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ABSTRACT 

The digitalization process is making cities to rapidly increase 

the amount of data to be processed upon which data analytics 

can extract valuable knowledge. However, this phenomenon is 

facing many important challenges. On one side, the advent of 

connected and autonomous vehicles challenges data analytics 

methods due to the need of accomplishing real-time 

requirements. On the other side, the dispersion nature of data 

sources makes current big data analytics methods, commonly 

designed to execute in centralized and computationally intensive 

(cloud-based) environments, not suitable for smart cities. The 

use of distributed computing environments composed of 

advanced parallel embedded processor architectures at the edge, 

e.g., NVIDIA Jetson, Kalray MPPA, can help alleviating the 

pressure on centralized cloud-based solutions, while providing 

the real-time guarantees needed to implement advanced mobility 

functionalities on cars and cities.  

To do so, this work presents a novel scheduler (based on ILP 

formulation) to optimally distribute the computation across the 

compute continuum composed of multiple edge devices, while 

providing real-time guarantees. Our scheduler, implemented in 

the COMPSs distributed programming model developed at BSC, 

statically assigns tasks to those edge devices so that the overall 

response time of the workflow is minimized. It takes into 

account an execution time upper bound of the computation and 

communication existing in the workflow. 

A. Introduction 

Critical real-time systems are commonly modelled as a set of 

concurrent and periodic real-time tasks that implement the 

system functionalities [1]. Each real-time task is characterized 

with a period, a deadline and direct acyclic graph (DAG) 

composed of a set of nodes, implementing sub-functionalities, 

and a set of edges connecting the nodes, representing the 

precedence constraints among them. In this context, real-time 

scheduling techniques are key to: (1) efficiently execute the real-

time tasks into computing resources, and (2) guarantee that the 

deadlines of the real-time tasks are met by means of 

schedulability analysis [2]. Interestingly, workflows in COMPSs 

[3], a task-based programming framework for distributed 

computing environments, are represented as a DAG, in which 

nodes correspond to COMPSs tasks and edges to the data 

dependencies existing among them. Unfortunately, current 

schedulability analysis are only applicable to systems executed 

on the same computing node and therefore, cannot be applied to 

COMPSs.  

This work tackles the problem of efficiently distributing a 

COMPSs workflow across the compute continuum, while 

guaranteeing its timing constraints. To do so, we develop a 

schedulability analysis based on Integer Lineal Programming 

(ILP) formulation with a twofold objective: (1) to minimize the 

execution time of the COMPSs workflow by statically assigning 

COMPSs tasks to the computing resources that form the 

compute continuum; and (2) to provide an upper bound response 

time of the overall workflow by considering the timing 

characterization of each COMPSs task and the data transfer 

among them. This static allocation is then implemented by a 

dedicated COMPSs scheduler. 

B. COMPSs 

COMPSs offers a task-based and portable programming 

framework that facilitates the distribution and parallelization of 

sequential source code (written in Java, C/C++ or Python) in a 

distributed and heterogeneous computing environment, such as 

those existing in smart cities. In COMPSs, the programmer is 

responsible of identifying COMPSs tasks and the data 

dependencies existing among them, by annotating the sequential 

source code. The run-time scheduler is then in charge of 

distributing the COMPSs tasks among the available computing 

resources across the compute continuum, from on edge to cloud.  

The COMPSs runtime incorporates several task schedulers 

implementing different allocation policies:  (1) FIFO selects the 

first ready task and the first available computing resource; (2) 

FIFO + Data locality selects the first ready task and the 

computing resource that better exploits the data locality; (3) 

LIFO selects the last ready task and the first available computing 

resource; and (4) FIFO + Load Balancing selects the first ready 

task and the computing resource that better balances the overall 

load of the system. These strategies are intended to exploit the 

performance in HPC environments, but do not guarantee the 

real-time constraints of the system. 

We tackle the problem of efficiently distributing a COMPSs 

workflow and guaranteeing the timing constraints, by 

developing a dedicated COMPSs scheduling strategy based on a 

static allocation of COMPSs tasks to computing resources 

derived with an ILP formulation.  

C. ILP Scheduling Strategy  

With the objective of incorporating real-time requirements 

while efficiently distributing the workflow, we propose a new 

scheduling strategy that allocates COMPSs tasks to computing 

resources, based on a predefined static allocation given by an 

ILP formulation. ILP is a well-known technique already used in 

real-time systems to compute the minimum makespan of real-

time tasks represented as a DAG [4][5]. 

Concretely, our ILP scheduling strategy relies upon a system 

model that considers the following information: (1) a 

representation of the COMPSs workflow by means of a DAG, 

that includes the execution time upper bound of each COMPSs 

task and the characterization of the size of the data dependencies 

between tasks; and (2) a description of the compute continuum, 

including the computing resources and the communication 

network. Next, we briefly describe the system model considered. 

C.1. Compute continuum model    

The compute continuum model represents the available (and 

heterogeneous) computing resources interconnected by different 

network links. It is represented as a directed graph (digraph) 

where each node represents a computing resource characterized 
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by its type and computation capabilities, (e.g., GPU, CPU, 

Instruction Set Architecture (ISA) supported), and each edge 

represents the communication link between nodes, characterized 

by the transport bandwidth. Figure 1(a) shows an example of a 

compute continuum model representing an edge-cloud system, 

consisting of four computing resources: a computing resource 

available on a car, two computing nodes located within the street 

and a data center representing the city cloud services 

 

 

   (a) Compute continuum model               (b) Task model 

Figure 1. System model. 

C.2. Task Model      

A COMPSs workflow is represented by a DAG, where each 

node represents a COMPSs task, and each edge represents a data 

dependency existing between COMPSs tasks. Edges are 

characterized by the total size of the data involved in the 

dependency. If two dependent tasks execute in different 

computing resources, then this data must be transferred through 

the computer network. Edges also represent the execution order 

constraints, i.e., if there exists an edge between two nodes, then 

predecessor node must complete before successor node can 

begin its execution. Since each task may have different 

implementations, for each of the potential computing resources 

in which it can execute, each node is characterized by set of 

values corresponding to an upper bound of the execution time of 

the task in a given computing resource. Figure 1(b) shows an 

example of a task workflow, represented as a DAG, composed 

of seven nodes and eight edges. 

D. Evaluation 

This section provides a preliminary evaluation of the ILP 

scheduling strategy proposed. 

D.1. Experimental Setup 

We consider a Cholesky factorization [6] application 

(implemented in Python) and parallelized with COMPSs. The 

Cholesky factorization is commonly used for efficient linear 

equation solvers, Monte Carlo simulations, or to accelerate 

Kalman filters implemented, for example, in vehicle navigation 

systems to detect objects positions and compute trajectories. The 

COMPSs workflow, that processes a matrix of 2048 × 2048, 

generates a DAG composed of 30 COMPSs tasks. The execution 

time upper bound of each COMPSs tasks have been computing 

by selecting the maximum observed execution time of 50 

executions.   

Moreover, we consider a compute continuum model with two 

computing resources: (1) a four-core Intel(R) i7-7600U 

processor @ 2.80GHz and (2) a four core ARMv8 Processor rev 

3 included in a NVIDIA Jetson TX2. The communication link 

between them is an IEEE 802.11g at 54 Mbps of bandwidth.  

D.2. Results 

Table 1 compares the execution time (in seconds) of the 

Cholesky factorization executed on our compute continuum 

model, considering our ILP-based scheduling strategy and the 

four different baseline COMPSs schedulers, i.e., FIFO, FIFO + 

Data locality, LIFO and FIFO + Load Balancing strategies. 

Table 1. Execution time (in sec) of the Cholesky factorization. 

ILP-

based 

Scheduler 

COMPSs baseline scheduler 

FIFO 

FIFO + 

Data 

Locality 

LIFO 

FIFO + 

Load 

Balancing 

8.16 16.36 12.53 14.68 11.92 

As observed, and for this particular example, our ILP 

scheduler strategy clearly outperforms the COMPSs baseline 

schedulers, reducing the execution of time of the Cholesky 

factorization by two when comparing to the COMPSs FIFO 

schedulers presented in Section B.  

E.  Conclusion and Future Enhancement 

This work presents a static allocation strategy based on an 

ILP-formulation that minimizes the execution time of a 

COMPSs workflow, while providing an upper bound of its 

response time. The next steps are to evaluate our scheduling 

strategy with a more complex (and realistic) computing 

continuum model of a smart city, and considering a workflow 

that implements an advanced mobility functionality with data 

analytics methods. 
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