some experience is

expected.

These objectives of the project can be summarized to the following list,

• Building a reusable software framework to implement data acquisition and

(simple) control systems

• With real-time capabilities

• Can be executed on low-cost low-power embedded platforms

• Implemented in C++ with minimal external dependencies

• Provides interfaces for common-used sensors, databases, …

• Easy to use, even for the unexperienced users.

2.1.2. Final scope

As previously said, no major changes have been introduced to the original scope of the

project. More than an actual change, there has been a shift in the priorities of the

project.

At the start, I put the usability or user-friendliness at the bottom of the objectives list.

During the development of the project I came to the realisation that nowadays with the

computation power that even a small device like a Raspberry Pi has, the real objective

or challenge was to develop an easy to use framework.

It’s actually nothing new, the Arduino project made the IoT and embedded world more

accessible. In the past, the embedded software was written with performance as the

main priority because the computers and microcontrollers didn’t have the resources

they have now. In the present, that is not true anymore. A simple Raspberry Pi has more

than 1GB of memory and can perform millions of operations per second. As it has

happened in other environments, it is the time to make embedded code more usable

and more maintainable.

page 19

One of my top priorities has been to develop rt-data with interfaces that are as easy to

use as those we can find in Arduino. And to provide the tools to develop code that can

be reused. Even if that means that we won’t achieve the best performance.

2.2. Methodology

Having talked about the project context, objectives and state-of-the-art, it is time to

start talking about how the project will be executed and validated.

2.2.1. Working methodology

At the start of the project, given the short time span of the project (about four months)

and the more than possible changes in requirements after acceptance tests, I decided

to work with an agile methodology, Scrum. As Scrum is very team oriented and I am a

single person, I have used an adapted version of Scrum.

During the Inception (the first phase of the project), I held a set of meetings with the

members of Cosmic Research to gather requirements. To that, I added some

requirements I considered interesting from the products mentioned in the state-of-the-

art, and some innovative features. All this form the product backlog for rt-data.

Instead of using a very formal specification for requirements, I chose to work with user

stories. I took this decision because of two reasons; it puts more emphasis on what and

why the user wants, and it allows a greater agility and is more tolerant to changes during

the project.

Each user story has assigned a number of points, from 1 to 8 using the Fibonacci

sequence, that represent the difficulty or the time it might take to implement it, the

expected effort. This will be very useful when planning each sprint. User stories will be

grouped into epics. Epics typically represent big chunks of work, like features.

The project has been executed in one-week sprints. At the start of each sprint, I picked

the most relevant user stories given their importance for the stakeholders, time

constraints and inter-dependencies. In a sprint user stories are planned, implemented

and tested. The set of user stories to be worked on in a sprint is the sprint backlog.

The product backlog was categorized into 5 epics,

page 20

1. Sensors: everything related to data acquisition from sensors.

2. Events management: everything related to the asynchronous passing of data

between components.

3. Support libraries: support libraries related to data timestamping, thread

management and timers.

4. Control: everything needed for control of the I/O ports (UART, I2C, …).

5. Configuration: everything related to the configuration of sensors, I/O ports, …

The product backlog has a total of 37 user stories with a total of 165 points.

No more interviews have been held with any of the stakeholders, as there has not been

any major deviation from the initial scope, and no requests have been received from the

stakeholders.

2.2.2. Development tools

At the start of the project I proposed to work with the following tools,

• Git as the version control system (VCS), using a repository hosted at Github.

• Visual Studio Code as the integrated development environment (IDE).

• Taiga.io as the project planning and monitoring tool. Here I will define the

product backlog and each sprint backlog.

• Vagrant and VirtualBox to perform local builds.

• Jenkins for test and build automation.

• CppCheck for static code analysis.

• Doxygen for generating the user documentation.

Since the project start until now, Vagrant and VirtualBox have not been used. I’ve been

able to perform local builds on my Windows machine using the Windows Subsystem for

Linux.

2.2.3. Validation method and software quality assurance

Validation is an important part of any software project, but it is critical for some of the

applications of this framework. To guarantee the quality of the code I have been

performing three types of quality assurance processes, static code analysis, unit testing

and acceptance testing. The first two processes have been successfully automated using

page 21

Jenkins. After each change, all unit tests are executed to ensure that it does not

introduce new bugs in existing code.

The objective of the acceptance tests is to validate that the software complies with the

requirements negotiated with the stakeholders. Two acceptance tests have been

successfully performed at the end of the 5th and 8th sprints.

Testing has allowed to identify and solve numerous bugs that in a real-world scenario

would have caused a system crash. One of them was actually caused by a typo on the

return type of a method. Instead of returning a std::string it was returning a

reference to a std::string local to the method, causing a segmentation fault later

in the execution. I was expecting that the static analysis of the code detected this kind

of errors, and without acceptance testing I would have delivered a software with critical

issues.

page 22

3. Planification and resources

An important part to make a project successful is the planification. In this section I will

present the project plan that has been executed. This project begun the 18th of February

2019 and ended the 1st of July 2019.

3.1. Task description

In this section I will describe the main tasks of the project.

3.1.1 Inception

The Inception is the first phase of the project, done before starting the implementation

of the framework. It included the first deliverables of GEP, the requirements analysis,

the initial planification of the project and the setup of the development and testing

environments. Part of this task has been investigating the subject and possible

competing solutions, and interviews with some of the most relevant stakeholders.

After the inception everything was ready to begin the development of the rt-data

framework.

3.1.2 Software design and implementation

As in all iterative and/or agile methodologies, the software has been designed and

implemented in an iterative way. This means that in each sprint a chunk of features (in

form of user stories) has been designed and implemented, along with the possible

leftovers from previous sprints. All implemented features are subject to changes in

future sprints, based on the stakeholder’s inputs.

In theory user stories have no dependencies, they are independent. In practice, though,

all features have some dependencies between them, as all are part of the same system.

The planification was made considering the possible dependencies that might arose

during development.

3.1.3 Software validation and testing

During each sprint part of the work has been to define unit tests to verify that the

implemented features didn’t introduce new bugs in the existing code. At the end of

some sprints; 5 and 8; I have designed and implemented acceptance tests to validate

that the implemented features met the stakeholders’ needs.

page 23

Unit tests have been executed during all the project cycle, after each change was

introduced thanks to the automation of the execution in Jenkins.

3.1.4 Documentation

A major task during the project has been its documentation. It includes,

• The user documentation generated with Doxygen.

• UML diagrams to help understand the design that will be presented later in this

document.

• The present bachelor’s thesis document

• The GEP presentation and the final thesis presentation

This work will be done in parallel to software design, implementation and planning.

3.2. Initial plan

During the Inception phase of the project, I made a tentative plan. First I will present it,

and then we will see the changes it has suffered.

3.2.1. Timetable

For each week I estimated a workload of around 25 hours. The project duration was

estimated to 19 weeks in total. The estimation of hours per task was the following,

Table 1 Initial timetable

Task Estimated duration (hours)

Inception 75

Software design and implementation 310

Software validation and testing 30

Documentation 60

Grand total 475

3.2.2. Scheduling and Gantt chart

The Gant chart that follows was the tentative schedule for each sprint in the project,

and its user stories. The definitive scheduling for each sprint was done at its start, taking

into consideration the stakeholders’ priorities, the result of the acceptance tests, and

page 24

possible delays in the execution of the project. Please note that the Scrum methodology

allows to add more user stories to the backlog after the inception has ended.

The chart shows some of the dependencies between the user stories, but more could

have been found during project execution. Although user stories should be independent

in theory, in practice it’s almost impossible. Most features re-use parts of other features,

making them dependent.

In total it was planned to have 12 one-week sprints + the inception that would last three

weeks. Between the end of the last sprint and the final deadline of the project, there is

a gap of four weeks. These weeks have been used to prepare the final thesis document,

the presentation, and, if needed, could have used them for additional sprints. For

example, in case of delays or new user stories requested by the stakeholders.

page 25

Figure 3 Initial scheduling

page 26

3.3. Final plan

In this section I will introduce the changes and deviations, if any, from the initial

planification.

3.3.1. Timetable

As originally estimated, the weekly workload has been around 25 hours on average. The

workload on the first and last weeks was been higher than 25 hours, as I had to do the

GEP in parallel, and that the development environment was not yet mature, and at the

final weeks I had to prepare the final thesis document in parallel. On the other end, on

other weeks the workload was significantly lower. For example, during the holy week,

when I decided to take a little break from work.

The total hours dedicated to the project follow,

Table 2 Final timetable

Task Dedication (hours)

Inception 75

Software design and implementation 310

Software validation and testing 30

Documentation 60

Grand total 475

3.3.2. Scheduling and Gantt chart

The Gant chart that follows (Figure 4) is the Gantt chart of the progress so far, and the

new planification for the next sprints. No major changes have occurred, only changes in

priority and dependencies, and one delay. For example, at the start of the project I

realized that the data for the events that are managed by the system, have to be

timestamped. For that reason I rescheduled the story “Get data and time in us/ms/s”

from sprint 6 to sprint 2.

During sprint 4, I encountered a major bug that took more than expected to solve.

Therefore, I had to delay the story “Sensor analog driver” and the first acceptance test

to sprint 5. All the stories planned for sprint 5 were moved to sprint 6.

page 27

During all sprints until now, no extra hours have been needed.

Figure 4 Final scheduling

page 28

3.4. Resources

In this section I will explain all the necessary resources that have been needed to

accomplish the planification.

3.4.1 Human resources

For this project, just one person has been needed, me. The average workload has been

of 25 hours per week for a total of 475 hours. I have been in charge of all the tasks of

the project, like the planification, design, implementation, testing, etc.

3.4.2 Material resources

• A workplace. The Cosmic Research offices located at Terrassa.

• A laptop. I will use my own, a Dell XPS 15. I used it for almost all tasks, including

design, implementation, testing, documentation, …

• A server for Jenkins hosted at Amazon AWS.

• Two target hosts. A Raspberry Pi 3B+ board and a RoadRunner board by

AcmeSystems.

• A u-blox MAX-M8Q GPS module.

• A LSM9DS1 IMU by STMicroelectronics.

3.4.3 Software resources

• Jenkins for build and test automation.

• Git and Github for version control.

• Taiga.io and TeamGantt for project planning.

• Visual Studio Code as the integrated development environment.

• Debian GNU/Linux as the target host’s operating systems.

• Windows 10 as the operating system of the development laptop.

• CppCheck for the static code analysis.

• Microsoft Office suite for the thesis documentation and presentations.

• Make and CMake for the build automation.

3.5. Metrics

I have been monitoring the project execution using Taiga.io. I have completed the 165

points of the project in 12 sprints. That means that in average, I have closed 13,75 points

page 29

each sprint. A burndown chart (pending points at the start of the sprint) can be seen in

Figure 5.

Figure 5 Burndown chart

A velocity chart (points closed per sprint), can be seen in Figure 6.

Figure 6 Velocity chart

Sprint
1

Sprint
2

Sprint
3

Sprint
4

Sprint
5

Sprint
6

Sprint
7

Sprint
8

Sprint
9

Sprint
10

Sprint
11

Sprint
12

End

Optimal 165 151,25 137,5 123,75 110 96,25 82,5 68,75 55 41,25 27,5 13,75 0

Real 165 151 133 120 108 103 88 70 57 44 24 11 0

0

20

40

60

80

100

120

140

160

180

Burndown chart

Optimal Real

Sprint
1

Sprint
2

Sprint
3

Sprint
4

Sprint
5

Sprint
6

Sprint
7

Sprint
8

Sprint
9

Sprint
10

Sprint
11

Sprint
12

Optimal velocity 13,75 13,75 13,75 13,75 13,75 13,75 13,75 13,75 13,75 13,75 13,75 13,75

Velocity 14 18 13 12 5 15 18 13 13 20 13 11

0

5

10

15

20

25

Velocity

Optimal velocity Velocity

page 30

4. Budget and cost

4.1. Project budget

At the inception I made a budget, taking into consideration the resources exposed in the

previous section. In this section, I have analysed the cost of such resources (human,

material and software), and its amortizations, as well as other indirect costs.

4.1.1. Human resources

Table 3 has the total budget for human resources per role, its cost per hour and the total

cost for the project. And Table 4 provides the same budget but specified per task,

including the estimated hours that each role will dedicate to each task.

The estimated salaries have been extracted from Glassdoor [7]. For each role I have

picked the average annual salary in the Barcelona area. To calculate the price per hour,

I have assumed 14 pays per year and that each month has 20 working days in average.

Table 3 Human resources budget per role

ROLE HOURS PRICE PER HOUR TOTAL

PROJECT MANAGER 105 20€ 2100€

SOFTWARE ENGINEER 340 17€ 5780€

TESTER 30 10€ 300€

GRAND TOTAL 475 8180€

The tasks of the following table (except Inception), correspond to the tasks that are

executed in each sprint of the project.

Table 4 Human resources budget per task and role

TASK HOURS HOURS PER ROLE COST

PROJECT

MANAGER

SOFTWARE

ENG.

TESTER

INCEPTION 75 65 10 0 1470€

DESIGN &

IMPLEMENTATION

310 10 300 0 5300€

DOCUMENTATION 60 30 30 0 1110€

page 31

TASK HOURS HOURS PER ROLE COST

PROJECT

MANAGER

SOFTWARE

ENG.

TESTER

VALIDATION 30 0 0 30 300€

GRAND TOTAL 475 105 340 30 8180€

4.1.2. Material resources

In Table 5 it is listed the budget for all the needed material resources. The amortization

has been made taking into consideration that the length of the project is approximately

4 months.

Table 5 Material resources budget

RESOURCE PRICE USEFUL LIFE AMORTIZATION

DELL XPS 15 1600€ 4 years 133,33€

SERVER2 0€ - 0€

RASPBERRY PI 3 B+ 63,93€ 2 years 10,66€

ROADRUNNER 66€ 2 years 11€

UBLOX MAX-M8Q 47,24€ 1 year 15,75€

LSM9DS1 29€ 1 year 9,67€

GRAND TOTAL 1806,17€ 180,41€

4.1.3. Software resources

Table 6 contains the budget for all the needed software resources. It has been taken into

consideration that although some software products that will be used are not free,

Cosmic Research has sponsorship agreements that provide free licenses for all its

members.

Table 6 Software resources budget

RESOURCE PRICE USEFUL LIFE AMORTIZATION

JENKINS 0€ - 0€

2 The server will be rented to Amazon AWS and is eligible for the free tier

page 32

RESOURCE PRICE USEFUL LIFE AMORTIZATION

GITHUB3 0€ - 0€

TAIGA.IO 0€ - 0€

TEAMGANTT4 0€ - 0€

VISUAL STUDIO CODE 0€ - 0€

VAGRANT 0€ - 0€

VIRTUALBOX 0€ - 0€

DEBIAN GNU/LINUX 0€ - 0€

WINDOWS 10 145€ 3 years 16,11€

CPPCHECK 0€ - 0€

MICROSOFT OFFICE 149€ 3 years 16,56€

CMAKE 0€ - 0€

MAKE 0€ - 0€

GRAND TOTAL 294€ 32,67€

4.1.4. Other expenses

As previously said, I will work on the project on Cosmic Research’s office in Terrassa. The

costs in Table 7 are the real costs for our office.

The monthly rent of the offices is 395€ + IVA that comes into a cost of 477,95€. The

monthly electricity bill is in a yearly average, 70€/month. The price of the kWh has been

taken from Red Eléctrica de España [8]. In average the price of the kWh in the month of

March has been of 0,11€/kWh.

For the transportation, I have considered that I’ll need at least one T-10 each week to

go to the office. From where I live to Terrassa, a 2-zone T-10 is needed that costs 20€.

Table 7 Other expenses

RESOURCE PRICE UNITS COST

OFFICE 477,95€/month 4 months 1911,80€

3 Github provides free licenses for all Cosmic Research’s members due to a sponsorship agreement.
4 TeamGantt provides free licenses for all Cosmic Research’s members due to a sponsorship agreement.

page 33

RESOURCE PRICE UNITS COST

INTERNET CONNECTION 45€/month 4 months 180€

ELECTRICITY 0,11€/kWh 20 kWh/day * 120 days 264€

TRANSPORTATION 20€/week 19 weeks 380€

OFFICE SUPPLIES 50€ N/A 50€

GRAND TOTAL 2885,80€

4.1.5. Total budget

Finally, Table 8 contains the total budget for the project with a total of 12.406,77 €. The

biggest parts of the budget are the human resources and the office costs that shall come

to no surprise as we are using low-cost hardware and free software.

I have included a contingency of a 10% of the total cost, to cover any unexpected

expenses or a possible delay in the execution of the tasks.

Table 8 Total project budget

CONCEPT COST

HUMAN RESOURCES 8.180€

MATERIAL RESOURCES 180,41€

SOFTWARE RESOURCES 32,67€

OTHER EXPENSES 2.885,80€

TOTAL 11.278,88€

CONTINGENCY (10%) 1.127,89€

GRAND TOTAL 12.406,77€

4.2. Project costs

The deviations in the project execution have not impacted the cost of the project

estimated at the budget. The 10% contingency was not needed, so the total cost of this

project has been 11.278,80€. Table 9 holds the total cost of the project.

Table 9 Total cost of the project

CONCEPT COST

HUMAN RESOURCES 8.180€

page 34

CONCEPT COST

MATERIAL RESOURCES 180,41€

SOFTWARE RESOURCES 32,67€

OTHER EXPENSES 2.885,80€

GRAND TOTAL 11.278,88€

page 35

5. Involved technologies

In this section I will present and discuss all the technologies that are used by rt-data.

5.1. Linux

Linux is the kernel of the GNU/Linux operating system [9] (sometimes called just Linux),

and is the target platform of rt-data. The framework delegates all the I/O (input output)

operations to the Linux kernel using its standard system calls.

I won’t explain how all the kernel works, but I consider necessary to explain how we can

interface external devices from a Linux application.

5.1.1. User-space, kernel-space and drivers

In Linux, actually in almost all OS, there is a separation of concerns between what the

user can do and what the kernel can do. The kernel is the responsible of managing all

the system’s resources and devices, therefore it has full and direct access to them,

without any intermediary. This has some important implications that we must know, for

example, if we modify a position of memory that we are not supposed to modify, instead

of generating a segmentation fault, it most certainly will crash the computer.

All the kernel code is stored in a special region of the memory, called kernel space [10].

All the code inside this region is executed in privileged mode or kernel mode. In kernel

mode, any instruction supported by the CPU can be executed.

Part of the Linux kernel is a special kind of software called drivers. A driver tells the

kernel how it should communicate with a hardware device. Drivers can also make use

of other drivers. For example, the driver of your printer is probably using the USB driver

for the communication.

It would be very naïve to think that the kernel contains drivers for every possible device

in the market. When working in embedded solutions, it is very common to find that the

device you want to use doesn’t have a Linux driver. If you can find one, installing a new

driver is very easy, as it can be done by just executing one command.

The rest of the memory, the user space (also called userland), is dedicated to the user

applications. All the code located in this area is executed in user mode. Typically, the

page 36

instructions that can be executed in this mode is limited but depends on the architecture

of the CPU.

To communicate between user space applications and hardware devices, you must use

system calls. Some of the most common to perform I/O operations are read() and

write(). When the kernel receives a system call, it then dispatches the execution to

the corresponding driver. Drivers cannot make use of system calls and have to rely on

kernel primitive methods.

In the Figure 7, you can see how the different actors involved in an I/O operation

interact.

Figure 7 Kernel space and user space

5.1.2. /dev and udev

One of the main differences between Linux and other operating systems is the file

system. In Linux everything is a file, even external devices can be interfaced from user-

space software. This is achieved thanks to udev [11], and in previous versions of the

kernel, devfs. The kernel with the help of udev, creates a virtual filesystem for devices

under the /dev directory.

All this allows to use the same system calls for regular text files and for external devices.

As I explained in the previous section, the kernel acts as an intermediary. When a system

call is invoked with a device file, the kernel loads the driver for the device and executes

page 37

it. An example of this interaction can be seen on Figure 8. When opening the

/dev/i2c-1 file, which represents the I2C bus 1, the kernel calls the dev_open()5

method from the I2C driver. Similarly, when we call write(), the kernel internally calls

the dev_write() method from the same driver.

Figure 8 System calls with device files

This is only part of the truth. Regular text files don’t need extra configuration for being

read or written, but most devices do. For this there is an special system call, ioctl()

[12], that takes arbitrary flags and arguments to configure the device.

Although reading and writing from a device is very easy, the configuration of the device

tends to be very complicated if you don’t have experience. Not because ioctl() is

difficult to use, but because the documentation of what can be configured and how it

can be configured is very scarce. Even for devices that are natively supported by the

kernel.

5 The name of the driver’s method may vary. The consensus is to prepend the string “dev_”, for device, to
the name of the operations (open, read, write and release).

page 38

5.2. C++

C++ is a multiparadigm programming language. It was designed by Bjarne Stroustrup in

1979. At the start it was designed as an expansion of the C language, adding classes to

it [13].

Over time the language has evolved from a “C with classes” to include concepts and

constructions from object-oriented, functional and generic programming. C++ was

standardized in 1998 with the release of C++98 (ISO/IEC 14882:1998), and now after

four more standards, the ISO working group is preparing C++20. The last released

standard is C++17 (ISO/IEC 14882:2017).

C++ has become one of the most popular languages for system programming. All major

operative systems are either written in or have a large amount of components written

in C++. It is also the one of the most popular languages in embedded environments

according to a study by IEEE Spectrum [14]. It is commonly said that C and C++ have

working compilers on almost all platforms.

Since its appearance, C++ has been appraised by its performance and its efficient use of

resources, but it has also been heavily criticized for its lack of memory protection and

its verbosity. Most of these issues have been (partially) solved with the inclusion of

lambda expressions, smart pointers and type inference.

I’ve chosen this language because of its performance, efficiency, features, and my

personal experience with it. I consider it has proven to be the best language for

embedded programming in non-critical environments.

5.3. SQLite

SQLite is a relational database management system (RDBMS) that, unlike other RDBMs,

does not have a server application. Instead the whole RDBMS is embedded in a C library

[15]. This makes it the perfect database to embed to an application. Like most RDBMs

it uses the SQL language for querying, inserting and updating information. Some popular

web browsers and mobile applications use it to store information [16].

page 39

It’s also a great database for embedded systems because it does not require a dedicated

application for the database management that would consume both storage space and

system resources.

Another great feature of SQLite is that the whole database is stored in a single file. This

makes it a great candidate to implement a file format for data interchange between

applications.

Although not the best database management system for real-time systems, with a

couple of optimizations, it is capable of handling high amounts of data. By saving the

journal in memory we not only save disk space, we save expensive IO operations. We

can also save some time by “trusting” the OS that the data will be saved to disk at some

point. Normally, SQLite waits for confirmation that the data has been written to disk.

Note that these optimizations will violate the ACID principles.

I’ve used SQLite for the persistence of the data acquired by rt-data.

5.4. I2C, SPI and UART

I2C, SPI and UART are three serial protocols for intercommunication between

microcontrollers.

5.4.1. I2C

I2C or I2C (Inter-Integrated Circuit) is a serial bus and protocol, used to communicate

integrated circuits with microcontrollers and processors. It follows a master-slave

architecture, where only the master can initiate the communication.

It is possible to connect more than one slave to a I2C bus. For this reason, each slave is

given a 7-bit address. Before each communication, the master will send first an address

to the bus, and then it will start sending data.

The bus used two lines, one for data (SCA) and one for the clock (SCL). As it only has one

data line, only half-duplex communication is possible (i.e. only one of the hosts, master

or slave, can send data at a time).

I2C is used a lot in the embedded and IoT worlds. A lot of sensors use it to communicate

with the microcontroller.

page 40

5.4.2. SPI

SPI (Serial Peripheral Interface) is also a serial interface used to communicate integrated

circuits with a microcontroller. It also follows a master-slave architecture.

The SPI interface has 4 lines, the before mentioned chip select, a clock line, and two data

lines. One data line is the master output slave input (MOSI), and the other master input

slave output (MISO).

Unlike I2C, SPI is full duplex, it’s possible that the master and slave send data

simultaneously. Actually, all SPI communications are full duplex. For example, when the

master wants to read a word from the slave, it must push a full word through the MOSI

pin to receive a full word through the MISO pin. Its operation is similar to how two

interconnected shift registers would work.

In a single SPI interface, it’s possible to connect more than one slave. Instead of using

addresses, SPI slave devices have a special pin, chip select (CS).

Like I2C, SPI is used a lot in the embedded and IoT worlds. Almost all sensors use either

I2C or SPI to communicate with the microcontroller.

5.4.3. UART

UART (Universal asynchronous receiver-transmitter) is a device capable of asynchronous

serial communication. By itself, UART is not a standard. Typically, the data is transmitted

in two lines, transmission (TX) and reception (RX), to make full duplex communication

possible. In most cases it’s not possible to connect more than two UARTs together.

Unlike SPI and I2C, UART does not follow the master-slave architecture. Instead, as no

clock is transmitted, the words have start and stop bits to separate them. Sometimes

parity bits are also used to increase reliability. For the communication to work, both

UARTs must use the same baud rate for transmission and reception.

Some parameters that can be configured in most UARTs include,

• Baud rate. Is the number of symbols per second. Normally when working with

serial communication, a symbol is 1 bit long (i.e. the baud rate of a UART is the

number of bits per second it receives/sends).

page 41

• The length of a character. The communication is done in characters, a packet of

bits. The typical sizes are 5, 6, 7 or 8 bits.

• The type of parity. There are several possible meanings for the parity bit. The

possible meanings (that has to be configured) are,

o None. There’s no parity bit.

o Even. A parity bit with a value of 1 means that there is an even number

of bits set to 1.

o Odd. A parity bit with a value of 1 means that there is an odd number of

bits set to 1.

o Mark. There is a parity bit, but it’s not used. It is always set to 1.

o Space. There is a parity bit, but it’s not used. It is always set to 0.

A lot of devices have UARTs for communication. For example, GPS receivers and

Bluetooth transceivers. Most microcontrollers and microcomputers like the Raspberry

Pi also have one or more UARTs.

5.5. JSON

JSON (JavaScript Object Notation) is a text format commonly used for data interchange

[17]. One of its best features is that it’s easy to read by humans and by machines. Its

syntax is similar to the syntax of languages like C, C++ or Java.

JSON has six data types,

• Number. A sequence of decimal digits. Can hold both integers and real

numbers. It can also have an exponent.

• Boolean. Either the value true or false.

• String. A sequence of Unicode characters. Must be surrounded by quotation

marks. It can include escaped characters.

• Array. A sequence of zero or more values separated by commas. Each value

can be of any valid data type.

• Object. A list of key-value pairs. Keys are always strings, and values can be

any valid JSON data type. Each pair is called a property, and properties are

separated by commas.

• null. An empty value.

page 42

I have decided to use JSON for the configuration files of rt-data.

The parsing of JSON is done using the json library by Niels Lohmann6.

6 Available at https://github.com/nlohmann/json

https://github.com/nlohmann/json

page 43

6. Requirements analysis

As previously explained (c.f. 2.2.1. Working methodology), I have followed an adapted

version of Scrum. Requirements have been specified in the form of user stories.

As part of the requirements gathering process, I held several meetings with the Cosmic

Research’s engineers. To that, I added some requirements I considered interesting from

the products mentioned in the state-of-the-art, and some innovative features. All this

form the product backlog for rt-data, with a total of 37 user stories.

I categorized all 37 user stories in 5 epics,

1. Sensors: everything related to data acquisition from sensors.

2. Events management: everything related to the asynchronous passing of data

between components.

3. Support libraries: support libraries related to data timestamping, thread

management and timers.

4. Control: everything needed for control of the I/O ports (UART, I2C, …).

5. Configuration: everything related to the configuration of sensors, I/O ports, …

6.1. User stories

Below you can find the whole list of user stories. You will note that user stories’ numbers

are not consecutive, and some numbers are missing. It’s the result of how Taiga give

identifiers. Epics, user stories and even tasks are tracked using the same sequence. I

have ordered them based on the sprint where they were implemented.

User story #7 Points: 1 Epic: Sensors

Title: Add new sensor

Description: I want to be able to add a new sensor to the system so that it

triggers the readings and dispatches the generated data

Acceptance criteria: - When adding a new sensor, if the manager is already

started, it must start the sensor.

- When starting the manager, if the sensor was not

previously started, it must start the sensor.

page 44

User story #8 Points: 1 Epic: Sensors

Title: Remove sensor

Description: I want to be able to remove a sensor from the system so that

it no longer manages it, for example in the case of a sensor

failure.

Acceptance criteria: - After removing the sensor, no more events regarding

that sensor can be produced.

User story #5 Points: 5 Epic: Sensors

Title: Background sensor reading

Description: I want to be able to read the system's sensors in the

background asynchronously so that it does not lock the system

Acceptance criteria: - The sampling rate of the sensor must be configurable.

User story #9 Points: 2 Epic: Sensors

Title: Start & stop sensor reading

Description: I want to be able to start and stop the sensors readings at any

moment so that I can control when data acquisition is

performed.

Acceptance criteria: - After starting the sensor reading, the data acquisition

starts.

- After stopping the sensor reading, no more data is

acquired from it.

- After stopping the sensor reading, no more events

regarding the sensor can be produced.

User story #27 Points: 2 Epic: Sensors

Title: Create new sensor

Description: I want to be able to create new sensors so that I can use my

sensors with the framework.

page 45

User story #27 Points: 2 Epic: Sensors

Acceptance criteria: - Must provide an interface that allows to start and stop

a sensor, acquiring and releasing the sensor’s

resources.

- Must provide a default implementation of the

background sensor reading (user story #5).

User story #27 Points: 2 Epic: Sensors

Title: Create new sensor

Description: I want to be able to create new sensors so that I can use my

sensors with the framework.

Acceptance criteria: - Must provide an interface that allows to start and stop

a sensor, acquiring and releasing the sensor’s

resources.

- Must provide a default implementation of the

background sensor reading (user story #5).

User story #25 Points: 8 Epic: Events management

Title: Asynchronous event dispatching

Description: I want to be able to asynchronously dispatch events (with or

without attached data) to subscribed listeners so that the

execution is not blocked.

Acceptance criteria: - When an event is dispatched all its subscribers are

notified.

- The listener’s execution cannot block the execution of

the event origin.

User story #34 Points: 3 Epic: Support libraries

Title: Get date and time in microseconds/milliseconds/seconds

page 46

User story #34 Points: 3 Epic: Support libraries

Description: I want to be able to get a timestamp since epoch in

microsenconds, milliseconds and/or seconds so that I can keep

track of execution time of certain tasks.

Acceptance criteria: - A timestamp can be converted between nanos, micros,

millis and seconds at any time during the execution.

- Timestamps must be comparable.

- Timestamps added and substracted.

User story #23 Points: 2 Epic: Events management

Title: Create event type

Description: I want to be able to create new event types so that I can

dispatch my own events.

Acceptance criteria: - An event must be able to contain (or to have attached)

any kind of data.

- The event must keep track of the origin of the event.

User story #24 Points: 5 Epic: Events management

Title: Create new event data type

Description: I want to be able to create new event data types so that I can

dispatch events with my own data types.

Acceptance criteria: - The data of an event can contain a one or more data of

any kind.

- The data of an event must keep track of who generated

it.

- The data of an event must keep track of when it was

generated.

User story #31 Points: 8 Epic: Events management

Title: Event data serialization/deserialization

page 47

User story #31 Points: 8 Epic: Events management

Description: I want to be able to serialize/deserialize an event and its

attached data so that I can send it via a serial interface, or

saving it to a custom filesystem.

Acceptance criteria: - At least it shall be possible to serialize C++ standard

data types (int, bool, char, float, string).

- It shall be possible to serialize in different formats like

JSON or “raw bytes”.

- It shall be possible to add support to more formats in

the future.

- The result of the serialization, independently of the

format, must be exported as an array of bytes.

- Once a object is serialized, it shall be possible to

deserialize it to obtain the same object.

User story #16 Points: 5 Epic: Sensors

Title: Sensor data management

Description: I want that the framework manages all the data produced by

the sensors and dispatches it to subscribed listeners so that

the user doesn’t have to implement it every time.

Acceptance criteria: - When a new data is acquired by a sensor, it will be

notified to all the sensor’s subscribers.

User story #26 Points: 8 Epic: Events management

Title: Save event data to SQLite database

Description: I want to be able to store in an SQLite database the dispatched

events and their attached data so that I can persist all the

acquired data.

Acceptance criteria: - All SQL statements for table creation and insertion

must be generated by the framework.

page 48

User story #26 Points: 8 Epic: Events management

- Must support “batch” inserts.

- The execution of SQL statements cannot block the

execution of the producer of the events.

User story #28 Points: 2 Epic: Events management

Title: Create event subscribers/listeners

Description: I want to be able to create new subscribers/listeners that will

subscribe to events so that I can process the dispatched

events.

Acceptance criteria: - Listeners won’t be notified until subscribed.

User story #29 Points: 2 Epic: Events management

Title: Subscribe/listen to an event

Description: I want to be able to subscribe/listen a subscriber/listener to an

event so that I can process it.

Acceptance criteria: - After subscribing, the listener will be notified when the

next event is sent. Past events won’t be notified.

User story #10 Points: 5 Epic: Sensors

Title: Sensor analog driver

Description: I want to be able to use analog sensors without having to

implement the driver and value conversions each time so that

I can use my analog sensors with the framework.

Acceptance criteria: - This driver must use the ADC kernel driver installed in

the machine.

- Must support any voltage level from the sensor or the

machine. These parameters shall be configurable.

- Must support any resolution (in bits) that the ADC

might have.

page 49

User story #10 Points: 5 Epic: Sensors

- The result must be already converted to the desired

units.

User story #19 Points: 3 Epic: Configuration

Title: JSON configuration file parsing

Description: I want the framework to be able to parse configuration files

that use the JSON format so that I can edit the configuration

in a human-readable format.

Acceptance criteria: - It must support all valid JSON data types (string,

number, bool, null, array and object).

User story #20 Points: 2 Epic: Configuration

Title: Get a configuration item

Description: I want to be able to get a configuration item in a tree-like

manner so that the configuration properties can be grouped.

Acceptance criteria: - From a configuration item it must be possible to access

its children configuration.

- A configuration item value must be able to be

represented in any C++ standard data type (string, int,

float, bool, char, array).

User story #21 Points: 2 Epic: Configuration

Title: Set a configuration item

Description: I want to be able to modify a configuration item even after a

configuration file has been parsed so that I can “patch”

configuration properties with a “faulty” value.

Acceptance criteria: - A modification in a configuration item will not have any

side effect in its children nor its parent.

page 50

User story #21 Points: 2 Epic: Configuration

- When modifying a configuration item value, it must

accept any C++ standard data type (string, int, float,

bool, char, array).

User story #22 Points: 8 Epic: Configuration

Title: Multi-level configuration files

Description: I want the framework to provide a configuration mechanism

using files that allow a tree-like (multi-level) access, so that I

don't have to recompile everything to change a configuration

parameter.

Acceptance criteria: - Conceptually, the configuration shall be accessed as if

it was a m-ary tree.

- Each configuration item can hold a value of any valid

C++ type.

- The configuration file could be implemented in any file

format.

User story #13 Points: 5 Epic: Sensors

Title: UART driver for implementing sensors

Description: I want to be able to use sensors that have an UART interface

without having to implement the UART driver each time so

that I can use my sensors with an UART interface with the

framework.

Acceptance criteria: - This driver must use the system (kernel) UART driver.

- It must be possible to receive a single byte or an array

of bytes.

- The baud rate must be configurable.

- The number of start/end bits and parity bits must be

configurable.

page 51

User story #17 Points: 3 Epic: Sensors

Title: Sensor configuration

Description: I want the framework to provide an easy mechanism to

configure the sensors without having to re-compile

everything, preferably using a configuration file.

Acceptance criteria: - It must be possible to configure a sensor using a

configuration file.

User story #33 Points: 5 Epic: Support libraries

Title: Threads with custom scheduling

Description: I want to be able to modify the scheduling of the threads

managed by the framework so that I can give them more

priority over other processes and threads to achieve a greater

“real-timeliness”.

Acceptance criteria: - It must be possible configure the application’s thread

to use a real-time thread scheduling (RT FIFO and RT

Round Robin).

User story #42 Points: 5 Epic: Control

Title: UART control driver

Description: I want to be able to control the UART bus of my system so that

I can control the behaviour of a connected device.

Acceptance criteria: - This driver must use the system (kernel) UART driver.

- It must be possible to send a single byte or an array of

bytes.

- The baud rate must be configurable.

- The number of start/end bits and parity bits must be

configurable.

page 52

User story #14 Points: 5 Epic: Sensors

Title: GPS Sensor

Description: I want to be able to receive data from a GPS receiver and

produce events based on the received data so that I can use

my GPS receivers with the framework.

Acceptance criteria: - This sensor must use a system (kernel) driver.

- At least data about the position (latitude and

longitude), velocity, altitude and signal health shall be

acquired.

User story #32 Points: 8 Epic: Events management

Title: Send event data by HTTP or using TCP sockets

Description: I want to be able to send an event and its attached data by

HTTP or using TCP sockets so that I can notify another host of

the event. This could be useful to implement a GUI.

Acceptance criteria: - When sending by TCP, it must be possible to send the

data to any IP address and port.

- When sending by HTTP, it must be possible to send the

data to any host name or IP, and port.

- When sending by HTTP, the data will be sent using a

POST request.

User story #30 Points: 8 Epic: Events management

Title: Save event data to File

Description: I want to be able to store in a file the dispatched events and

their attached data so that I can persist the acquired data.

Acceptance criteria: - It must be possible to save the file anywhere in the

filesystem.

- The file can have any format. At least JSON and “raw

bytes” must be supported.

page 53

User story #36 Points: 5 Epic: Control

Title: GPIO control driver

Description: I want to be able to control the GPIOs of my system so that I

can control the behaviour of a connected device.

Acceptance criteria: - This “driver” must use the system (kernel) driver.

- It must be possible to request and set the status (HIGH

or LOW) of a pin just providing its number.

- It must be possible to set a pin as input or output.

User story #11 Points: 5 Epic: Sensors

Title: Sensor SPI driver

Description: I want to be able to use sensors with an SPI interface without

having to implement the SPI driver each time so that I can use

my SPI sensors with the framework.

Acceptance criteria: - This “driver” must use the system (kernel) driver.

- It must be possible to receive a single byte or an array

of bytes.

- It must support all SPI modes. Default mode must be

SPI mode 0, as is a de facto default mode.

- The baud rate must be configurable.

User story #12 Points: 5 Epic: Sensors

Title: Sensor I2C driver

Description: I want to be able to use sensors with an I2C interface without

having to implement the I2C driver each time so that I can use

my I2C sensors with the framework.

Acceptance criteria: - This “driver” must use the system (kernel) driver.

- It must be possible to receive a single byte or an array

of bytes.

page 54

User story #38 Points: 5 Epic: Control

Title: SPI control driver

Description: I want to be able to control the SPI bus of my system so that I

can control the behaviour of a connected device.

Acceptance criteria: - This “driver” must use the system (kernel) driver.

- It must be possible to send a single byte or an array of

bytes.

- It must support all SPI modes. Default mode must be

SPI mode 0, as is the de facto default mode.

- The baud rate must be configurable.

User story #37 Points: 5 Epic: Control

Title: I2C control driver

Description: I want to be able to control the I2C bus of my system so that I

can control the behaviour of a connected device.

Acceptance criteria: - This “driver” must use the system (kernel) driver.

- It must be possible to send a single byte or an array of

bytes.

User story #39 Points: 3 Epic: Control

Title: Create new state machine

Description: I want to be able to create a new state machine that

represents the state of a system or subsystem.

Acceptance criteria: - The state machine must always have a current state.

User story #40 Points: 3 Epic: Control

Title: Add state to state machine

page 55

User story #40 Points: 3 Epic: Control

Description: I want to be able to add a new state to a state machine so that

the new state of the system can be properly managed, and the

system's state is represented correctly.

Acceptance criteria:

User story #41 Points: 5 Epic: Control

Title: Add transitions to state machine

Description: I want to be able to add a new transition between two states

to a state machine so that the states of the system can be

properly managed.

Acceptance criteria: - When the state machine changes the current state, the

coherence of the system must be preserved by making

any necessary change to the system.

User story #35 Points: 2 Epic: Control

Title: Create new control driver

Description: I want to be able to define new control drivers for my control

devices, extending existing drivers or creating new ones so

that I can add support for new control devices.

Notes: Marked as obsolete.

User story #15 Points: 8 Epic: Sensors

Title: IMU sensor

Description: I want to be able to read data from an IMU sensor and produce

events based on the received data so that I can use my IMUs

with the framework.

Acceptance criteria: - At least it must acquire data regarding acceleration (in

m/s2) and rotation (in rad/s).

- Shall support using system (kernel) drivers.

page 56

User story #15 Points: 8 Epic: Sensors

- Shall try to support as many sensor models as possible,

or at least shall support to add compatibility to more

models in the future.

User story #43 Points: 3 Epic: Support libraries

Title: Start & stop a timer

Description: I want to be able to start and stop timers so that I can run tasks

periodically.

Acceptance criteria: - It must be possible to program a task to be executed

with a precision of at least 10 milliseconds. A task is a

piece of code with no inputs and no outputs.

- It must be possible to program a timer with

nanoseconds, microseconds, milliseconds or seconds.

- When a timer is stopped, it won’t execute any more

task.

6.2. Non-functional requirements

Although some non-functional requirements are already expressed in the acceptance

criteria from the user stories, the following list has all of the non-functional

requirements that the framework must comply with.

Non-functional requirement #1

Title: Asynchronous operations

Description: All potentially long-running tasks without a delimited

execution time must not block the execution of the rest of the

application.

Justification: In a real-time application, blocking the execution for an

uncertain amount of time completely breaks the “real-

timeliness” of the application.

page 57

Non-functional requirement #2

Title: Compatible operating systems

Description: The framework must be fully compatible with the GNU/Linux

operating system.

Justification: The embedded devices this framework targets, primarily use

GNU/Linux as their operating system.

Acceptance criteria: The framework must work at least, under Debian Jessie 8.9

and Ubuntu 16.04.

Non-functional requirement #3

Title: Using kernel drivers

Description: For performance reasons, when interacting with I/O devices,

the framework must (at least) support working with kernel

drivers.

Justification: Kernel drivers are executed in kernel mode, meaning that have

a much more direct access to the hardware that allows for a

much lower latency.

Non-functional requirement #4

Title: Soft real-time

Description: The framework must allow implementing soft real-time

systems.

Justification: Not having steady sampling rates can result in incomplete or

“faulty” data.

Acceptance criteria: The maximum “steady” sampling rate for the sensors must be

at least of 50Hz.

Non-functional requirement #5

Title: User-friendliness

page 58

Non-functional requirement #5

Description: The framework must be usable by users with little prior

experience in implementing data acquisition software for the

devices this framework targets.

Justification: The main objective of this framework is to build an easy-to-

use tool for implementing data acquisition systems.

Non-functional requirement #6

Title: Extensibility

Description: The framework must be extendable to support new sensors

and devices.

Justification: It’s almost impossible to give support to all the sensors and

devices that exist in the market.

Non-functional requirement #7

Title: Error logging

Description: When an application implemented this framework encounters

an error, a log explaining what happened must be generated.

Justification: It’s important for identifying what has failed without having to

debug the application.

Acceptance criteria: After the application finishes executing (successfully or not) a

log file will be generated with all the errors it has encountered.

page 59

7. Design and architecture

When starting this project, I had to decide about how I would design rt-data, as a library

or as a framework. There is a very thin line dividing what is considered to be a library

and framework. The general consensus seems to be that a framework forces you to use

a determinate architecture while a library does not.

In my (probably limited) experience, most data acquisition applications, embedded or

desktop, tend to implement the same architecture over and over. Therefore, I decided

to design rt-data as a framework.

The rt-data framework is built around events. They’re a great way to represent changes

in a system, instead of asking for changes we can simply wait for it. Instead of making a

component responsible of constantly asking for changes, and possibly saturating the

CPU, we can invert it and make the author of changes responsible of notifying them.

We can extend that to any periodic or background task. For example, for sensor reading.

Instead of periodically asking a sensor to read, we can just wait to be notified by it.

Furthermore, we can attach data to an event so that the event author can send any

relevant data. In the sensors example, we could not only notify about a new reading, we

could also send it. This way we can communicate several components with a very loose

coupling.

7.1. Logical architecture

This is not the typical three layers application (presentation, business and data layers),

the user’s requirements tell us that the user needs to be able to access directly to the

underlying IO devices but with a more usable interface.

Instead, the framework has been designed so that the applications that use it, have

three logical layers, see Figure 9.

page 60

Figure 9 Logical architecture in layers

7.2. Layer’s design

The responsibility of each layer, and its divisions, is explained in the following three

sections.

7.2.1. User application layer

It’s where the specific logic of the application. The idea is that the user has complete

freedom on how to design this layer. The framework only provides an entry point for

the application execution.

7.2.2. Events management layer

It’s the main layer of the application. The primary way of interacting with rt-data is

through events. Anyone can send or listen for an event. When an event is sent, the

framework then dispatches it to all subscribed listeners. Listeners are programmable

and can be considered to be part of the logic of the main application.

The interaction between the user application and this layer is done by adding or

removing listeners, and by sending events.

page 61

Some listeners can be control components. They listen for state changes and using the

IO layer, can make changes in the behaviour of external devices.

Another user of the IO layer are the sensors. They use it for reading from a device (a

“hardware” sensor), and then make the necessary data conversions to obtain usable

values7. Sensors are the only responsible of reading from their device, and of sending an

event each time a new value is read.

Some listeners might also want to save the data in the filesystem or in a remote host.

For this, they have access to a set of data serializers. They produce a byte representation

of an event data that they can save using an I/O component.

7.2.3. I/O layer

This layer implements the access to I/O “devices” through the operating system. The

access can be done by implementing userland drivers or by interfacing with kernel

drivers installed in the system.

It is possible to interface two types of “devices”. The ones that are used by control

components, that are used to control the behaviour of external devices. It is very hard,

near impossible, to create an abstraction for these devices, because each one of them

is different.

The other type of devices are used to persist the event data. These devices range from

a simple text file to a relational database. Obviously, these are much simpler to abstract.

7 Some sensors send values encoded or packed in a way that it’s not usable by the application. An example
are analog-to-digital conversers, that send a value between 0 and 2n (where n is the resolution of the ADC
in bits) that is useless until it is converted.

page 62

8. Implementation

Having talked about the overall architecture of the solution, it is time to talk about how

it was implemented. Previously I talked that I’ve followed an agile working methodology.

It is important to note that agile methodologies encourages to instead of doing a full

specification and design of the solution at the start of the project (Inception), to do a

“basic” logic design (c.f. 7.1. Logical architecture) and in each sprint refining it. This is

the reason why in this section I will mix what typically is done during the design phase

and what is done during the implementation phase.

In this section I will talk about how the components presented in Figure 9 have been

implemented, which design patterns I’ve applied and I’ll also present the interactions

between the different components.

The framework has been fully implemented in C++, except for the build tools and some

testing components. It has been divided in packages (conceptually because packages

don’t exist in C++). A full diagram of the solution’s package can be seen at Figure 10.

The rt-data framework has been designed to work with at least the C++14 specification.

As for the C++ standard library, rt-data works with the GCC standard library. At least

versions 7.3.0 and 4.9.0, and in x86-64 and ARM architectures.

page 63

Figure 10 Package diagram

page 64

8.1. Events management

Event management is the core of this framework. It has been designed so that most of

the interactions between its components are done through events. All events are part

of a topic, which is just a short text description of all its events. For example, a topic for

all the readings of a GPS sensor could be “read_gps”.

Events can also have an associated data. Data that is common to all events are,

• A timestamp with the moment of creation.

• A text that represents the origin, or creator, of the event.

All this data is hold by a single object that is instance of class Data (c.f. Figure 11). This

class can be subclassed to include more data. In the example of the GPS readings, we

might want to include the coordinates.

Figure 11 Data class

For the handling of the events, I have implemented a variation of the observer pattern.

An instance of the class Broker holds a list of Listeners. These Listeners can

subscribe to a topic, and then the Broker will notify them once it receives a new event

from an event source. Listener is an interface that can be implemented by any class just

by implementing a method with this signature, void handle(std::string topic,

std::shared_ptr<Data> data).

page 65

Figure 12 Broker and listeners8

An event is not directly handled in the same thread it was send to the Broker. Instead, it

is handled asynchronously. The Broker has a queue of tasks to be executed and a pool

of threads. Once a thread is available, it starts executing a new task. For each Listener

to be notified, a new task is created.

Events are sent from the event source to the Broker, using the dispatch method. A

pseudocode explanation of what the method does follows,

dispatch(topic, data):

 for listener in listeners[topic]:

 thread_pool.add_task(listener.handle, topic, data)

 endfor

end

The sequence diagram for this interaction is available at Figure 13.

8 The class EventSource is just a placeholder for a class that generates events, not an actual class in the
framework

page 66

Figure 13 Sequence diagram for the dispatch method

Listeners are saved in the broker inside a std::unordered_map with the topic name

as the key, and a list of Listeners as the value. This class is part of the C++ STL (standard

library), and internally uses a hash table. The memory usage is worse than a standard

map, but the performance is much better. The average cost of the search, insert and

delete operations are, in average, O(1) for this container.

Listeners can be subscribed to a topic by calling the subscribe method from a Broker

instance, with the topic name and a pointer to the Listener as a parameter. A

pseudocode implementation of this method follows,

subscribe(topic, listener):

 listeners[topic].push_back(listener)

end

The sequence diagram for this interaction is available at Figure 14.

Figure 14 Sequence diagram for the subscribe method

page 67

As most components in rt-data, I have implemented the Broker with a two-phase

initialization. Before starting using the Broker, the user must call the start() method

and after using it, he must call the stop() method. These methods acquire and release

the resources needed by the class.

I’ve implemented this two-phase initialization because in C++ declaring a class’ instance,

like,

Broker broker;

Will automatically call the Broker’s constructor. This behaviour might be unwanted for

some users. What could be even worse is that if another class has a Broker as a member,

its constructor will be automatically called when constructing the class’ instances. For

example,

class AClass {

private:

 Broker broker;

}

In this case, when an instance of AClass is created, the constructor of Broker is called.

This could mean that the instantiation of AClass could take longer because of the

acquisition of the Broker’s resources. At least with a start() method, the acquisition

is more explicit.

For releasing the resources of a class, there are two options,

1. Releasing the resources in the destructor. This is done implicitly when the class

goes out of scope. It could delay the return from a method.

2. Releasing the resources in a dedicated method. This is done explicitly. If the user

does not call this method the resources are, potentially, never released.

I decided to implement a mixture between the two options. The user should call the

stop() method to release resources, but if he doesn’t do it, it is called from the

destructor.

page 68

When passing instances of Data and Listener, and as these classes are meant to be

subclassed, we cannot pass them by copy or reference. We must pass a pointer to the

instance. This is a C++ “limitation”, the compiler only reserves space for the declared

type. Passing a subclass is allowed by the compiler but the members of the subclass will

be lost.

Passing “raw pointers”, such as int*, is discouraged by the newer C++ standards (C++11

and later) and instead it’s recommended to use “smart pointers”. Smart pointers’

behaviour is similar to how references work on Java, although there’s no garbage

collector. Smart pointers have a raw pointer and an atomic counter with the number of

instances. Every time a copy of the smart pointer is made, the counter is incremented.

Each time that the destructor is called, the counter is decreased. If the counter reaches

0, the raw pointer is freed. I used one type of smart pointers called shared pointers

(std::shared_ptr) that allows the pointer to be copied and to be passed as a

parameter in a method.

8.2. Sensors management

Sensors management is another core component of the framework. It has been

designed so that the user doesn’t have to directly interact with it. Sensors are managed

by two classes,

• An instance of the class Sensor per hardware sensor. Responsible of managing

the status of the sensor and acquiring its data. The data acquisition is done by

default through polling. This class is meant to be subclassed for every sensor

type.

• An instance of the class SensorsManager per application. It’s responsible of

recollecting the data acquired from all the sensors from the system, and of

dispatching it to a Broker instance. This class is not meant to be sublassed.

The architecture of this package can be seen at Figure 15.

page 69

Figure 15 Sensor and SensorsManager

The data acquired by a Sensor is then stored in a subclass of Data. Typically, each

subclass of Sensor will have its own subclass of Data. In the previous diagram, the

GPSSensor saves its data into instances of GPSData.

Every 10 milliseconds, the SensorsManager will call the fetch method from all

Sensor instances with a pointer to a Broker instance. Each Sensor holds a queue of

Data to be dispatched. When the fetch method is called, the queue is emptied, and all

the data is dispatched to the Broker instance.

This polling of the Sensor instances is done in a separate thread so that the execution

of the rest of the application’s logic is not interrupted.

page 70

Figure 16 Sequence diagram for the fetch method

For the data acquisition of the sensor, the Sensor class has a pure virtual or abstract

method called read. This method is called periodically in a separate thread owned by

the Sensor instance. The rate, in nanoseconds, at which the read method is called can

be configured by setting the sampling_rate parameter either in the constructor or by

calling the set_sampling_rate method.

page 71

Figure 17 Sequence diagram for the read method and example

Other common configurations for all Sensor instances are the name of the sensor, that

will be used to populate the origin value from the generated Data, and the topic where

these data will be dispatched.

Both Sensor and SensorsManager classes make use of the two-phase initialization

explained in the previous section. When calling the start method, the internal threads

used for reading and fetching the data are started. When calling the stop method, the

threads are stopped and joined.

8.2.1 GPS sensor

For implementing a GPS sensor, I subclassed the Sensor and Data classes as

GPSSensor and GPSData. The data that is acquired by this sensor includes,

• The date and time reported by the GPS satellite.

• Coordinates (latitude and longitude).

• Altitude.

• Ground and vertical speeds.

• Other data related to the quality of the GPS reception, and the uncertainty of the

data received.

page 72

GPS “sensors” (actually GPS receivers) are a special kind of sensors. Unlike most of them,

GPS receivers cannot be read. Instead they are constantly sending updates to the

computer they are connected to.

To handle this behaviour, I am using an open-source project called gpsd (GPS daemon).

It’s a separate application that runs as a daemon in the background. It is connected

through a serial port to the GPS receiver and parses the data it receives into JSON. Then,

any other application can connect to this daemon through TCP and ask for the GPS data.

As part of the gpsd project, there are also C, C++ and Python libraries that can be used

to integrate the gpsd daemon into other applications. I’m using the C++ library.

A pseudocode implementation of the read method of GPSSensor follows,

read()

 gpsd_data = gpsd.read(timeout=10s)

 gps_data = GPSData(gpsd_data)

 data_queue.enqueue(gps_data)

end

It is important to set a timeout; in case the daemon is not available or if it’s not possible

to establish a new TCP connection. Although the timeout is set to 10 seconds, it won’t

block the rest of the application as it is running on a separate thread.

As configuration parameters, the GPSSensor only takes the hostname and the port

where the gpsd daemon is running. In most cases, the default values for these two

parameters are enough. The default hostname is localhost, and the default port is

DEFAULT_GPSD_PORT (internally set to 2947).

8.2.2. Analog sensor

The AnalogSensor is a Sensor that reads from the analog-to-digital converter (ADC).

For the data acquired by this sensor, I subclassed the Data class as AnalogData. It only

holds a real (double) value.

Although it has a single output value, this sensor has a big number of configuration

parameters,

page 73

• file. The file setup by udev to access the ADC.

• zero_value_voltage. The voltage read by the ADC at which the sensor reads

a value of 0.

• span_value_voltage. The voltage read by the ADC at which the sensor reads

the maximum.

• scale. The maximum value that can be read by the sensor.

• quantization_bits. The resolution of the ADC in bits.

• zero_voltage. The lowest possible voltage at which the ADC reads a value.

Typically, 0 volts.

• span_voltage. The maximum possible voltage at which the ADC reads a value.

Typically, 3.3 or 5 volts.

The ADC reads a voltage that is then converted to an integer between 0 and

2quantization_bits. This number must be then converted to a more meaningful value. This is

done using the following formula,

𝑣𝑎𝑙𝑢𝑒 = (𝐴𝐷𝐶 𝑣𝑎𝑙𝑢𝑒 − 𝑧𝑒𝑟𝑜) ×
𝑠𝑐𝑎𝑙𝑒

𝑠𝑝𝑎𝑛

Where,

𝑧𝑒𝑟𝑜 =
2𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑏𝑖𝑡𝑠 ∗ (𝑧𝑒𝑟𝑜 𝑣𝑎𝑙𝑢𝑒 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 − 𝑧𝑒𝑟𝑜 𝑣𝑜𝑙𝑡𝑎𝑔𝑒)

𝑠𝑝𝑎𝑛 𝑣𝑜𝑙𝑡𝑎𝑔𝑒

𝑠𝑝𝑎𝑛 =
2𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑏𝑖𝑡𝑠 ∗ 𝑠𝑝𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 𝑣𝑜𝑙𝑡𝑎𝑔𝑒

𝑠𝑝𝑎𝑛 𝑣𝑜𝑙𝑡𝑎𝑔𝑒

A pseudocode implementation of the read method follows,

read()

 fd = open(“/dev/adc”)

 adc_value = read(fd)

 value = convert(adc_value)

 data = AnalogData(value)

page 74

 data_queue.enqueue(data)

end

As you can see, we are using the standard system calls open and read for reading from

the sensor. As we have seen previously, the operating system internally will call the ADC

driver. The actual sensor reading is done at the driver level. Normally when a board has

an ADC, an ADC driver is installed by default.

8.3. Control

The control package allows to build control systems taking advantage of the event

system. I have built a state machine that responds to the events sent by a Broker

instance. The architecture of this package is based on two classes,

• State. Represents a state of the system. It has a condition that must be met for

the system to change to it, and two actions. One is executed when the system’s

current state changes to this state, and the other when the system changes its

current state again.

• StateMachine. Holds a set of States and serves as a Listener of events.

When the Broker sends a new event, it checks the condition of all states. If one

of them is met, the current state is changed to it.

The State class is meant to be subclassed for each state to implement. All States must

implement the following methods,

• arrive. It’s called when the state machine’s current state is set to this State. It

takes no parameters and has no return value.

• leave. It’s called when the state machine’s current state changes from this

state to another one. It takes no parameters and has no return value.

• check_condition. It’s called when the state machine receives a new event. It

shall check if the state machine shall change its current state to this state. It

takes as parameters a pointer to the current state, the topic of the event sent

by the Broker and the associated data.

page 75

Instead of subclassing State, it’s also possible to use the LambdaState class. This class

acts as a wrapper with three lambdas, one for each method from State to be

implemented.

Figure 18 State and StateManager

When a StateMachine is built, a start State must be provided. Later, more states can

be added by calling the add_state method and removed with the remove_state

method.

Not every State is reachable from all the other States. For this reason, the

StateMachine holds a map of all the reachable States for each State. To add a new

transition the add_transition state must be called with the origin and destination

State.

page 76

As I said previously, the state changes are done when receiving a new event from a

Broker instance. The StateMachine class implements the Listener interface and its

handle method. A pseudocode implementation of this method follows,

void handle(topic, data):

 for state in transitions[current_state]:

 if state.check_condition(current_state, topic, data):

 current_state.leave()

 current_state = state

 current_state.arrive()

 endif

 endfor

end

The sequence diagram of this method is the following,

Figure 19 Sequence diagram of the handle method

Internally, the StateMachine holds an unordered set (a hash table where the key and

value have the same object) of smart pointers of States. Here are stored the states

added by calling the add_state method. The transitions are stored in an unordered

page 77

map with a raw pointer to the origin state as the key, and a list of pointers to the

destination states as the value. The current state is stored as a raw pointer.

8.4. Serialization

To be able to save the event data to a database or to send it to remote hosts, it’s

necessary to have a way to change its representation to a format that can be understood

by both parties. This process is called serialization.

The architecture of this package is composed by two classes and interfaces,

• Serializable. An interface that should be implemented by any class that will

be serialized.

• SerializedObject. The classes that implement this interface represent the

result of serialization in a given format.

Figure 20 Serializable and SerializedObject

When a Serializable’s serialize method is called with a pointer to a

SerializedObject, it will call the put methods from the object. These methods take

a string key that identifies a property and a value of most of the standard C++ types (int,

float, bool, string, …). Similarly, when the deserialize method is called, the

page 78

Serializable will call the get methods from the SerializedObject to reconstruct

the serialized object.

As an example, the pseudocode implementation of the serialize and deserialize methods

from the Data class follow,

void serialize(serialized_object):

 serialized_object.put(“timestamp”, timestamp)

 serialized_object.put(“origin”, origin)

end

void deserialize(serialized_object):

 timestamp = serialized_object.get(“timestamp”)

 origin = serialized_object.get(“origin”)

end

With this implementation, the serializables don’t need to know the specifics of each

format. Furthermore, as the interface is based on key-value pairs, it’s perfect for

implementing the serialization to formats like JSON or even SQL queries.

To obtain the result of the serialization process, all SerializedObjects must

implement the method get_bytes that returns an array of bytes.

In the following subsections I will discuss the specifics of each implementation of

SerializedObject.

8.4.1. ByteObject

In this implementation, the serialized values are stored with their “raw” bytes and

“packed” into an array of bytes. Each packet is prepended by the total size of the packet,

and each value is prepended with its size in bytes.

The typical structure of the packets is like this,

Total size

4 bytes

Size of

property 1

1 byte

Property 1

256 bytes max

… Size of

property N

1 byte

Property N

256 bytes max

page 79

The packet for a serialized Data would look like this,

Total size

4 bytes

Size of timestamp

1 byte

Timestamp

4 bytes

Size of origin

1 byte

origin

256 bytes max

As you can see the string key of the serialized properties is ignored. The reason behind

this decision, is that this serialization is meant to use as little space as possible. This

behaviour is documented.

8.4.2. JSONObject

This implementation produces a JSON object from a Serializable. As the

SerializedObject’s put and get methods have key-value pairs as parameters, and

JSON objects are just a collection of key-value pairs, the implementation should be very

easy.

In fact, the JSONObject class is just a wrapper as it uses the JSON library by Niels

Lohmann to create the JSON documents.

Besides getting the result as a byte array, it’s also possible to get the json object from

the library, and the JSON object as a string.

8.4.3. SQLiteObject

This implementation produces the CREATE TABLE and INSERT statements to be

executed in an SQLite database. For the inserts, it produces prepared statements that

can be compiled on the database. Then, the “serialized” properties can be bound to the

prepared statement by passing it to the bind_values method.

The name of the table must be provided when creating a SQLiteObject instance. It is

needed to build the CREATE TABLE and INSERT statements.

The two outputs generated by this serialization process are the prepared statements for

the inserts and the CREATE TABLE statement. As it makes no sense to have a byte

representation of this serialization, the get_bytes method returns an empty byte

array.

page 80

8.5. IO

Another important part of the rt-data framework is the I/O, as it allows access to the

hardware and the file system. This package has been given two duties, the access to the

data buses (serial, SPI, I2C) and the writing of the event data to the file system, databases

or to remote hosts.

8.5.1. Writing of event data

When acquiring data, it’s important to save it in a non-volatile storage. We might want

to analyse it afterwards or, in case of failure we might want to know what happened.

My idea when designing this package was to make the API implementation-agnostic.

Following the template pattern, I implemented a common interface Writer. A class

that uses one writer, can be modified to accept another one with minimal changes in

the code.

Figure 21 Writer and writers

The writer interface defines two write methods. One only with an instance of Data,

and one that also includes the topic where the data was sent. Other than that, it is up to

the implementation to define what’s the difference between the two.

The interface also has a flush method. Its usage may vary between implementations,

but the idea is that after this method has been called, all the data passed to a write

method has been effectively written.

The open and close methods follow the same two-phase initialization as the rest of

the framework. When calling open, all the resources needed by the writer, are

initialized. And when calling close, all the resources are freed.

page 81

Typically, a Writer implementation will make use of a SerializedObject to change

the format of the event data before writing it. The specific method of serialization is

specific for each writer.

FileWriter

The FileWriter is an implementation of the Writer interface, to write event data to

a file. Internally, it uses the ostream class from the fstream header (C++ standard library)

to handle the actual writing to files. The only parameter needed to build this writer is

the name of the file to be written.

This writer is generic to use any type of SerializedObject. It will call the get_bytes

method and write what it returns into the file.

HTTPWriter

This implementation can “write” (send) an event data to an HTTP endpoint. To send the

HTTP packet it uses libcurl, a free software library that is widely used. The only

parameter needed to build this writer is the URL of the HTTP endpoint.

This writer uses the JSONObject class for serialization and sends what the get_bytes

method returns.

In this implementation, the flush method in this implementation does nothing.

TCPWriter

The TCPWriter sends event data through TCP to remote hosts. It uses Linux sockets. The

parameters needed to build this writer are the IP address of the host and the port of the

destination application.

This writer uses the ByteObject class for serialization and sends what the get_bytes

method returns.

In this implementation, the flush method in this implementation does nothing.

page 82

SQLiteWriter

The SQLiteWriter is an implementation of the Writer interface that writes event data to

a local SQLite database. It uses the SQLiteCpp library by Sébastien Rombauts9 that is a

wrapper around sqlite3. The sqlite3 “library” is the SQLite implementation in C

(remember that SQLite is a SQL database that is completely implemented in just a C

library that can be included in any application). From sqlite3 I’m using what the call “the

amalgamation” that is all its source code in a single header file.

For better performance, the user of the framework can enable two “optimizations”. One

is disabling the synchronous commit. This way SQLite won’t wait for the OS to confirm

the writes. The other is storing the journal in memory. Note that these changes break

with the ACID principles.

When a data is passed to be written, the writer stores it in a buffer. When the buffer is

full, all the data in the buffer are inserted in the database using a transaction. The size

of the buffer is set to 500 by default but can be configured by the user.

This writer uses the SQLiteObject class for serialization of the event data. When one

is passed to be written, it is passed to an instance of SQLiteObject. If the table for the

data doesn’t exist, it is created with the statement returned by the get_create_table

method. Then, a prepared statement for the insert is created with the statement

returned by the get_insert method. All prepared statements are cached for better

performance, and the next time a data of the same type is passed to be written, the

cached prepared statement will be used. Finally, the values from the data are bound to

the prepared statement by calling the bind_values method from the SQLiteObject

instance, and the prepared statement is executed.

8.5.2. Data buses

This package includes classes that can be used to manage some of the data buses

present in most microcontrollers and microcomputers. As you can see in Figure 22, the

classes in this package do not follow any common interface, even when they perform

very similar operations. The reason is that each one of them needs a different interface.

9 Available at https://github.com/SRombauts/SQLiteCpp

https://github.com/SRombauts/SQLiteCpp

page 83

I2C needs an address to write to, SPI is capable of full-duplex transfers, and it makes no

sense to read or write an array of bytes from a GPIO.

Figure 22 Data buses

I2C

An instance of the I2C class can be used to manage a single I2C bus. It uses the i2c-dev

library that is part of the Linux kernel. To build an instance, the path to the file created

by udev or sysfs that represents the bus must be passed.

With this class it’s possible to read and write from a I2C bus a single byte or an array of

bytes. To read and write it’s necessary to pass to the read or write methods, the

address of the register to read/write. As the I2C addresses are 7 bits long but the

smallest amount of memory we can address is 8 bits. This might introduce some issues

as some I2C devices expect the padding bit at the start of the address, but others require

it at the end.

This class uses the same two-phase initialization we’ve seen previously in other classes.

SPI

An instance of the SPI class can be used to manage a single SPI interface. It uses

standard system calls like ioctl to read and write from the bus.

page 84

When building an instance, the user is capable of selecting the SPI mode, the number of

bits per word, and the speed of the communication in Hz. When building the instance,

it’s also necessary to pass the path to the file that represents the SPI interface, that is

created by udev or sysfs.

We can read and write a single byte or an array of bytes by using the read and write

methods. It is also possible to make full-duplex transfers by calling the transfer method

with two arrays of bytes, one for the bytes to be sent and one that will hold the received

bytes.

It also uses a two-phase initialization.

Serial

An instance of the Serial class can be used to manage a single TTY terminal, primarily

UART interfaces. It uses the termios Unix API. Using this API, it’s possible to read and

write using system calls like read and write.

When building an instance, the user can configure the baud rate, the size of a character

and the type of parity. By default, the baud rate is set to 9600 bits/s, the size of the

character is set to 8 bits, and the parity type is set to none. This is the default

configuration in some devices like the Arduinos. When building the instance, it’s also

necessary to pass the path to the file that represents the TTY.

We can read and write a single byte or an array of bytes by using the read and write

methods.

This implementation also used a two-phase initialization.

GPIO

Using an instance of the GPIO class it’s possible to manage a single general-purpose

input output (GPIO) pin. The Linux sysfs exposes the file /sys/class/gpio/export

to which we can write to ask the kernel the control of a GPIO pin [18]. For example, if

we write “5” to this file, it will create the directory /sys/class/gpio/gpio5/ with

two interesting files,

page 85

• “direction”. Where we can write “in” to set the pin as input, or “out” to set it as

output.

• “value”. If the pin is set as an output, we can write a “1” or a “0” that will set the

pin as high or low.

This class uses these sysfs files and directories to manage a GPIO pin. When building an

instance, we must pass the number of the pin that will be managed.

Then, we can read the status of the pin by calling the read method, that will return

either HIGH or LOW (these values are members of the PinStatus enum). If set as an

output, we can set the status of the pin by calling the write method with HIGH or LOW

as a parameter. We can set the pin as output or input by calling the set_status

method with INPUT or OUTPUT (these values are part of the Mode enum).

The GPIO class also uses a two-phase initialization.

8.6. Timestamping

As we’ve seen previously, all Data instances are timestamped with the time of its

creation. This is very important as it allows for a better traceability of the acquired data.

This package has three classes,

• Timestamp. Uniquely identifies a point in time.

• Duration. Represents the time between two points in time.

• TimeUnit. Represents a time unit (seconds, milliseconds, …).

TimeUnit instances hold the number of nanoseconds that the time unit it represents

has. For example, the instance that represent the microsecond will hold the value 1.000

because a microsecond is equivalent to 1.000 nanoseconds. Because it holds

nanoseconds, the smallest time unit that can be represented is the nanosecond.

The TimeUnit class has a convenience method that allows to convert an integer from

one time unit to another,

int64 convert(value, original_timeunit, destination_timeunit):

 return (value*original_timeunit)/destination_timeunit

end

page 86

For convenience, the C++ operators * and / have been overloaded. A TimeUnit can be

multiplied and divided by another TimeUnit or by a 64-bit integer. We just multiply or

divide the number of nanoseconds of the first operand with the number of nanoseconds

of the second one.

Timestamp instances hold the number of nanoseconds since the Unix epoch (1st

January 1970). They can be created in three ways, by calling the constructor with an

integer that represent an amount of nanoseconds since epoch, by calling the static

method from_duration with an integer time and its TimeUnit, or by calling the now

method. This method takes no arguments and will return a Timestamp instance with

the number of nanoseconds since epoch until now.

To get the current timestamp I’ve used the chrono header from the C++ standard library.

By calling the std::chrono::high_resolution_clock::now() method, we can

obtain the current timestamp from the clock with the highest resolution.

For convenience, the Timestamp class overloads the +, -, >, < and == C++ operators,

• Subtracting two timestamps. Will return a Duration instance representing the

time duration between the two points in time.

• Adding a Duration to a Timestamp. Will return a Timestamp instance with

the number of nanoseconds of the Duration added to the number of the

nanoseconds of the Timestamp.

• Subtracting a Duration from a Timestamp. Will return a Timestamp instance

with the result of the subtraction of the number of nanoseconds of the

Duration from the number of the nanoseconds of the Timestamp.

• Comparing if two Timestamps are equal. Will return a boolean value indicating

if both timestamps have the same number of nanoseconds since epoch.

• Comparing if a Timestamp is greater than/less than another Timestamp. Will

return a boolean value indicating if the number of nanoseconds from one

Timestamp is bigger/smaller than the other one.

page 87

A Timestamp instance can be converted to an integer representing seconds,

milliseconds, microseconds or nanoseconds by calling the methods to_seconds,

to_millis, to_micros or to_nanos.

Duration instances hold two nanoseconds timestamps. There are two ways to build an

instance, either by calling the constructor with two nanosecond values or by calling the

constructor with an integer value and its TimeUnit.

A Duration instance can be converted to an integer representing seconds,

milliseconds, microseconds or nanoseconds by calling the methods to_seconds,

to_millis, to_micros or to_nanos.

8.7. Concurrency

The concurrency package includes classes that help with the concurrency management

and synchronization. The classes it includes are,

• Thread. An extension of the thread class from the C++ standard library.

• ThreadPool. An implementation of a thread pool.

• ConcurrentQueue. A thread-safe queue.

Figure 23 The 'concurrent' package

The Thread class adds the ability of configuring the scheduling policy of a thread. The

policies are defined by the Linux scheduler. The policies that can be used in an rt-data

thread are,

• Default scheduling, SCHED_OTHER.

page 88

• First-In, First-Out (FIFO) scheduling [19]. It’s a real-time scheduling policy. Each

thread is given a priority from 1 to 99. When scheduled for execution, it’s put at

the end of the queue for its priority. Once the CPU is available, the thread at the

head of the highest priority queue is executed.

• Round-Robin (RR) scheduling. It’s a real-time scheduling policy. Is an extension

of the FIFO scheduling, in which each thread is only allowed to run for a

maximum time quantum.

Note that threads with a real-time scheduling policy will always pre-empt the execution

of a non-real-time thread. In rt-data the scheduling policies are represented by the

SchedulingPolicy enumeration.

Figure 24 SchedulingPolicy enumeration

The scheduling policy and the priority can be set by calling the

set_scheduling_policy method with a SchedulingPolicy and an integer

representing the priority as parameters. The current scheduling policy can be gotten by

calling the get_current_scheduling_policy method and the priority can be

gotten by calling the get_current_priority method. The minimum priority for a

scheduling policy can be gotten by calling get_min_scheduling_priority, and the

maximum priority by calling get_max_scheduling_priority. For all these

operations, rt-data uses the POSIX Threads (pthreads) API.

The ThreadPool instances hold a list of Thread instances. The number of threads in

the pool is configurable, but by default it’s 10 threads. The pools execute atomic jobs

that have no parameters and no return values and are stored as std::function objects

from the C++ standard library. The jobs are put into a ConcurrentQueue.

To add a new job, the user must call the add_job method with a std::function job as a

parameter. This job is put into the job queue. If a thread is available and waiting for a

page 89

new job, it will be notified and it will start executing the new job. If no thread is available,

the job will wait in the queue until a thread is available.

A pseudocode implementation of what each thread executes follows,

void thread_run():

 while !stopped:

 new_job.wait(continue if stopped || !job_queue.empty())

 if !stopped:

 job = job_queue.pop()

 job()

 endif

 endwhile

end

To wait for a new job, the threads use a std::condition_variable, from the C++

standard library, that will block the thread until it’s notified by another thread or the

condition passed as a parameter to the wait method evaluates as true. The new_job

condition variable is notified in the add_job method,

void add_job(job):

 job_queue.push(job)

 new_job.notify()

end

To stop the execution of all the threads in the pool, the user must call the join method.

It will notify all the threads and then it will join them,

void join():

 stopped = true

 new_job.notify()

 for thread in threads:

 if thread.joinable():

 thread.join()

 endif

page 90

 endfor

end

The ConcurrentQueue class is a thread-safe wrapper around the std::queue class

from the C++ standard library. It uses a mutex for synchronization, so that only one

operation of the queue can be performed at a time. Although better thread-safe

implementations exist, this solution introduces almost no complexity and has been

proven to be good enough.

It provides “just” three operations, pop, push and empty. pop removes and returns the

item at the head of the queue. push adds a new item to the end of the queue. And

empty returns whether the queue is empty or not.

8.8. Configuration

The configuration package provides classes that can be used to configure the application

and its components without needing to recompile the code using configuration files. It

includes the following classes,

• Configuration. An abstract class that can be subclassed to implement a

tree-like structure of pairs of key-values that stores configuration properties.

Each instance of Configuration is a node of the configuration tree. Each

node has a key and a value.

• JSONConfiguration. A concrete implementation of Configuration that

loads configuration properties from a JSON file.

• Any and AnyImpl. Can be used to store values of any data type.

page 91

Figure 25 Configuration package

A configuration tree might look like the one in Figure 26.

Figure 26 Configuration tree

The configuration tree can be accessed through a Configuration instance (a node of

the tree). The access is always done from top to bottom, and it’s not possible to access

a parent node from a child node. To access a child node, the user can invoke the method

at on a Configuration node with the key of one of its child nodes as a parameter. The

keys of the nodes are always strings but the value can be of any data type. To access the

page 92

value stored in a node, we can call the get method. The value can also be changed by

calling the set method with the new value as a parameter.

The children of a node are stored in an unordered_map (hash table). It is lazily initialized.

When a property is requested for the first time, it is loaded from the underlying

configuration file to the configuration tree.

The Configuration class does not implement any way of loading the configuration

from a configuration file, it’s delegated to the subclasses. Following the template

method pattern, they must implement the method load_from_implementation

that takes a key and (potentially, if it exists) stores a Configuration node in the tree

of child nodes. This method is called when the user calls the at method with a key that

does not exist in the tree of child nodes.

A pseudocode implementation of the at method follows,

Configuration at(property):

 if property not in childs_map:

 load_from_implementation(property)

 endif

 return childs[property]

end

The JSONConfiguration class has an implementation of the

load_from_implementation method that loads the Configuration node from a

JSON file. The parsing of the JSON files is handled by the beforementioned json library

by Niels Lohmann. Using JSON files as configuration files will impose two limitations,

1. Only leaf Configuration nodes will store a value. After loading the file any node

can be modified to include a value by calling the set method.

2. The JSON standard only supports a limited set of data types (c.f. section 5.5.

JSON). After loading the file all nodes can be modified to include any value of any

data type.

At Figure 27 it can be seen the sequence diagram for the at and

load_from_implementation methods of class JSONConfiguration.

page 93

Figure 27 Sequence diagram of the at method from class JSONConfiguration

Note that the Configuration class does not provide any way to persist the changes

done to a configuration tree back to a configuration file.

To store the node values from the configuration tree, I’ve implemented the class Any.

Although the C++ standard provides a similar class (std::any) since C++17, I’ve chosen

to not use it as C++17 is not available for all the platforms I was targeting. The available

libstdc++ in the distros for the RoadRunner board, require building the application with

GCC version 4.9 which is not fully compatible with C++17.

From the Any class we can get the stored value by calling the get method that’s

templated, so it must be called as, for example, get<int> to get an int value. To modify

the stored value the set method must be called with the new value as a parameter. It

is also templated, but in this case the template parameter can be omitted as the C++

compiler will deduct it from the type of the new value.

How this class works is quite interesting. The value is actually hold on the subclass

AnyImpl. The AnyImpl class is generic. The type of the value is template parameter

the class receives. For example, an AnyImpl<bool> holds a boolean value. But what

we don’t want to have to specify the template parameter all the time, as this would

defeat the purpose of an “any” type. To do this, the get and set methods from Any are

casting the this pointer to AnyImpl and calling its get and set methods.

page 94

For this reason, the instances of Any cannot be directly created by calling its constructor.

Instead, they should be created by calling the static method create_any with the value

to store as a parameter. This method will create an AnyImpl instance and returns a

smart pointer to Any.

page 95

9. Verification and validation

As I explained previously (c.f. 2.2.3. Validation method and software quality assurance),

the verification process has consisted of unit and integration testing. Unit testing was

automated in a Jenkins instance available at jenking.rt-data.org. After each change it’s

committed to the GitHub repository, the code is compiled, and the unit tests are

executed. Although not part of the verification process, the Jenkins instance was also

configured to execute a static code analysis with every commit.

The unit tests are all available under the test directory of the source code. The

integration tests are available under the test/integration directory.

The graph in Figure 28 shows the failed and successful builds in Jenkins. For a build to

be successful, the compilation must end without errors and all unit tests must execute

successfully.

Figure 28 Failed and successful builds

None of the failed builds were due to a failure in the unit tests. The failures were a

consequence of either a timeout in the compilation, or due to missing dependencies.

https://jenkins.rt-data.org/

page 96

For the validation process, I have performed two acceptance tests, at the end of sprints

5 and 8. A third acceptance test was scheduled for the end of sprint 12, but at the end

it was not possible to perform due to the scheduling of Cosmic Research’s static tests.

The results for the two acceptance tests follow,

Table 10 Results of the first acceptance test

1ST ACCEPTANCE TEST – SPRINT 5

FEATURES TESTED Event management (Broker, Listener, LambdaListener),

sensors management (SensorsManager, Sensor), analog

sensor, logging, SQLite writer and SQLite serialization.

ISSUES DETECTED • A segmentation fault produced on the

ConcurrentQueue as a result of returning references

instead of a copy.

• A segmentation fault caused because the lambda that

the Broker sends to the ThreadPool was capturing a

reference to a shared_ptr.

• A race condition on the ThreadPool where a thread was

trying to pop a job from the job queue, but the job

queue was empty.

RESULTS Success

Table 11 Results of the second acceptance test

2ND ACCEPTANCE TEST – SPRINT 8

FEATURES TESTED HTTP writer, TCP writer, configuration, GPS sensor

ISSUES DETECTED None

RESULTS Success

For the first acceptance test, I developed a stub Linux driver that simulates a 10-bit ADC

connected to an analog sensor.

page 97

For the second acceptance test, I used the gpsfake software from the GPSD project. This

software allows to simulate a GPS receiver that feeds the gpsd daemon with the

contents of a text file. For this test, I also implemented an HTTP and a TCP server in

Python, that received the data written by the HTTPWriter and the TCPWriter.

page 98

10. Laws, regulations and licenses

10.1. Laws and regulations

The systems implemented using the software that is being developed in this project

might be subject to regulation under The Wassenaar Arrangement on Export Controls

for Conventional Arms and Dual-Use Goods and Technologies.

This multilateral agreement is not a treaty, and therefor it’s not legally binding. It does

also not limit the export of technologies under the control of the arrangement, it is just

an agreement for the transparency of the export of the controlled technologies.

According to the list approved on the 5-6 December 2018 Plenary Meeting [20], the

developed systems could be under an export control if they are used for flight

management and/or flight control systems.

Under the category 7, Navigation and Avionics, section D, subsection 4, it states:

"Source code" incorporating "development" "technology" specified by 7.E.4.a.2.,

7.E.4.a.3., 7.E.4.a.5., 7.E.4.a.6. or 7.E.4.b., for any of the following:

 a. Digital flight management systems for "total control of flight";

b. Integrated propulsion and flight control systems;

c. "Fly-by-wire systems" or "fly-by-light systems";

d. Fault-tolerant or self-reconfiguring "active flight control systems";

e. Not used since 2012

f. Air data systems based on surface static data; or g. Three dimensional displays.

Note 7.D.4. does not apply to "source code" associated with common computer

elements and utilities (e.g., input signal acquisition, output signal transmission,

computer program and data loading, built-in test, task scheduling mechanisms) not

providing a specific flight control system function

page 99

As stated in the note, this does not apply to systems not used for flight control. For the

same reason, it does not apply for rt-data itself. It applies, for example, for the flight

control system for Bondar that will make use of rt-data.

Although not technically binding, the Council of the European Union has established the

Wassenaar Arrangement as law in all member states of the European Union under the

Council Regulation No 428/2009 [21]. Council Regulations are enforceable laws in all

member states, including Spain.

10.2. Licenses

As for licensing, rt-data is licensed under the 3rd version of the GNU Lesser General Public

License, abbreviated to LGPLv3 or just LGPL. This license allows everyone to use this

software for free, even for commercial use.

The license states that any derivate software can be licensed under any license, and it’s

not mandatory to distribute the source code. But, if there are modifications in the rt-

data code, these modifications must be licensed under the LGPL and the source code

must be distributed.

Also, the authors and contributors of rt-data are not liable for any damages that the

software might cause.

As for rt-data’s dependencies, SQLiteCpp is licensed under the MIT license. The MIT

license is very permissive and only requires that the copyright and license notices are

preserved. The SQLite code is in the public domain. The json library by Niels Lohmann is

also under the MIT license. The MIT license is LGPL-compatible.

For the rest of dependencies that are not statically linked or compiled against rt-data,

gpsd is under the 3-clause BSD license which is LGPL-compatible. libcurl (and curl) is

distributed under the curl license (inspired by the MIT license), which is LGPL-

compatible. Finally, g3log is licensed under The Unlicense license, which is also LGPL-

compatible.

page 100

11. Sustainability and social commitment

In this section I am going to analyse the sustainability of the project from three points

of view, the environmental, the social and the economic point of view.

11.1. Environmental sustainability

As previously said the project will be developed in the Cosmic Research’s office in

Terrassa. I have estimated that in the duration of the project, ~4 months, the electrical

consumption will be around 2.400kWh. This is equivalent to 888kg of CO2
10. This might

seem like a high amount of energy, but we must take into consideration that the office

is equipped with air conditioning, a fridge, servers, and a workstation. If we only take

into consideration the main tool used to develop the project, my laptop, the electrical

consumption would be of around 66,5kWh that is equivalent to 24,61kg of CO2.

Obviously, the office will not be only used by me, as there are other Cosmic Research’s

teams using it. So, in fact, a great part of the electrical consumption is shared with other

teams. Also, we have put in place strict recycling and power-saving policies.

If we compare my proposed solution to the ones I explained in the state-of-the-art, ROS

and EPICS, there’s not a big difference in the environmental impact. Both ROS and rt-

data are designed to be used in embedded low-power platforms. EPICS on the other

hand although it was designed to be used with large industrial systems with high power

consumption, it can also be used in low-power platforms for some use cases.

I think we cannot deny that this project will be used for purposes that might not be

environmentally sustainable. For example, in Cosmic Research it will be used in the

static-tests of Bondar’s motor. The propellant that it uses is not, by any means,

environmentally sustainable. One of its main components is aluminium, that is known

to cause acid rain and can harm plant growth.

Obviously, the contrary is also true. It will also be used for purposes that are

environmentally sustainable, as in renewable energy or IoT projects (for example).

10 Calculated using https://www.ceroco2.org/calculadoras/electrico

page 101

When using this framework in Bondar’s project, the risks are also very high. If used for

the parachute control system of Bondar and failed to deploy the chutes at the correct

time, the consequences could be fatal. Also, if used for the

11.2. Economical sustainability

A detailed analysis of the project costs can be found on this document. I have estimated

that the total cost of the project will be 12.406,77€, including human, hardware and

software resources. In Table 8 there is a summary of the budget of the project.

At the end, there have been no deviations from the budget. The total cost of the project

has been 11.278,88€. In Table 9 there is a summary of the cost of the project.

If we compare rt-data to the solutions explained in the state-of-the-art, there is not a

big difference with the ROS framework. Both can be used in low-cost embedded

platforms with low-cost hardware. EPICS on the other hand was designed to be used in

(usually) expensive industrial-grade hardware, although it can be used in embedded

platforms for some use cases. All three are free (as in freedom) software and can be

used for free.

As free software (as in freedom and as in cost) rt-data is not auto-sustainable

economically. All present and future support and development will have to be done by

volunteers or by an organization like Cosmic Research. This last possibility is not

uncommon, companies like Microsoft and Google support open-source projects that do

not generate any revenue.

During operation, the only expected cost is the cost of the maintenance of the system.

It is expected that rt-data receives updates during its life, which might need the use of

both human and hardware resources.

11.3. Social sustainability

This project will not have a direct impact on our quality of life. Instead the projects that

will use this framework might have a direct impact on the quality of life of the people.

Some possible users are academic and scientific research groups, industries, transport

systems, etc.

page 102

Unlike ROS or EPICS, rt-data will provide an easy-to-use interface for non-proficient

users. This might expand the userbase, that could cause a bigger social impact of rt-data.

Furthermore, as rt-data is free software, anyone can add functionality and even make

their own versions of the software. The license selected, the Lesser GNU Public License,

allows people to create derived works both open-source and proprietary.

11.4. Sustainability matrix

Taking into consideration all what has been said I’ve assigned points to the sustainability.

I have divided each dimension in three points of view, Project Put into Production (PPP),

useful life and risks. The points have been assigned in the following manner,

• PPP. From 0 to 10. 10 means that the project is completely sustainable.

• Useful life. From 0 to 20. 20 means that the project is completely sustainable.

• Risks. From 0 to 10. 10 means that a scenario with a bad outcome has a high

probability.

Table 12 Sustainability matrix

 PPP USEFUL LIFE RISKS

ENVIRONMENT 7 10 7

ECONOMIC 8 2 5

SOCIAL 10 7 0

TOTAL 25/30 19/60 12/30

The reasoning I’ve followed is the following,

• Environment – PPP: The electrical consumption is relatively low, as not much

resources are needed for the project. No other environmental impact is expected

during the project development.

• Environment – Useful life: This project is not a final product so we cannot predict

its environmental impact. That being said, some of the known applications of this

project are known to be environmentally unsustainable.

• Environment – Risks: The project itself has no almost no direct environmental

risk. But, some of its applications might

page 103

• Economic – PPP: The project cost has been estimated and can be assumed by

the supporting organization, Cosmic Research.

• Economic – Useful life: The project will not be economically auto-sustainable as

it is free software, as in freedom and as in cost. During operation, only costs

related to maintenance are expected.

• Economic – Risks: The project is financed by Cosmic Research, that is an

association with very limited funding. The cost of maintaining the project is low,

but in the (not that improbable) case were Cosmic had an even more limited

budget, the development of rt-data would be stopped.

• Social – PPP: On a personal level, this project will give me experience in some

fields that I expect will be useful in my career.

• Social – Useful life: The project does not target to offer new functionalities that

do not exist in the present, but to make them more accessible to non-proficient

users.

• Social – Risks: This software nor its known applications won’t have any negative

impact on the population.

page 104

12. Conclusions

As a general conclusion, I am glad to say that I’ve met all the project objectives and that

the software complies with the requirements negotiated with the stakeholders. It has

been hard as there was a lot of features to be implemented and it has been very

challenging to finish every sprint in just one week.

This project has allowed me to acquire more knowledge in a field that is very interesting

for me. I think that the world of IoT and automation has a big potential, and I want to

be part of its future.

I’m quite proud of the results I’ve achieved on this project. It’s the first time that I build

something this size all by myself, but I think I’ve managed to deliver a usable software

and with enough quality to be used by hobbyists and research groups or companies that

are developing proof of concepts of their projects. I’ve followed standard processes in

the industry that I’ve been taught during the bachelor’s degree.

Furthermore, it will also be very helpful for implementing different data acquisition

systems for Cosmic Research. From the data acquisition system that will be integrated

in the future Bondar rocket, to the system that will serve to test and analyse the

performance of Bondar’s motor, Nebula.

12.1. Future work

The project had a very tight scheduling and I had to exclude from it some features and

works that’d be interesting to work on in the future.

1. User documentation and tutorials. This software is meant to be usable by

starters and shall have detailed documentation on how each component work

and how to configure it. It would be interesting to have tutorials to help them

develop their firsts applications with rt-data.

2. Support for more hardware. Now rt-data only has support for GPS receivers and

analog sensors.

3. Support for other OSs. Now rt-data only supports Linux, but embedded systems

also use other OSs like VxWorks or RTLinux. It might also be interesting to port it

to be usable with FreeRTOS.

page 105

4. Support for more persistence methods. Now rt-data only supports persisting

data to a file or to an SQLite database. It would be interesting to port it to work

with other DBMSs.

5. Being able to retrieve written data. Now rt-data allows to write (persist) data but

not to recover it.

page 106

13. Bibliography

[1] “Global Internet of Things Market - Global Industry Analysis, Size, Share,

Growth, Trends and Forecast 2016 - 2024,” 2017.

[2] P. Pascual Vázquez, “Integración de EPICS en una distribucion Linux para la

plataforma Raspberry-Pi,” 2017.

[3] M. Haizad, R. Ibrahim, A. Adnan, T. D. Chung and S. M. Hassan, “Development of

low-cost real-time data acquisition system for process automation and control,”

in 2016 2nd IEEE International Symposium on Robotics and Manufacturing

Automation (ROMA), 2016.

[4] D. Selisteanu, M. Roman, D. Sendrescu, E. Petre and B. Popa, “A distributed

control system for processes in food industry: Architecture and

implementation,” in 2018 19th International Carpathian Control Conference

(ICCC), 2018.

[5] Argonne National Laboratory, “EPICS Overview,” [Online]. Available:

https://epics.anl.gov/EpicsDocumentation/AppDevManuals/AppDevGuide/3.12

BookFiles/chapter1.html. [Accessed 22 February 2019].

[6] ROS, “ROS Core Components,” [Online]. Available: http://www.ros.org/core-

components/. [Accessed 22 February 2019].

[7] Glassdoor, “Salaries in the Barcelona area,” [Online]. Available:

https://www.glassdoor.com/. [Accessed 10 March 2019].

[8] Red Eléctrica de España, “Términode facturación de energía activa del PVPC,”

Red Eléctrica de España, [Online]. Available: https://www.esios.ree.es/es/pvpc.

[Accessed 10 March 2019].

page 107

[9] GNU, “The GNU/Linux operating system,” [Online]. Available:

https://www.gnu.org/. [Accessed 28 04 2019].

[10] A. Rubini and C. Jonathan, Linux Device Drivers, Second ed., O'Reilly, 2001, p.

586.

[11] FreeDesktop, “udev(7) - Linux Programmer's Manual,” [Online]. Available:

http://man7.org/linux/man-pages/man7/udev.7.html. [Accessed 29 05 2019].

[12] University of California, “ioctl(2) - Linux Programmer's Manual,” [Online].

Available: http://man7.org/linux/man-pages/man2/ioctl.2.html. [Accessed 29

05 2019].

[13] B. Stroustrup, The C++ programming language, Fourth ed., Addison-Wesley,

2013.

[14] S. Cass and P. Bulusu, “The Top Programming Languages 2018,” IEEE Spectrum,

2018 07 31. [Online]. Available: https://spectrum.ieee.org/static/interactive-

the-top-programming-languages-2018. [Accessed 29 05 2019].

[15] SQLite, “About SQLite,” [Online]. Available: https://www.sqlite.org/about.html.

[Accessed 30 05 2019].

[16] SQLite, “Well-Known Users of SQLite,” [Online]. Available:

https://sqlite.org/famous.html. [Accessed 30 05 2019].

[17] Ecma International, “Standard ECMA-404: The JSON Data Interchange Syntax,”

2017.

[18] Kernel.org, “GPIO Sysfs Interface for Userspace,” [Online]. Available:

https://www.kernel.org/doc/Documentation/gpio/sysfs.txt. [Accessed 02 06

2019].

[19] Kernel.org, “sched(7) - The Linux Programmer's Manual,” [Online]. Available:

http://man7.org/linux/man-pages/man7/sched.7.html. [Accessed 14 06 2019].

page 108

[20] Wassenaar Arrangement Secretariat, “List of Dual-Use Goods and

Technologies,” 01 12 2018. [Online]. Available:

https://www.wassenaar.org/app/uploads/2018/12/WA-DOC-18-PUB-001-

Public-Docs-Vol-II-2018-List-of-DU-Goods-and-Technologies-and-Munitions-List-

Dec-18.pdf. [Accessed 10 05 2019].

[21] Council of the European Union, Council Regulation No 428/2009 of 5 May 2009,

setting up a Community regime for the control of exports, transfer, brokering

and transit of dual-use items, 2009.

[22] “Data acquisition,” [Online]. Available:

https://en.wikipedia.org/wiki/Data_acquisition. [Accessed 21 February 2019].

[23] “Control system,” [Online]. Available:

https://en.wikipedia.org/wiki/Control_system. [Accessed 21 February 2019].

