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Resumen

Contexto: El control de actitud de un satélite se basa en una determinación precisa de
su tensor de inercia, sin embargo, la determinación del tensor de inercia de un sistema
complejo, como es el caso de los satélites, escapa por completo a los métodos analı́ticos.
Aunque el tensor de inercia se puede obtener por medio de modelos CAD, este método
está sujeto a un grado de incertidumbre debido a las aproximaciones requeridas en la
definición de materiales y en la geometrı́a de algunos de los dispositivos. Además, el
cableado a menudo es difı́cil de integrar en los diseños CAD, e introduce una fuente de
error adicional.
Objetivos: En este trabajo de final de grado, proponemos realizar el diseño y el análisis
de las bases del funcionamiento de un péndulo de torsión que permite determinar todos
los componentes del tensor de inercia de un objeto tipo CubeSat, con mayor eficiencia y
precisión que la que nos permitirı́a un análisis de CAD.
Metodologı́a: Partimos de una idea general de un péndulo, que incluye un conjunto de par-
tes fijas con función principalmente estructural, y de partes que pueden rotar alrededor de
una fibra de torsión, unida a una plataforma sobre la cual se puede situar el CubeSat cuyo
tensor de inercia deseamos conocer. A partir de las medidas del periodo de rotación de
la plataforma podemos determinar de manera sencilla el momento de inercia del conjunto
de partes giratorias alrededor del eje de la fibra de torsión. Para realizar el diseño deta-
llado del dispositivo utilizamos el software SOLIDWORKS. Para analizar las bases de su
funcionamiento utilizamos conocimientos de Mecánica Clásica y Álgebra de matrices de
rotación, ası́ como el software MATLAB.
Resultados: Hemos diseñado, presentado los planos, y realizado un análisis numérico de
estrés sobre el péndulo propuesto. Además hemos completado el desarrollo matemático
que permite construir el tensor de inercia del CubeSat, a partir de valores individuales
de momentos de inercia, derivados de las medidas del periodo de rotación del sistema
con distintas orientaciones del CubeSat. Finalmente, nuestro cálculo de errores básico
muestra que podemos obtener valores de las componentes del tensor de inercia con la
precisión deseada, a partir de medidas de periodos factibles.
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Overview

Context: Attitude control of a satellite relies upon a precise determination of its inertia ten-
sor. However, the determination of the inertia tensor of a complex system, as is the case
of satellites, completely escapes analytic methods. Even though the inertia tensor can be
obtained by means of CAD models, this method is subject to a degree of uncertainties
due to required approximations in the materials definition and the geometry of some com-
ponents. Furthermore, cabling is often difficult to integrate into CAD designs, which may
introduce an additional source of error.
Aims: In this Degree Thesis, we propose the design of a torsion pendulum which will
allow us to determine all the components of the inertia tensor of a CubeSat-type object.
We intend to achieve more efficiency and better accuracy than performing standard CAD
simulations.
Methodology : Our starting point is a general idea of a pendulum, Our sketch involves a set
of fixed parts, mostly with structural purposes, and a set of mobile parts. The latter must
be able to rotate about the axis of a torsion fiber. Besides, it must connect to a platform on
top of which the CubeSat whose tensor of inertia we intend to determine will be placed.
By measuring the period of rotation of the mobile parts (which include the platform and
CubeSat), it is easy to derive the inertia moment of rotating set about the axis given by
the torsion fiber. The detailed design of the pendulum was executed with the software
SOLIDWORKS. Foundations of Classical Mechanics and rotation matrix Algebra, as well
as the software MATLAB were required to develop the operation analysis of the proposed
pendulum. Results: We designed, obtained detailed maps, and developed stress analysis
calculations of the pendulum. Besides, we completed the mathematical analysis which
allows to build the inertia tensor of a CubeSat, by using individual inertia moments, derived
from a set of period measurements obtained with different orientations of the CubeSat.
Finally, we used basic error analysis to show that the components of the inertia tensor can
be obtained with the desire precision by using feasible period measurements.
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CHAPTER 1. INTRODUCTION

Nowadays, the inertia tensor of small satellites is often calculated by means of CAD mod-
els, as the determination of the tensor of inertia of such complex systems completely
escapes analytic methods. However, these tensors are subjected to a small degree of un-
certainty, as CAD simulations can not be precise enough to perfectly simulate the complex
insides of the satellites, which include irregular elements such as electronic components,
cables or batteries. Hence, we always get a small error in the inertia tensor calculation,
which is one of the main inputs for the attitude control system. Along the present chapter
we brie�y estate the aims of this degree thesis, describe the different types of small satel-
lites and the new technologies they use, and focus on a special type of picosatellites, the
CubeSats.

1.1. CubeSat Standard

The CubeSat Standard was proposed in 1999 by Jordi Puig-Suari (California Polytechnic
University) and Robert Twiggs (Stanford University) as a learning project devoted to the
design and construction of satellites in shorter timescales and with lower budgets. As
soon as 2001, students from Aalborg University (Denmark) started the �rst communication
CubeSat satellite design (1). Later on, many universities from all around the world started
similar projects to design and construct CubeSats. The number of these projects just
kept growing with time: by 2015 more than one hundred CubeSats had been launched
and the pace is increasing: the launches performed in the �rst 7 months of 2016 already
outnumbered the total in 2015, and in 2018 the total number of CubeSats reached the
1,000 mark.

The development of CubeSats has not been restricted to academic usage but, instead,
many have been designed and manufactured for commercial exploitation. Currently, sev-
eral companies (including giants as Amazon and Space X) are planning the launch of
constellations of CubeSats to provide Earth observation data and Internet of the Thing
connectivity from remote locations.

Space agencies have also realized the importance of CubeSats in education; in 2010, Na-
tional Aeronautics and Space Administration (NASA) started the CubeSat Launch Initiative
(2) to launch, free of cost, CubeSats manufactured by educational and non-pro�t institu-
tions. These launches were executed either as rocket's auxiliary payloads, or from the
International Space Station. In 2015 NASA started an even more ambitious project: the
Cube Quest Challenge (3), to encourage CubeSat missions beyond LEO Orbit and, even-
tually, near and beyond the Moon. The European Space Agency (ESA) also launched the
Fly Your Satellite program (4), intended to provide students with assistance in the design,
construction and launch of CubeSats as an auxiliary payload of the rocket Vega.

Additionally, June last 17th, 2019 three CubeSats were ejected from the International
Space Station (ISS) for a mission called BIRDS-3, sponsored by the United Nations Of�ce
for Outer Space Affairs. These three 1U CubeSats were released into low Earth orbit as
part of a program that helps developing countries to build and operate their �rst satellites.
Its �nal goal is to open the advantages of space utilization to countries with no access to
standard satellites, as well as to promote space education in these countries.
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2 A system to determine the inertia tensor of small satellites

Figure 1.1: Bird CubeSats released in low Earth orbit. (Image credit: NASA).

CubeSats are satellites created as a simple but realistic basic design for students to adapt,
construct, test and, eventually, launch into low Earth Orbit (LEO Orbit) and operate in
space (5). The standard 1U (1 unit) CubeSat design consists of 10� 10� 11.35 cm3 box;
if need arise, several of these units can be combined to form a larger satellite. Each unit
has a mass of at most 1.33 kg, and its design speci�cations seek to ful�ll many goals.
Its simpli�ed cubical structure allows CubeSats to be considered as a fully functional low
cost satellite by its design and manufacturing. CubeSats from 1U (single unit) to 3U (three
units) share a common base of 10� 10 cm2 and thus can be launched by a common
deployment system, such as the Poly-Picosatellite Orbital Deployer (P-POD), which �ts in
almost every rocket as a secondary payload. This avoids the need to design –and qualify–
a speci�c interface with the launcher, and then waives an expensive satellite procedure
with its concomitant bureaucracy and mission inconveniences.

CubeSats often use commercial off-the-shelf (COTS) components for their electronics and
internal design and structure. This fact allows CubeSats to use affordable and fully func-
tional technologies which have been developed over these last years, for instance, Arduino
open-source hardware, software and micro-controllers, which are reliable to be used in
space missions. An open source Arduino-based CubeSat, christened ArduSat, containing
a set of Arduino boards and sensors, has already been designed. It is intended to allow
the general public to use data gathered in space for their own creative purposes. Besides
this, a myriad of affordable components can be purchased off-the-self in order to create a
tailored CubeSat, such as solar panels, communication devices, power and attitude control
systems among many others.

As happens in many cases, CAD programs allow to draw most of the properties (mass,
position, materials) of the different components, and ultimately provide the inertia tensor of
the system. Nevertheless, when the satellite is built, some uncertainties on the positioning
of the devices may result in small changes in the inertia tensor. An even more relevant
situation is related with the cabling of the satellite, that is very often overlooked in CAD
designs. This situation calls for an independent way to determine experimentally the inertia
tensor.
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1.2. Torsion pendulum

As we have seen, CubeSats are becoming very important space assets, and will be more
so in the near future. Therefore, in this thesis we will focus our efforts in designing a tool
that permits us to determine the inertia tensor of small satellites. After a revision of the
different methods available for this purpose, we have chosen a torsion pendulum by its
simplicity and low cost.

This torsion pendulum must ultimately allow to obtain the inertia tensor of a CubeSat. The
tensor of inertia of the satellite must be determined with a very high accuracy because
it is required to determine the torque needed for a desired angular acceleration about a
rotational axis. In other words, the inertia tensor is a necessary ingredient of the attitude
control of a rigid body.

The torsion pendulum and similar tools designed to calculate inertia tensors already exist.
A good review can be found in Szöke and Horváth (6) were several such systems are
discussed. Of course, there are other kinds of physical pendulums, like the �ve-wire torsion
pendulum of Stanford University (7) or triple-wire torsional pendulum (8).

Prior to the design process, we make a theoretical analysis of the torsion pendulum on the
bases of �rst principles of Classical Mechanics. Our actual design has been largely in�u-
enced by the torsion pendulum built and used at Samara University (Russia). To perform
our design we use the SOLIDWORKS CAD software.

1.3. Project structure

This thesis is structured as follows. Chapter 2 summarizes all the theoretical analysis
required to understand a damped torsion pendulum, the basics of rotation dynamics, and
the procedures to determine all the components of the inertia tensor of a given rigid solid.

Once the theoretical background of the torsion pendulum is understood, in chapter 3 we
describe the SOLIDWORKS CAD software and how it works. In the same chapter, we also
describe the design process of the torsion pendulum using SOLIDWORKS. This kind of
software allows users to perform a high number of trial and error tests prior to obtaining
the desired design. This chapter, therefore, describes which criteria have been followed in
order to get to the �nal pendulum design.

Of course, once the design for the torsion pendulum has been decided, we must test if
that design is suitable for the environment in which the pendulum will eventually operate,
as well as its resistance to the weight of the satellites whose inertia tensor we intend to
determine. Hence, in Chapter 4 we check if the design of chapter 3 is correct or must be
modi�ed.

In Chapter 5 we theoretically determine the inertia tensor of the oscillatory components of
the pendulum, which is necessary to �nd the inertia tensor of the satellite, as we will see
during this degree thesis. Then, in Chapter 6 we show how to calculate the inertia tensor
of the satellite, and how this aforementioned inertia tensor of the oscillatory components
of the pendulum affect the inertia tensor calculation of the satellite. We also make a simple
error analysis of the results to determine, to �rst approximation, the required accuracy in
the determination of the period of oscillation.
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To sum up, in chapter 7 we discuss the main results of this thesis, as well as possible
improvements to the pendulum and future tasks that would be required for an ef�cient use
of this facility.



CHAPTER 2. THEORETICAL ANALYSIS

A torsion pendulum undergoes an oscillatory motion caused by the restoring force provided
by a torsion �ber. In this Chapter we describe the properties of the oscillation and present
the relation between the oscillation period and the characteristics of the device. We also
give an overview of the physical meaning and the calculation of the tensor of inertia, as well
as a summary of Euler equations, critical for the understanding of 3-dimensional rotation.
The information we present here was compiled from Classical Mechanics textbooks, (9),
(10).

2.1. The torsion pendulum

Besides a restoring torque proportional to the rotated angle (-bq), real torsion �bers expe-
rience the effect of friction proportional to the time variation of the angle (-bf �q). Therefore,
the equation of motion for an extended object of moment of inertia I along the axis of the
torsion �ber ( å t ext = I q̈), with both t and I given with respect to the same point, is:

� bq � bf �q = I q̈ =) q̈+
bf

I
�q+

b
I

q = 0

Rewriting g= bf
I (the friction constant of the oscillator), w0 =

q
b
I (its natural frequency),

and solving the above differential equation for the case g< w0, we get the solution for the
motion of underdamped oscillators:

q = q0 e� gt cos(wt + z) (2.1)

Where: w =
q

w2
0 � g2 is the actual angular frequency of the system, t is the time, q0 is

the maximum amplitude of the oscillation, and z is its phase. q0 and z are to be determined
as functions of the initial conditions in each case. Note that the condition g< w0 can be
easily achieved by choosing a torsion �ber with suitable properties. We impose it because
we are interested in pendulums able to undergo many oscillations before their amplitude
decreases signi�cantly. An example of underdamped oscillator is shown in Figure 2.1.

The result above shows that the angular frequency of oscillation w is constant, and will
only depend on the properties of the device. This means that by adequately measuring
oscillations periods (T = w

2p ), we can obtain properties of the system under study and,
in particular, information leading to the tensor of inertia. Besides, the amplitude of the
oscillation will exponentially decrease with time (µ e� gt ). Therefore we are interested in
devices with relatively low g.

5
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Figure 2.1: Example of an underdamped system graph

2.2. Fundamentals of rotation in 3 dimensions

2.2.1. Concept of rigid body

A rigid body consists of an arbitrary number of particles such that their relative distances
remain constant. Therefore, the entire mass distribution in space of a solid rigid will remain
constant.

A rigid body can be composed of a �nite number N of individual particles of mass (mi ; i =
1; : : : ;N). In such case, we refer to the rigid body as a discrete mass distribution, and its
total mass M can be expressed as:

M =
N

å
i= 1

mi (2.2)

Alternatively, a rigid body can consist of continuous medium composed of in�nitesimal
mass elements, dmoccupying in�nitesimal volumes dV, so that we can de�ne a density
function r (not necessarily constant throughout the body), that follows the relation r = dm

dV .
in this case we will refer to a continuous mass distribution, and its total mass can be
expressed as:

M =
Z

r dV (2.3)

2.2.2. Angular momentum and tensor of inertia for a system of parti-
cles

The angular momentum is a physical magnitude which represents the rotational momen-
tum of a rotating body. It plays a role in rotating systems analogous to that of linear mo-
mentum in systems undergoing translations.

Angular momentum must always be referred to a certain point O in space (typically, the
origin of a frame of reference, or the centre of mass of the system). If a particle of mass mi
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has velocity ~vi , its linear momentum will of course be ~pi = mi~vi . If the position of mi with
respect to O is~r , , the angular momentum of mi will be the cross product:

~Li = ~r i ^ ~pi = mi~r i ^ ~vi (2.4)

The angular momentum of an entire system composed of N point-like masses will be:

~L =
N

å
i= 1

mi~r i ^ ~vi =
N

å
i= 1

mi~r i ^ (~w^ ~r i) (2.5)

where w (rad=s) is the angular velocity of the system in the considered frame of reference.

Figure 2.2: Relation between angular momentum (~L), position vector of the particle (~r), and
linear momentum, (~p). Note that, in general, ~L will not always be parallel to the angular
velocity of the particle ~w.

Using the relation: ~A^ (~B^ ~A) = ( ~A�~A) ~B� (~A� ~B) ~A, we can rewrite:

~L =
N

å
i= 1

mi [(~r i �~r i)~w� (~w�~r i)~r i ] (2.6)

The angular momentum vector for the system in Cartesian coordinates (Lx;Ly;Lz) is ex-
pressed as:

~L = Lx~i + Ly~j + Lz~k

Using that:
~r = x~i + y~j + z~k

~w = wx~i + wy~j + wz~k

=) ~r �~r = x2
i + y2

i + z2
i ; ~w�~r = wx xi + wy yi + wzzi
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The general expression for the angular momentum for the axis x is:

Lx =
N

å
i= 1

mi [(x2
i + y2

i + z2
i ) wx � (wx xi + wy yi + wzzi) xi)]

=)
N

å
i= 1

mi [(y2
i + z2

i ) wx � xi t yi wy � xi zi wz]

Analogously:

Ly =
N

å
i= 1

mi [(x2
i + z2

i ) wy � xi yi wx � yi zi wz]

Lz =
N

å
i= 1

mi [(x2
i + y2

i ) wz � yi zi wy � xi zi wx]

Which can be written as:
2

4
Lx
Ly
Lz

3

5 =

2

4
å N

i= 1mi(y2
i + z2

i ) � å N
i= 1mixi yi � å N

i= 1mixiyi

� å N
i= 1mixiyi å N

i= 1mi(x2
i + z2

i ) � å N
i= 1miyizi

� å N
i= 1mixizi � å N

i= 1miyizi å N
i= 1mi(x2

i + y2
i )

3

5

| {z }
f Ig

2

4
wx
wy
wz

3

5 (2.7)

Where the matrix f Ig is the tensor of inertia. It is a generalized version of the moment of
inertia, and therefore it represents the resistance (or inertia) of systems to change its state
of rotation. Note that:

(i) The diagonal elements of the tensor of inertia (Iii ) are the moments of inertia

(ii) The off-diagonal elements of the tensor of inertia, Ii j with i 6= j are the products of
inertia

If we now consider a continuous distribution instead of a discrete distribution, we can
rewrite by analogy:

mi �! dm
N

å
i= 1

�!
Z

M

Therefore, the moments of inertia will be:

Ixx = å N
i= 1mi (y2

i + z2
i ) =) Ixx =

R
(y2 + z2) dm

Iyy = å N
i= 1mi (x2

i + z2
i ) =) Iyy =

R
(x2 + z2) dm

Izz= å N
i= 1mi (x2

i + y2
i ) =) Izz=

R
(x2 + y2) dm

And the products of inertia will be:

Ixy = � å N
i= 1mi xiyi = Iy;x =) Ix;y = �

R
xydm= Iyx

Ixz = � å N
i= 1mi xizi = Izx =) Ixz = �

R
xzdm= Izx

Iyz = � å N
i= 1mi yizi = Izy =) Iyz = �

R
yzdm= Izy
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The kinetic energy due to the rotation of an object expressed in terms of the tensor of
inertia is given by:

Krotation=
1
2

~wT I ~w|{z}
~L

=) Krotation=
1
2

~w~L (2.8)

Note that, just as the moment of inertia relevant for rotation about a �xed axis, was given
for a speci�c object and a speci�c axis, the tensor of inertia is given for a speci�c object
and for a speci�c frame of reference (origin and set of Cartesian axes which follow the right
hand's rule).

By construction, the tensor of inertia is real and symmetric (Ii j = I ji ), and thus it can always
be diagonalized. Mathematically, the results of the diagonalization of a 3� 3 matrix is a
set of 3 eigenvalues and 3 eigenvectors. From the physical point of view, it means that
we can always �nd a set of perpendicular axes (with directions given by the eigenvectors)
such that the tensor of inertia in that set of axes will be diagonal. The corresponding
moments of inertia of the new diagonal tensor will be the eigenvalues. Note that, after
the diagonalization process, the origin of the frame of reference remains constant, and the
set of axes which makes a tensor of inertia diagonal is referred to as a set of Principal
Axes of inertia. It can be naturally inferred that for an arbitrary object and an arbitrary
point in space, we can always �nd a set of 3 principal axes of inertia with origin at the
given arbitrary point, and such that the object will be able to rotate with constant w around
any of these axis without the need of external torques. Actually, in such case, the angular
momentum vector will be parallel to the angular velocity: ~w k~L.

2.2.3. Steiner's (parallel axis) theorem in matrix form

The theorem in its 1-dimensional formulation proves that, given an axis which passes
through the center of mass of a solid, and another axis parallel to the �rst one, the moment
of inertia of both axes are related as as follows:

IP = IG + md2 (1D) (2.9)

Where IG Is the moment of inertia of the solid given for an axis going through the center of
mass, IP is the moment of inertia of the solid given for the parallel axis, m is the solid mass
and d is the perpendicular distance between the two axes.

Steiner's theorem in its 3-dimensional version can be written as:

�
IP

	
=

�
IG

	
+ m

2

4
y2 + z2 � x y � x z
� yx x2 + z2 � y z
� z x � zy x2 + y2

3

5 (3D) (2.10)

Where:

(i) IG is the tensor of inertia of the solid given for a frame of reference centred at the
center of mass of a solid, FRCM.

(ii) IP is the tensor of inertia of the solid given for a frame of reference parallel to the
FRCM, FRP.
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(iii) m is the mass of the solid.

(iv) x, y and z are the coordinates of the origin of FRPwith respect to FRCM.

2.2.4. Rotation matrices:

Rotation matrices can be active (as below), or passive (inverting the matrices below). An
active matrix transform a vector by rotating it. A passive matrix leaves the vector un-
changed and, instead, rotates the frame of reference accordingly.

A rotation matrix of an angle q about the X axis is:

About x axis: Rx(q) =

2

4
1 0 0
0 cosq � sinq
0 sinq cosq

3

5 (2.11)

A rotation matrix of an angle q about the Y axis is:

About y axis: Ry(q) =

2

4
cosq 0 sinq

0 1 0
� sinq 0 cosq

3

5 (2.12)

A rotation matrix of an angle q about the Z axis is:

About z axis: Rz(q) =

2

4
cosq � sinq 0
sinq cosq 0

0 0 1

3

5 (2.13)

We can apply a rotation matrix R on a vector~v as follows:

~vrotated = R~v

We can apply two consecutive rotations (�rst rotation R1 and then R2) as follows:

~vrotated = R2 R1~v

Rotation matrices are orthogonal, and thus their inverse is equal to their transposed form:
R� 1 = RT . Matrices form a non-Abelian group with the product, therefore the product of
matrices is non-commutative. This means that the order in which we apply matrix rotations
does matter.

~vrotated = R2 R1~v 6= R1 R2~v

Just as with vectors, rotation matrices can be applied on other matrices and, speci�cally,
can be applied to the tensor of inertia

�
I
	

:

�
I
	

= R
�

I
	

RT
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2.2.5. Euler's equations

Let us recall that the tensor of inertia of a body depends on the mass distribution of the
body itself with respect to the system of reference with which tensor of inertia has been
calculated. If we choose a �xed frame of reference, as the body moves, its tensor of inertia
will change. However, if we consider a system of reference which is attached to the body,
the tensor of inertia will remain constant, regardless the motion of the body.

We can use this fact and the relation between the time variation of the angular momentum
~L (in �xed system of reference SR) and the time variation of the angular momentum ~L� (in
the rotating system of reference SR):

d~L
dt|{z}

Time variation in non-rotating SR

=
d�~L
dt|{z}

Time variation in rotating SR

+ ~w^ ~L (2.14)

According to Newton's second law for rotating objects:

d~L
dt

= ~t|{z}
sum of all external torques

=

2

4
t 1
t 2
t 3

3

5 (2.15)

We also know that ~L =
�

I
	

~w because
�

I
	

is constant in the system of reference that
rotates with the body. Besides, it is clever to chose a frame of reference attached to the
body which is also a system of principal axes of inertia, so that the associated tensor of
inertia will be diagonal. The unitary vectors associated to this frame of reference will be�

~e1;~e2;~e3
	

), and we will use the standard notation x() 1, y() 2, z() 3. Then we can
express:

d�~L
dt

=
�

I
	 �~w =

2

4
I1 �w1
I1 �w2
I3 �w3

3

5 (2.16)

Therefore we can write:

~t =
d~L
dt

=
�

I
	 �~w+ ~w^ (

�
I
	

~w); (2.17)

with:

~w^ (
�

I
	

~w) =

2

4
~i ~j ~k
w1 w2 w3

I1 w1 I2 w2 I3 w3

3

5 =

= ( I3 � I2) w2 w3~i + ( I1 � I3) w1 w3~j + ( I2 � I1) w1 w2~k

Therefore:
t 1 = I1 �w1 + ( I3 � I2) w3 w2
t 2 = I2 �w2 + ( I1 � I3) w1 w2
t 3 = I3 �w3 + ( I2 � I1) w2 w1

(2.18)
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The former are the so-called Euler equations for rotation, and are the key to understand
3-dimensional rotation. Usually, if the body rotates about a �xed point =) The origin of
the SR' is at that point. If the body is unconstrained can move freely =) The origin of the
SR' is taken at the center of mass of the body.

It is easy to prove that, unless external torques are applied, the body can only rotate with
constant w about a principal axis of inertia.

Proof:

~t =
�

I
	 �~w+ ~w^ (

�
I
	

~w) =) Therefore, if ~w is constant =) ~t = ~w^ (
�

I
	

~w)

Under these conditions~t = ~0 () ~w^ (
�

I
	

~w) = 0 () ~w jj
�

I
	

~w = ~L

This will only happen when ~w goes along a principal axis of inertia, as we wanted to prove.



CHAPTER 3. SOLIDWORKS AND PENDULUM
DESIGN

This Chapter describes the design of the torsion pendulum. In the �rst section we outline
the most relevant aspects of the design software we use, SOLIDWORKS. The second
section is devoted to present and justify the characteristics of the pendulum components.

For the sake of clarity, we �rstly present the preliminary concept design for our physi-
cal torsion pendulum. We divide its components in two different parts, the oscillatory
components , which oscillate together with the torsion �ber, and the non-oscillatory �xed
components . Figure 3.1 shows the initial sketch we proposed. Red-colored parts corre-
spond to the �xed and white-colored parts correspond to the oscillatory components. A
laser emitter is to be placed in the arm (c') attached to the CubeSat platform (f). The laser
beam must point exactly to the detector placed in the arm (c) of the �xed column (b) when
the pendulum is at rest. Once the device is set in motion, the platform (f) together with the
arm (c') will rotate with period T about the axis given by the torsion �ber (d). Every time
the laser beam points to the detector half a period T=2 will be measured.

Once the pendulum design is completed with SOLIDWORKS, it can be eventually built
(some components could be 3D printed), calibrated and used to obtain the tensor of inertia
of CubeSat-like objects. We defer the construction process to a future work.

Figure 3.1: Preliminary sketch of the torsion pendulum: Supporting base (a); �xed support
column (b); �xed arm aimed to hold sensor ( c); torsion �ber ( d); oscillatory support column
(e); oscillatory satellite platform (f); arm attached to platform, aimed to hold laser (c' );
bearings (g and g' ); CubeSat whose tensor of inertia we intend to measure (not part of
the pendulum itself, h). The oscillatory part of the system is supposed to rotate about the
axis of the torsion �ber.

13
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3.1. SOLIDWORKS CAD Software

SOLIDWORKS is a solid modeling software; it works by means of parametric feature-based
approaches to create models which can be assembled in more complex shapes and 3D
bodies.

Solid modeling is based on a consistent set of principles for analytical and numerical mod-
elling of 3D solids. The most salient advantage that solid modeling presents in front of
related areas such as geometric modeling and computer graphics is the emphasis that can
be obtained on physical �delity. The use of solid modeling techniques allows to perform
complex engineering calculations automatically during the design process. Simulation,
planning and veri�cation of the processes such as machining and assembly are some of
the multiple advantages this technology presents. Moreover, solid modeling covers a wide
range of manufacturing applications such as sheet metal manufacturing, injection molding,
welding and, more recently, additive manufacturing or 3D printing.

Apart from manufacturing, solid modeling techniques allow rapid prototyping, digital data
archival, reverse engineering and mechanical analysis using �nite elements, motion plan-
ning and kinematic and dynamic analysis of structures and mechanisms. These features
are the most interesting aspects for us in order to choose SOLIDWORKS as our CAD model
software.

3.1.1. Bases of 3D design

SOLIDWORKS allows users to create 2D sketches in a plane or in space. It can be com-
posed of any kind of 2D shapes (composed of arcs, lines or points in the plane). Then,
in order to completely de�ne our shape in the plane we can add relations to de�ne at-
tributes such as dimensions in the International System of Units, tangency, parallelism,
perpendicularity and concentricity can be added to completely de�ne the sketch.

2D sketches can be transformed into 3D solids by means of different operations. The
most commonly used features are to extrude (add material to) or cut (remove material
from), the shape of the designed sketch. Moreover, non-sketch based features can also
be performed, such as �llets, chamfers, shells , material de�nitions, etc. which are tools
provided by the software itself. Solids can also be emptied in order to reduce component
masses. By means of an assembly we can impose relations which will allow to unite a
number of 3D elements into one single composed solid.

3.1.2. Simulations

SOLIDWORKS also provides a simulation package licensed by the labs of the EETAC. It
provides structural analysis tools which, by means of the Finite Element Analysis (FEA)
method, is able to simulate the realistic physical behavior of an object by virtually testing
CAD models. This package provides us with linear, non-linear static and dynamic analysis
capabilities that will be used to test our pendulum.

The most interesting simulations for this project will be related to frequency and dynamic
analysis, aimed to check the conditions in which the pendulum will operate and to obtain
its tensor of inertia.
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3.2. Pendulum design

We now describe each of the different solid components we designed with SOLIDWORKS.
Once assembled, they compose the �nal shape of the torsion pendulum. The dimensions
of the different solids will be provided in 3D Cartesian coordinates (x,y,z) and, unless oth-
erwise indicated, in centimeters.

The material chosen for the pendulum is 1060 aluminium alloy because of its good relation
between mechanical properties and density (2700 kg/m3), which makes it one of the most
interesting materials we can use. Note that both resistance and lightness are critical for
the good performance of our system.

The �nal design of the pendulum looks actually very similar to our initial idea (see Figure
3.1). However, along the design process, and as described in the following sections, we
made decisions intended to optimize the �nal result. Note that both design particularities
such as speci�c dimensions are chosen arbitrarily; therefore, there are many reasonable
alternatives to our proposed design.

3.2.1. Supporting Base

The base of our pendulum is intended to ful�ll two purposes: �rst, it must be a �rm support
for our system, and second, it must perform as well as possible in neutralizing environ-
mental vibrations (such as steps, traf�c,...) which might cause undesired oscillations. Vi-
brations can actually be an important source of noise which might compromise the validity
of our measurements, and thus we must try and limit their effects as much as possible.

We chose a square shape both because of its good vibration resistance, and because it is
very easy to build, from the constructive point of view. It consists of a 50� 50 cm slab which
is extruded 5 cm, so that the �nal dimensions of the solid are [50, 50, 5] cm. We added 4
drill holes to the 3D extrude in order to allow anchoring of the pendulum onto the ground.
Holes are ISO M20 margin and were placed close to each corner of the platform in order
to provide a reasonable stress distribution. This holes will be done at a 5 cm distance in
both axis x and y from the corners. We also used the shell feature, with uniform thickness,
in order to empty the base and make it lighter and easier to transport, in case we desire to
move the pendulum. Its mass after being emptied is of 15.05 kg and the �nal design can
be seen in the Figure 3.2.

The chosen dimensions for the supporting base can also be seen in Figure A.2 of Appendix
A, together with the multi-view projection and the detailed blueprints for the component.
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Figure 3.2: Floor Supporting Base (dimensions in meters)

3.2.2. Oscillatory Satellite Platform and oscillatory arm with laser

The CubeSat platform is aimed to hold CubeSats from 1U (approximately, cubes of side
10 cm) to 3U (dimension 10� 10� 33 cm), and thus we opted for a �attened cuboid of
dimensions (50 cm, 50 cm, 1 cm). It is completely free to rotate around the axis of rotation
given by the torsion �ber axis. Besides, we tried to minimize friction with the other parts of
the pendulum.

The mass of the CubeSat platform is 6.58 kg, and just as the rest of oscillating compo-
nents, it is aimed to be as light as possible, while keeping the required structural proper-
ties. As we will see in Chapter 4, keeping the oscillating components as light as possible
is relevant in order to achieve the required accuracy in tensor of inertia component deter-
mination.

The platform must be able to hold the CubeSats in many different positions with respect
to the rotation axis given by the torsion �ber. In this way, additional period measurements
(and thus more accurate determinations of the tensor of inertia) can be made. Therefore,
we introduced a 9� 9 mesh of holes with 5 cm separation between their centres. 79 holes
are circular, with 1 cm diameter and the 2 remaining holes are hexagonal. The circular
holes are aimed to screw the CubeSat onto the platform, whereas the 2 remaining hexag-
onal holes allow two screw positions of the platform with respect to the oscillating column.
The hexagonal shape ensures that the platform will not be unscrewed from the oscillating
column during rotations. One of the hexagonal holes is located at the center of the plate
and the other one at a 10 cm distance, as can be seen in Figure 3.3, and in further de-
tail in Figure 3.4. The chosen dimensions for the oscillatory satellite platform can also be
seen in Figure A.2 of Appendix A, together with the multi-view projection and the detailed
blueprints for the component.
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Figure 3.3: Oscillatory Satellite Platform (dimensions in m).

Figure 3.4: Oscillatory Satellite Platform. Hexagonal holes are highlighted with white cir-
cles.

An arm must be attached to the CubeSat platform in order to hold a laser emitter. The arm
will be screwed to the oscillatory satellite platform through the upper cylinder that can be
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seen in Figure 3.5, and the laser will be �xed to the arm through the lower cylinder shown
in the same �gure. The beam will aim directly to the laser sensor held by the �xed support
column when the pendulum is at rest. Once the pendulum is oscillating, every time the
beam is directly over the sensor, half a period (T=2) will be measured by the detector.

Once more, as this arm is one of the oscillatory parts, it is important to design it as light as
possible. Therefore, even though its mass is very low, we can further reduce it by applying
the shell feature with uniform thickness, so that the mass of material used is reduced. In
this way, the �nal mass becomes about 0.14 kg. The chosen dimensions for the oscillatory
arm with laser can also be seen in Figure A.3 in Appendix A together with the multi-view
projection and the detailed blueprints for the component.

Figure 3.5: Oscillatory Arm With Laser

3.2.3. Torsion Fiber

The torsion �ber is a critical component in the torsion pendulum because it is the one
that excites the oscillatory motion which will allow us to calculate the inertia tensors of the
satellites. This motion will be transmitted to the oscillatory components of the pendulum,
such as the satellite platform and the oscillatory support column (see Section 3.2.5.). The
dimensions of the torsion �ber will be of 2 mm of diameter and 1.21 m height, and it will
be made of steel, thus its resulting mass will be 10.26 g. The chosen dimensions for the
torsion �ber can also be seen in Figure A.4 and in Appendix A together with the multi-view
projection and the detailed blueprints for the component. For the sake of clarity, in the
different Figures we have exaggerated the diameter by a factor of 5.

The upper end of the �ber will be solidly attached to the oscillating support platform, and
the lower part of the �ber will be �xed directly to the supporting base of the pendulum (so at
rest). Torsion will be produced by rotating the CubeSat support platform perpendicularly to
the axis of the �ber. The purpose of the two supporting columns described hereunder is to
liberate the torsion �ber from any compression effort, because it has a very bad resistance
to compression.
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Figure 3.6: Torsion Fiber (dimensions in cm); for the sake of clarity we have exaggerated
the diameter by a factor 5.

3.2.4. Fixed Support Column and sensor holder

The main purposes of the �xed column, (b, see Figure 3.1), is to release the torsion �ber
from any compression caused by the masses placed above it, namely, the oscillatory satel-
lite platform (f), the arm with the laser (c'), and the CubeSat itself (h). We also intended to
make it both resistant and as light as possible, so the SOLIDWORKS shell feature was ap-
plied. For the sake of design simplicity, this �xed column (b) was assembled to the sensor
arm (c).

The �xed column, to be welded to the ground platform (a), has a C-shape with an additional
arm (c) aimed to hold a sensor (see Figure 3.7). It has a 4 cm diameter hole in each of the
short parts of the C-shape. The �xed parts of the bearings (see Section 3.2.6.) are to be
welded to these holes, whereas the mobile part of the bearings are to be connected to the
oscillating column (e). The two small holes (drill ISO M10) in the arm allow two positions
for the sensor, which provide �exibility regarding the position of the CubeSat's platform
(h) during measurements. Data from the sensor can be transmitted to a PC or laptop, for
instance, through a standard USB cable.

The total mass of the column is 15.16 kg. The different plans that describe the solid and
the dimensions chosen for the �xed support column of the pendulum can be seen in Figure
A.5 in Appendix A, together with the multi-view projection and the detailed blueprints for
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the component.

Figure 3.7: Fixed Support Column and sensor holder (dimensions in mm)

3.2.5. Oscillatory Support Column

The oscillatory support column has the same purpose as the �xed support column, which
is to release the torsion �ber from compression. Besides, it must hold to the satellite
platform and allow its rotation about the axis given by the torsion �ber. As this is an
oscillating component, it must be as light as possible. Therefore, it has a C-shape, as the
�xed column, but with cylindrical section (see Figure 3.8). It was designed to be hollow, by
using the shell feature in SOLIDWORKS. Its �nal mass is of 4.75 kg, and its dimensions are
shown in Figure A.6 of Appendix A, together with the multi-view projection and the detailed
blueprints for the component.

This support column will be screwed by the top to the oscillatory satellite platform through
the upper cylindrical piece shown in Figure 3.8. This cylindrical piece has an hexagonal
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hole which will allow to screw the column to the CubeSat platform, and avoid unscrewing
during rotation. It will also be united to the mobile inner part of the top bearing and to the
torsion �ber. The torsion �ber will go through the small circular hole at the lower part of
the oscillating column, to be ultimately attached to the ground platform. A cylindrical piece
identical to the one at the top, can be found at the lower end of this column, and is to be
welded to the inner part of lower bearing.

Figure 3.8: Oscillatory Support Column (dimensions in m)

3.2.6. Lower and Upper Bearings

The bearings (g, g') play a key role in this design, as they transmit the oscillatory motion
produced by the torsion �ber to the satellite platform with the lowest possible friction. From
the structural point of view, they connect the oscillatory parts of the pendulum to the �xed
ones.
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Two identical bearings, as in Figure 3.9, are required: both will be attached to the �xed
column by its outer cylinder, one will be placed under the satellite platform (f). The other
bearing will be placed on the top of the supporting base (a). These bearings together with
the torsion �ber will be the only pendulum components made of steel. The dimensions
chosen for both bearings can be seen in Figure A.7 of Appendix A together with the multi-
view projection and the detailed blueprints for the component.

Figure 3.9: Bearing (dimensions in cm)

The bearings are composed of an outer cylindrical ring, which will be welded to the �xed
column, and an inner part, composed of an inner cylindrical ring and 9 small spheres. This
inner part is aimed to rotate jointly with the oscillating part of the pendulum. Therefore,
both bearings are simultaneously both �xed components and oscillatory. The total mass
of one bearing is about 64.12 g.

3.3. Complete pendulum assembly

At this point we summarize the relations between the different parts of the torsion pendu-
lum, described in the previous subsections, and present the general aspect of the assem-
bled device (see Figures 3.10). As explained in section 3.2.2., we will be able to place the
oscillatory satellite platform in two different positions. The general view of the complete
pendulum assembly depending on the position of the oscillatory satellite platform is shown
in Figure 3.11. Table 3.1 compiles the physical properties of the different solids which
compose the pendulum.
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