
A FM-index transformation to enable large k-steps

Rubén Langarita∗, Adrià Armejach∗†, Miquel Moretó∗†
∗Barcelona Supercomputing Center (BSC), Barcelona, Spain
†Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

E-mail: {ruben.langarita, adria.armejach, miquel.moreto}@bsc.es

Keywords—FM-index, sequence alignment, genomics.
I. EXTENDED ABSTRACT

The high demand for fast and low-cost genomic sequencing
has pushed onward the rapid development of next-generation
sequencing (NGS) technologies. These systems are able to
produce huge amounts of short reads (in the order of giga
base-pairs) per day of operation. Usually the first step in
NGS corresponds to sequence alignment, where sequence
reads must be aligned or compared to a genomic reference to
identify regions of similarity. Most popular alignment methods
are based on two types of index structures: suffix trees and
hash tables [1]. When dealing with large reference genomes,
great efforts were devoted to reduce memory requirements for
sequence alignment. As a result, a set of alignment algorithms
based on the FM-index (Full-text index in Minute space)
structure have been developed.

The following section introduces the widely used FM-
index technique. Then, we introduce our proposal, that uses
a different data structure organization to enable search steps
of longer symbols. Finally, we present our findings when
evaluating our proposal on an Intel Knights Landing (KNL)
machine.

A. Background - FM-index

FM-index is well suited for fast exact matches of short
reads to large reference genomes while keeping a small
memory footprint. The objective is to find short sequences of
around 200 bases in a large reference genome. Normal problem
sizes involve the human genome, which is around 3 gigabases.
Therefore, to keep the memory footprint of these search
algorithms manageable, FM-index uses the Burrows-Wheeler
transform (BWT); a method for rearranging a character string
that is useful for data compression.

The first step is to make all possible permutations of the
reference genome, moving one letter from the start to the end
each time (Figure 1). Then, we have to sort all the permutations
alphabetically and extract the last column (Figure 2), usually
also called BWT, which will be used to build the index.

A G A T G C C A C G A
G A T G C C A C G A A
A T G C C A C G A A G

•
•

A A G A T G C C A C G

Fig. 1. BWT step 1: Permutations.

A A G G
A C C G
A C G C

•
•

T G C A

Fig. 2. BWT step 2: Sort alphabetically and extract last column.

FM-index consists of two structures, called C and Occ. The
structure C indicates where each symbol (letter of the alphabet)
starts in the sorted permutation matrix. The Occ structure has
a row for each entry of the BWT column, and one column
for each symbol. Each entry of Occ contains the number of
occurrences of each symbol until that point in the BWT column
(Figure 3).

BWT:
G
G
C
G
A
.
.
A

C:
A C G T $
0 4 9 13 14

Occ:
A C G T
0 0 1 0
0 0 2 0
0 1 2 0
0 1 3 0
1 1 3 0
. . . .
. . . .
4 5 4 1

Fig. 3. C and Occ structures built from BWT.

FM-index uses two pointers (start pointer and end pointer)
that indicate in each moment where are all the possible
candidates in the sorted matrix. FM-index starts searching
from the end of the search string. For the initialization, we
have to read C and setup the pointers according to the first
symbol read. Then, each iteration has to perform the following
operations for each pointer: i) read the next symbol, ii) index
C with that symbol, iii) index Occ with the symbol and the
previous pointer and iv) add the entries of C and Occ and
store the result in the pointer. This process repeats until all the
sequence we are searching is read.

B. Changes - An Occ representation with constant size

A way to improve this algorithm is to increase the number
of bases per symbol (K). For example, with K equals 2, the

6th BSC Severo Ochoa Doctoral Symposium

86

alphabet would be: {AA, AC, AG, AT, CA, CC ... TT}; instead
of {A, C, G, T}. Increasing K also means the size of the
structures grows exponentially, since these are dependent on
the number of symbols in the alphabet, which is 4K. In order
to maintain the size more or less constant while increasing K,
we propose a novel method to store the entries of Occ.

Each entry of the BWT increases by one a single counter of
the Occ table per row (see Figure 3). For example, with a K of
15 bases per symbol, only one column out of 415 will change
for each entry of BWT. Because of that, we propose to store
the indexes when the counters change. We will call this new
structure Changes. If the reference genome is of 3 gigabases,
Changes would occupy 12 GB of memory no matter the K.
The size of C does increase with K, as in the original FM-
index proposal. For K equal 15, C would occupy 4 GB of
memory, i.e., 415 entries x 4 bytes/entry. C also indicates the
offsets where each column in the Changes array starts (Figure
4).

0 6 8

42 56 9

AA AC AG AT

25

2 9

CA

41 43 23 33 6 17

230

TT

Offsets (C)

Changes

Column of Occ

Fig. 4. Proposal structures.
In our proposal, instead of indexing Occ, we would have

to perform a search over the column of the symbol we are
searching. Using Figure 4 as an example, suppose that we
want to find the symbol “AC”, and the previous pointers were
31 for start and 42 for end. First, we obtain the boundaries of
the column by indexing C. That is 2 and 6. Then, we have to
count the number of elements lesser than the pointers of the
previous iteration in the column, that is 2 for start (9 and 25)
and 3 for end (9, 25 and 41). Finally, we have to add the value
obtained indexing C and the counted elements. That would be
2 + 2 = 4 for start and 2 + 3 = 5 for end. This process is
repeated for the next symbol in the search string with start and
end pointers 4 and 5, respectively. Once the entire search string
is processed the start and end pointers identify the matches.

With K equals 15, we find that some symbols are repeated
significantly, while others do not appear in the whole reference.
This leads to columns that are large, while others are empty.
The following histogram (Figure 5 left) shows the distribution
of column sizes, i.e., repetition of patterns with K equals 15,
for a reference human genome. The x axis is the column
size and the y axis the number of occurrences of columns
with that size. Figure 5 right shows the number of columns
accessed during time execution multiplied by the column size,
which to illustrates the time spent processing the different
column types. This shows the impact of the large columns in
terms of execution time if we perform sequential search. As
can be seen the distribution is clearly non normal, as certain
patterns are much more recurrent in nature than others. In
order to improve search speed over the larger columns we
perform binary search, as by definition our structure has sorted
columns.

C. Evaluation

Recent work by J.M. Herruzo et. al [2] proposed an
optimization of the FM-index algorithm based on sampling and

Fig. 5. Number of columns for each size with K = 15. Left figure shows the
number of columns of the original structure, while right shows the columns
sizes accessed during execution weighted (multiply by the column size).

the use of bit vectors. They employ K equals 2 and sample 64
entries of the Occ by employing a 64 bit vector. We name this
proposal from now on k2bv64. To evaluate this proposal they
employ an Intel Knights Landing (KNL) system.

We use this as the baseline for comparison by evaluating
our proposal using the same system setup also on a KNL
machine. We employ the stacked MCDRAM in flat mode to
map the data structures into this memory. In addition, the
machine is configured to use 1GB huge pages and Hyper
Threading, which means a total of 256 hardware threads are
available.

For our proposal we use a k of 15, we will call this
version k15inc. In order to measure the performance of the
different versions we use a metric called ”LF operations per
second” (LFOPS). This measures the number of bases found
per pointer. With a k of 2, each iteration performes 4 LFs, 2 for
start and 2 for end, with a k of 15 would be 30 LFs... The best
performe we obtained was 12.643 GLFOPS compare with the
best version of the baseline 10.716 GLFOPS. We found that the
algorithm performes better with sequences multiple of 15. In
Figure 6 we can see the performance for the k2d64bv version
and for our proposal with and without sequences multiple of
15.

Fig. 6. Performance for different versions.

D. Future work

We are planning to perform further space reduction opti-
mizations over the C structure, as it is currently limiting the use
of larger K values. After evaluating the pending optimizations
on the KNL machine, we plan to evaluate the proposal in
other systems that do not feature MCDRAM. In addition, we
are interested to evaluate our proposal using vectorization, i.e.,
using the recently proposed vector extension (SVE) by Arm.

REFERENCES

[1] H. Li and N. Homer, “A survey of sequence alignment algorithms for
next-generation sequencing,” Briefings in bioinformatics, vol. 11, no. 5,
pp. 473–483, 2010.

6th BSC Severo Ochoa Doctoral Symposium

87

[2] J. M. Herruzo, S. G. Navarro, P. Ibánez, V. V. Yufera, J. Alastruey, and
O. Plata, “Accelerating sequence alignments based on fm-index using the
intel knl processor,” IEEE/ACM transactions on computational biology
and bioinformatics, 2018.

Rubén Langarita received his BSc degree in Com-
puter Science from University of Zaragoza in 2018.
Now, he is doing a Master in Innovation and Re-
search in Informatics at Universitat Politècnica de
Catalunya (UPC), while working at Barcelona Su-
percomputing Center (BSC).

6th BSC Severo Ochoa Doctoral Symposium

88

