
An ILP-based Real-Time Scheduler for Distributed

and Heterogeneous Computing Environments
Eudald Sabaté1, Maria A. Serrano2, Eduardo Quiñones3

Barcelona Supercomputing Center (BSC), Spain
1eduald.sabate@bsc.es, 2maria.serranogracia@bsc.es, 3eduardo.quinones@bsc.es

Keywords—real-time, schedulability analysis, distributed computing environment, ILP

ABSTRACT

The digitalization process is making cities to rapidly increase

the amount of data to be processed upon which data analytics

can extract valuable knowledge. However, this phenomenon is

facing many important challenges. On one side, the advent of

connected and autonomous vehicles challenges data analytics

methods due to the need of accomplishing real-time

requirements. On the other side, the dispersion nature of data

sources makes current big data analytics methods, commonly

designed to execute in centralized and computationally intensive

(cloud-based) environments, not suitable for smart cities. The

use of distributed computing environments composed of

advanced parallel embedded processor architectures at the edge,

e.g., NVIDIA Jetson, Kalray MPPA, can help alleviating the

pressure on centralized cloud-based solutions, while providing

the real-time guarantees needed to implement advanced mobility

functionalities on cars and cities.

To do so, this work presents a novel scheduler (based on ILP

formulation) to optimally distribute the computation across the

compute continuum composed of multiple edge devices, while

providing real-time guarantees. Our scheduler, implemented in

the COMPSs distributed programming model developed at BSC,

statically assigns tasks to those edge devices so that the overall

response time of the workflow is minimized. It takes into

account an execution time upper bound of the computation and

communication existing in the workflow.

A. Introduction

Critical real-time systems are commonly modelled as a set of

concurrent and periodic real-time tasks that implement the

system functionalities [1]. Each real-time task is characterized

with a period, a deadline and direct acyclic graph (DAG)

composed of a set of nodes, implementing sub-functionalities,

and a set of edges connecting the nodes, representing the

precedence constraints among them. In this context, real-time

scheduling techniques are key to: (1) efficiently execute the real-

time tasks into computing resources, and (2) guarantee that the

deadlines of the real-time tasks are met by means of

schedulability analysis [2]. Interestingly, workflows in COMPSs

[3], a task-based programming framework for distributed

computing environments, are represented as a DAG, in which

nodes correspond to COMPSs tasks and edges to the data

dependencies existing among them. Unfortunately, current

schedulability analysis are only applicable to systems executed

on the same computing node and therefore, cannot be applied to

COMPSs.

This work tackles the problem of efficiently distributing a

COMPSs workflow across the compute continuum, while

guaranteeing its timing constraints. To do so, we develop a

schedulability analysis based on Integer Lineal Programming

(ILP) formulation with a twofold objective: (1) to minimize the

execution time of the COMPSs workflow by statically assigning

COMPSs tasks to the computing resources that form the

compute continuum; and (2) to provide an upper bound response

time of the overall workflow by considering the timing

characterization of each COMPSs task and the data transfer

among them. This static allocation is then implemented by a

dedicated COMPSs scheduler.

B. COMPSs

COMPSs offers a task-based and portable programming

framework that facilitates the distribution and parallelization of

sequential source code (written in Java, C/C++ or Python) in a

distributed and heterogeneous computing environment, such as

those existing in smart cities. In COMPSs, the programmer is

responsible of identifying COMPSs tasks and the data

dependencies existing among them, by annotating the sequential

source code. The run-time scheduler is then in charge of

distributing the COMPSs tasks among the available computing

resources across the compute continuum, from on edge to cloud.

The COMPSs runtime incorporates several task schedulers

implementing different allocation policies: (1) FIFO selects the

first ready task and the first available computing resource; (2)

FIFO + Data locality selects the first ready task and the

computing resource that better exploits the data locality; (3)

LIFO selects the last ready task and the first available computing

resource; and (4) FIFO + Load Balancing selects the first ready

task and the computing resource that better balances the overall

load of the system. These strategies are intended to exploit the

performance in HPC environments, but do not guarantee the

real-time constraints of the system.

We tackle the problem of efficiently distributing a COMPSs

workflow and guaranteeing the timing constraints, by

developing a dedicated COMPSs scheduling strategy based on a

static allocation of COMPSs tasks to computing resources

derived with an ILP formulation.

C. ILP Scheduling Strategy

With the objective of incorporating real-time requirements

while efficiently distributing the workflow, we propose a new

scheduling strategy that allocates COMPSs tasks to computing

resources, based on a predefined static allocation given by an

ILP formulation. ILP is a well-known technique already used in

real-time systems to compute the minimum makespan of real-

time tasks represented as a DAG [4][5].

Concretely, our ILP scheduling strategy relies upon a system

model that considers the following information: (1) a

representation of the COMPSs workflow by means of a DAG,

that includes the execution time upper bound of each COMPSs

task and the characterization of the size of the data dependencies

between tasks; and (2) a description of the compute continuum,

including the computing resources and the communication

network. Next, we briefly describe the system model considered.

C.1. Compute continuum model

The compute continuum model represents the available (and

heterogeneous) computing resources interconnected by different

network links. It is represented as a directed graph (digraph)

where each node represents a computing resource characterized

6th BSC Severo Ochoa Doctoral Symposium

100

by its type and computation capabilities, (e.g., GPU, CPU,

Instruction Set Architecture (ISA) supported), and each edge

represents the communication link between nodes, characterized

by the transport bandwidth. Figure 1(a) shows an example of a

compute continuum model representing an edge-cloud system,

consisting of four computing resources: a computing resource

available on a car, two computing nodes located within the street

and a data center representing the city cloud services

 (a) Compute continuum model (b) Task model

Figure 1. System model.

C.2. Task Model

A COMPSs workflow is represented by a DAG, where each

node represents a COMPSs task, and each edge represents a data

dependency existing between COMPSs tasks. Edges are

characterized by the total size of the data involved in the

dependency. If two dependent tasks execute in different

computing resources, then this data must be transferred through

the computer network. Edges also represent the execution order

constraints, i.e., if there exists an edge between two nodes, then

predecessor node must complete before successor node can

begin its execution. Since each task may have different

implementations, for each of the potential computing resources

in which it can execute, each node is characterized by set of

values corresponding to an upper bound of the execution time of

the task in a given computing resource. Figure 1(b) shows an

example of a task workflow, represented as a DAG, composed

of seven nodes and eight edges.

D. Evaluation

This section provides a preliminary evaluation of the ILP

scheduling strategy proposed.

D.1. Experimental Setup

We consider a Cholesky factorization [6] application

(implemented in Python) and parallelized with COMPSs. The

Cholesky factorization is commonly used for efficient linear

equation solvers, Monte Carlo simulations, or to accelerate

Kalman filters implemented, for example, in vehicle navigation

systems to detect objects positions and compute trajectories. The

COMPSs workflow, that processes a matrix of 2048 × 2048,

generates a DAG composed of 30 COMPSs tasks. The execution

time upper bound of each COMPSs tasks have been computing

by selecting the maximum observed execution time of 50

executions.

Moreover, we consider a compute continuum model with two

computing resources: (1) a four-core Intel(R) i7-7600U

processor @ 2.80GHz and (2) a four core ARMv8 Processor rev

3 included in a NVIDIA Jetson TX2. The communication link

between them is an IEEE 802.11g at 54 Mbps of bandwidth.

D.2. Results

Table 1 compares the execution time (in seconds) of the

Cholesky factorization executed on our compute continuum

model, considering our ILP-based scheduling strategy and the

four different baseline COMPSs schedulers, i.e., FIFO, FIFO +

Data locality, LIFO and FIFO + Load Balancing strategies.

Table 1. Execution time (in sec) of the Cholesky factorization.

ILP-

based

Scheduler

COMPSs baseline scheduler

FIFO

FIFO +

Data

Locality

LIFO

FIFO +

Load

Balancing

8.16 16.36 12.53 14.68 11.92

As observed, and for this particular example, our ILP

scheduler strategy clearly outperforms the COMPSs baseline

schedulers, reducing the execution of time of the Cholesky

factorization by two when comparing to the COMPSs FIFO

schedulers presented in Section B.

E. Conclusion and Future Enhancement

This work presents a static allocation strategy based on an

ILP-formulation that minimizes the execution time of a

COMPSs workflow, while providing an upper bound of its

response time. The next steps are to evaluate our scheduling

strategy with a more complex (and realistic) computing

continuum model of a smart city, and considering a workflow

that implements an advanced mobility functionality with data

analytics methods.

F. Acknowledgements

The research leading to these results has received funding

from the EU Horizon 2020 Programme under the CLASS

Project (www.class-project.eu), grant agreement No 780622. An

extended version of this work is planned to be submitted to

ESWEEK 2019 (https://www.esweek.org/).

References

[1] S. Baruah, M. Bertogna, and G. Buttazzo. Multiprocessor

Scheduling for Real-Time Systems. Springer, 2015.

[2] G. C. Buttazzo. Hard real-time computing systems:

predictable scheduling algorithms and applications,

volume 24. Springer Science & Business Media, 2011.

[3] F. Lordan, E. Tejedor, J. Ejarque, R. Rafanell, J. Álvarez, F.

Marozzo, D. Lezzi, R. Sirvent, D. Talia, and R. M. Badia.

ServiceSs: an interoperable programming framework for

the Cloud, Journal of Grid Computing, March 2014.

[4] M. A. Serrano, A. Melani, M. Bertogna, E. Quiñones.

Response-time analysis of DAG tasks under fixed priority

scheduling with limited preemptions. In DATE, 2016.

[5] A. Melani, M. A. Serrano, M. Bertogna, I. Cerutti, E.

Quiñones, G. Buttazzo. A static scheduling approach to

enable safety-critical OpenMP applications. In ASP-DAC

2017.

[6] N. Bašcelija. Sequential and parallel algorithms for

cholesky factorization of sparse matrices. Mathematical

Applications in Science and Mechanics, 2013.

Author biography

Eudald Sabaté was born in Barcelona,

Spain, in 1995. He received the Bachelor

degree in computer science from the

Polytechnic University of Catalonia

(UPC) in 2018, and is currently enrolled

in the MSc in Innovation and Research in

Informatics at UPC. Since April 2018, he

has been working as a research student at

BSC in the CAOS (Computer Architecture

and Operating Systems) group.

6th BSC Severo Ochoa Doctoral Symposium

101

https://www.esweek.org/

