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Resumen

Contexto: El control de actitud de un satélite se basa en una determinación precisa de
su tensor de inercia, sin embargo, la determinación del tensor de inercia de un sistema
complejo, como es el caso de los satélites, escapa por completo a los métodos analı́ticos.
Aunque el tensor de inercia se puede obtener por medio de modelos CAD, este método
está sujeto a un grado de incertidumbre debido a las aproximaciones requeridas en la
definición de materiales y en la geometrı́a de algunos de los dispositivos. Además, el
cableado a menudo es difı́cil de integrar en los diseños CAD, e introduce una fuente de
error adicional.
Objetivos: En este trabajo de final de grado, proponemos realizar el diseño y el análisis
de las bases del funcionamiento de un péndulo de torsión que permite determinar todos
los componentes del tensor de inercia de un objeto tipo CubeSat, con mayor eficiencia y
precisión que la que nos permitirı́a un análisis de CAD.
Metodologı́a: Partimos de una idea general de un péndulo, que incluye un conjunto de par-
tes fijas con función principalmente estructural, y de partes que pueden rotar alrededor de
una fibra de torsión, unida a una plataforma sobre la cual se puede situar el CubeSat cuyo
tensor de inercia deseamos conocer. A partir de las medidas del periodo de rotación de
la plataforma podemos determinar de manera sencilla el momento de inercia del conjunto
de partes giratorias alrededor del eje de la fibra de torsión. Para realizar el diseño deta-
llado del dispositivo utilizamos el software SOLIDWORKS. Para analizar las bases de su
funcionamiento utilizamos conocimientos de Mecánica Clásica y Álgebra de matrices de
rotación, ası́ como el software MATLAB.
Resultados: Hemos diseñado, presentado los planos, y realizado un análisis numérico de
estrés sobre el péndulo propuesto. Además hemos completado el desarrollo matemático
que permite construir el tensor de inercia del CubeSat, a partir de valores individuales
de momentos de inercia, derivados de las medidas del periodo de rotación del sistema
con distintas orientaciones del CubeSat. Finalmente, nuestro cálculo de errores básico
muestra que podemos obtener valores de las componentes del tensor de inercia con la
precisión deseada, a partir de medidas de periodos factibles.
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Overview

Context: Attitude control of a satellite relies upon a precise determination of its inertia ten-
sor. However, the determination of the inertia tensor of a complex system, as is the case
of satellites, completely escapes analytic methods. Even though the inertia tensor can be
obtained by means of CAD models, this method is subject to a degree of uncertainties
due to required approximations in the materials definition and the geometry of some com-
ponents. Furthermore, cabling is often difficult to integrate into CAD designs, which may
introduce an additional source of error.
Aims: In this Degree Thesis, we propose the design of a torsion pendulum which will
allow us to determine all the components of the inertia tensor of a CubeSat-type object.
We intend to achieve more efficiency and better accuracy than performing standard CAD
simulations.
Methodology : Our starting point is a general idea of a pendulum, Our sketch involves a set
of fixed parts, mostly with structural purposes, and a set of mobile parts. The latter must
be able to rotate about the axis of a torsion fiber. Besides, it must connect to a platform on
top of which the CubeSat whose tensor of inertia we intend to determine will be placed.
By measuring the period of rotation of the mobile parts (which include the platform and
CubeSat), it is easy to derive the inertia moment of rotating set about the axis given by
the torsion fiber. The detailed design of the pendulum was executed with the software
SOLIDWORKS. Foundations of Classical Mechanics and rotation matrix Algebra, as well
as the software MATLAB were required to develop the operation analysis of the proposed
pendulum. Results: We designed, obtained detailed maps, and developed stress analysis
calculations of the pendulum. Besides, we completed the mathematical analysis which
allows to build the inertia tensor of a CubeSat, by using individual inertia moments, derived
from a set of period measurements obtained with different orientations of the CubeSat.
Finally, we used basic error analysis to show that the components of the inertia tensor can
be obtained with the desire precision by using feasible period measurements.
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CHAPTER 1. INTRODUCTION

Nowadays, the inertia tensor of small satellites is often calculated by means of CAD mod-
els, as the determination of the tensor of inertia of such complex systems completely
escapes analytic methods. However, these tensors are subjected to a small degree of un-
certainty, as CAD simulations can not be precise enough to perfectly simulate the complex
insides of the satellites, which include irregular elements such as electronic components,
cables or batteries. Hence, we always get a small error in the inertia tensor calculation,
which is one of the main inputs for the attitude control system. Along the present chapter
we briefly estate the aims of this degree thesis, describe the different types of small satel-
lites and the new technologies they use, and focus on a special type of picosatellites, the
CubeSats.

1.1. CubeSat Standard

The CubeSat Standard was proposed in 1999 by Jordi Puig-Suari (California Polytechnic
University) and Robert Twiggs (Stanford University) as a learning project devoted to the
design and construction of satellites in shorter timescales and with lower budgets. As
soon as 2001, students from Aalborg University (Denmark) started the first communication
CubeSat satellite design (1). Later on, many universities from all around the world started
similar projects to design and construct CubeSats. The number of these projects just
kept growing with time: by 2015 more than one hundred CubeSats had been launched
and the pace is increasing: the launches performed in the first 7 months of 2016 already
outnumbered the total in 2015, and in 2018 the total number of CubeSats reached the
1,000 mark.

The development of CubeSats has not been restricted to academic usage but, instead,
many have been designed and manufactured for commercial exploitation. Currently, sev-
eral companies (including giants as Amazon and Space X) are planning the launch of
constellations of CubeSats to provide Earth observation data and Internet of the Thing
connectivity from remote locations.

Space agencies have also realized the importance of CubeSats in education; in 2010, Na-
tional Aeronautics and Space Administration (NASA) started the CubeSat Launch Initiative
(2) to launch, free of cost, CubeSats manufactured by educational and non-profit institu-
tions. These launches were executed either as rocket’s auxiliary payloads, or from the
International Space Station. In 2015 NASA started an even more ambitious project: the
Cube Quest Challenge (3), to encourage CubeSat missions beyond LEO Orbit and, even-
tually, near and beyond the Moon. The European Space Agency (ESA) also launched the
Fly Your Satellite program (4), intended to provide students with assistance in the design,
construction and launch of CubeSats as an auxiliary payload of the rocket Vega.

Additionally, June last 17th, 2019 three CubeSats were ejected from the International
Space Station (ISS) for a mission called BIRDS-3, sponsored by the United Nations Office
for Outer Space Affairs. These three 1U CubeSats were released into low Earth orbit as
part of a program that helps developing countries to build and operate their first satellites.
Its final goal is to open the advantages of space utilization to countries with no access to
standard satellites, as well as to promote space education in these countries.
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2 A system to determine the inertia tensor of small satellites

Figure 1.1: Bird CubeSats released in low Earth orbit. (Image credit: NASA).

CubeSats are satellites created as a simple but realistic basic design for students to adapt,
construct, test and, eventually, launch into low Earth Orbit (LEO Orbit) and operate in
space (5). The standard 1U (1 unit) CubeSat design consists of 10×10×11.35 cm3 box;
if need arise, several of these units can be combined to form a larger satellite. Each unit
has a mass of at most 1.33 kg, and its design specifications seek to fulfill many goals.
Its simplified cubical structure allows CubeSats to be considered as a fully functional low
cost satellite by its design and manufacturing. CubeSats from 1U (single unit) to 3U (three
units) share a common base of 10×10 cm2 and thus can be launched by a common
deployment system, such as the Poly-Picosatellite Orbital Deployer (P-POD), which fits in
almost every rocket as a secondary payload. This avoids the need to design –and qualify–
a specific interface with the launcher, and then waives an expensive satellite procedure
with its concomitant bureaucracy and mission inconveniences.

CubeSats often use commercial off-the-shelf (COTS) components for their electronics and
internal design and structure. This fact allows CubeSats to use affordable and fully func-
tional technologies which have been developed over these last years, for instance, Arduino
open-source hardware, software and micro-controllers, which are reliable to be used in
space missions. An open source Arduino-based CubeSat, christened ArduSat, containing
a set of Arduino boards and sensors, has already been designed. It is intended to allow
the general public to use data gathered in space for their own creative purposes. Besides
this, a myriad of affordable components can be purchased off-the-self in order to create a
tailored CubeSat, such as solar panels, communication devices, power and attitude control
systems among many others.

As happens in many cases, CAD programs allow to draw most of the properties (mass,
position, materials) of the different components, and ultimately provide the inertia tensor of
the system. Nevertheless, when the satellite is built, some uncertainties on the positioning
of the devices may result in small changes in the inertia tensor. An even more relevant
situation is related with the cabling of the satellite, that is very often overlooked in CAD
designs. This situation calls for an independent way to determine experimentally the inertia
tensor.
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1.2. Torsion pendulum

As we have seen, CubeSats are becoming very important space assets, and will be more
so in the near future. Therefore, in this thesis we will focus our efforts in designing a tool
that permits us to determine the inertia tensor of small satellites. After a revision of the
different methods available for this purpose, we have chosen a torsion pendulum by its
simplicity and low cost.

This torsion pendulum must ultimately allow to obtain the inertia tensor of a CubeSat. The
tensor of inertia of the satellite must be determined with a very high accuracy because
it is required to determine the torque needed for a desired angular acceleration about a
rotational axis. In other words, the inertia tensor is a necessary ingredient of the attitude
control of a rigid body.

The torsion pendulum and similar tools designed to calculate inertia tensors already exist.
A good review can be found in Szöke and Horváth (6) were several such systems are
discussed. Of course, there are other kinds of physical pendulums, like the five-wire torsion
pendulum of Stanford University (7) or triple-wire torsional pendulum (8).

Prior to the design process, we make a theoretical analysis of the torsion pendulum on the
bases of first principles of Classical Mechanics. Our actual design has been largely influ-
enced by the torsion pendulum built and used at Samara University (Russia). To perform
our design we use the SOLIDWORKS CAD software.

1.3. Project structure

This thesis is structured as follows. Chapter 2 summarizes all the theoretical analysis
required to understand a damped torsion pendulum, the basics of rotation dynamics, and
the procedures to determine all the components of the inertia tensor of a given rigid solid.

Once the theoretical background of the torsion pendulum is understood, in chapter 3 we
describe the SOLIDWORKS CAD software and how it works. In the same chapter, we also
describe the design process of the torsion pendulum using SOLIDWORKS. This kind of
software allows users to perform a high number of trial and error tests prior to obtaining
the desired design. This chapter, therefore, describes which criteria have been followed in
order to get to the final pendulum design.

Of course, once the design for the torsion pendulum has been decided, we must test if
that design is suitable for the environment in which the pendulum will eventually operate,
as well as its resistance to the weight of the satellites whose inertia tensor we intend to
determine. Hence, in Chapter 4 we check if the design of chapter 3 is correct or must be
modified.

In Chapter 5 we theoretically determine the inertia tensor of the oscillatory components of
the pendulum, which is necessary to find the inertia tensor of the satellite, as we will see
during this degree thesis. Then, in Chapter 6 we show how to calculate the inertia tensor
of the satellite, and how this aforementioned inertia tensor of the oscillatory components
of the pendulum affect the inertia tensor calculation of the satellite. We also make a simple
error analysis of the results to determine, to first approximation, the required accuracy in
the determination of the period of oscillation.
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To sum up, in chapter 7 we discuss the main results of this thesis, as well as possible
improvements to the pendulum and future tasks that would be required for an efficient use
of this facility.



CHAPTER 2. THEORETICAL ANALYSIS

A torsion pendulum undergoes an oscillatory motion caused by the restoring force provided
by a torsion fiber. In this Chapter we describe the properties of the oscillation and present
the relation between the oscillation period and the characteristics of the device. We also
give an overview of the physical meaning and the calculation of the tensor of inertia, as well
as a summary of Euler equations, critical for the understanding of 3-dimensional rotation.
The information we present here was compiled from Classical Mechanics textbooks, (9),
(10).

2.1. The torsion pendulum

Besides a restoring torque proportional to the rotated angle (-b θ), real torsion fibers expe-
rience the effect of friction proportional to the time variation of the angle (-b f θ̇). Therefore,
the equation of motion for an extended object of moment of inertia I along the axis of the
torsion fiber (∑τext = I θ̈), with both τ and I given with respect to the same point, is:

−bθ −b f θ̇ = I θ̈ =⇒ θ̈+
b f

I
θ̇+

b
I

θ = 0

Rewriting γ =
b f
I (the friction constant of the oscillator), ω0 =

√
b
I (its natural frequency),

and solving the above differential equation for the case γ < ω0, we get the solution for the
motion of underdamped oscillators:

θ = θ0 e−γt cos(ω t +ζ) (2.1)

Where: ω =
√

ω2
0− γ2 is the actual angular frequency of the system, t is the time, θ0 is

the maximum amplitude of the oscillation, and ζ is its phase. θ0 and ζ are to be determined
as functions of the initial conditions in each case. Note that the condition γ < ω0 can be
easily achieved by choosing a torsion fiber with suitable properties. We impose it because
we are interested in pendulums able to undergo many oscillations before their amplitude
decreases significantly. An example of underdamped oscillator is shown in Figure 2.1.

The result above shows that the angular frequency of oscillation ω is constant, and will
only depend on the properties of the device. This means that by adequately measuring
oscillations periods (T = ω

2π
), we can obtain properties of the system under study and,

in particular, information leading to the tensor of inertia. Besides, the amplitude of the
oscillation will exponentially decrease with time (∝ e−γt ). Therefore we are interested in
devices with relatively low γ.

5



6 A system to determine the inertia tensor of small satellites

Figure 2.1: Example of an underdamped system graph

2.2. Fundamentals of rotation in 3 dimensions

2.2.1. Concept of rigid body

A rigid body consists of an arbitrary number of particles such that their relative distances
remain constant. Therefore, the entire mass distribution in space of a solid rigid will remain
constant.

A rigid body can be composed of a finite number N of individual particles of mass (mi, i =
1, . . . ,N). In such case, we refer to the rigid body as a discrete mass distribution, and its
total mass M can be expressed as:

M =
N

∑
i=1

mi (2.2)

Alternatively, a rigid body can consist of continuous medium composed of infinitesimal
mass elements, dm occupying infinitesimal volumes dV , so that we can define a density
function ρ (not necessarily constant throughout the body), that follows the relation ρ = dm

dV .
in this case we will refer to a continuous mass distribution, and its total mass can be
expressed as:

M =
∫

ρ dV (2.3)

2.2.2. Angular momentum and tensor of inertia for a system of parti-
cles

The angular momentum is a physical magnitude which represents the rotational momen-
tum of a rotating body. It plays a role in rotating systems analogous to that of linear mo-
mentum in systems undergoing translations.

Angular momentum must always be referred to a certain point O in space (typically, the
origin of a frame of reference, or the centre of mass of the system). If a particle of mass mi
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has velocity ~vi, its linear momentum will of course be ~pi = mi~vi. If the position of mi with
respect to O is~r, , the angular momentum of mi will be the cross product:

~Li =~ri∧~pi = mi~ri∧~vi (2.4)

The angular momentum of an entire system composed of N point-like masses will be:

~L =
N

∑
i=1

mi~ri∧~vi =
N

∑
i=1

mi~ri∧ (~ω∧~ri) (2.5)

where ω (rad/s) is the angular velocity of the system in the considered frame of reference.

Figure 2.2: Relation between angular momentum (~L), position vector of the particle (~r), and
linear momentum, (~p). Note that, in general, ~L will not always be parallel to the angular
velocity of the particle ~ω.

Using the relation: ~A∧ (~B∧~A) = (~A ·~A)~B− (~A ·~B)~A, we can rewrite:

~L =
N

∑
i=1

mi [(~ri ·~ri)~ω− (~ω ·~ri)~ri] (2.6)

The angular momentum vector for the system in Cartesian coordinates (Lx,Ly,Lz) is ex-
pressed as:

~L = Lx~i+Ly~j+Lz~k

Using that:
~r = x~i+ y~j+ z~k

~ω = ωx~i+ωy~j+ωz~k

=⇒~r ·~r = x2
i + y2

i + z2
i ; ~ω ·~r = ωx xi +ωy yi +ωz zi
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The general expression for the angular momentum for the axis x is:

Lx =
N

∑
i=1

mi [(x2
i + y2

i + z2
i )ωx− (ωx xi +ωy yi +ωz zi) xi)]

=⇒
N

∑
i=1

mi [(y2
i + z2

i )ωx− xi t yi ωy− xi zi ωz]

Analogously:

Ly =
N

∑
i=1

mi [(x2
i + z2

i )ωy− xi yi ωx− yi zi ωz]

Lz =
N

∑
i=1

mi [(x2
i + y2

i )ωz− yi zi ωy− xi zi ωx]

Which can be written as:Lx
Ly
Lz

=

 ∑
N
i=1 mi(y2

i + z2
i ) −∑

N
i=1 mixi yi −∑

N
i=1 mixiyi

−∑
N
i=1 mixiyi ∑

N
i=1 mi(x2

i + z2
i ) −∑

N
i=1 miyizi

−∑
N
i=1 mixizi −∑

N
i=1 miyizi ∑

N
i=1 mi(x2

i + y2
i )


︸ ︷︷ ︸

{I}

ωx
ωy
ωz

 (2.7)

Where the matrix {I} is the tensor of inertia. It is a generalized version of the moment of
inertia, and therefore it represents the resistance (or inertia) of systems to change its state
of rotation. Note that:

(i) The diagonal elements of the tensor of inertia (Iii) are the moments of inertia

(ii) The off-diagonal elements of the tensor of inertia, Ii j with i 6= j are the products of
inertia

If we now consider a continuous distribution instead of a discrete distribution, we can
rewrite by analogy:

mi −→ dm
N

∑
i=1
−→

∫
M

Therefore, the moments of inertia will be:

Ixx = ∑
N
i=1 mi (y2

i + z2
i ) =⇒ Ixx =

∫
(y2 + z2)dm

Iyy = ∑
N
i=1 mi (x2

i + z2
i ) =⇒ Iyy =

∫
(x2 + z2)dm

Izz = ∑
N
i=1 mi (x2

i + y2
i ) =⇒ Izz =

∫
(x2 + y2)dm

And the products of inertia will be:

Ixy =−∑
N
i=1 mi xiyi = Iy,x =⇒ Ix,y =−

∫
xy dm = Iyx

Ixz =−∑
N
i=1 mi xizi = Izx =⇒ Ixz =−

∫
xz dm = Izx

Iyz =−∑
N
i=1 mi yizi = Izy =⇒ Iyz =−

∫
yz dm = Izy
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The kinetic energy due to the rotation of an object expressed in terms of the tensor of
inertia is given by:

Krotation =
1
2
~ωT I~ω︸︷︷︸

~L

=⇒ Krotation =
1
2
~ω~L (2.8)

Note that, just as the moment of inertia relevant for rotation about a fixed axis, was given
for a specific object and a specific axis, the tensor of inertia is given for a specific object
and for a specific frame of reference (origin and set of Cartesian axes which follow the right
hand’s rule).

By construction, the tensor of inertia is real and symmetric (Ii j = I ji), and thus it can always
be diagonalized. Mathematically, the results of the diagonalization of a 3× 3 matrix is a
set of 3 eigenvalues and 3 eigenvectors. From the physical point of view, it means that
we can always find a set of perpendicular axes (with directions given by the eigenvectors)
such that the tensor of inertia in that set of axes will be diagonal. The corresponding
moments of inertia of the new diagonal tensor will be the eigenvalues. Note that, after
the diagonalization process, the origin of the frame of reference remains constant, and the
set of axes which makes a tensor of inertia diagonal is referred to as a set of Principal
Axes of inertia. It can be naturally inferred that for an arbitrary object and an arbitrary
point in space, we can always find a set of 3 principal axes of inertia with origin at the
given arbitrary point, and such that the object will be able to rotate with constant ω around
any of these axis without the need of external torques. Actually, in such case, the angular
momentum vector will be parallel to the angular velocity: ~ω ‖~L.

2.2.3. Steiner’s (parallel axis) theorem in matrix form

The theorem in its 1-dimensional formulation proves that, given an axis which passes
through the center of mass of a solid, and another axis parallel to the first one, the moment
of inertia of both axes are related as as follows:

IP = IG +md2 (1D) (2.9)

Where IG Is the moment of inertia of the solid given for an axis going through the center of
mass, IP is the moment of inertia of the solid given for the parallel axis, m is the solid mass
and d is the perpendicular distance between the two axes.

Steiner’s theorem in its 3-dimensional version can be written as:

{
IP
}
=
{

IG
}
+m

 y2 + z2 −x y −x z
−y x x2 + z2 −y z
−z x −z y x2 + y2

 (3D) (2.10)

Where:

(i) IG is the tensor of inertia of the solid given for a frame of reference centred at the
center of mass of a solid, FRCM.

(ii) IP is the tensor of inertia of the solid given for a frame of reference parallel to the
FRCM, FRP.
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(iii) m is the mass of the solid.

(iv) x, y and z are the coordinates of the origin of FRP with respect to FRCM.

2.2.4. Rotation matrices:

Rotation matrices can be active (as below), or passive (inverting the matrices below). An
active matrix transform a vector by rotating it. A passive matrix leaves the vector un-
changed and, instead, rotates the frame of reference accordingly.

A rotation matrix of an angle θ about the X axis is:

About x axis: Rx(θ) =

1 0 0
0 cosθ −sinθ

0 sinθ cosθ

 (2.11)

A rotation matrix of an angle θ about the Y axis is:

About y axis: Ry(θ) =

 cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ

 (2.12)

A rotation matrix of an angle θ about the Z axis is:

About z axis: Rz(θ) =

 cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 (2.13)

We can apply a rotation matrix R on a vector~v as follows:

~vrotated = R~v

We can apply two consecutive rotations (first rotation R1 and then R2) as follows:

~vrotated = R2 R1~v

Rotation matrices are orthogonal, and thus their inverse is equal to their transposed form:
R−1 = RT . Matrices form a non-Abelian group with the product, therefore the product of
matrices is non-commutative. This means that the order in which we apply matrix rotations
does matter.

~vrotated = R2 R1~v 6= R1 R2~v

Just as with vectors, rotation matrices can be applied on other matrices and, specifically,
can be applied to the tensor of inertia

{
I
}

:

{
I
}
= R

{
I
}

RT
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2.2.5. Euler’s equations

Let us recall that the tensor of inertia of a body depends on the mass distribution of the
body itself with respect to the system of reference with which tensor of inertia has been
calculated. If we choose a fixed frame of reference, as the body moves, its tensor of inertia
will change. However, if we consider a system of reference which is attached to the body,
the tensor of inertia will remain constant, regardless the motion of the body.

We can use this fact and the relation between the time variation of the angular momentum
~L (in fixed system of reference SR) and the time variation of the angular momentum~L∗ (in
the rotating system of reference SR):

d~L
dt︸︷︷︸

Time variation in non-rotating SR

=
d∗~L
dt︸︷︷︸

Time variation in rotating SR

+ ~ω∧~L (2.14)

According to Newton’s second law for rotating objects:

d~L
dt

= ~τ︸︷︷︸
sum of all external torques

=

 τ1
τ2
τ3

 (2.15)

We also know that ~L =
{

I
}
~ω because

{
I
}

is constant in the system of reference that
rotates with the body. Besides, it is clever to chose a frame of reference attached to the
body which is also a system of principal axes of inertia, so that the associated tensor of
inertia will be diagonal. The unitary vectors associated to this frame of reference will be{
~e1,~e2,~e3

}
), and we will use the standard notation x⇐⇒1, y⇐⇒2, z⇐⇒3. Then we can

express:

d∗~L
dt

=
{

I
}
~̇ω =

 I1 ω̇1
I1 ω̇2
I3 ω̇3

 (2.16)

Therefore we can write:

~τ =
d~L
dt

=
{

I
}
~̇ω+~ω∧ (

{
I
}
~ω), (2.17)

with:

~ω∧ (
{

I
}
~ω) =

 ~i ~j ~k
ω1 ω2 ω3

I1 ω1 I2 ω2 I3 ω3

=

= (I3− I2)ω2 ω3~i+(I1− I3)ω1 ω3~j+(I2− I1)ω1 ω2~k

Therefore:
τ1 = I1 ω̇1 +(I3− I2)ω3 ω2
τ2 = I2 ω̇2 +(I1− I3)ω1 ω2
τ3 = I3 ω̇3 +(I2− I1)ω2 ω1

(2.18)
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The former are the so-called Euler equations for rotation, and are the key to understand
3-dimensional rotation. Usually, if the body rotates about a fixed point =⇒ The origin of
the SR’ is at that point. If the body is unconstrained can move freely =⇒ The origin of the
SR’ is taken at the center of mass of the body.

It is easy to prove that, unless external torques are applied, the body can only rotate with
constant ω about a principal axis of inertia.

Proof:

~τ =
{

I
}
~̇ω+~ω∧ (

{
I
}
~ω) =⇒ Therefore, if ~ω is constant =⇒~τ =~ω∧ (

{
I
}
~ω)

Under these conditions~τ =~0⇐⇒ ~ω∧ (
{

I
}
~ω) = 0⇐⇒~ω ||

{
I
}
~ω =~L

This will only happen when~ω goes along a principal axis of inertia, as we wanted to prove.



CHAPTER 3. SOLIDWORKS AND PENDULUM
DESIGN

This Chapter describes the design of the torsion pendulum. In the first section we outline
the most relevant aspects of the design software we use, SOLIDWORKS. The second
section is devoted to present and justify the characteristics of the pendulum components.

For the sake of clarity, we firstly present the preliminary concept design for our physi-
cal torsion pendulum. We divide its components in two different parts, the oscillatory
components, which oscillate together with the torsion fiber, and the non-oscillatory fixed
components. Figure 3.1 shows the initial sketch we proposed. Red-colored parts corre-
spond to the fixed and white-colored parts correspond to the oscillatory components. A
laser emitter is to be placed in the arm (c’) attached to the CubeSat platform (f). The laser
beam must point exactly to the detector placed in the arm (c) of the fixed column (b) when
the pendulum is at rest. Once the device is set in motion, the platform (f) together with the
arm (c’) will rotate with period T about the axis given by the torsion fiber (d). Every time
the laser beam points to the detector half a period T/2 will be measured.

Once the pendulum design is completed with SOLIDWORKS, it can be eventually built
(some components could be 3D printed), calibrated and used to obtain the tensor of inertia
of CubeSat-like objects. We defer the construction process to a future work.

a

b

c

d

e

f

g

h
c’

g’

Figure 3.1: Preliminary sketch of the torsion pendulum: Supporting base (a); fixed support
column (b); fixed arm aimed to hold sensor (c); torsion fiber (d); oscillatory support column
(e); oscillatory satellite platform (f); arm attached to platform, aimed to hold laser (c’);
bearings (g and g’); CubeSat whose tensor of inertia we intend to measure (not part of
the pendulum itself, h). The oscillatory part of the system is supposed to rotate about the
axis of the torsion fiber.

13
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3.1. SOLIDWORKS CAD Software

SOLIDWORKS is a solid modeling software; it works by means of parametric feature-based
approaches to create models which can be assembled in more complex shapes and 3D
bodies.

Solid modeling is based on a consistent set of principles for analytical and numerical mod-
elling of 3D solids. The most salient advantage that solid modeling presents in front of
related areas such as geometric modeling and computer graphics is the emphasis that can
be obtained on physical fidelity. The use of solid modeling techniques allows to perform
complex engineering calculations automatically during the design process. Simulation,
planning and verification of the processes such as machining and assembly are some of
the multiple advantages this technology presents. Moreover, solid modeling covers a wide
range of manufacturing applications such as sheet metal manufacturing, injection molding,
welding and, more recently, additive manufacturing or 3D printing.

Apart from manufacturing, solid modeling techniques allow rapid prototyping, digital data
archival, reverse engineering and mechanical analysis using finite elements, motion plan-
ning and kinematic and dynamic analysis of structures and mechanisms. These features
are the most interesting aspects for us in order to choose SOLIDWORKS as our CAD model
software.

3.1.1. Bases of 3D design

SOLIDWORKS allows users to create 2D sketches in a plane or in space. It can be com-
posed of any kind of 2D shapes (composed of arcs, lines or points in the plane). Then,
in order to completely define our shape in the plane we can add relations to define at-
tributes such as dimensions in the International System of Units, tangency, parallelism,
perpendicularity and concentricity can be added to completely define the sketch.

2D sketches can be transformed into 3D solids by means of different operations. The
most commonly used features are to extrude (add material to) or cut (remove material
from), the shape of the designed sketch. Moreover, non-sketch based features can also
be performed, such as fillets, chamfers, shells, material definitions, etc. which are tools
provided by the software itself. Solids can also be emptied in order to reduce component
masses. By means of an assembly we can impose relations which will allow to unite a
number of 3D elements into one single composed solid.

3.1.2. Simulations

SOLIDWORKS also provides a simulation package licensed by the labs of the EETAC. It
provides structural analysis tools which, by means of the Finite Element Analysis (FEA)
method, is able to simulate the realistic physical behavior of an object by virtually testing
CAD models. This package provides us with linear, non-linear static and dynamic analysis
capabilities that will be used to test our pendulum.

The most interesting simulations for this project will be related to frequency and dynamic
analysis, aimed to check the conditions in which the pendulum will operate and to obtain
its tensor of inertia.
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3.2. Pendulum design

We now describe each of the different solid components we designed with SOLIDWORKS.
Once assembled, they compose the final shape of the torsion pendulum. The dimensions
of the different solids will be provided in 3D Cartesian coordinates (x,y,z) and, unless oth-
erwise indicated, in centimeters.

The material chosen for the pendulum is 1060 aluminium alloy because of its good relation
between mechanical properties and density (2700 kg/m3), which makes it one of the most
interesting materials we can use. Note that both resistance and lightness are critical for
the good performance of our system.

The final design of the pendulum looks actually very similar to our initial idea (see Figure
3.1). However, along the design process, and as described in the following sections, we
made decisions intended to optimize the final result. Note that both design particularities
such as specific dimensions are chosen arbitrarily; therefore, there are many reasonable
alternatives to our proposed design.

3.2.1. Supporting Base

The base of our pendulum is intended to fulfill two purposes: first, it must be a firm support
for our system, and second, it must perform as well as possible in neutralizing environ-
mental vibrations (such as steps, traffic,...) which might cause undesired oscillations. Vi-
brations can actually be an important source of noise which might compromise the validity
of our measurements, and thus we must try and limit their effects as much as possible.

We chose a square shape both because of its good vibration resistance, and because it is
very easy to build, from the constructive point of view. It consists of a 50×50 cm slab which
is extruded 5 cm, so that the final dimensions of the solid are [50, 50, 5] cm. We added 4
drill holes to the 3D extrude in order to allow anchoring of the pendulum onto the ground.
Holes are ISO M20 margin and were placed close to each corner of the platform in order
to provide a reasonable stress distribution. This holes will be done at a 5 cm distance in
both axis x and y from the corners. We also used the shell feature, with uniform thickness,
in order to empty the base and make it lighter and easier to transport, in case we desire to
move the pendulum. Its mass after being emptied is of 15.05 kg and the final design can
be seen in the Figure 3.2.

The chosen dimensions for the supporting base can also be seen in Figure A.2 of Appendix
A, together with the multi-view projection and the detailed blueprints for the component.
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Figure 3.2: Floor Supporting Base (dimensions in meters)

3.2.2. Oscillatory Satellite Platform and oscillatory arm with laser

The CubeSat platform is aimed to hold CubeSats from 1U (approximately, cubes of side
10 cm) to 3U (dimension 10×10×33 cm), and thus we opted for a flattened cuboid of
dimensions (50 cm, 50 cm, 1 cm). It is completely free to rotate around the axis of rotation
given by the torsion fiber axis. Besides, we tried to minimize friction with the other parts of
the pendulum.

The mass of the CubeSat platform is 6.58 kg, and just as the rest of oscillating compo-
nents, it is aimed to be as light as possible, while keeping the required structural proper-
ties. As we will see in Chapter 4, keeping the oscillating components as light as possible
is relevant in order to achieve the required accuracy in tensor of inertia component deter-
mination.

The platform must be able to hold the CubeSats in many different positions with respect
to the rotation axis given by the torsion fiber. In this way, additional period measurements
(and thus more accurate determinations of the tensor of inertia) can be made. Therefore,
we introduced a 9×9 mesh of holes with 5 cm separation between their centres. 79 holes
are circular, with 1 cm diameter and the 2 remaining holes are hexagonal. The circular
holes are aimed to screw the CubeSat onto the platform, whereas the 2 remaining hexag-
onal holes allow two screw positions of the platform with respect to the oscillating column.
The hexagonal shape ensures that the platform will not be unscrewed from the oscillating
column during rotations. One of the hexagonal holes is located at the center of the plate
and the other one at a 10 cm distance, as can be seen in Figure 3.3, and in further de-
tail in Figure 3.4. The chosen dimensions for the oscillatory satellite platform can also be
seen in Figure A.2 of Appendix A, together with the multi-view projection and the detailed
blueprints for the component.
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Figure 3.3: Oscillatory Satellite Platform (dimensions in m).

Figure 3.4: Oscillatory Satellite Platform. Hexagonal holes are highlighted with white cir-
cles.

An arm must be attached to the CubeSat platform in order to hold a laser emitter. The arm
will be screwed to the oscillatory satellite platform through the upper cylinder that can be
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seen in Figure 3.5, and the laser will be fixed to the arm through the lower cylinder shown
in the same figure. The beam will aim directly to the laser sensor held by the fixed support
column when the pendulum is at rest. Once the pendulum is oscillating, every time the
beam is directly over the sensor, half a period (T/2) will be measured by the detector.

Once more, as this arm is one of the oscillatory parts, it is important to design it as light as
possible. Therefore, even though its mass is very low, we can further reduce it by applying
the shell feature with uniform thickness, so that the mass of material used is reduced. In
this way, the final mass becomes about 0.14 kg. The chosen dimensions for the oscillatory
arm with laser can also be seen in Figure A.3 in Appendix A together with the multi-view
projection and the detailed blueprints for the component.

Figure 3.5: Oscillatory Arm With Laser

3.2.3. Torsion Fiber

The torsion fiber is a critical component in the torsion pendulum because it is the one
that excites the oscillatory motion which will allow us to calculate the inertia tensors of the
satellites. This motion will be transmitted to the oscillatory components of the pendulum,
such as the satellite platform and the oscillatory support column (see Section 3.2.5.). The
dimensions of the torsion fiber will be of 2 mm of diameter and 1.21 m height, and it will
be made of steel, thus its resulting mass will be 10.26 g. The chosen dimensions for the
torsion fiber can also be seen in Figure A.4 and in Appendix A together with the multi-view
projection and the detailed blueprints for the component. For the sake of clarity, in the
different Figures we have exaggerated the diameter by a factor of 5.

The upper end of the fiber will be solidly attached to the oscillating support platform, and
the lower part of the fiber will be fixed directly to the supporting base of the pendulum (so at
rest). Torsion will be produced by rotating the CubeSat support platform perpendicularly to
the axis of the fiber. The purpose of the two supporting columns described hereunder is to
liberate the torsion fiber from any compression effort, because it has a very bad resistance
to compression.
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Figure 3.6: Torsion Fiber (dimensions in cm); for the sake of clarity we have exaggerated
the diameter by a factor 5.

3.2.4. Fixed Support Column and sensor holder

The main purposes of the fixed column, (b, see Figure 3.1), is to release the torsion fiber
from any compression caused by the masses placed above it, namely, the oscillatory satel-
lite platform (f), the arm with the laser (c’), and the CubeSat itself (h). We also intended to
make it both resistant and as light as possible, so the SOLIDWORKS shell feature was ap-
plied. For the sake of design simplicity, this fixed column (b) was assembled to the sensor
arm (c).

The fixed column, to be welded to the ground platform (a), has a C-shape with an additional
arm (c) aimed to hold a sensor (see Figure 3.7). It has a 4 cm diameter hole in each of the
short parts of the C-shape. The fixed parts of the bearings (see Section 3.2.6.) are to be
welded to these holes, whereas the mobile part of the bearings are to be connected to the
oscillating column (e). The two small holes (drill ISO M10) in the arm allow two positions
for the sensor, which provide flexibility regarding the position of the CubeSat’s platform
(h) during measurements. Data from the sensor can be transmitted to a PC or laptop, for
instance, through a standard USB cable.

The total mass of the column is 15.16 kg. The different plans that describe the solid and
the dimensions chosen for the fixed support column of the pendulum can be seen in Figure
A.5 in Appendix A, together with the multi-view projection and the detailed blueprints for
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the component.

Figure 3.7: Fixed Support Column and sensor holder (dimensions in mm)

3.2.5. Oscillatory Support Column

The oscillatory support column has the same purpose as the fixed support column, which
is to release the torsion fiber from compression. Besides, it must hold to the satellite
platform and allow its rotation about the axis given by the torsion fiber. As this is an
oscillating component, it must be as light as possible. Therefore, it has a C-shape, as the
fixed column, but with cylindrical section (see Figure 3.8). It was designed to be hollow, by
using the shell feature in SOLIDWORKS. Its final mass is of 4.75 kg, and its dimensions are
shown in Figure A.6 of Appendix A, together with the multi-view projection and the detailed
blueprints for the component.

This support column will be screwed by the top to the oscillatory satellite platform through
the upper cylindrical piece shown in Figure 3.8. This cylindrical piece has an hexagonal
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hole which will allow to screw the column to the CubeSat platform, and avoid unscrewing
during rotation. It will also be united to the mobile inner part of the top bearing and to the
torsion fiber. The torsion fiber will go through the small circular hole at the lower part of
the oscillating column, to be ultimately attached to the ground platform. A cylindrical piece
identical to the one at the top, can be found at the lower end of this column, and is to be
welded to the inner part of lower bearing.

Figure 3.8: Oscillatory Support Column (dimensions in m)

3.2.6. Lower and Upper Bearings

The bearings (g, g’) play a key role in this design, as they transmit the oscillatory motion
produced by the torsion fiber to the satellite platform with the lowest possible friction. From
the structural point of view, they connect the oscillatory parts of the pendulum to the fixed
ones.
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Two identical bearings, as in Figure 3.9, are required: both will be attached to the fixed
column by its outer cylinder, one will be placed under the satellite platform (f). The other
bearing will be placed on the top of the supporting base (a). These bearings together with
the torsion fiber will be the only pendulum components made of steel. The dimensions
chosen for both bearings can be seen in Figure A.7 of Appendix A together with the multi-
view projection and the detailed blueprints for the component.

Figure 3.9: Bearing (dimensions in cm)

The bearings are composed of an outer cylindrical ring, which will be welded to the fixed
column, and an inner part, composed of an inner cylindrical ring and 9 small spheres. This
inner part is aimed to rotate jointly with the oscillating part of the pendulum. Therefore,
both bearings are simultaneously both fixed components and oscillatory. The total mass
of one bearing is about 64.12 g.

3.3. Complete pendulum assembly

At this point we summarize the relations between the different parts of the torsion pendu-
lum, described in the previous subsections, and present the general aspect of the assem-
bled device (see Figures 3.10). As explained in section 3.2.2., we will be able to place the
oscillatory satellite platform in two different positions. The general view of the complete
pendulum assembly depending on the position of the oscillatory satellite platform is shown
in Figure 3.11. Table 3.1 compiles the physical properties of the different solids which
compose the pendulum.
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Figure
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Table 3.1: Complete Pendulum Physical Properties

Component Mass [kg] Volume [cm3]

Base 15.05 5572.79
Fixed Support Column 15.16 5613.13
Bearings [2 of them] 0.06·2 8.78·2

Satellite Platform 6.58 2436.65
Torsion Fiber 0.01 3.8

Oscillatory Support Column 4.75 1759.54
Oscillatory Arm With Laser 0.14 53.14

Complete Pendulum 42.50 15547.75

(a) Position 1 (b) Position 2

Figure 3.11: Complete pendulum assembly; (a) Oscillatory satellite platform screwed with
the central hexagonal hole; (b) Oscillatory satellite platform screwed with the non-central
hexagonal hole

We can also differentiate the oscillatory components from the fixed components in our
final design by using the color code in Figure 3.1 (red are fixed and grey are oscillatory
components). The result is shown in Figure 3.12.
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Figure 3.12: Complete pendulum assembly; Grey-colored: Oscillatory components of the
torsion pendulum; Red-colored: Fixed components of the torsion pendulum

Additionally, we can also set some of the parts in transparent mode so that we can see
how the bearings interact with the other parts of the pendulum. In Figure 3.13 both support
columns and the satellite support platform are shown as transparent. It is interesting to
observe the shell features, introduced to reduce the amount of material and mass, and
how the upper part of the torsion fiber is fixed to the oscillatory support column. Also,
we can now easily distinguish the two different hexagonal holes of the oscillatory satellite
platform, see section 3.2.2., and how is it connected by the central one to the rest of the
torsion pendulum. Moreover, we can also observe how the bearing is connected by the
outer part to the fixed support column and with the inner part to the small upper cylinder
of the oscillating support column.
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Figure 3.13: Upper Bearing Detail (Painted and Transparent)

Analogously, the same can be seen in Figure 3.14, where we can observe the lower bear-
ing in detail, with the support columns transparent, and how the torsion fiber connects
directly to the floor supporting base. As already explained, the bearing is connected by the
outer part to the fixed support column and with the inner part to the small lower cylinder of
the oscillatory support column, so that it works as the connection between the oscillating
components and the fixed ones.

Figure 3.14: Lower Bearing Detail (Painted and Transparent)





CHAPTER 4. SIMULATIONS

Once the design of the torsion pendulum is completed, we must analyze whether the
device is suitable to perform according to our requirements. In this Chapter we study the
effects of applying external forces and pressures. Specifically, we consider the effects on
the oscillatory satellite platform (3.2.2.), and on the complete pendulum assembly (3.3.).

We performed several analyses, using forces and pressures ranging from expected stan-
dard to extreme conditions (like punctual masses of maximum accepted weight in the
borders of the oscillating plate). A maximum deformation displacement higher than 1 mm,
or a maximum stress higher than the yield strength of aluminum alloy 1060 (28 MPa), was
considered unacceptable for our requirements, as would result in plastic deformations.

We used the simulation analysis packages of SOLIDWORKS software to perform the fol-
lowing simulation tests:

• Stress simulation: SOLIDWORKS calculates the normal stress components (principal
stresses), and the Von Mises, or Equivalent Stresses, which is used to assess failure
of ductile materials and maximum stresses for an external load application.

• Displacement simulation: SOLIDWORKS calculates the maximum expected deforma-
tions in a solid for a certain external load application, and plots the URES (Resultant
displacement).

• Strain simulation: SOLIDWORKS calculates the equivalent strain (ESTRN) in a solid
when a certain external load is applied.

For each simulation we must enter some inputs, the part of the torsion pendulum which
will be considered in the simulation as fixed in space, the external load (and where is it
applied) and the mesh, which must always cover the full solid in which the simulation is
performed.

We divide the present Chapter in the following sections: firstly, we study the oscillatory
support platform, as a standalone, checking if the material and the dimensions of the os-
cillating plate are correctly chosen, and if it doesn’t experience significant deformations
due to the simulated applied force. Secondly, we perform the same studies with the com-
plete pendulum assembly, with the goal of checking if the torsion fiber receives any kind of
compression. Finally, we interpret the simulation results and draw our main conclusions.

4.1. Oscillatory Satellite Platform Analysis

As previously mentioned, we will perform different studies to check if the design and the
selection of material (aluminum alloy 1060) done in the previous chapter are suitable.

Our first design for the oscillatory support platform assumed 3 mm height, and then, ac-
cording to our initial pendulum design, its dimensions were (50 cm, 50 cm, 3 mm). Never-
theless, this dimensions proved to be unsuitable, as in some of the simulations the platform
broke and produced unacceptable deformations.

So the first measure we took was to increase the thickness of the oscillating plate by 1
mm and retry the simulations, as the vertical thickness to horizontal area ratio was clearly
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our main problem when performing the simulation. We repeated this step (increasing the
thickness in steps of 1 mm) until the thickness was 1 cm, where we got suitable simulation
results. It is important to recall that the thickness of the plate must be minimum, as it
is directly related to the plate’s mass and we need our oscillatory components with the
smallest possible weight.

Hence, in order to simulate a worst case scenario, we simulate the effects of a satellite
with a weight of 80 N, much larger than the largest ones we plan to analyze (3U CubeSat).
If these simulations show that the torsion pendulum can operate under this weight, it will
be even safer in operational conditions. Furthermore, as we have designed two different
hexagonal holes in which we can screw the platform to the pendulum, we perform the
corresponding analysis to the plate tighten in any of these two holes, so that we can test
all possible scenarios in which the pendulum can be operated. The figures showing the
results of these simulations can be found in Appendix B, section B.1.

4.2. Complete Pendulum Assembly Analysis

The goal of these simulations is to check the critical issue that the torsion fiber will not
receive any kind of compression while the pendulum is operative, regardless the specific
situation. Therefore, the aim of this section is to place the oscillatory satellite platform on
the top of the pendulum and perform the same analysis we had studied in the previous
section, this time with the complete torsion pendulum. Again, the different simulations are
performed, positioning the oscillating platform in the two different possible arrangements.

Again, we use the same 80 N point weight as our input, and check if the torsion fiber
receives any kind of compression. The first and second simulation, subsections B.2.1.
and B.2.2. respectively, correspond to the oscillatory support platform 3.2.2. screwed by
its central hexagonal hole. Whereas the third and fourth simulation, subsections B.2.3.
and ?? respectively, are simulated with the oscillatory satellite platform screwed by its
out-of-centre hexagonal hole.

The complete set of simulation figures can be seen in Section B.2. of Appendix B.

4.3. Simulation results and conclusions

In this section, we compile the eight simulations performed and discuss the obtained re-
sults. Tables 4.1 and 4.2 show the maximum von Mises stress, the resultant displacement,
and the strain values on our solids. The von Mises stress is a magnitude proportional to
the deformation energy. Once a certain value of the von Mises stress is surpassed, the
object will undergo elastic failure. URES refers to the resultant displacement of a section
of an object. If the displacement about axes X , Y and Z is, respectively, UX , UY and UZ ,

then the corresponding URES is |~U | =
√

U2
X +U2

Y +U2
Z . ESTRN represents the strain,

which corresponds to the quotient of the change in length of an object due to an applied
force, to its original length.
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Table 4.1: Oscillatory Satellite Platform Simulation Results

von Mises stress [N/m2] URES [mm] ESTRN strain [-]

1st Simulation 3.861 ·102 6.726 ·10-8 4.193 ·10-9

2nd Simulation 1.626 ·106 4.446 ·10-2 1.725 ·10-5

3rd Simulation 8.386 ·106 2.081 ·10-1 9.161 ·10-5

4th Simulation 3.647 ·107 1.398 ·100 2.684 ·10-4

Table 4.1: Oscillatory Satellite Platform Simulations: stress and deformation analysis
for the case in which the oscillatory satellite platform is considered. 1st Simulation corre-
sponds to the case of an homogeneous 80 N load on the isolated platform; 2nd Simulation
corresponds to the case of an homogeneous 80 N load on the platform fixed at the central
hexagonal hole; 3rd Simulation corresponds to the case of an homogeneous 80 N load
fixed at the off-center hexagonal hole; 4th Simulation corresponds to the case of a point
80 N load on an extreme point of the platform, which is fixed by the off-center hexagonal
hole.

Table 4.2: Pendulum Simulation Results

von Mises stress [N/m2] URES [mm] ESTRN strain [-]

1st Simulation 2.101 ·106 9.268 ·10-2 2.221 ·10-5

2nd Simulation 1.657 ·107 4.806 ·10-1 1.379 ·10-4

3rd Simulation 1.144 ·107 5.022 ·10-1 1.066 ·10-4

4th Simulation 4.565 ·107 2.139 ·100 4.396 ·10-4

Table 4.2: Pendulum Simulations: stress and deformation analysis for the case in which
the entire device is considered. 1st Simulation corresponds to the case of an homoge-
neous 80 N load on the isolated platform; 2nd Simulation corresponds to the case of a
punctual 80 N load on an extreme point of the platform, which is fixed by the central hexag-
onal hole; 3rd Simulation corresponds to the case of an homogeneous 80 N load fixed at
the off-center hexagonal hole; 4th Simulation corresponds to the case of a punctual 80 N
load on an extreme point of the platform, which is fixed by the off-center hexagonal hole.

As we can see in tables 4.1 and 4.2, the most extreme simulations performed with point
masses in extreme positions (both 4th simulations), are the ones which surpass the yield
strength and then the maximum allowed deformation of 1 mm. These simulations are the
4th simulation in table 4.1 and the 2nd and 4th simulation in table 4.2. In the rest of simula-
tions, in which the mass of the satellite is distributed along the oscillatory satellite platform
(not punctual) have acceptable values of stress and displacement which are complying our
design requirements.

We must also take into account that the mass of the satellite that we have simulated is of
about 8 kg, which is a worst case scenario, as the largest satellites we plan to study are of
4 kg (3U CubeSats). Anyway, we will set the maximum permitted mass for the pendulum
operation to be 8 kg (corresponding to a 6U CubeSat). In other words, the 8 kg satellite
will be the upper mass operational limit for the pendulum.

Even in the most extreme simulations of the pendulum analysis, section 4.2., the torsion
fiber does not receive any kind of compression as it is absorbed by the oscillatory sup-
port column and the fixed support column. Therefore, we are also achieving our design
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requirements in this regard and we are checking that our design is suitable for its propose.



CHAPTER 5. SOFTWARE TOOLS AND INERTIA
TENSOR CALCULATION

Our main objective in the present Chapter is to completely determine the inertia tensor
of the oscillating components of the torsion pendulum. Note that the fixed components
are irrelevant from the point of view of oscillation period measurements. Eventually, the
operational pendulum will also include the CubeSat, and thus our actual period measure-
ments will be determined by the sum of both the inertia tensor of this CubeSat ({ICS}),
and the inertia tensor of the oscillating elements of the pendulum ({IP}). Thus, and as we
describe in Chapter 6, the desired inertia tensor values of the CubeSat will be obtained as
a subtraction {ICS}= {Imeasured}−{IP}.
As we also explain in Chapter 6, the most important component of the inertia tensor of the
torsion pendulum is Izz, as it is the on which we can measure, whereas the rest is to be
obtained after additional measurements and rotation matrix algebra. Hence, for each of
the oscillatory components of the pendulum, we will consider the following parameters in
SOLIDWORKS:

- Mass [kg].

- Center of mass given in [x,y,z] coordinates [m].

- Component Izz of the inertia tensor [kg·m2].

In order to simplify the inertia tensor determination, we chose a new coordinate system,
according to which the centre of mass and Izz of the oscillatory components can be be
obtained. The XO and YO components of the origin of this new coordinate system are at
the center of the oscillatory satellite platform, and the ZO component is 5 cm above the
upper surface of the platform. This way, if we place a 1U CubeSat centered in the platform,
its centre of mass will coincide with the origin of our frame of reference, within the limits of
reasonable approximation. Note at this point that the CubeSat standard requires that the
center of mass shall be located at less than 2 cm of the geometric center of the satellite.
Naturally, the X and Y axes of our frame of reference will be parallel to each side of the
platform. The Z axis will be perpendicular to the platform, and thus along the axis of the
torsion fiber. Defined in this way, the system will only experience rotation about the Z axis.
A sketch of our frame of reference together with the oscillating parts of the pendulum is
shown in Figure 5.1.

We now present the complete inertia tensors of the oscillating components, using the new
coordinate system described above. Recall that the components studied are the oscilla-
tory ones, that is, the ones which rotate about the torsion fiber when an external torque
is applied to the platform. We must take into account that, even though the upper and
lower bearings are identical, and thus their description was not duplicated in the previous
chapter, we must now consider them separately, as they are placed in different positions in
reference to the chosen frame of reference. Note however, that because of their identical
mass distribution about the Z axis, their IZZ components will be, again, identical. Recall
also that the bearings are composed of an oscillating part and a fixed part; therefore,
we only take into account the oscillating parts, as they are the only relevant ones for our
calculations of the inertia tensor.
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Figure 5.1: Oscillatory components of the pendulum and frame of reference used for the
calculations of the centre of mass and the Z-component of the inertia tensor IZZ of the sys-
tem. Components shown in the Figure are the oscillatory support column, the oscillatory
arm with laser, the oscillatory satellite platform, and the lower and upper bearings (inner
or mobile cylinder).

In order to calculate the inertia tensors of the different components we used the software
tool known as Physical properties, provided by SOLIDWORKS, and the results for the dif-
ferent oscillatory components of the pendulum are shown below. Note that, because all
the inertia tensors are given with respect to the same frame of reference, the total inertia
tensor is the matrix sum of the individual tensors. Note also that the torsion fiber was not
included either in Figure 5.1, or in the inertia tensor calculations. The reason is that, given
its geometry (very narrowly close to the axis of rotation) its Izz component is expected to
be negligible.

Upper Bearing =⇒{IUB}=

0.00017 0 0
0 0.00017 0
0 0 0.00001

 [kg ·m2]
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Lower Bearing =⇒{ILB}=

0.05038 0 0
0 0.05038 0
0 0 0.00001

 [kg· m2]

Oscillatory Satellite Platform =⇒{IOP}=

0.15772 0 0
0 0.15772 0
0 0 0.27553

 [kg· m2]

Oscillatory Support Column =⇒{IOSP}=

3.04889 0 0
0 2.95331 0.44536
0 0.44536 0.09765

 [kg· m2]

Oscillatory Arm With Laser =⇒{IOAL}=

0.01506 0 0
0 0.00061 −0.00295
0 −0.00295 0.01506

 [kg· m2]

Table 5.1 summarizes the relevant parameters for the different oscillating components in
new coordinate system.

Table 5.1: Table of components

Component Mass [kg] Center of mass [m] Izz [kg· m2]

Upper Bearing 0.06 [0, 0, -0.075] 0.00001
Lower Bearing 0.06 [0, 0, -1.295] 0.00001

Oscillatory Satellite Platform 6.58 [0, 0, -0.055] 0.27553
Oscillatory Support Column 4.75 [0, -0.14, -0.68] 0.09765
Oscillatory Arm With Laser 0.14 [0, 0.32, -0.06] 0.01506

Oscillatory Components 11.5 [0,-0.05,-0.317] 0.38825

We must also take into account that these calculations are done with the oscillatory satellite
platform being screwed at its central hexagonal hole. In order to account for the alternative
platform position, either these calculations should be repeated using SOLIDWORKS with
the off-center configuration, or applying Steiner’s theorem to the inertia tensors of the
displaced components.





CHAPTER 6. SATELLITE INERTIA TENSOR
CALCULATION

In the present chapter we will apply the analysis developed in Chapter 2 and use the inertia
tensor calculated in Chapter 5, to finally determine the inertia tensor of our satellite as a
standalone.

First, we must remember from Chapter 2 the main equation for the dynamics of rotation:

~τ =
dL
dt

=
d
dt

{{
I
}

ω
}
=

d
dt

Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

ωx
ωy
ωz

=⇒

L̇x
L̇y
L̇z

=
d
dt

Ixxωx Ixyωy Ixzωz
Ixyωx Iyyωy Iyzωz
Ixzωx Iyzωy Izzωz

 (6.1)

Because rotation is about the Z axis, we can simply focus on Lz. Besides, taking into
account that Izz is constant, and that the torque due to a torsion fiber is τz =−bθz, where
b is constant and θz is the rotation angle about the Z axis:

dLz

dt
= Izzωz =⇒−bθz = Izzθ̈z =⇒−bθz = Izzθ̈z

Therefore:

θ̈z +
b
Izz

θz = 0 (6.2)

The former is, of course, the equation for a simple harmonic oscillator of frequency ω0 =√
I
b , and its solution is the well-known expression θ = θ0 cos(ωt + φ), where θ0 is the

amplitude and φ is the initial phase. Therefore, the period of the oscillations is:

T0 =
2π

ω0
= 2π

√
Izz

b

Or, equivalently:

Izz =

(
T0

2π

)2

b (6.3)

Note that a more realistic approach would include, as in Chapter 2, the effects of friction.
However, given the geometry of our device, we expect the friction coefficient (in the air)
to be γ ∼ 10−4 s−1, and thus much smaller than ω0 ∼ 0.1 s−1. In order to calculate ω0
we took Izz from Chapter 5, and the torsion fiber constant b∼ 0.01 Nm2, characteristic of
torsion fibers similar to the one we would use for an eventual construction of our pendulum.
Therefore we are in the regime of a good quality factor oscillator and thus we can safely
assume that ω ≈ ω0, that is, that the frequency of the realistic damped oscillator is very
similar to the frequency of a harmonic oscillator.
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Summarizing, we know now how to fully determine the Izz component of the inertia tensor
of a our pendulum (with or without an attached CubeSat) by using measurements of its
period. Recall that our analysis is referenced to the coordinate system described in Chap-
ter 5, that is, with origin coincident with the geometrical center of a CubeSat placed at the
center of the oscillatory satellite platform.

We also know that the complete inertia tensor is:

{ITOTAL}= {IP}+{ICS},

where {IP} is the moment of inertia of the mobile parts of the pendulum, and {ICS} is the
moment of inertia of the CubeSat, both given with respect to the axis of rotation of the sys-
tem. Focusing on the zz component we can determine, after measuring the period of the

pendulum alone, Izz,P for the pendulum. From equation 6.3, Izz,P =
(

T0,P
2π

)2
b. Analogously,

after measuring periods of the oscillation of the system pendulum plus CubeSat, we can

obtain Izz,TOTAL =
(

T0,TOTAL
2π

)2
b. Therefore:

ICS,zz = ITOTAL,zz− IP,zz (6.4)

In the next section we describe how we can use Izz values and rotation matrix algebra in
order to obtain the remaining components of the tensor of inertia of a CubeSat.

6.1. Complete determination of the inertia tensor

The key to determine additional components of the inertia tensor is to rotate the CubeSat,
in order to place it in additional positions with respect to our frame of reference, and mea-
sure the corresponding periods. Mathematically, we can simulate a rotation of the inertia
tensor by using the expression IROTATED = R

{
I
}

RT , and the rotation matrices about the
X , Y and Z axes given in Chapter 2. For the sake of efficiency we wrote a MATLAB program
to automatically calculate the rotations. Note that because MATLAB calculates by defect
passive rotations and we intend to rotate the CubeSat, the equivalent real rotations in the
constructed pendulum should be performed clockwise. In this section {I} may refer either
to the tensor of inertia of the mobile parts of the pendulum or to the set mobile parts plus
CubeSat, depending on the chosen configuration.

As the CubeSat has a cubic shape, it is actually very easy to rotate it by 90◦ about any of
its main axes. The resulting inertia tensor rotated 90◦ about its X axis, according to our
MATLAB program is as follows:

IROTATED = Rx(90)
{

I
}

Rx(90)T =

 Ixx Ixz −Ixy
Ixz Izz −Iyz
−Ixy −Iyz Iyy


It allows us to obtain the Iyy component.

Analogously, if we implement a 90◦ rotation about the Y axis:

IROTATED = Ry(90){I}Ry(90)T =

 Izz −Iyz −Ixz
−Iyz Iyy Ixy
−Ixz Ixy Ixx
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So that, we can obtain the Ixx component.

At this point we have obtained the three moments of inertia, Ixx, Iyy, Izz of the tensor, but
we still need information of the products of inertia. More 90 ◦ rotations do not provide us
with additional components. However, we can still implement on the CubeSat rotations of
45◦, These rotations are easy to apply, either if they are performed about the axis of the
torsion fiber itself, or about another axis parallel to it. Alternatively, we can also adapt the
CubeSat box so that it can sit (and be fixed to the platform) on its edges.

Then, if we apply a 45◦ rotation about the X axis:

IROTATED = Rx(45)
{

I
}

Rx(45)T

We get the following expression for the I′zz component of the new inertia tensor, which is to
be derived from the new measured period:

I′zz =
1
2
(Iyy−2Iyz + Izz)

As we have already determined Iyy and Izz, we can infer from the expression above the
missing component Iyz.

If we apply a 45◦ rotation about axis Y :

IROTATED = Ry(45)
{

I
}

Ry(45)T

We get the following expression for the I′zz component of the inertia tensor:

I′zz =
1
2
(Ixx +2Ixz + Izz)

Again, as we have already know Ixx and Izz we can easily calculate Ixz .

If we apply the same rotation of 45◦ about the Z axis we don’t get any further information.
Therefore, in order to calculate the Ixy component, we need to apply two consecutive
rotations. For instance, we can apply a 90◦ rotation about the X axis and an additional 45◦

rotation about the Y axis, as follows:

IROTATED = Rx(90)
{

I
}

Rx(90)T

IROTATED,TWICE = Ry(45)
{

IROTATED
}

Ry(45)T

We get the following expression for the new I′zz component of the new inertia tensor:

I′zz =
1
2
(Ixx−2Ixy + Iyy)

Now, we can see that we are in the same situation as before, were we know the compo-
nents Ixx and Iyy and can calculate the missing component Ixy.

After these simple rotations, and using Equation 6.4, we can completely determine all the
moments and products of inertia of the inertia tensor of the satellite. From this equation
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(a) Centered (b) Random Position

Figure 6.1: Complete pendulum assembly with CubeSat located in two different positions
on the supporting plate.

we can also see that, as mentioned above, it is important to keep the tensor of inertia of
the oscillating components of the pendulum IP,zz as low as possible, as it may affect the
proper determination of the tensor of inertia of the CubeSat, ICS,zz.

We must also remember that in the previous Chapter 5 we indicated that this value of IP,zz
is calculated with the oscillatory satellite platform being screwed by its central hexagonal
hole (see Figure 6.1); therefore, if we want to screw it by its off-center hexagonal hole, in
order to be able to perform more calculations, and obtain more accurate results, we would
need to recalculate the value of IP,zz. We defer this calculations to future work.

6.2. CubeSat inertia tensor calculation

In the present section we show the results of a simple numerical experiment with SOLID-
WORKS, aimed to calculate the inertia tensor of a simple model of CubeSat. We know
that a CubeSat must be a cube of 10 cm side, and therefore, we consider a solid homoge-
neous cube of 1000 cm3 volume. This design is not intended to be a good approximation
for a CubeSat, as we are not considering the internal distribution of the satellite. However,
this simulation will give us an idea of the order of magnitude of the moment of inertia val-
ues which we may expect, and ultimately, determine the approximate precision with which
oscillation periods are to be measured. For the sake of comparison we also calculate ana-
lytically the inertia tensor of our simple CubeSat model as a standalone in reference to its
center of mass, we get the following tensor of inertia:

[
I
]
=

0.0045 0 0
0 0.0045 0
0 0 0.0045

 [kgm2]
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This inertia tensor is the one we are supposed to find using our torsion pendulum, and
thus it can be used as a reference for calibration.

Regarding the simulation, we will use as our reference the coordinate system we created in
the previous chapter (see Figure 5.1). Of course, we get the same result as in the analytic
calculation.

Of course, by placing the CubeSat in the central position of the oscillatory satellite platform,
we are considering the worst case scenario in terms of resolution needs. Because we are
approximately making the center of mass of our CubeSat coincide with the origin of our
coordinate system, we get the smallest possible values for the moments of inertia, and
thus force the highest resolution in our device. If we want to operate at somewhat lower
resolution and still get moment of inertia values with two significant figures, we can place
the CubeSat at a known distance from the origin of our coordinate system. We know from
Steiner’s theorem (see section 2.2.3. in Chapter 2), that the new moment of inertia will be
larger than that calculated along an axis passing through the centre of mass of the cube.

6.3. Considerations on period measurement resolution

For the sake of simplicity in the equation, we drop in this section the subscript zz for the
considered moments of inertia. Note however that we always refer to the moments og
inertia along this axis.

We know from Equation 6 how the pendulum period relates to the moment of inertia values:

T 2

4π2 b = IP + ICS⇒

T = 2π

√
IP + ICS

b
(6.5)

Where T is the measured period we get from the sensor, b is the torsion constant for the
fiber, and IP and ICS are, respectively, the moments of inertia for the pendulum and the
CubeSat, both given with respect to the z axis.

The constant b should be properly calibrated once the pendulum is built, but we can expect
typical values for torsion fibers between 10−3 and 10−2 N m2. From our former calculations
IP=0.3885 kg m2, and ICS ∼ 10−3 kg m2.

We can now use the standard equation for error propagation in order to obtain the required
resolution for the measurements of T , assuming that the precision required for IP and ICS
is ∼ 10−4.

dT =

√(
∂T
∂IP

dIP

)2

+

(
∂T

∂ICS
dICS

)2

(6.6)
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Plugging Equation 6.5 into 6.6, we get:

dT = π

√
1
b

dI2
P +dI2

CS
IP + ICS

(6.7)

Substituting the above values, and choosing b = 0.01 Nm2 we get a dT ∼1ms, which is
a reasonable value. If a precision of δI/I = 10−6 is expected for the moments of inertia,
our device should be able to measure down to values∼0.1ms, also within feasible ranges.
Note that, additionally, noise analysis should be made, but we defer this to a future work.



CHAPTER 7. CONCLUSIONS AND FUTURE
IMPROVEMENTS

In this chapter we present the conclusions derived from our work, and propose possible fu-
ture improvements, to be implemented prior to the eventual manufacturing of the described
pendulum design.

7.1. Conclusions

Our main conclusions may be summarized as follows:

- We designed a torsion pendulum able to hold in different positions and orientations
a CubeSat of up to 3 units. The pendulum is to hold a laser emitter and a detec-
tor, which will allow to measure and transmit oscillation period data. This design is
simple enough to allow its construction with a relatively reduced budget. The de-
tailed blueprints for the components of our pendulum, obtained with SOLIDWORKS,
are presented in Appendix A. Connection elements such as screws are standard,
so they were not designed in this work. However, the different types of standards
required were referred to when necessary.

- Stress analysis has been performed through numerical simulations with SOLID-
WORKS. Our results indicate that the design is robust enough to resist the solic-
itations found during normal operations. Once the pendulum is constructed, this
analysis can be useful to outline the conditions of real laboratory stress tests.

- Using classical dynamics theory, we showed that the measured period can be re-
lated to the moment of inertia of the CubeSat around the axis of rotation of the pen-
dulum. Furthermore, rotation matrix algebra allows to build the complete tensor of
inertia, using the moments of inertia obtained from a series of periods measured with
the CubeSat placed in different orientations. The detailed procedure was thoroughly
described and justified, and can be the basis for an eventual instruction manual of
the constructed pendulum.

- A basic error analysis has been presented. This error analysis shows that the pen-
dulum designed allows to obtain experimental data, which will lead to the determina-
tion of accurate inertia tensors. This will be a significant improvement with respect
to results obtained with standard simulations, which are unable to account for the
complexity of real CubeSats.

Therefore, we achieved the main goals of our project. Our results are of interest for Cube-
Sat developers, because the proposed design, once implemented, will allow to obtain ac-
curate inertia tensors of these satellites, which are a fundamental input for attitude control,
and thus to ensure a good performance during their operation stage.
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Figure 7.1: New oscillatory components of the pendulum

7.2. Future improvements and developments

During advanced stages of the design process, some possible improvements of our design
became apparent. We draw some future actions along these lines.

i) Displacement of the oscillating column: As already stated, minimizing the value
of the pendulum’s moment of inertia allows higher accuracy in the satellite’s inertia
tensor determination. We found a possible alternative design which could prove
fruitful in this regard, that is, to locate the oscillating column with its axis coincident
with the torsion fiber. In this way, the fiber would be inside the oscillating column,
and the part of the pendulum’s inertia tensor stemming from the column would be
greatly reduced. As this design change is very promising, we will discuss it at some
length.

Actually, our new design merely implies a displacement of the oscillating column,
and the design of the other components would remain unchanged. The new os-
cillatory support column is shown in Figure 7.1, together with the other oscillatory
components of the pendulum and the coordinate system described in chapter 5.
The design consists of a hollow cylinder whose axis coincides with the torsion fiber
and provides support to the structure and avoids deformations of the fiber. The
torsion fiber will be fixed to the supporting platform (on its upper end), and to the
floor base support (in its lower end). Therefore, the new column will serve the same
purposes as the previous one for the design of our torsion pendulum. Note that
additional stress analysis simulations should be performed for the new design. The
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Table 7.1: Table of rotating components with the displaced oscillating column design.

Component Mass [kg] Center of mass [m] Izz [kg· m2]

Upper Bearing 0.06 [0, 0, -0.075] 0.00001
Lower Bearing 0.06 [0, 0, -1.295] 0.00001

Oscillatory Satellite Platform 6.58 [0, 0, -0.055] 0.27553
Oscillatory Support Column 5.21 [0, 0, -0.68] 0.00335
Oscillatory Arm With Laser 0.14 [0, 0.32, -0.06] 0.01506

Oscillating Components 12.07 [0, 0.003, -0.333] 0.29409

main benefit of this new design is the reduction of its impact in the component Izz of
the pendulum inertia tensor (see table 5.1). Note that it is reduced almost a factor
30 with respect to the original design. Additional information for the the entire oscil-
lating set and its separate components is shown in Table 7.1. By comparison with
Table 5.1 of Chapter 5, we realize that the total reduction in Izz for the entire set is
of about 25%. The final reduction is relatively modest because of the huge effect of
the moment of inertia of the oscillating platform, which is not altered with our new
design.

ii) Supporting base: The design of the floor supporting base could be improved by
altering its shape. We thought three alternative shapes to compare with our square
base. The new proposed shapes were circular, hexagonal and triangular. In order
to check which design is the most suitable we performed simulations using SOLID-
WORKS CAD software. The performed simulations are shown in Appendix C, where
we can observe that the optimal shape is the triangular one. However, this kind of
shape is constructively more complicated that the square shape we chose for our
physic pendulum. Therefore, and given that the original square served our purpose,
we should compromise when definite construction decisions are made.

iii) CubeSat support structure design: We must design proper support structures
to which we can attach 0.5U, 1U, 1.5U, 2U and 3U CubeSats. These structures
will be able to be screwed to the oscillatory satellite platform 3.2.2. in both the 90o

position and the 45o position, so that we can easily perform the rotations described
in Chapter 6. At the same time, we must know the inertia tensors of the structures
we design, as they will be oscillating with the rest of the pendulum components, and
therefore, influencing in the inertia tensor calculation of the satellite.

iv) Fine adjustment of the CubeSats position: We intend to implement a way to ad-
just either the CubeSats or both the platform and the CubeSats location, in order to
keep the position of the centre of mass of the system constant during the successive
re-orientations of the satellite.

v) Alternative materials: We have seen that the highest contribution to the moment of
inertia of the oscillating set is given by the oscillating platform. Alternative materials,
both lighter and as resistant as Aluminum 1060 should be considered prior to an
eventual construction of the pendulum. One of the most promising options is 3D
printing with high strength, low density thermoplastics.
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vi) Laser source, detector and communications: These components must be care-
fully chosen, so that they meet our resolution purposes and low-budget specifica-
tions. The laser source must be light enough so that its moment of inertia with
respect to the axis of rotation does not compromise the performance of our device.
An alternative disposition, placing the sensor at the rotating platform and the laser
emitter at the arm of the fixed column might be considered. However, the latter
option would force the use of wireless communication of the sensor data.

vii) Noise and errors: Further error and noise analysis for our pendulum design should
be performed. Additionally, a detailed calibration process should be described.

viii) Preparation for construction: Finally, we should also outline a practical imple-
mentation plan, including detailed costs of out-of-the-self components, material and
manufacturing of the real torsion pendulum.
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APPENDIX B. SIMULATIONS

The present appendix shows the simulations performed for the study of Chapter 4. We
divide the aforementioned simulations into two different sections:

B.1. Oscillatory Satellite Platform Analysis

B.1.1. First Simulation

In this first simulation we choose as the fixture the full base of the oscillating platform (as
if it was directly weld to the floor) and we apply an external load of constant 80 N evenly
distributed throughout the base, as can be seen in Figure B.1.

Figure B.1: Fixture and external load input

The analysis results are the following:
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B.1.1.1. Stress simulation

Figure B.2: Stress simulation

B.1.1.2. Displacement simulation

Figure B.3: Displacement simulation



B.1.1.3. Strain simulation

Figure B.4: Strain simulation

B.1.2. Second simulation

In this second simulation we choose as the fixture the center hexagonal hole and we apply
the same external load of constant 80 N distributed throughout the base, as in the first
simulation. The fixture (painted in green) and the external load (painted in purple) can be
seen in Figure B.5.

Figure B.5: Fixture and external load input

The analysis results are the following:



B.1.2.1. Stress simulation

Figure B.6: Stress simulation

B.1.2.2. Displacement simulation

Figure B.7: Displacement simulation



B.1.2.3. Strain simulation

Figure B.8: Strain simulation

B.1.3. Third simulation

In this third simulation we choose as the fixture the hexagonal hole which is not centered
(the one which is at 10 cm of the central, and colored in green) of the oscillating platform.
Our input is again a constant 80 N load evenly distributed throughout the base (colored in
purple). The simulation setup can be seen in Figure B.5.

Figure B.9: Fixture and external load input

The analysis results are the following:



B.1.3.1. Stress simulation

Figure B.10: Stress simulation

B.1.3.2. Displacement simulation

Figure B.11: Displacement simulation



B.1.3.3. Strain simulation

Figure B.12: Strain simulation

B.1.4. Fourth simulation

In this fourth and last simulation we consider the most extreme case: we choose as the
fixture the hexagonal hole which is not centered and we apply a punctual external load
of 80 N at one of two the farthest points from the fixture (that is, located in one of the
two opposite diagonal), as can be seen in the figure B.5. Again the fixture is painted in
green and the point of application of the external load is painted in purple. This is a worst,
completely unrealistic case when using the torsion pendulum.

Figure B.13: Fixture and external load input

The analysis results are the following:



B.1.4.1. Stress simulation

Figure B.14: Stress simulation

B.1.4.2. Displacement simulation

Figure B.15: Displacement simulation



B.1.4.3. Strain simulation

Figure B.16: Strain simulation

B.2. Pendulum Analysis

B.2.1. First Simulation

In this first simulation we choose as the fixture the full base of the pendulum base 3.2.1.
(as if it was directly weld to the floor), and we apply an external load of constant 80 N
evenly distributed throughout the base, as can be seen in Figure B.17.



Figure B.17: Fixture and external load input

B.2.1.1. Stress simulation

Figure B.18: Stress simulation



B.2.1.2. Displacement simulation

Figure B.19: Displacement simulation

B.2.1.3. Strain simulation

Figure B.20: Strain simulation



B.2.2. Second simulation

In this second simulation we consider the most extreme case we can perform to test the
platform. We choose as the fixture the full base of the pendulum base 3.2.1. (as if it was
directly weld to the floor) and we apply a punctual external load of 80 N at one of four
farthest points from the center of the oscillatory satellite platform 3.2.2. as can be seen
in Figure B.21. Again, this is a worst, completely unrealistic case when using the torsion
pendulum.

Figure B.21: Fixture and external load input



B.2.2.1. Stress simulation

Figure B.22: Stress simulation

B.2.2.2. Displacement simulation

Figure B.23: Displacement simulation



B.2.2.3. Strain simulation

Figure B.24: Strain simulation

B.2.3. Third simulation

In this third simulation we choose as the fixture the full base of the pendulum base 3.2.1.
(as if it was directly weld to the floor) and we apply an external load of constant 80 N evenly
distributed throughout the base, as can be seen in Figure B.25.



Figure B.25: Fixture and external load input



B.2.3.1. Stress simulation

Figure B.26: Stress simulation



B.2.3.2. Displacement simulation

Figure B.27: Displacement simulation



B.2.3.3. Strain simulation

Figure B.28: Strain simulation

B.2.4. Fourth simulation

In this fourth simulation we consider the most extreme case we can perform to test the
platform. We choose as the fixture the full base of the pendulum base 3.2.1. (as if it was
directly weld to the floor) and we apply a point external load of 80 N at one of the four
farthest points from the center of the oscillatory satellite platform 3.2.2., as can be seen in
Figure B.29. Again, this is a worst, completely unrealistic case to when using the torsion
pendulum.



Figure B.29: Fixture and external load input



B.2.4.1. Stress simulation

Figure B.30: Stress simulation

B.2.4.2. Displacement simulation

Figure B.31: Displacement simulation



B.2.4.3. Strain simulation

Figure B.32: Strain simulation





APPENDIX C. BASE ANALYSIS AND
VALIDATION TESTS PER SHAPE

The present appendix shows the simulations performed for the study of the chapter 7.
Where in the following sections, we will show the behavior of the different base shapes in
resonance, random vibration qualification and acceptance testing environments with the
maximum possible deformation that our bases would experience in case of resonance, a
displacement higher than 1mm will be considered as unacceptable as it would modify the
parameters introduced in order to calculate inertia tensors and the pendulum would be
unusable.

We will design the base shapes in such a way that the dimensions of the final 3D vol-
umes of the different solids is similar with one compared with the others, and at the same
time trying to occupy the smallest floor area, so that the total volume of the pendulum is
minimized and optimized.

For each 2D sketch we will let superimposed the previous shown design, so at the fourth
base we have all the 2D sketches superimposed. Each sketch will be extruded 5cm ver-
tically to produce a 3D solid. Then, the solids will be emptied 1cm using the shell feature
with uniform thickness so that the mass and material use is reduced, as done with the
pendulum design chapter 3.

Chosen Base Dimensions per Shape

The dimensions chosen for each of the base shapes for the pendulum study are:

• Square shape (the one used in our pendulum):

(a) 2D Sketch (b) 3D Extrude

Figure C.1: Square shape

• Round shape:
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(a) 2D Sketch (b) 3D Extrude

Figure C.2: Round shape

• Hexagon shape:

(a) 2D Sketch (b) 3D Extrude

Figure C.3: Hexagon shape

• Triangular shape:



(a) 2D Sketch (b) 3D Extrude

Figure C.4: Triangular shape

Therefore, the first values to be considered in the analysis are the different masses of the
bases, which will be studied in the following table C.1.

Table C.1: Base masses per shape

Square Triangular Round Hexagon

15.09 7.02 11.85 13.07

In order to check the bases resistance to random vibrations, frequency perturbations, res-
onance and stress we will perform two different studies with the SolidWorks simulation
package.

C.0.0.1. Frequency Analysis

Frequency analysis is the starting point for dynamic analysis. The analysis induce natural
frequencies in five different modes of possible frequency perturbations to the different 3D
bases. With the objective to check how the base of the pendulum would perform in reality
and if induced vibrations or frequencies of the environment, in which the physic pendu-
lum could be working, could modify the calculations of the tensor of inertia by means of
introducing noise. It is studied in the following table C.2:

Table C.2: Resonant frequencies (Hz)

Mode Square Triangular Round Hexagon

1 359.69 966.45 399.83 377.91
2 719.83 1809.6 802.69 765.14
3 720.47 1814.1 805.04 766.52
4 1081 2860.5 1350.1 1268
5 1296 2999.5 1352 1269.6

As we can observe, all the natural frequencies are very high and they won’t be a problem
for our pendulum.



C.0.0.2. Random Vibration Analysis

The random vibration environment is expressed as a power spectral density (PSD) or
acceleration spectral density in g2/Hz. Looking at our resonant frequencies we will perform
an analysis over a minimum frequency range from 20 to 6500Hz, in order to include all the
resonant frequencies values in the study.

The curve of frequencies follows the following shape:

To perform the analysis SolidWorks asks us to introduce the phenomenon called damp-
ing. Damping is related with dynamics systems, in order to simulate the random vibration
analysis as we are applying a complex phenomenon that dissipates energy by many mech-
anisms, if we apply some initial conditions to a dynamic system, the system vibrates with
decreasing amplitudes until it comes to rest, for example, we could consider the possibility
that the pendulum was affected by near steps, table moves or even earthquakes.

We will simulate Rayleigh Damping with a symmetric damping matrix C that is formulated
as a linear combination of the stiffness K and the mass M matrices. We will perform the
analysis with the recommended values provided by SolidWorks for each matrix:[

C
]
= α ·

[
M
]
+β ·

[
K
]

(C.1)

Where:

(i) Alpha Coefficient: Sets the mass proportional coefficient α of value 0.02

(ii) Beta Coefficient: Sets the stiffness proportional coefficient β of value 0.04

The system of equations of motion for a linear n degree-of-freedom system excited by a
random time varying force, which is applied from below and simulated by SolidWorks, is
defined by the following equation:

f (t) =
[
M
]
· ü(t)+

[
C
]
· u̇(t)+

[
K
]
·u(t) (C.2)

C.0.0.3. Stress Analysis

Once performed the analysis of the previous subsection C.0.0.2. SolidWorks provide us
with a curve that includes the maximum provided stress that the base would face.

The different simulations with the maximum stress acceptance (N/m2) for each type of
studied base are the following:

We should consider the maximum predicted stress under the yield limit, which depends
of the % of carbon in the cast alloy steel, in which depending of carbon percentage (al-
ways below the 0.75%) varies from 270 to 460 MPa, ensuring that in the worse possible
imaginable conditions (earthquake) the structure will not experience permanent (plastic)
deformation or even rupture. Therefore, we will simulate a power spectral density (PSD)
acceleration of 1 g2/Hz from the floor to all the bases

• Square shape



Figure C.5: Square shape maximum predicted stress

• Triangular shape

Figure C.6: Triangular shape maximum predicted stress

• Round shape

Figure C.7: Round shape maximum predicted stress

• Hexagon shape



Figure C.8: Hexagon shape maximum predicted stress


	Introduction
	CubeSat Standard
	Torsion pendulum
	Project structure

	Theoretical Analysis
	The torsion pendulum
	Fundamentals of rotation in 3 dimensions
	Concept of rigid body
	Angular momentum and tensor of inertia for a system of particles
	Steiner's (parallel axis) theorem in matrix form
	Rotation matrices:
	Euler's equations


	SolidWorks and Pendulum Design
	SolidWorks CAD Software
	Bases of 3D design
	Simulations

	Pendulum design
	Supporting Base
	Oscillatory Satellite Platform and oscillatory arm with laser
	Torsion Fiber
	Fixed Support Column and sensor holder
	Oscillatory Support Column
	Lower and Upper Bearings

	Complete pendulum assembly

	Simulations
	Oscillatory Satellite Platform Analysis
	Complete Pendulum Assembly Analysis
	Simulation results and conclusions

	Software Tools and Inertia Tensor Calculation
	Satellite Inertia Tensor Calculation
	Complete determination of the inertia tensor
	CubeSat inertia tensor calculation
	Considerations on period measurement resolution

	Conclusions and future improvements
	Conclusions
	Future improvements and developments

	Bibliography
	Torsion pendulum components
	Simulations
	Oscillatory Satellite Platform Analysis
	First Simulation
	Second simulation
	Third simulation
	Fourth simulation

	Pendulum Analysis
	First Simulation
	Second simulation
	Third simulation
	Fourth simulation


	Base Analysis and Validation Tests per Shape

