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Retrieving	 knowledge	 and	 useful	 information	 from	 customers	 is	 crucial	 to	 develop	
customer-focused	products	and	maintain	the	market	share.	With	the	rapid	growth	of	the	
Internet,	 the	 ability	 of	 users	 to	 create	 and	 publish	 content	 has	 generated	 a	wealth	 of	
product	information	from	customers’	point	of	view.	Given	the	abundance	of	large	scale,	
publicly	 available	 data	 social	 media	 can	 enable	 novel	 social	 ways	 of	 providing	 and	
receiving	feedback	from	new	products	and	concepts.	
In	order	 to	 avoid	 information	overload,	 identifying	 and	analyzing	helpful	 reviews	has	
become	 a	 critical	 challenge.	 Identifying	 helpful	 online	 reviews	 and	 learning	 how	 to	
extract	valuable	data	from	product	design	perspective	has	become	a	crucial	task	due	to	
the	existing	information	overload	–identifying	what	is	relevant	to	analyze	is	a	key	task	
for	companies.	
Existing	 studies	 have	 focused	 on	 identifying	 variables	 that	 affect	 the	 perceived	
helpfulness	of	an	online	comment.	To	the	best	author’s	knowledge,	actual	studies	about	
helpfulness	do	not	consider	the	Quality	Function	Deployment	perspective	on	evaluating	
to	what	extend	the	customer	data	from	social	media	is	helpful	to	set	objective	targets.	
The	thesis	aims	to	evaluate	social	media	data	helpfulness	from	the	designer’s	perspective	
taking	as	basis	QFD.	Evaluating	this,	the	work	hypothesis	is	that	the	helpfulness	definition	
has	 to	move	 beyond,	 taking	 into	 consideration	what	 is	 needed	 to	 build	The	House	 of	
Quality,	a	key	tool	in	product	design.	To	do	so,	an	exploratory	analysis	of	real	public	data	
from	Twitter,	Facebook	and	iMore	forum	is	taken	as	basis.	The	purpose	of	undertaking	
exploratory	research	is	primarily	to	investigate	and	to	identify	if	the	proposed	variables	
for	 defining	 review’s	 helpfulness	 currently	 existing	 in	 the	 literature	 review	 can	 help	
designers	in	target	setting	within	a	QFD	perspective	
The	presented	thesis	shows	that	to	go	further	within	target	setting	is	needed	to	have	the	
QFD	perspective:	not	all	current	exposed	variables	do	not	help	to	explain	online	reviews	
helpfulness.		
	
	
 
 
Keywords:	 Customer	 Attributes,	 Customer	 Needs,	 Target	 setting,	 Engineering	
characteristics,	Helpfulness,	Social	Media,	Product	design,	Quality	Function	Deployment,	
The	House	of	Quality	
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1. Introduction	
___________________________________________________________________________ 
This	section	aims	to	introduce	the	purpose	of	the	thesis	and	to	provide	a	general	overview	of	some	
of	the	main	aspects	of	the	studied	topic	that	has	led	forth	to	the	development	of	this	master	thesis.	

The	success	of	a	product	or	a	service	is	largely	dependent	on	to	what	extent	the	product	
or	the	service	satisfies	customer	needs.	One	of	the	principal	functions	of	designers	is	to	
enable	a	concise	description	of	how	customer	requirement	information	is	integrated	into	
the	design	of	 the	desired	product.	During	 the	design	process,	 the	designer	 transforms	
customer	requirements	information	into	explicit	product	specifications.		Today,	Quality	
Function	Deployment	(QFD)	is	a	widely	used	methodology	to	set	targets.	Employing	this	
procedure,	 customer	needs	are	 systematically	matched	with	 the	product	 features	and	
design	parameters,	 improving	the	product	quality	(Bergquist	et	al.,	1996).	 	 In	the	QFD	
analysis,	 during	 transferring	 the	 wants	 and	 needs	 of	 the	 customers	 into	 product	
characteristics,	a	large	number	of	subjective	suppositions	are	needed	from	designers.	To	
clearly	identify	what	customers	need,	users	should	be	involved	early	and	continuously	
throughout	the	design	and	development	process	(Gulliksen	et	al.,	2003),	even	though	it	
is	difficult	for	developers	to	make	direct	contact	with	users	and	observe	them	(Butler,	
1996).	

In	these	current	competitive	times,	product	manufacturers	need	not	only	to	retain	their	
existing	customer	base,	but	also	to	increase	their	market	share.	In	this	way,	the	success	
of	most	firms	depends	on	their	ability	to	identify	the	needs	of	customers	and	to	quickly	
create	new	products	that	meet	these	needs:	generating	new	ideas	and	developing	novel	
products	 with	 new	 features	 (Ulrick	 et	 al.,	 2000).	 Traditionally,	 customer	 needs	 are	
collected	 from	interviews,	questionnaires	or	surveys,	which	are	often	 time-consuming	
and	 laborious.	 Nowadays,	 this	 opinion	 data	 exists	 under	 the	 concept	 of	 Big	 Data,	 so	
twitters,	blogs	and	product	reviews	are	revealing	consumers’	interests	and	preferences	
(Wu	et	 al.,	 2014;	 Jin	 et	 al.,	 2016).	One	of	 the	major	 differences	 between	big	 data	 and	
traditional	data	may	be	that	the	first	concept	is	described	by	three	main	characteristics:	
Volume,	Velocity	and	Variety	–	3	Vs	(Adrian,	2016).		
	
Given	the	abundance	of	large	scale,	publicly	available	data	social	media	can	enable	and	
significantly	increase	the	collaboration	and	learning	from	customers	in	various	ways,	for	
instance	by	novel	social	ways	of	providing	and	receiving	feedback	from	new	products	and	
concepts.	Population	generates	more	than	2,5	quintillion	bytes	of	data	each	day	(Wu	et	
al.,	2014)	and	a	great	part	of	this	data	is	created	through	social	media	sources	such	as	
Twitter,	Facebook	or	 forums,	enabling	 its	users	 to	exchange	 information	 in	a	dynamic	
way,	 anywhere	 and	 anytime.	 These	 data	 empower	 designers	 to	 obtain	 customer	
requirements,	 facilitating	 designers	 to	 improve	 their	 new	 products	 while	 meeting	
customers’	needs.		
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In	order	 to	 avoid	 information	overload,	 identifying	 and	analyzing	helpful	 reviews	has	
become	 a	 critical	 challenge	 (Otterbacher,	 2009;	 Ghoose	 et	 al.,	 2011;	 Pan	 et	 al.,	 2011;	
Zhang	(2014);	Kim	et	al.,	2006;	Liu	et	al.,	2012;	Qi	et	al.,	2016).	Most	of	the	existing	efforts	
to	 evaluate	 review’s	 helpfulness	 are	 considered	 from	 the	 consumers’	 standing	
(Otterbacher,	2009;	Ghoose	et	al.,	2011;	Pan	et	al.,	2011;	Zhang	(2014);	Kim	et	al.,	2006).	
However,	not	a	large	number	of	authors	consider	and	define	helpfulness	from	the	product	
designer’s	 point	 of	 view.	 In	 fact,	 it	 is	 shown	 that	 helpfulness	 of	 user	 reviews	 from	
consumer’s	perspective	is	not	viewed	in	the	same	dimensions	as	designers	and	engineers	
do	(Liu	et	al,	2012;	Qi	et	al.,	2016).	
	
The	 above-mentioned	 studies	 from	 the	 designers’	 point	 of	 view	 focus	 on	 identifying	
variables	 that	 affect	 the	 perceived	helpfulness	 of	 an	 online	 comment.	 In	 addition,	 the	
chosen	set	of	candidate	variables	are	entirely	based	on	the	review	and	website	content.	
In	order	to	classify	social	media	content	as	helpful	or	not,	the	authors	train	a	classifier.	
Thus,	a	training	dataset	is	created	for	this	purpose	by	making	a	group	of	designers	to	label	
a	set	of	comments	as	helpful	or	not.	The	criteria	used	by	designers	to	define	comments	as	
helpful	or	not	is	not	provided	nor	discussed	in	these	studies	and	thus	what	helpfulness	
mean	by	 the	designer’s	 perspective	 remains	unknown.	This	 in	 turn	makes	difficult	 to	
ensure	that	the	classified	helpful	customer	comments	will	help	the	actual	target	setting.		

To	the	best	author’s	knowledge,	actual	studies	do	not	consider	the	QFD	perspective	on	
evaluating	to	what	extend	the	customer	data	from	social	media	is	helpful	to	set	objective	
targets.	The	authors	consider	that	identifying	helpful	reviews	efficiently	and	accurately	
is	a	critical	challenge	for	market-driven	product	design.	The	thesis	aims	to	evaluate	social	
media	data	helpfulness	from	the	designer’s	perspective	taking	as	basis	QFD.	Evaluating	
this,	the	work	hypothesis	is	that	the	helpfulness	definition	has	to	move	beyond,	taking	
into	consideration	what	is	needed	to	build	The	House	of	Quality,	a	key	tool	in	product	
design.		

1.1 Thesis	outline	
 
The	body	of	this	thesis	is	organized	as	follows.	In	Section	1,	introduction	to	the	thesis	is	
provided.	In	Section	2	a	literature	review	about	QFD	and	studies	aiming	to	identify	helpful	
social	media	data	 for	product	development	are	proposed.	Section	3	 presents	 the	used	
methodology	 through	which	results	are	extracted.	 	Results	are	presented	 in	Section	4.	
Lastly,	conclusions	and	future	work	are	untaken	in	Section	5	and	Section	6,	respectively.	
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2. State	of	art	
_____________________________________________________________________________________________________	
This	 chapter	aims	 to	provide	an	understanding	about	 the	work	undertaken	by	different	authors	
about	the	different	theories,	concepts	and	frameworks,	which	form	the	theoretical	base	of	the	thesis.	
The	 chapter	gives	a	 comprehensive	overview	on	 the	 topics	 related	 to	QFD	and	best	practices	 on	
extracting	helpful	user	comments	from	social	media	data.	
	
The	existing	literature	has	been	categorized	into	two	broad	sections	as	shown	in	Figure	
1,	where	the	reader	can	see	where	the	focus	of	the	following	thesis	is.		

FO
CU
S

State	of	art

Identifying	Customer	
Requirements
(Section	2.1)

from	traditional	
sources	

(section	2.1.1)

from	public	data	
sources

(section	2.1.2)

Sentiment	Analysis
(Section	a)

Helpfulness	of	
public	data
	(Section	b)

Customer’s	
perspective

Designer’s	
perspective

Quality	Function	
Deployment	
(Section	2.2,1)

House	of	Quality
	(Section	a)

Setting	targets
(section	2.2)

 

Figure	1.	State	of	art	overview	

 

2.1.	Analyzing	customer	needs	
	
One	of	the	product	development’s	most	vital	functions	is	product	design,	where	the	lead	
role	is	defining	the	physical	form	of	the	product	to	best	meet	customer	needs	including	
engineering	 design	 –	 mechanical,	 electrical,	 software,	 etc.	 –	 and	 industrial	 design	 –
aesthetics,	ergonomics,	user	interfaces,	etc.	(Ulrick	et	al.,	2000).	The	author	define	that	
the	design	of	a	new	product	starts	with	identifying	customer	needs,	establishing	target	
specifications	and	generating	the	product	concept,	testing	it	and	coming	up	with	the	final	
specifications	and	ending	with	the	new	product	launch.		
	

2.1.1 Customer	data	from	traditional	sources	
In	 the	 past,	 new	 product	 design	 process	 started	 collecting	 customer	 needs	 from	
traditional	methods.	Focus	groups,	surveys,	interviews	and	questionnaires	are	some	of	
the	more	traditional	methods	of	generating	customer	insight	and	obtaining	information	
for	new	product	development	(Blazevic	et	al.	2008).	These	traditional	methods	have	been	
a	 key	 instrument	 in	product	design	 (Buntain	 et	 al.,	 2016):	when	an	organization	or	 a	
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business	needed	public	or	consumer	opinions,	 it	conducted	surveys,	opinion	polls	and	
focus	groups,	so	acquiring	consumer	opinions	has	long	been	a	huge	business	itself	being	
a	long	haul	and	laborious	(Matthing	et	al.,	2004;	Liu,	2012;	Jin	et	al.,	2016).	
	
These	methods	were	needed	to	elicit	customer	needs	and	each	one	needs	plenty	of	time	
to	 interact	with	customers.	One	reason	 is	 that	not	only	explicit	needs,	but	also	hidden	
needs	 ought	 to	 be	 identified,	 those	 that	 the	 customer	 is	 not	 aware	 of	 and	 cannot	
articulate.	 This	 requires	 that	 design	 engineers	 and	 industrial	 designers	 interact	 with	
customers	 and	 experience	 the	use	 environment	 of	 the	product	 in	different	 situations.	
Moreover,	 customer	 needs	 are	 often	 expressed	 in	 abstract,	 ambiguous	 or	 conceptual	
terms.	Consequently,	traditional	techniques	are	often	time	and	cost	consuming	due	to	the	
linguistic	analysis	of	customer	needs	(Zhou	et	al.,	2015;	Timoshenko	et	al.,	2017).		
Latterly,	the	arrival	and	widespread	popularity	of	social	media	(SM)	has	introduced	a	new	
source	of	data	and	a	different	perspective	from	which	to	examine	consumer	needs.	Social	
media	data	is	abundant	and	versatile,	can	be	collected	more	quickly.	One	can	acquire	and	
analyze	 SM	 data	 much	 more	 rapidly	 than	 traditional	 techniques	 can	 be	 designed,	
implemented	and	analyzed.	In	addition,	gathering	and	analyzing	data	from	SM	is	cheaply	
than	traditional	data	insight	methods	and	provides	a	wealth	of	information	about	user	
behavior	since	social	media	postings	are	made	outside	of	the	surveyed	context	(Zhou	et	
al.,	2015).		
	
Compared	 with	 offline	 or	 paper-and-pencil	 surveys,	 online	 reviews	 provide	 richer	
information	in	less	time	and	at	a	lower	cost,	as	the	respondents	are	willing	to	participate	
independently	(Qi	et	al.,	2016).			
	
With	the	accelerated	growth	of	social	media	–for	example,	reviews,	forum	discussions,	
blogs,	 microblogs,	 comments	 and	 postings	 in	 social	 network	 sites-	 on	 the	 Web,	
organizations	no	longer	need	to	conduct	surveys,	opinion	polls	and	focus	groups	in	order	
to	gather	public	opinions	because	 there	 is	 an	abundance	of	 such	 information	publicly	
available	(Dave	et	al.,	2014).	However,	monitoring	opinion	sites	on	the	Web	and	filtering	
the	information	in	them	remains	a	challenging	task	(Liu	et	al.,	2013).		
	

2.1.2 Customer	data	from	public	data	sources		
 
Social	media	refer	to	the	combination	of	online	tools	and	systems	that	enable	and	seek	
out	participation	and	contributions	by	users	(Hagen	et	al.,	2009).	These	tools	enable	and	
significantly	increase	the	collaboration	and	learning	from	customers	in	various	ways,	for	
instance	by	novel	social	ways	of	providing	and	receiving	feedback	from	new	products	and	
concepts	(Jussila	et	al.,	2012).	Liu	(2012)	confirmed	that	with	the	explosive	growth	of	
social	media	-for	example,	reviews,	forum	discussions,	blogs,	microblogs,	comments	and	
postings	in	social	network	sites-	organizations	are	increasingly	using	the	content	in	these	
media	 for	 decision-making.	 Indeed,	 exploiting	 big	 consumer	 data	 provide	 new	



 11	

opportunities	because	of	the	value	of	these	data	in	the	perspective	of	product	designers,	
powerful	to	reveal	customers’	interest.		
	
The	 constantly	 growth	 of	 social	 technologies	 has	 meant	 to	 have	 a	 huge	 quantity	 of	
information	 posted	 by	 consumers	 on	 media.	 This	 type	 of	 consumer-generated	
information	gives	an	opportunity	 to	 the	 firms	 to	 identify	customer	 tastes,	preferences	
and	 responses	 on	 their	 products	 and	 services	 (Urban	 et	 al.,	 2004).	 This	 information,	
enables	 designers	 to	 obtain	 CRs,	 monitor	 trends	 of	 consumer	 interests	 and	 make	
comparisons	with	similar	products,	which	facilitate	designers	to	improve	their	products	
with	novel	ideas	and	response	to	consumers	meeting	their	needs	(Jin	et	al.,	2016).	
	
Online	reviews	could	be	the	source	of	innovative	ideas,	providing	input	for	new	product	
designs	 and	 enhancements.	 Co-creation,	 the	 active	 involvement	 of	 customers	 in	 the	
process	of	new	product	and	service	development,	has	been	identified	as	a	reliable	source	
of	 competitive	 advantage.	 From	 the	 viewpoint	 of	 manufacturers,	 online	 reviews	 are	
appealing	 sources	 of	 customer	 needs,	 especially	 for	 those	 manufacturers	 who	 must	
continually	renovate	their	products	in	the	competitive	market.	Through	online	reviews,	
product	designers	can	 listen	to	 the	voices	of	customers	 in	 the	 target	market	(Qi	et	al.,	
2016).	
	
Traditionally,	identifying	and	understanding	customer	needs	starts	with	gathering	raw	
data	 from	customers	 and	 interpreting	 it	 in	 terms	of	 customer	needs.	The	next	 step	 is	
organizing	 the	 needs	 into	 hierarchy	 of	 primary,	 secondary	 and	 tertiary	 needs	 and	
establishing	the	relative	importance	of	the	needs	(Ulrich	et	al.,	2012).	
	
Many	researchers	also	employed	Kano’s	model	to	quantify	the	importance	of	CRs.	The	
model	 serves	 as	 a	 tool	 for	 the	 understanding	 of	 CRs	 and	 their	 impacts	 on	 customer	
satisfaction.	In	this	model,	different	requirements	are	categorized	to	must-be	attributes,	
one-dimensional	attributes,	attractive	attributes,	 indifference	attributes,	etc.	 (Jin	et	al.,	
2016).	
	
Today	companies	are	not	taking	fully	the	advantage	of	social	media	possibilities	due	to,	
among	other	 reasons,	 the	 lack	of	 understanding	of	 the	possibilities	 of	 social	media	 in	
innovation,	the	difficulties	in	assessing	its	financial	gains	and	the	lack	of	evidence	from	
similar	 cases	 using	 social	 media	 in	 innovation	 (Kärkkäinen	 et	 al.,	 2010).	 In	 addition,	
finding	 and	monitoring	 opinion	 sites	 and	 filtering	 the	 information	 contained	 in	 them	
remains	a	challenge	task	because	of	the	proliferation	of	different	characteristics	social	
sites	(Liu,	2012).	Moreover,	due	to	the	huge	volume	of	opinion	text,	the	average	human	
reader	will	have	difficulty	identifying	relevant	sites	and	extracting	and	summarizing	the	
opinions	 in	 them.	 For	 this	 reason,	machine-learning	 algorithms	 able	 to	 identify	what	
information	is	relevant	to	know	are	required.	Automated	sentiment	analysis	systems	are	
for	instance	an	example	(Liu,	2012).	
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A. Sentiment	analysis	on	consumer	online	opinions	

Sentiment	analysis,	or	opinion	mining,	is	the	core	technique	behind	social	media	analysis.	
It	leverages	computational	linguistics,	natural	language	processing	and	other	methods	of	
text	analytics	to	automatically	extract	user	sentiment	or	opinions	from	text	sources	at	
any	 level	 of	 granularity	 –words	 or	 phrases	 up	 to	 entire	 documents.	 Relatively	 simple	
methods	for	sentiment	analysis	include	word	counts	–the	more	a	product	is	mentioned,	
the	more	it	 is	assumed	to	be	liked-,	polarity	 lexicons	–positive,	negative	or	neutral-	or	
lists	of	positive	and	negative	terms	that	can	be	counted	when	used	and	semantic	methods	
that	may	compute	lexical	“distances”	between	a	product’s	name	and	each	of	two	opposing	
terms	–such	as	“poor”	and	“excellent”-	to	determine	sentiment.	Approaches	that	are	more	
complicated	distinguish	the	sentiments	about	more	than	one	item	referenced	in	the	same	
text	item	–such	a	sentence	or	paragraph	(Fan	et	al.,	2014).		

Since	early	2000,	 sentiment	analysis	has	grown	 to	be	one	of	 the	most	active	 research	
areas	in	natural	language	processing	(NLP).	It	is	a	field	also	widely	studied	in	data	mining,	
web	mining	and	text	mining.	In	fact,	it	has	spread	from	computer	science	to	management	
sciences	and	social	 sciences	due	 to	 its	 importance	 to	business	and	society	as	a	whole.	
Consequently,	sentiment	analysis	systems	have	found	their	applications	in	almost	every	
business	and	social	domain	(Liu,	2012).		

Manual	 extraction	 and	 analysis	 of	 online	 opinions	 is	 infeasible	 and	 consequently,	
automated	 tools	 are	 required.	 First	 attempts	 to	 extract	 opinions	 automatically	 have	
focused	primarily	on	polarity	of	reviews	-positive	or	negative-	(Jebbara	et	al.,	2017).	Since	
customer	reviews	are	 typically	mixed	 -liking	some	aspects	of	a	product	but	criticizing	
others-,	recent	research	has	focused	on	identifying	key	product	attributes	and	extracting	
consumer	opinion	about	each	feature	(Lau	et	al.,	2014;	Ioannis,	2014;	Jebbara	et	al.,	2017;	
Ahmad	et	al.,	2017).	
	
The	most	basic	task	in	sentiment	analysis	is	to	classify	opinions	as	positive	or	negative.	
This	task	can	be	performed	at	three	levels:	document,	sentence	and	aspect	level	analyses.	
Document	 level	 classifies	whether	 a	whole	 opinion	 document	 expresses	 a	 positive	 or	
negative	 sentiment.	 For	 example,	 in	 the	 context	 of	 product	 development,	 having	 a	
particular	 product	 review,	 the	 system	 determines	 whether	 the	 review	 expresses	 an	
overall	 positive	 or	 negative	 opinion	 about	 the	product,	 assuming	 that	 each	document	
expresses	 opinions	 on	 a	 single	 entity.	 Sentence	 level	 goes	 to	 the	 sentences	 and	
determines	 whether	 each	 sentence	 express	 a	 positive,	 negative	 or	 neutral	 opinion	 -
usually	 means	 no	 opinion.	 This	 level	 of	 analysis	 is	 closely	 related	 to	 subjectivity	
classification,	which	distinguishes	sentences	that	express	information	-called	objective	
sentences-	from	sentences	that	express	subjective	views	and	opinions	-called	subjective	
sentences	(Liu,	2012).		
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The	first	couple	of	analysis	-document	and	sentence	level-	do	not	strictly	recognize	what	
people	like	and	dislike	(Hu	et	al.,	2004;	Kim	et	al.,	2004;	Gamon	et	al.,	2005).	Aspect	level	
performs	 finer-grained	 analysis,	 where	 instead	 of	 looking	 at	 language	 constructs	 as	
documents,	paragraphs,	sentences,	clauses	or	phrases,	the	overall	idea	of	aspect	analysis	
is	that	an	opinion	consists	of	a	sentiment	-positive	or	negative-	and	a	target	of	opinion	
(Lu	et	al.,	2011;	Liu,	2012).		
	
Generally,	given	a	text,	aspect-analysis	method	extracts	explicitly	expressed	aspects	 in	
the	text	and	each	extracted	aspect	term	is	processed	individually	and	a	sentiment	value	
is	 assigned	given	 the	 context	of	 the	aspect	 term	–see	Figure	1.	Cesarano	et	 al.	 (2004)	
discussed	 sentiment	 classification	 stand	 on	 adjective	 phrases	 only	 proposing	 a	 scale	
ranging	from	-1	to	+1	for	measuring	the	degree	of	polarity	in	sentiments.	Later,	Benamara	
et	al.	(2007)	suggested	that	focusing	on	both	adjectives	and	adverbs	gives	more	accurate	
results	 than	exploring	adjectives	only.	Other	 studies	 extended	 this	 analysis	 to	 include	
verbs	along	with	adjectives	and	adverbs	to	extract	sentiment	analysis	(Subrahmanian	et	
al.,	2008).		
	

	
Figure	1.	Sentiment	analysis	pattern.	

	
	

B. Helpfulness	of	public	data	
	
Helpfulness	can	be	considered	from	two	different	perspectives:	customers	or	designers.	
Different	 authors	 have	pointed	 at	 the	 helpfulness	 from	 customer’s	 perspective.	While	
reading	 reviews	 can	 help	 the	 potential	 customers	make	 informed	 decisions,	 in	many	
cases	 the	 large	 quantity	 of	 reviews	 available	 for	 a	 product	 can	 be	 overwhelming	 and	
actually	impede	the	customers’	ability	to	evaluate	the	product.	The	goal	of	these	authors	
is	 to	 develop	 models	 and	 algorithms	 for	 predicting	 the	 helpfulness	 of	 reviews	 from	
consumer	 point	 of	 view,	 which	 provides	 the	 basis	 for	 discovering	 the	 most	 helpful	
reviews	 for	 given	products	 (Korfiatis	 et	 al.,	 2008;	 Liu	 et	 al.,	 2008;	Otterbacher,	 2009;	
Ghoose	et	al.,	2011).	On	the	other	hand,	other	authors	(Liu	et	al.,	2012;	Qi	et	al.,	2016)	
have	spread	their	analysis	to	the	designer’s	perspective,	in	order	to	extract	information	
to	 develop	 appropriate	 product	 improvement	 strategies.	 They	 argue	 that	 existing	
evaluation	methods	only	use	 the	 review	voting	 ratios	 given	by	 customers	 to	measure	
helpfulness.	Meanwhile,	as	consumers	are	not	obligated	 to	vote	such	reviews,	usually,	
only	a	small	proportion	of	the	reviews	eventually	receive	sufficient	votes.	Liu	et	al.	(2012)	
and	Due	to	the	lack	of	efforts	to	evaluate	helpfulness	from	consumers’	standing,	Qi	et	al.	
(2016)	 start	 to	question	 if	 consumers	view	online	product	 reviews	helpfulness	 in	 the	
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same	dimensions	 as	 designers	 and	 engineers	 do,	 ultimately	 demonstrating	 that	 there	
exists	a	notable	difference	on	ratings	between	designers	and	consumers.		
	

Customer’s	perspective		
	
So	far,	the	best	effort	for	ranking	reviews	for	consumers	comes	in	the	form	of	votes	in	
forums	where	 customers	 give	 “helpful”	 votes	 to	 other	 reviews	 in	 order	 to	 rate	 their	
usefulness.	Ghose	et	al.	(2011)	affirmed	that	the	helpful	votes	are	not	a	useful	feature	for	
ranking	recent	reviews	because	they	are	accumulated	over	a	long	period	of	time	and	also	
Liu	et	al.	(2013)	concludes	that	there	is	no	strong	correlation	between	the	helpfulness	
voting	 given	by	 consumers	 and	 the	one	 rated	by	product	designers.	Hence,	 there	 is	 a	
visible	 gap	 in	 interpreting	 helpfulness	 from	 product	 designers’	 and	 manufacturing	
engineers’	point	of	view.	
	
Moreover,	Zhang	(2014)	defined	that	a	helpful	review	from	customer’s	standing	likely	
provides	a	large	quantity	of	detailed	information	about	the	product.	Also,	the	sentence	
structure	is	clear	and	contains	less	spelling	or	grammar	errors.	And,	in	comparison,	the	
less	helpful	reviews	provide	less	information	and	add	no	additional	value.	
	
Automatically	 evaluating	 the	 quality	 of	 online	 reviews	 has	 gradually	 attracted	 more	
attention	in	recent	years	and	several	studies	have	been	carried	out	(Zhang	et	al.,	2006;	
Kim	et	al.,	2006;	Liu	et	al.,	2007;	Ghose	et	al.,	2009;	Liu	et	al.,	2013;	Kuan	et	al.,	2015;	Qi	
et	al.,	2016).	Most	previous	works	have	focused	on	automatically	predicting	the	quality	–	
helpfulness	or	usefulness	–	of	reviews	by	using	a	set	of	observed	textual	or	social	features.	
Textual	features	are	the	ones	based	on	text	statistics	while	social	features	are	related	with	
the	 information	 extracted	 from	 the	 reviewer’s	 social	 context.	 Along	 with	 classifying	
reviews	as	helpful	or	unhelpful,	some	authors	also	considered	estimating	the	helpfulness	
of	reviews	by	using	regression	models	 to	generate	a	quality	or	helpful	rating	 for	each	
review	(Zhang	et	al.,	2014).	
	
Kim	 et	 al.	 (2006)	 and	 Liu	 et	 al.	 (2009)	 also	 provide	 a	 definition	 of	 helpfulness.	 Both	
articles	conclude	that	helpfulness	is	the	relation	between	the	number	of	people	that	finds	
a	 review	helpful	out	of	 the	 sum	of	 the	number	of	 votes.	This	 lead	helpfulness	 to	be	a	
number	 falling	 in	 the	 range	 [0,	 1],	 and	 greater	 value	 of	 the	 fraction	 imply	 higher	
helpfulness.		
	
Liu	et	al.’s	 (2008)	prediction	of	helpfulness’	model	 is	based	on	a	 thorough	analysis	of	
some	major	factors	that	may	affect	the	helpfulness	of	a	review	and	identify	three	most	
influential	ones:	reviewer	expertise,	where	they	express	personal	experiences,	thoughts	
and	 concerns;	 writing	 style,	 due	 to	 the	 large	 variation	 of	 reviewers’	 background	 and	
language	 skills;	 and	 finally,	 timeliness,	 in	which	 its	 been	 considered	 that	 the	 average	
declines	as	time	passes	by.	To	this	end,	an	examination	of	different	reviews	on	several	
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popular	 websites	 was	 conducted	 to	 find	 and	 evaluate	 various	 factors	 involved	 in	
helpfulness.	 They	 provided	 a	 detailed	 analysis	 of	 the	 major	 factors	 affecting	 the	
helpfulness	of	a	review.		
	
Kim	et	 al.	 (2006)	 found	 that	 the	most	useful	 features	 to	determine	 the	helpfulness	of	
online	reviews	from	consumer’s	point	of	view	were	the	length	of	the	review,	unigrams1	
of	the	review	and	the	rating	of	the	product.	One	aim	of	their	paper	is	to	investigate	how	
well	different	classes	of	features	capture	helpfulness	of	a	review.	They	experimented	with	
various	 features	 organized	 in	 five	 types:	 structural,	 lexical,	 syntactic,	 semantic	 and	
metadata.		
	
Structural	 features	 are	 observations	 of	 the	 document	 structure	 and	 formatting.	
Properties	such	as	review	length	and	average	sentence	length	are	hypothesized	to	relate	
structural	complexity	to	helpfulness.	Lexical	features	capture	the	words	observed	in	the	
reviews.	 Syntactic	 features	 aim	 to	 capture	 the	 linguistic	 features	 of	 the	 review.	 They	
include	 the	percentage	of	words	 that	are	nouns	and	 the	percentage	 that	are	verbs.	 In	
addition,	they	determined	the	percentage	of	verbs	conjugated	in	the	first	person	and	the	
number	of	token	words	that	are	adjectives	or	adverbs.		Regarding	to	semantic	features,	
Kim	 et	 al.	 (2006)	 hypothesize	 that	 good	 reviews	will	 often	 contain	 references	 to	 the	
features	of	a	product,	including	opinion	on	it,	and	the	sentiment	of	the	words,	as	positive	
or	 negative.	 Unlike	 the	 previous	 four	 feature	 classes,	 metadata	 features	 capture	
observations	which	are	 independent	of	 the	text	and	unrelated	with	 linguistic	 features,	
such	as	number	of	stars	or	the	rating	of	the	products	mentioned	in	the	reviews.	
	
Otterbacher	 J.	 (2009)	 examines	 the	 nature	 of	 helpfulness	 too,	 with	 the	 social	 media	
source	Amazon.	 The	 carried-out	 analysis	 revealed	 five	 underlying	 quality	 dimensions	
related	to	the	helpfulness	scores	assigned	by	community	participants.	However,	it	also	
uncovers	 a	 strong	 relationship	 between	 the	 chronological	 ordering	 of	 reviews	 and	
helpfulness,	 which	 both	 community	 participants	 and	 designers	 should	 keep	 in	 mind	
when	using	this	method	of	social	navigation.		
Trying	 to	 find	 the	 dimensions	 of	 helpfulness	 the	 authors	 look	 to	 the	 Management	
Information	 Systems	 literature,	 where	 the	 concept	 of	 data	 quality	 has	 been	 studied	
extensively.	Wang	and	Strong	(1996)	analyse	what	data	quality	means	from	data	user’s	
perspective.	After	their	investigation,	they	conduct	that	there	are	four	major	categories	
of	data	quality	each	of	which	is	made	up	of	several	dimensions:		

• Intrinsic	quality:	emphasizes	that	data	have	quality	in	their	own	right.	Important	
dimensions	 of	 this	 attribute	 include	 believability,	 accuracy,	 objectivity	 and	
reputation.	

                                                
1 In the fields of computational linguistics and probability, an n-gram is a contiguous sequence of n 
items from a given sample of text or speech. The items can be phonemes, syllables, letters, words or 
base pairs according to the application. An n-gram of size one is referred to as a “unigram”. 



 16	

• Contextual	quality:	stresses	the	need	to	consider	quality	with	respect	to	the	user’s	
specific	 task.	 Its	 dimensions	 include	 relevancy,	 timeliness,	 completeness	 and	
quantity.		

• Representational	quality:	has	to	do	with	the	format	and	meaning	of	the	data.	Its	
key	 dimensions	 are	 interpretability	 ease	 of	 understanding,	 representational	
consistence	and	concise	representation.		

• Accessibility:	concerns	whether	the	user	has	access	to	an	information	system	in	
order	 to	meet	 her	 information	 needs.	 Its	 dimensions	 include	 accessibility	 and	
access	security.		

	
Otterbacher	J.	(2009)	concludes	that	to	assess	quality	in	Amazon	reviews	only	the	first	
three	categories	are	needed,	because	accessibility	is	not	relevant	since	participants	in	the	
community	are	using	the	same	information	system,	and	incorporates	new	aspects	in	each	
group.	 In	 conclusion,	 the	author	 found	 that	 the	 “helpfulness”	of	 reviews	at	Amazon	 is	
correlated	 to	 several	 dimensions	 of	 message	 quality.	 Despite	 its	 simple	 nature,	 the	
construct	of	“helpfulness”	is	able	to	pick	up	on	some	underlying	attributes	of	quality,	such	
as	the	topical	relevancy,	objectivity	and	readability	of	reviews	(Otterbacher,	2009).	

Designer’s	perspective		
	
Liu	et	al.	proposed	four	principal	categories	(2012)	and	Qi	et	al.	extended	them	to	five	
later	on	time	(2016).	They	proposed	four	categories	of	intrinsic	features	of	reviews	based	
on	the	results	of	an	exploratory	study	to	understand	how	designers	perceive	helpfulness.	
They	start	the	study	with	the	assistance	of	design	personnel	who	need	to	rate	the	review	
helpfulness	of	a	number	of	 social	media	comments	–randomly	chosen-	based	on	 their	
own	 design	 experience	 or	 needs.	 They	 adopted	 a	 five-degree	 helpfulness	 evaluation	
metric	which	only	concerns	whether	it	is	helpful	or	not	helpful	towards	product	design.	
The	next	step	was	to	follow	up	two	questionnaires.	Result	analysis	of	the	questionnaires	
permit	to	gain	several	insights	regarding	why	certain	reviews	are	perceived	helpful	by	
designers	while	others	not.	Understanding	designers’	opinion	and	needs	enable	Liu	et	al.	
(2012)	 to	 propose	 four	 categories	 of	 features	 that	 model	 and	 affect	 product	 review	
helpfulness:	linguistic	features,	product	features,	features	based	on	information	quality	
and	features	using	information	theory.		
In	addition	to	define	which	factors	affect	review’s	helpfulness	from	a	product	designer’s	
perspective,	they	conclude	that	designers’	helpfulness	rating	might	not	present	a	strong	
correlation	with	the	online	helpfulness	voting	ratio	and	there	might	be	a	significant	or	
unacceptable	error	between	both	variables.		
	
In	 the	 study,	 some	 persons	 expect	 that	 they	 can	 learn	more	 useful	 information	 from	
longer	product	online	reviews	what	can	be	defined	for	instance	by	its	number	of	words	
and	its	number	of	sentences.	Product	designers	also	appreciate	to	enquire	the	reasons	
behind	customers’	preferences	or	complaints	on	a	particular	product,	such	sentiments	
which	 are	 mainly	 expressed	 using	 adjective	 or	 adjective	 plus	 adverb	 phrases.	 The	
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respondents	 also	 indicate	 that	 they	 might	 lose	 their	 interest	 to	 read	 and	 attempt	 to	
understand	 online	 reviews	 if	 there	 are	 many	 grammar	 errors	 (number	 of	 grammar	
errors),	wrong	 spellings	 and	 if	 there	 are	many	 exceptionally	 long	 sentences	 (average	
number	of	words	per	sentence).	This	leads	to	came	up	with	linguistic	features	group.		
	
The	research	also	enlightens	that	some	product	designers	focus	on	whether	key	product	
features	 have	 been	 mentioned	 and	 such	 product	 features	 are	 considered	 crucial	
information	 carriers	 when	 designers	 are	 conceiving	 new	 product	 models,	 so	 the	
appearance	 of	 some	 particular	 product	 feature	 might	 largely	 influence	 helpfulness	
evaluation.	In	this	regard,	product	features	are	another	important	group	to	consider.		
	
According	to	the	compiled	questionnaires	some	subjects	replied	“this	review	mentions	
many	product	features”	while	some	argue	that	“many	reviews	shared	the	features	he/she	
likes	 and	 dislikes”.	 These	 arguments	 are	 related	with	 information	 quality	 in	 different	
aspects:	the	first	argument	mentioned	the	information	coverage	and	the	second	point	the	
information	accuracy.	Those	aspects	inspired	the	authors	to	consider	information	quality	
as	a	group	of	features.		
	
When	the	sentiment	expressed	in	a	review	of	a	product	feature	deviates	from	the	majority	
sentiment	provided	in	reviews	it	will	greatly	influence	designers’	understanding	since	it	
is	often	associated	with	more	details	about	why	a	different	sentiment	is	given.	Another	
main	conclusion	is	that	a	review	tends	to	be	regarded	as	a	helpful	one	if	it	contains	both	
pros	and	cons	of	a	product.	The	appearance	of	both	pros	and	cons	is	often	referred	as	
divergence	 of	 sentiments,	 another	 factor	 that	 Liu	 et	 al.	 considered	 in	 helpfulness	
modelling.	Additionally,	 a	 review	has	more	 chance	 to	 be	helpful	 if	 expresses	 a	 strong	
viewpoint	 towards	 certain	 product	 features	 with	 convincing	 arguments.	 The	 authors	
propose	to	interpret	such	observations	using	information	theory.		
	
To	 this	discussed	groups	of	 features	Qi	et	al.	 (2016)	added	a	new	one:	metadata.	The	
author	defines	metadata	as	“data	about	data”.	These	features	are	the	descriptions	of	the	
review	 text	 –for	 example,	 pros,	 cons	 or	 labels–	 that	 are	 filled	by	 the	 reviewer	 so	 this	
feature	is	concerned	with	the	reviewer’s	involvement.	Within	this	group,	the	author	also	
considered	 the	 number	 of	 helpful	 votes	 and	 the	 number	 of	 replies.	 The	 first	 variable	
indicates	 the	 evaluation	 level	 from	 other	 consumers,	while	 the	 second	 is	 the	 general	
evaluation	of	the	product	from	the	reviewer.		
	
Summarizing	 author’s	 contributions	 in	 helpfulness	 conceptualization.	 Table	 A.1	 in	
Appendix	A	shows	all	the	proposed	variables	found	in	literature	review.	
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2.2 Target	setting	
 
After	identifying	customer	needs,	the	next	step	is	to	establish	target	specifications	that	
provide	a	precise	description	of	what	a	product	has	to	do,	being	the	translation	of	the	
customer	needs	into	technical	terms	(Ulrich	et	al.,	2000).	Quality	Function	Deployment,	
or	 QFD,	 is	 commonly	 used	 in	 the	 product	 planning	 stage	 to	 define	 the	 engineering	
characteristics	and	target	value	settings	of	new	products.	A	key	methodology	to	translate	
customer	needs	into	metrics	is	the	House	of	Quality,	a	graphical	technique	used	in	QFD	
(Hauser	et	al.,	1988).		
 

2.2.1 Quality Function Deployment 
	
Quality	Function	Deployment	-QFD-	(1972)	is	a	commonly	and	broadly	used	method	for	
translating	 the	 ‘voice	 of	 the	 customer’	 through	 the	 various	 stages	 of	 new	 product	
deployment	with	the	aim	of	setting	targets.	Three	of	the	principal	goals	of	QFD	can	be	
described	as	a	better	understanding	of	customer	needs,	improved	product	quality	and,	
above	all,	achieving	customer	satisfaction	(Sullivan,	1986;	Hauser	and	Clausing,	1988).	
		
Customer	 focus	 is	 a	key	 component	 in	 a	quality	product	development	 (Kaulio,	 1998).	
Therefore,	the	basis	of	QFD	is	to	translate	the	desires	of	the	customer	into	product	design	
or	engineering	characteristics	so	design	requirements	will	be	based	on	customer	needs	
and	 competitive	 analysis	 achieving	 a	 customer-driven	 product.	 The	 translation	 is	
conducted	through	a	chart,	called	“house	of	quality”	(HOQ)	–see	Figure	1–,	which	is	the	
principal	 tool	 for	 QFD.	 There	 are	 a	 set	 of	 standard	 components	 of	 a	 HOQ,	 including:	
customer	attributes	(CAs)	and	their	relative	weights;	engineering	characteristics	(ECs);	
relationship	matrix	 between	 CAs	 and	 ECs;	 correlation	matrix	 among	 ECs;	 CA	 and	 EC	
benchmarking	data;	and	EC	importance	(ECI)	values	and	target	levels	(Kwang-Jae	Kim	et	
al.,	2006).		
	

A. The	House	Of	Quality	(HoQ)	
	
The	house	of	quality	begins	with	the	customer,	whose	requirements	are	named	customer	
attributes	 (CAs):	 sentences	 customers	 use	 to	 describe	 products	 and	 product	
characteristics.	For	example,	a	car	door	is	“easy	to	close”	or	“stays	open	on	a	hill”;	“doesn’t	
leak	in	rain”	or	allows	“no	(or	little)	road	noise”	–	a	typical	application	would	have	30	to	
100	CAs.	 Back	 then,	 CAs	 are	 often	 grouped	 into	 bundles	 of	 attributes	 selected	 by	 the	
project	team	groups	and	which	represent	an	overall	customer	concern.	Of	course,	one	of	
the	 biggest	 challenges	 is	 to	 interpret	 customer	 phrases.	 Moreover,	 house	 of	 quality	
measures	 the	 relative	 importance	 to	 the	 customer	of	 all	 CAs	 so	 each	 attribute	has	 its	
weight:	 weightings	 are	 displayed	 in	 the	 house	 next	 to	 each	 CA,	 usually	 in	 terms	 of	
percentages,	a	complete	list	totaling	100%	(Hauser	et	al.,	1988).	
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Being	aware	of	competitors’	focus	helps	a	company	to	match	or	exceed	their	competition	
and,	of	course,	comparison	with	the	competition	can	help	to	identify	opportunities	for	
improvement.	So,	on	the	right	side	of	the	house,	opposite	the	CAs,	customer	evaluations	
of	competitive	products	matched	with	“our	own”	are	listed.	Ideally,	these	evaluations	are	
based	on	scientific	surveys	of	customers.	If	various	customer	segments	evaluate	products	
differently	-luxury	vs.	economy	car	buyers,	for	example-	product	planning	team	members	
get	assessments	for	each	segment	(Hauser	et	al.,	1988).		
	
The	next	step	is	related	with	product	characteristics	in	order	to	meet	customer	needs,	
what	lays	on	engineering	domain.	In	this	stage,	it	is	needed	to	describe	the	product	in	the	
language	of	the	engineer.	Along	the	top	of	house	of	quality,	the	design	team	lists	those	
engineering	characteristics	(ECs)	that	are	 likely	to	affect	one	or	more	of	 the	customer	
attributes.	If	a	standard	characteristic	affects	no	CA,	it	may	be	redundant	to	the	EC	list	on	
the	house,	or	the	team	may	have	missed	a	customer	attribute.	A	CA	unaffected	by	any	EC,	
on	the	other	hand,	presents	opportunities	to	 improve	product	properties.	Engineering	
characteristics	 should	 describe	 the	 product	 in	measurable	 terms	 and	 should	 directly	
affect	customer	perceptions	(Hauser	et	al.,	1988).		
	
The	subsequent	stage	comes	up	with	the	cross-functional	team,	filing	in	the	body	of	the	
house,	 the	 “relationship	matrix”,	 indicating	how	much	each	engineering	 characteristic	
affects	each	customer	attribute.	The	team	bases	their	conclusions	on	expert	engineering	
experience,	customer	responses	and	tabulated	data	from	statistical	studies	or	controlled	
experiments,	seeking	consensus	on	these	evaluations	(Hauser	et	al.,	1988).		
	
Once	 the	 team	 has	 identified	 the	 voice	 of	 the	 customer	 and	 linked	 it	 to	 engineering	
characteristics,	it	adds	objective	measures	at	the	bottom	of	the	house	beneath	the	ECs	to	
which	they	pertain.	When	objective	measures	are	known,	the	team	can	eventually	move	
to	establish	target	values	–	ideal	new	measures	for	each	EC	in	a	re-designed	product	and	
engineers	determine	the	relevant	units	of	measurement	(Hauser	et	al.,	1988).		
	
There	are	many	dimensions	to	what	a	consumer	means	by	quality	and	that	is	the	major	
challenge	 to	design	products	 that	 satisfy	 all	 of	 these	at	once	 (Garvin,	1987).	 Strategic	
quality	 management	 means	 that	 companies	 learn	 from	 customer	 experience	 and	
reconcile	what	they	want	with	what	engineers	can	reasonably	build	(Hauser,	1988).	
	
Before	 the	 industrial	 revolution,	 producers	were	 close	 to	 their	 customers.	Marketing,	
engineering	 and	 manufacturing	 were	 integrated	 in	 the	 same	 individual.	 Nowadays,	
marketing	people	have	their	domain,	engineers	theirs.	That	is	how	the	House	of	Quality	
is	conceived	as	the	connection	between	the	different	functions	inside	a	corporation:	is	the	
belief	 that	 products	 should	 be	 designed	 to	 reflect	 customers’	 desires	 and	 tastes	 –	 so	
marketing	people,	design	engineers,	and	manufacturing	staff	must	work	closely	together	
from	the	time	a	product	is	first	conceived	(Hauser,	1988).		
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The	success	of	a	company	can	only	be	achieved	with	a	backbone	of	continual	satisfaction	
on	behalf	of	the	customer.	In	turn,	customer	satisfaction	can	only	be	achieved	if	we	can	
fulfil	the	customers’	requirements.	Hence,	the	gathering	and	use	of	customer	attributes	is	
the	foundation	of	QFD.	
	
QFD	method	links	CRs	to	engineering	characteristics	(ECs)	and,	eventually,	outputs	the	
values	of	ECs.	It	is	widely	used	in	conceptual	design,	product	design,	process	planning,	
project	management,	etc.	(Chan	et	al.,	2002).		
	
	

 
 

Figure	2.	The	House	of	Quality	example.	
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3. Methodology	
______________________________________________________________________________________________________________	
This	chapter	aims	to	provide	an	understanding	of	how	the	thesis	has	been	conducted	and	why	the	
different	tools	have	been	chosen.	Furthermore,	the	section	describes	the	process	for	how	the	results	
have	been	obtained.	
	
The	aim	of	 the	methodology	expounded	right	below	is	 to	help	designers	to	gather	the	
information	from	the	social	media	sources	that	reduce	designer	assumptions	during	the	
target	setting.	To	this	end,	the	methodology	has	been	divided	into	four	steps	as	shown	in	
Figure	3.	These	are	explained	in	greater	detail	in	the	next	subsections.		
	

	
 

Figure	3.	Methodology	steps	overview	

 

3.1.	Step	1:	Grouping	literature	review	variables	into	concepts		
	
Many	authors	have	described	helpfulness	following	different	approaches.	As	described	
in	 the	 literature	 review,	 authors	 have	 mainly	 described	 helpfulness	 from	 two	
perspectives:	customers’	and	designers’	–see	chapter	2.	State	of	art.	Trying	to	simplify	
and	to	give	a	complete	overview	of	the	work	that	has	been	done	so	far,	all	the	different	
author’s	variables	have	been	grouped	into	concepts	as	shown	in	Table	B.1	in	Appendix	B.	
This	 table	 is	 a	 simplified	 version	of	 the	Table	A.1	 in	Appendix	A.	While	 the	Table	A.1	
includes	the	variables	per	author,	Table	B.1	group	the	variables	 into	concepts,	making	
easier	to	know	which	are	the	most	proposed	variables	between	authors.	Going	one-step	
further,	Table	B.2	 in	Appendix	B	 includes	those	variables	 that	will	be	measured	 in	the	
present	study.	Figure	4	shows	the	process	followed	in	the	first	step	of	the	methodology.	
The	 decision	 of	 the	 variables	 has	 been	 undertaken	 considering	 that	 the	 proposed	
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methodology	is	hand-operated.	Due	to	this,	the	variables	have	been	calculated	manually	
since	the	automatic	data	processing	is	not	the	scope	of	the	thesis2.		
	

	

Figure	4.	First	step	overview	

	
Literature	review	variables	have	been	classified	per	concepts	–see	Table	B.1	in	Appendix	
B–	and	afterward	into	groups	according	to	if	they	are	comment	related	or	not	–i.e.	if	the	
variable	 can	 be	 extracted	 from	 the	 review	 text	 itself	 or	 from	 the	 website	 content,	
respectively.	In	the	first	group,	one	can	observe	the	variables	related	with	the	text	–for	
example,	number	of	words	or	characters–,	and	those	associated	with	the	impact	of	the	
review	 in	 the	 social	 media	 –for	 instance	 number	 of	 elapsed	 days	 from	 the	 review	
publication	or	number	of	helpful	votes	received.	The	text-related	variables	are	further	
divided	into	linguistic,	sentiment	analysis	and	product	features	–see	Figure	4.	Moreover,	
those	variables	 related	with	 the	 reviewer	have	been	entered	 in	non-comment	 related	
cluster	reviewer	–real	name	users,	age,	location	or	interests.	

	

	

Figure	5.	Data	grouping	overview	

	
After	proposing	all	the	variables	shown	in	the	Table	B.2	of	the	Appendix	B,	the	scope	of	
the	thesis	has	focused	on	comment	and	text	related	variables	as	indicated	in	Figure	4.	The	
reason	is	that	it	is	assumed	that	most	of	the	information	regarding	customer	needs	and	
related	to	product	targets	comes	from	the	actual	comment	itself.	While	excluded	from	the	
scope,	 comment	 and	 review-related	 variables	 as	 well	 as	 non-comment	 and	 reviewer	
related	variables	are	also	relevant,	i.e.	to	define	a	specific	target	market	–location,	age,	
etc.–	as	well	as	to	identify	potential	buyers	based	on	similar	networking	behavior.		
	

                                                
2	The	automatic	extraction	of	public	data	and	its	analysis	has	been	widely	studied	and	achieved	
by	various	authors.	Due	to	this,	automation	is	not	the	main	objective	of	the	thesis.	
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The	comment	and	text	related	variables,	which	are	the	focus	of	this	thesis,	are	shown	in	
Table	1.	
 

	 TEXT	RELATED	VARIABLES	
	 Variable	 Normalized	variable	 Variable	type	
V1	 #	of	characters	 - 	 Continuous	∈ℝe	
V2	 #	of	words	 #	of	words/	#	of	characters	 Continuous	∈ℝe	
V3	 #	of	sentences	 #	of	sentences/	#	of	words	 Continuous	∈ℝe	
V4	 #	of	adjectives	 #	of	adjectives/	#	of	words	 Continuous	∈ℝe	
V5	 #	of	adverbs	 #	of	adverbs/	#	of	words	 Continuous	∈ℝe	
V6	 #	of	verbs	 #	of	verbs/	#	of	words	 Continuous	∈ℝe	
V7	 #	of	nouns	 #	of	nouns/	#	of	words	 Continuous	∈ℝe	
V8	 #	of	errors	 #	of	errors/	#	of	words	 Continuous	∈ℝe	
V9	 Content	format	 - 	 Binary	∈[0,1]	
V10	 Sentiment	difference	 Absolute	sentiment	difference	 Continuous	∈ℝe	
V11	 #	of	product	features	 -	 Continuous	∈ℝe	
V12	 #	of	referred	products	 -	 Continuous	∈ℝe	

	

Table	1.	Text	related	variables.	

As	it	can	be	seen	in	the	Table	2,	most	of	the	variables	have	been	normalized	in	order	to	
allow	the	review	comparison	of	the	three	social	media	sources	considered	in	the	thesis	
scope,	 as	 they	 have	 different	 review	 characteristics	 such	 as	 different	 limitation	 of	
characters.	The	variable	V2	has	been	divided	by	the	number	of	characters	in	the	review	
in	 order	 to	 know	 the	 relation	 between	 words	 and	 characters.	 From	 V3	 to	 V8,	 the	
normalizations	have	been	subjected	to	the	number	of	words	contained	in	the	review.	The	
binary	variable	V9,	takes	a	value	of	1	if	the	review	contains	hashtags,	labels	or	bold	words,	
and	0	conversely.	V10	has	been	calculated	with	the	expression	below	(Eq.	1),	according	
to	the	number	of	positive,	negative	or	neutral	adjectives	per	sentences	in	a	review.	Only	
the	existence	or	not	of	sentiment	in	the	reviews	has	been	considered,	since	the	first	step	
is	 involved	with	 knowing	 if	 the	 overall	 sentence	 expresses	 sentiment	 –a	 further	 step	
would	be	considering	if	the	polarity	of	the	sentiment	in	the	review	is	relevant	for	the	QFD	
method.	Consequently,	the	absolute	value	of	the	sentiment	difference	is	considered.		
	
fghijkghi	ljmmgnghog = qº	sm	tsujijvg	wlxgoijvgu − qº	sm	hgzwijvg	wlxgoijvgu	 	 (Eq.	1)	

	
Finally,	the	number	of	product	features	exhibited	in	the	reviews	–i.e.	if	they	talk	about	the	
screen	display	or	the	engine	of	the	car–	and	the	number	of	referred	products	–i.e.	if	they	
touch	upon	more	than	one	product–	have	also	been	taken	in	account.		
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3.2.	Step	2:	Identifying	information	sources	of	QFD	
	
According	to	literature	review,	the	HoQ	from	QFD	has	been	broken	down	in	nine	related	
parts.	Figure	6	shows	which	HoQ	required	information	have	been	considered	within	the	
thesis	scope	–the	ones	marked	in	green.			

 

Figure	6.	House	Of	Quality	required	information	within	the	thesis	scope	

Only	six	of	the	requirements	–	see	Table	2–	have	been	considered	in	the	methodology:	
customer	 attributes	 (CA),	 CA	 relative	 importance,	 customer	perception	 (competitors),	
engineering	 characteristics,	 correlation	 matrix	 and	 finally	 relationship	 matrix.	 The	
proposed	 dimensions	 are	 aligned	 with	 the	 literature	 review	 findings	 exposed	 in	 the	
second	chapter	2.	State	of	art,	following	the	structure	of	the	HoQ	that	is	used	nowadays.		

	
Requirement	 Definition	

R1	 Customer	attributes		
R2	 CA	relative	importance	
R3	 Customer	evaluation	(competitors)	

R4	 Engineering	characteristics	and/or	product	targets	
related	

R5	 Correlation	matrix	
R6	 Relationship	matrix	

	

Table	2.	QFD	factors	to	analyze	
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The	other	three	HoQ	required	information	have	been	left	out	of	the	scope	because	of	the	
need	 of	 the	 objective	 targets	 to	 be	 settled	 by	 designers,	 staying	 far	 from	 customer’s	
decision:	

- Technical	 targets:	 Establishing	 technical	 targets	 for	 each	 engineering	
characteristic	 and	 rating	 the	 difficulty	 of	 achieving	 that	 target	 is	 a	 job	 for	
designers.		

- Technical	competitive	comparisons:	This	requirement	includes	information	about	
comparing	how	 the	 target	product	performs	 in	 comparison	 to	 its	most	 serious	
competitors.	Competitive	comparisons	provide	a	 company	with	 the	 facts	about	
where	its	products	stand	technically	in	relation	to	its	competitors’	products.	The	
values	 settled	 in	 this	 part	 of	 the	HoQ	 are	 objective	 and	 it	 is	 not	 expected	 that	
customers	write	reviews	related	to	technical	competitive	features.	

- Technical	 and	 Regulatory	 requirements:	 There	 are	 some	 requirements	 that	 the	
customers	are	not	likely	to	identify.	These	requirement	will	be	either	technical	or	
regulatory	 requirements	 –such	 things	 as	 government	 legislation,	 safety	
requirements,	quality	standard	requirements,	etc.	technical		

	
Once	the	factors	have	been	defined,	the	aim	has	been	to	define	which	reviews	are	helpful	
to	achieve	the	completion	of	each	of	the	six	parts	of	QFD.		
	

3.3.	Step	3:	Evaluating	the	helpfulness	of	reviews	from	QFD	perspective	

3.3.1.	Step	3.1:	Selecting	SM	for	the	analysis		
	
According	to	the	social	media	classification	and	the	definition	carried-out	by	Scanfeld	et	
al.	(2010),	different	platforms	enable	people	to	share	their	knowledge	and	experience,	
creating	rich	user-generated	content.	The	analysis	below	studies	three	main	social	media	
sources:	 social	 networking	 websites	 with	 Facebook	 data,	 microblogs	 gathering	 data	
from	Twitter	and	Forums	–	iMore	forum.	These	sources	have	been	considered	the	most	
popular,	useful	and	proper	to	work	with	for	this	methodology.	This	is	because	of	their	
information	availability	and	the	proper	information	one	can	gather	from	each	of	them.		
	

3.3.2.	Step	3.2:	Gathering	review	data	from	social	media	sources	
	
In	 order	 to	 illustrate	 the	 proposed	 methodology,	 Volvo	 V60	 will	 be	 the	 product	 for	
analyzing	Facebook’s	and	Twitter’s	data	meanwhile	Iphone	7	from	Apple	brand	is	going	
to	be	the	reference	for	Forums	as	a	case	example.	The	review	data	is	collected	from	the	
social	media	sources	on	April	2018	and	May	2018.			
	
Although	several	comments	of	each	product	have	been	found	in	the	social	media	sources,	
40	 reviews	 from	 each	 SM	 source	 have	 been	 selected	 randomly	 –without	 method	 or	
conscious	decision,	gathering	the	first	40	reviews	related	with	the	analyzed	product–	for,	
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afterwards,	 being	 classified	 according	 their	 helpfulness	 for	 constructing	 each	 of	 The	
House	of	Quality	factors.		
	
Figure	7	shows	a	review	example	about	the	products	chosen	for	the	three	selected	SM	
sources:	A	for	Facebook,	B	for	Twitter	and	C	for	iMore	Forum,	respectively.	The	reviews	
show	the	name	of	the	reviewer,	the	comment	or	review	content	itself,	the	number	of	likes	
or	retweets,	the	number	of	responses	and	the	review	date.	All	the	extracted	reviews	are	
summarized	in	Appendix	C.		

 
Figure	7.	Reviews	of	Volvo	V60	and	Iphone	7	in	Facebook	and	Twitter,	and	iMore	forum	respectively.	

	
Note	 that	 in	 Step	1	 it	 has	 been	 seen	 that	 the	 variables	 have	 been	normalized.	 This	 is	
because	 the	 social	 media	 sources	 show	 some	 limitations	 or	 differences	 in	 their	
characteristics.	 For	 instance,	 Twitter	 has	 a	 maximum	 number	 of	 characters	 for	 the	
reviews.	 Normalizing	 most	 of	 all	 the	 variables	 allows	 the	 comparison	 between	 SM	
sources.	
		

3.3.3.	Step	3.3:	Evaluating	helpfulness	
 
Every	 extracted	 comment	 from	 social	 media	 sources	 has	 been	 labelled	 as	 helpful	 or	
unhelpful	by	two	independent	engineers	from	a	product	designer	standing.	Due	to	the	
common	variety	and	detail	information	granularity	in	the	customer	comments,	they	are	
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labelled	as	helpful	or	unhelpful	for	each	of	the	six	HoQ	groups	of	required	information	
identified	previously	in	Step	2.	The	results	have	been	later	summarized	in	a	matrix	by	
each	engineer.	In	case	label	differed,	the	completion	of	the	matrix	has	been	asked	to	a	
product	 design	 expert	 with	 the	 purpose	 of	 untie.	 The	 considered	 helpfulness	 of	 the	
reviews	for	each	SM	source	has	been	summarized	in	Appendix	D.		

3.3.4.	Step	3.4:	Plotting	variables	for	H/NH	reviews	
 
Results	from	previous	step	are	used	to	identify	what	variables	from	Table	1	in	the	Step	1	
are	significant	–or	helpful-	to	complete	the	HOQ.		Thus,	the	variables	from	Table	1	are	first	
extracted	from	the	40	comments	of	each	social	media	data	with	a	handpicked	process.	
The	values	are	summarized	in	Appendix	E	for	each	of	the	SM	sources.		
	
Consecutively,	 the	 data	 associated	 to	 each	 variable	 is	 plotted	 in	 order	 to	 identify	 if	
correlation	to	helpfulness	related	with	each	of	the	HoQ	required	information	exists.		
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4. Results	and	analysis	
______________________________________________________________________________________________________________	
In	this	section,	the	gathered	data	is	displayed.	The	principal	aim	is	to	illustrate	which	variables	are	
significantly	 helpful	 during	 the	 conduct	 of	 The	 House	 of	 Quality	 and	 consequently	 discuss	 the	
helpfulness	of	the	variables	that	previous	authors	propose	from	the	QFD’s	perspective.		
	
After	analyzing	the	gathered	reviews’	data,	some	graphics	have	been	created	to	illustrate	
the	 findings	 and	 outcome	 in	 a	 simplified	 manner.	 The	 main	 goal	 is	 to	 define	 which	
variables	among	the	ones	selected	in	the	previous	Methodology	section	are	significant	in	
order	to	distinguish	if	a	review	is	helpful	for	designers	on	the	task	of	completing	the	HOQ.		
	
To	this	end,	the	section	has	been	divided	into	different	parts	that	refer	to	the	different	
results	obtained	in	each	step	of	the	proposed	methodology	after	defining	HOQ	required	
information	–R1	to	R6.		
	

4.1	Helpfulness	of	reviews	
 
As	it	can	be	seen	in	the	following	Graphic	1,	all	the	reviews	chosen	as	helpful	have	been	
plotted	 in	 different	 groups,	 separated	by	 the	 three	 requirements	 that	 are	 going	 to	 be	
analyzed	–	R1,	R3	and	R4	–.	It	can	be	seen	that,	in	the	evaluation	of	customer	attributes,	
at	 least	 half	 of	 the	 reviews	 have	 been	 considered	 helpful,	 while	 in	 the	 competitors’	
analysis	almost	all	the	reviews	have	been	considered	unhelpful.	Regarding	to	R4,	it	has	
been	noted	a	significant	difference	between	helpfulness	in	Forums	respect	the	other	ones.	
Comparing	the	social	media	sources	in	R1	and	R3,	forums	have	the	most	helpful	reviews,	
while	Twitter	and	Facebook	are	almost	in	the	same	level.		
	

 
 

Graphic 1. Number of helpful reviews per HoQ required information for each SM  
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The	 results	 of	 the	 analysis	 could	 be	 expected	 since	 Forums	 is	 a	 social	 media	 source	
focused	on	the	products,	while	the	others	are	also	employed	for	a	personal	use.		
 

4.2	Variable	extraction	of	reviews	and	plotting		
	 	
The	different	variables	are	obtained	for	each	of	the	reviews	and	shown	in	Appendix	D.	
The	values	obtained	are	visualized	with	boxplots	for	each	variable	-see	Appendix	E.	The	
boxplot	illustrates	the	spread	of	each	sample	of	data	–helpful	and	unhelpful	reviews-	and	
also	show	the	difference	between	the	means	for	each	variable,	discriminating	between	H	
and	NH	reviews.	Information	about	the	tails	of	the	distribution	is	given	and	the	25th,	50th	
and	75th	percentiles	–also	known	as	 the	 lower	quartile	 (Q1),	median	 (Q2)	and	upper	
quartile	(Q3)	are	characterized.		
	
In	resume,	the	graphics	show	outliers	(A),	upper	whisker	(B),	interquartile	range	box	(C),	
lower	whisker	(D),	the	mean	value	for	H/NH	reviews	(E)	and	the	mean	connect	line	(F).	
X-axis	corresponds	to	the	helpfulness	classification	–H/NH–	and	Y-axis	corresponds	to	
variable	value.	See	Graphic	2.		
	

 

Graphic	2.	Percentage	of	adjectives	boxplot	
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4.3	Hypothesis	test		
	
One	can	use	the	2-sample	t-test3	to	compare	the	averages	between	two	groups	–in	this	
case,	H/NH	groups–	and	determine	if	there	is	a	significant	difference	between	them.	For	
that	purpose,	for	each	factor	of	the	HoQ,	the	hypothesis	test	has	been	carried	out	for	each	
variable.	The	objective	 is	 to	know	if	 the	variable	helps	 to	define	 the	 factor	 in	 the	HoQ	
construction,	detecting	if	 there	is	a	significant	difference	between	the	two	samples	for	
each	of	the	variables.	
	
In	this	study,	the	p-value	and	the	t-test	are	selected	to	carry	out	the	test.	If	the	p-value	is	
less	than	or	equal	to	0.05	–a-level–	or	the	t-value	is	more	or	equal	to	2,	the	null	hypothesis	
will	be	rejected	and	consequently,	there	is	a	difference	in	average	helpful	and	not	helpful	
reviews	for	a	specific	variable.		
	
The	 test	 also	 constructs	 a	 confidence	 interval	 that	 gives	 detail	 about	 the	 difference	
between	the	two	groups.	Analyzing	the	data	with	an	a-level	of	0.05	allows	getting	the	95%	
confidence	interval.	This	interval	tells	that,	based	on	the	sample	data,	one	can	be	95%	
confident	that	the	true	mean	difference	between	the	variable	in	the	two	populations	is	
between	the	confidence	interval.	All	extracted	tests	are	included	in	Appendix	E.		
	
Table	3	 show	the	significant	variables	 to	define	each	 factor	 for	Twitter,	Facebook	and	
Forum	reviews.	The	significant	variables	are	chosen	as	inputs	for	the	helpfulness	in	the	
HoQ	factors	construction.		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

                                                
3	The	tests	have	been	conducted	with	the	Minitab	statistical	software	
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	 QFD	variables	

	 R1	 R2	 R3	 R4	 R5	 R6	

Variable	 CA	 CA	
importance	

Competitors	
evaluation		 EC	 Correlation	

matrix	
Relationship	
matrix	

#	of	characters	 ���	 �	 �	 ���	 �	 �	
#	of	words	/	#	of	
characters	 �	 �	 �	 �	 �	 �	
#	of	sentences	/	#	
of	words	 ��	 �	 �	 ��	 �	 �	

%	of	adjectives	 �	 �	 �	 �	 �	 �	

%	of	adverbs	 ��	 �	 �	 �	 �	 �	

%	of	verbs	 ��	 �	 �	 �	 �	 �	

%	of	nouns	 �	 �	 �	 �	 �	 �	
#	of	errors		
/	#	of	words	 ��	 �	 �	 �	 �	 �	

Content	format	 �	 �	 �	 �	 �	 �	
Absolute	sentiment	
difference	 �	 �	 �	 �	 �	 �	

#	of	PF	 ���	 �	 �	 ��	 �	 �	
#	of	referred	
products	 ��	 �	 �	 ��	 �	 �	

Table	3.	Significant	variables	for	HoQ	construction	for	social	media	sources		

	
As	it	can	be	seen	in	the	Table	3	above,	the	significant	helpful	variables	when	extracting	
customer	 attributes	 from	 Twitter	 reviews	 in	 order	 to	 build	 the	 HoQ,	 have	 been:	 the	
average	number	of	characters,	the	proportion	of	adverbs,	verbs	and	errors,	the	absolute	
sentiment	difference	and,	finally,	the	number	of	product	features	referred	in	the	review.	
All	of	these	variables	have	showed	higher	averages	in	their	numbers	for	helpful	reviews	
than	for	non-helpful	–all	the	T-Values	can	be	seen	in	the	E	Appendix.		
	
After	 doing	 the	 analysis,	 it	 has	 been	 seen	 how	 important	 is	 sentiment	 analysis	when	
extracting	customer	attributes	from	the	reviews.	For	this	reason,	it	was	foreseeable	that	
the	number	of	adverbs	were	significant	when	talking	about	customer	features’	extraction.	
As	shown	in	the	Appendix	E,	the	number	of	adverbs	for	customer	attributes	analysis	is	
higher	if	the	review	is	considered	helpful,	with	a	T-Value	of	-2,17.	
	
The	 number	 of	 adjectives	 were	 also	 expected	 to	 be	 significant	 since	 the	 sentiment	
analysis	was	carried-out	from	the	polarity	of	them.	Nevertheless,	after	checking	the	plots	
showed	in	Appendix	D,	 it	has	been	seen	that	the	P-Value	presented	a	value	of	0,931	–	
while	it	is	being	considered	significant	under	0,05	–	and	also	that	the	means	between	H	
and	NH	reviews	have	been	considerably	similar.	This	fact	could	have	taken	place	because	
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of	 the	 size	 of	 the	 sample	 analyzed,	 or	 maybe	 because	 the	 NH	 reviews	 also	 present	
adjectives,	but	not	related	with	any	customer	attribute.		
	
Customer	 evaluation	was	 considered	 one	 of	 the	 factors	 that	 its	 information	 could	 be	
extracted	from	product	reviews.	After	watching	the	results,	 it	has	been	seen	that	none	
variables	 present	 a	 significance	 in	 showing	 competitors	 information	 in	 the	 product	
reviews.	In	respect	of	encountering	engineering	characteristics	in	Twitter	reviews,	only	
the	average	number	of	characters	and	also	the	number	of	product	features	showed	have	
act	as	significant,	with	T-Values	of	-2,68	and	-3,18,	respectively.	In	addition,	their	means	
are	higher	if	the	review	is	considered	helpful.		
	
By	far,	the	most	significant	variable	affecting	the	HoQ	in	Twitter	reviews	has	been	the	
number	 of	 product	 features	 contained	 in	 the	 comment,	 with	 a	 T-value	 of	 -3,81.	 This	
matter	was	expected	because	as	many	product	features	mentioned	in	the	reviews,	more	
likely	to	be	helpful	for	product	design.		
	
According	to	Forum	reviews,	and	differing	from	last	analysis,	length	of	the	sentences	and	
number	 of	 verbs	 have	 been	 considered	 significant	 for	 customer	 attributes	 and	 for	
engineering	characteristics.	Both	variables	present	a	high	average	when	 the	 review	 is	
considered	non-helpful.	This	fact	can	be	concluded	because	forums	do	not	present	any	
limitation	 on	 the	 written	 characters,	 and	 it	 has	 been	 seen	 that	 the	 non-helpfulness	
reviews	 tend	 to	have	 longer	 sentences	 that	 the	 considered	helpful	 ones,	 and	 so	more	
verbs	can	be	fitted	on	the	comments.	All	the	other	variables	showed	in	Forums	analysis	
have	showed	a	higher	average	in	helpful	reviews.		Finally,	one	has	to	mention	that	the	
number	 of	 product	 features	 per	 number	 of	 words	 has	 also	 been,	 by	 far,	 the	 most	
significant	variable	 in	 this	study,	with	a	T-Value	of	 -8,71	and	one	mean	of	2,30,	as	 for	
customer	attributes	as	for	engineering	characteristics.	
	
Unlike	 forums	 and	 Twitter,	 Facebook	 reviews	 present	 less	 significant	 variables.	
Nevertheless,	number	of	product	features	variable	is	also	significant	for	R1	as	in	the	other	
SM	sources,	presenting	a	T-value	of	-4,62.	After	analyzing	the	results,	one	can	conclude	
that	this	variable	is	the	most	significant	in	order	to	define	R1	in	HoQ	for	all	the	analyzed	
SM	sources.	In	addition,	other	significant	variables	as	number	of	characters	in	the	review	
and	sentence/word	ratio	define	R1.		
For	the	first	time,	R3	has	a	significant	variable.	The	ratio	between	sentences	and	words	
is	significant	for	this	part	of	the	HoQ,	with	a	T-value	of	3,05.		
Finally,	 R4	 presents	 three	 significant	 variables:	 number	 of	 characters,	 the	 ratio	 of	
sentences	and	words	and	the	number	of	adjectives,	presenting	a	T-value	of	-2,77;	3,38	
and	2,52;	respectively.	
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In	the	Graphic	3	that	can	be	seen	above,	the	proportion	of	helpful	variables	out	of	the	total	
has	been	charted	in	order	to	see	the	quantity	of	significant	variables	affecting	to	each	of	
the	requirements.	This	results	show	that,	in	the	majority	of	the	cases,	Forums	is	the	social	
media	source	that	contains	more	significant	variables	to	construct	HoQ.	In	a	customer	
attributes	point	of	view	Twitter	is	in	the	second	place	while,	for	extracting	engineering	
characteristics	 is	 better	 Facebook.	 This	 last	 social	 network	 is	 the	 only	 one	 that	 holds	
significant	variables	for	extracting	customer	evaluation	data.		
	

	
	

Graphic	3.	Helpful	variables	percentage	per	HoQ	required	information	for	each	SM		
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5. Discussion	and	conclusions	
______________________________________________________________________________________________________________	
This	chapter	aims	to	give	an	answer	to	the	initial	scope	by	summarizing	the	conclusions	that	can	be	
drawn	from	this	research.				
 
Many	authors	have	 studied	online	 reviews	 attributable	 to	 their	 rich	 content	 and	high	
reliability.	Unlike	ample	research	from	the	consumer	perspective,	the	aim	of	this	thesis	is	
approached	from	the	product	design	standing.	The	goal	is	to	demonstrate	if	there	is	an	
existing	GAP	between	the	currently	proposed	review	variables	–supposedly	helpful-	and	
The	House	of	Quality	construction	for	product	design.		
	

5.1	Existing	variables	in	literature	review	
 
After	witnessing	an	increasing	popularity	in	the	helpfulness	of	product	online	opinions	
analysis	from	customer	and,	to	a	lesser	extent,	product	design	standing;	one	can	still	find	
a	 gap	 between	 the	 information	 extracted	 from	 product	 reviews	 and	 one	 of	 the	most	
widely	tools	used	in	product	design,	The	House	of	Quality.		
	
Opinion	analysis	should	give	designers	a	useful	tool	to	analyze	the	voice	of	the	customer	
through	consumer	opinions	that	provide	important	 insights	to	designers	that	can	be	a	
clue	during	the	setting	targets	process.		
 
Along	 these	 lines,	 the	 research	 has	 been	 focused,	 firstly,	 on	 analyzing	 which	 are	 the	
currently	 variables	 that	 define	 helpfulness	 from	 both	 perspectives	 –consumers’	 and	
designers’.	According	 to	 the	 aim	of	 evaluating	 if	 the	presently	proposed	variables	 are	
helpful	 in	terms	of	The	House	of	Quality,	a	study	about	how	design	engineers	actually	
perceive	helpfulness	has	been	carried	out	through	social	media	reviews	analysis.		
	
Based	on	the	 insights,	 the	thesis	has	come	up	with	the	significance	of	each	variable	 in	
order	to	define	if	a	review	is	helpful	or	not	based	on	the	QFD	perspective.	Conclusions	
about	the	current	work	can	be	extracted.		
	
First,	the	proposed	variables	for	defining	review	helpfulness	should	be	standing	from	the	
QFD	perspective.	We	consider	that	a	review	is	helpful	if	it	helps	to	fill	out	The	House	of	
Quality	so	the	translation	from	customer	attributes	to	product	targets	may	be	easiest.		In	
general,	most	of	the	proposed	variables	do	not	currently	help	to	build	the	HOQ.	Since	the	
HoQ	 is	 divided	 into	 six	main	 factors	 –see	 Table	 2	 in	 section	 3.Methodology–	 one	 can	
conclude	 that	most	of	 the	suggested	variables	 in	 literature	review	help	 to	understand	
only	three	factors:	R1,	R3	and	R4.	Instead,	R2,	R5	and	R6	cannot	be	defined	with	the	actual	
proposed	 variables.	 In	 fact,	 this	 happens	 because	 each	 review	 is	 studied	 individually,	
what	makes	impossible	to	extract	a	general	overview	of	the	extracted	reviews	as	a	group,	
what	could	help	to	achieve	an	aggregate	conclusion.		
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For	example,	correlation	matrix,	R5,	refers	to	the	engineer	characteristics	relationship,	
i.e.	 how	 each	 of	 the	 technical	 descriptions	 impact	 each	 other.	 This	 factor	 involves	
analyzing	 more	 than	 one	 engineer	 characteristic	 and	 it	 depends	 on	 engineering	
knowledge.	Something	similar	happens	with	the	relationship	matrix,	R6,	which	refers	to	
the	relationship	between	customer	needs	and	the	company’s	ability	to	meet	those	needs	
–engineering	 characteristics.	 A	 designer	 tries	 to	 answer:	What	 is	 the	 strength	 of	 the	
relationship	between	the	technical	descriptions	and	the	customer	needs?	In	this	case,	no	
proposed	variables	are	analyzing	the	sentiment	strength	between	customer	needs	–R1-	
and	engineering	characteristics	–R3.		
	
Second	and	consequently,	most	of	 the	variables	 that	exist	 in	 the	 literature	 review	are	
related	with	 the	 extraction	 of	 customer	 attributes	 and	 engineering	 characteristics,	 as	
sentiment	 analysis	 has	 been	 focused,	 in	most	 cases,	 on	 extracting	 these	 features.	 For	
example,	the	product	feature	extraction	can	help	to	set	customer	attributes	and	engineer	
characteristics	–by	far,	it	is	a	significant	variable	to	define	both	factors.	Coherently,	there	
is	a	connection	between	a	product	feature,	i.e.	“battery	life”	and	one	possible	CA	as	“My	
iPhone	is	turned	off	quickly,	the	lifetime	is	about	6	hours”	and	one	possible	EC	as	“Battery	
duration”.	In	this	case,	CA	are	more	related	with	the	sentiment	analysis	while	EC	are	more	
connected	with	an	objective	statement.		
	
Finding	variables	to	help	the	mapping	of	customer	needs	to	engineering	characteristics	
is	 required	 to	 facilitate	 and	 diminish	 the	 decision-making	 subjectivity	 and	 product	
designers’	assumptions.		
	

5.2	Proposed	variables		
 
Related	 to	 the	 three	 uncompleted	 factors	 in	 terms	 of	 proposed	 variables,	 one	 can	
conclude	a	new	approach	to	assed	user	reviews	helpfulness	is	needed	in	order	to	find	
connections	between	variables.		
	
Table	 6	 includes	 an	 initial	 picture	 of	 which	 variables	may	 be	 extracted	 to	 fill	 up	 the	
missing	factors	of	the	QFD	–R2,	R5	and	R6.	In	addition,	R3	is	contemplated	in	order	to	
define	carefully	new	variables	that	may	help	its	detection.		
	

Factor	 Proposed	variable	

F2:	CA	importance	
Frequency	of	the	CA	in	the	overall	reviews	

Customer	rating	of	the	review	with	a	specific	CA	

F3:	Customer	evaluation	of	
competitors	

#	of	brand	nouns	

#	of	product	model	nouns	

#	of	positive	words	associated	to	a	brand	noun	
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#	of	negative	words	associated	to	a	brand	noun	

R5:	Correlation	matrix	 #	sentiment	difference	between	EC	in	a	same	review	

F6:	Relationship	matrix	

#	sentiment	difference	between	CA	and	EC	in	a	same	
review	

Distance	between	a	CA	and	EC	in	a	sentence	

Distance	between	a	CA	and	EC	in	a	review	
	

Table	4.	Proposed	variables	for	R2,	R5	and	R6	

	

5.4	Limitations	
 
One	 limitation	 in	 the	 research	 is	 that	 the	 dataset	 size	may	 be	 resulted	 from	 a	major	
number	of	reviews.	Since	the	task	of	collecting	and	analyzing	data	has	been	manually,	the	
amount	of	data	has	been	limited.		
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6. Future	work	
___________________________________________________________________________ 
This	section,	gives	an	insight	of	the	future	work	of	analyzing	social	media	reviews	from	a	
designer	point	of	view.		
	
As	it	has	been	described	above,	the	scope	of	this	methodology	has	been	constrained	in	a	
manual	analysis	of	the	social	media	reviews,	in	order	to	extract	those	significant	variables	
from	a	product	designer	point	of	view.	This	matter	has	limited	the	number	of	variables	
that	have	been	analyzed	to	evolve	the	methodology,	since	there	were	no	ways	to	analyze	
them	manually	–	for	example,	the	exploration	of	unigrams	and	bigrams.	Hence,	the	first	
proposal	for	a	further	work	is	to	create	an	automatically	method,	such	as	an	algorithm,	
that	could	enable	to	easier	extract	the	random	reviews	from	social	media	sources	as	well	
as	 gathering	 the	 proper	 data	 variables	 from	each	 of	 them.	Thus,	 the	 sample	 could	 be	
enlarged	and	could	encompass	all	 the	 reviews	 found	about	 the	 chosen	product	 in	 the	
social	media	source.			
	
As	already	mentioned	in	chapter	3,	general	review	variables	and	those	related	with	the	
reviewers	itself	have	not	taken	part	of	this	study.	The	second	suggest	for	a	future	work,	
thus,	will	be	considering	this	data	in	order	to	better	test	the	helpfulness	of	the	reviews,	
with	the	review	related	variables,	and	to	segment	them	to	markets,	with	the	reviewer	
related	 variables.	 This	 latter	 analysis	 will	 be	 useful	 in	 case	 of	 seeking	 to	 launch	 the	
product	in	a	specific	market	as	for	instance,	in	a	particular	consumer	age	range,	or	maybe	
for	only	a	specific	country.	
	
Additionally,	the	quantification	of	the	helpfulness	of	a	review	remains	unknown.	Finding	
a	way	to	quantify	the	helpfulness	can	be	an	important	achievement	in	product	design’s	
field	as	it	can	help	to	identifying	helpful	reviews	in	a	simpler	way.		
	
Lead	users	 also	 can	be	an	 important	part	 in	helpfulness	definition.	As	 they	are	 facing	
needs	months	or	years	before	the	bulk	of	that	marketplace,	the	information	contained	in	
their	reviews	could	be	useful	for	defining	the	HoQ.	The	current	emphasis	in	discovering	
lead	users	among	all	the	potential	customers	has	come	to	our	attention.	For	these	reason,	
the	next	 research	proposal	 is	 to	determine	which	variables	can	be	extracted	 from	the	
reviews	in	order	to	find	social	media	lead	users	that	will	ensure	their	helpful	reviews	with	
probably	helpful	information	for	HoQ	completion.		
	
Finally,	it	can	also	be	considered	to	examine	more	social	media	sources	than	those	that	
have	been	raised	in	the	actual	work,	such	as	Amazon,	the	world’s	largest	online	retailer,	
where	several	product	reviews	can	be	spotted.	Making	this	enhancement	of	social	media	
sources	will	definitely	make	a	big	step	forward	for	companies	in	order	to	find	out	what	
are	their	actual	customers’	–	or	future	ones’	–	requirements.		
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Appendix	A:	Literature	review	helpfulness	variables	
___________________________________________________________________________________________________________________________________________________________________________	
First	appendix	collects	the	variables	regarding	helpfulness	in	literature	review	 

Author	and	Year Nº Feature	/	Variable Description Data	source

1 Cosine
Quantifies	the	extent	to	which	a	review	is	similar	to	the	textual	description	of	the	
product	provided	on	its	main	page.	Cosine	between	review	and	textual	product	
description	represents	the	similarity	between	the	texts.

Amazon

2 Bigram	overlap Proportion	of	bigrams	(i.e.	sequences	of	two	words)	in	the	review,	which	also	
appear	in	the	product	description. Amazon

3
Normalized	longest	common	
subsequence	between	the	two	texts	were	
calculated

It	first	finds	the	longest	phrase	that	the	two	texts	have	in	common.	The	length	of	
this	phrase	is	then	normalized	by	the	length	of	the	review. Amazon

4 Product	rating Rating	on	a	5-point	scale	assigned	by	reviewer Amazon
5 Reviewer	uses	real	name Categorical	variable;	yes	if		the	review	is	displayed	with	a	“real	name”	badge Amazon
6 Reviewer	has	top	reviewer	badge Categorical	variable;	yes	if	the	reviewer	has	a	high	rate Amazon
7 Reviewer’s	rank	in	the	community Reviewer	rate	in	the	social	media	source Amazon

8 Total	reviews	contributed	by	reviewer Total	number	of	reviews	written	by	the	reviewer Amazon

9 #	Helpful	votes	received	 Total	number	of	helpful	votes	the	review	has	received Amazon

10 Perplexity	of	textual	review

Quantifies the deviation of a review from what is expected. First, the creation of a
review is viewed as a sequence of randomly selected words. The randomvariable,
X, can take on values (words) in a discrete set of symbols, which is the vocabulary
used across all reviews of a particular product. In other words, the distribution of
the variable X is estimated based on the entire set of reviews of the product. The
perplexity quantifies the extent of “surprise” in the review, given the distribution of
X	the	extent	of	“surprise”	in	the	review,	given	the	distribution	of	X

Amazon

11 Entropy	of	textual	review The	entropy	of	a	review	is	literally	the	average	uncertainty	of	the	variable	X Amazon

12 Centroid	or	textual	centrality	score	of	
the	product	review

Quantifies	the	extent	to	which	a	review	contains	a	large	number	of		words	that	are	
statistically	important	across	all	reviews	about	that	product Amazon

13 #	Sentences Total	number	of	sentences	in	a	review Amazon
14 #	Words Total	number	of	words	in	a	review Amazon

15 #	Days	lapsed	 Total	number	of	days	lapsed	since	the	earliest	review	was	posted	about	the	
respective	product Amazon

16 Characters-to-sentence	ratio Characters	per	sentence	average	ratio Amazon
17 Words-to-sentence	ratio Words	per	sentence	average	ratio Amazon

Otterbacher,	2009

Helpfulness	from	customer’s	point	of	view
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1 Retail	price The	retail	price	at	Amazon.com Amazon
2 Sales	rank The	sales	rank	within	the	product	category Amazon
3 Average	rating Average	rating	of	the	posted	reviews Amazon
4 Number	of	reviews Number	of	reviews	posted	for	the	product Amazon
5 Elapsed	date Number	of	days	since	the	release	of	the	product Amazon
6 Moderate	review Does	the	review	have	a	moderate	rating	(3	star	rating)	or	not Amazon
7 Helpful	votes The	number	of	helpful	votes	for	the	review Amazon
8 Total	votes The	total	number	of	votes	for	the	review Amazon
9 Helpfulness Helpful	votes	/	Total	votes Amazon
10 Reviewer	rank The	reviewer	rank	according	to	Amazon Amazon
11 Top-10	reviewer Is	the	reviewer	a	Top-10	reviewer? Amazon
12 Top-50	reviewer Is	the	reviewer	a	Top-50	reviewer? Amazon
13 Top-100	reviewer Is	the	reviewer	a	Top-100	reviewer? Amazon
14 Top-500	reviewer Is	the	reviewer	a	Top-500	reviewer? Amazon
15 Real	Name Has	the	reviewer	disclosed	his/her	real	name? Amazon
16 Nick	name Does	the	reviewer	have	a	nickname	listed	in	the	profile? Amazon
17 Hobbies Does	the	reviewer	have	an	“about	me”	section	in	the	profile? Amazon
18 Birthday Does	the	reviewer	list	his/her	birthday?	 Amazon
19 Location Does	the	reviewer	disclose	its	location? Amazon
20 Web	Page Does	the	reviewer	have	a	home	page	listed? Amazon
21 Interests Does	the	reviewer	list	his/her	interest? Amazon
22 Snippet Does	the	reviewer	has	a	description	in	the	reviewer	profile? Amazon
23 Any	disclosure Does	the	reviewer	list	any	of	the	above 	in	the	reviewer	profile? Amazon
24 Number	of	past	reviews Number	of	reviews	posted	by	the	reviewer Amazon
25 Reviewer	history	macro Average	past	review	helpfulness	(macro-averaged) Amazon
26 Reviewer	history	micro Average	past	review	helpfulness	(micro-averaged) Amazon
27 Past	helpful	votes Number	of	helpful	votes	accumulated	in	the	past	from	the	reviewer Amazon
28 Past	total	votes Number	of	total	votes	on	the	reviews	posted	in	the	past	for	the	reviewer Amazon
29 Length	(chars) The	length	of	the	review	in	characters Amazon
30 Length	(words) The	length	of	the	review	in	words Amazon
31 Length	(sentences) The	length	of	the	review	in	sentences Amazon
32 Spelling	errors The	number	of	spelling	errors	in	the	review Amazon
33 ARI The	Automated	Readability	Index	for	the	review Amazon
34 Gunning	Index The	Gunning-Fog	index	for	the	review Amazon
35 Coleman-Liau	Index The	Coleman-Liau	index	for	the	review Amazon
36 Flesch	Reading	Ease The	Flesch	Reading	Ease	score	for	the	review Amazon
37 Flesch-Kincaid	Grade	Level The	Flesch-Kincaid	Grade	Level	for	the	review Amazon
38 SMOG The	Simple	Measure	of	Gobbledygook	score	for	the	review Amazon
39 AvgProb The	average	probability	of	a	sentence	in	the	review	being	subjective Amazon
40 DevProb The	standard	deviation	of	the	subjectivity	probability Amazon

Ghoose	et	al.,	2011
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1 #	of	reviews	of	a	product The	number	of	posted	reviews	for	a	product	at	the	time	of	data	collection Amazon
2 Age	of	review	(in	days) Time	elapsed	(in	days)	since	the	date	on	which	a	review	was	posted Amazon

3 Customer	rating	in	stars The	number	of	stars	a	reviewer	gives	as	the	overall	assessment	of	the	product.	This	
variable	captures	the	valence	of	the	review	content Amazon

4 #	of	characters The	number	of	typed	characters	in	a	product	review Amazon

5 Product	type A	dummy	variable	with	1	and	0	indicating	experiential	and	utilitarian	products,	
respectively Amazon

6 Helpful	votes The	number	of	consumers	who	found	a	product	review	helpful Amazon
7 Number	of	rates The	total	number	of	consumers	who	have	rated	the	review Amazon
1 Sentence	count The	number	of	sentences Amazon
2 Token	count The	total	number	of	tokens	of	a	review	describing	the	length	of	a	review Amazon

3 Token	per	sentence The	average	number	of	tokens	in	a	sentence.	It	described	average	sentence	length	
of	a	review Amazon

4 Noun	percentage The	percentage	of	tokens	which	are	nouns Amazon
5 Verb	percentage The	percentage	of	tokens	which	are	verbs Amazon
6 Adjective	percentage The	percentage	of	tokens	which	are	adjectives Amazon
7 Adverb	percentage The	percentage	of	tokens	which	are	adverbs Amazon

8 Polarity The	difference	between	positive	and	negative	words	in	a	review	out	of	the	total	
number	of	positive	and	negative	words	in	a	review Amazon

9 Subjectivity The	total	number	of	positive	and	negative	words	out	of	the	total	number	of	words	
in	a	review Amazon

10 Positive	references	 The	total	number	of	positive	words	out	of	the	total	number	of	words	in	a	review Amazon

11 Negative	references The	total		number	of	negative	words	out	of	the	total	number	of	words	in	a	review Amazon

12 Sentiment	difference The	difference	between	positive	and	negative	words	in	a	review	out	of	the	total	
number	of	words	in	a	review Amazon

13 Error	per	sentence Average	number		of	grammatical	error	and	misspelled	words	per	sentence	in	a	
review Amazon

14 Rank	of	the	reviewer The	rank	of	the	reviewer Amazon
15 Helpful	percentage The	helpful	percentage	of	the	votes	received	on	reviewers'	previous	reviews Amazon
16 Past	reviews	 The	number	of	prior	reviews	a	review's	author	has	written Amazon
17 Rating Consumer	rating Amazon
18 Age The	number	of	days	since	the	review	was	posted Amazon

Pan	et	al.,	2011

Zhang,	2014
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1 Length The	total	number	of	tokens	in	a	syntactic	analysis	of	the	review Amazon

2 Sentential
Observations	of	the	sentences,	including	the	number	of	sentences,	the	average	
sentence	length,	the	percentage	of	question	sentences,	and	the	number	of	
exclamation	sentences

Amazon

3 HTML Two	features	for	the	number	of	bold	tags	<b>	and	line	breaks	<br> Amazon
4 Unigram The	tf-idf	statistic	of	each	word	occurring	in	a	review Amazon
5 Bigram The	tf-idf	statistic	of	each	bi-	gram	occurring	in	a	review Amazon
6 %	of	nouns Percentage	of	tokens	that	are	nouns Amazon
7 %	of	verbs	 Percentage	of	tokens	that	are	verbs	conjugated	in	the	first	person Amazon
8 %	of	adjectives Percentage	of	tokens	that	are	adjectives Amazon
9 %	of	adverbs Percentage	of	tokens	that	are	adverbs Amazon
10 Product-Feature The	number	of	product	features	mentioned	in	a	review Amazon
11 General-Inquirer The	number	of	sentiment	words	in	a	review	referring	to	a	product	feature Amazon
12 Stars The	rating	score	of	the	review

1 #	of	words Total	number	of	words	in	a	review Amazon
2 #	of	sentences Total	number	of	sentences	in	a	review Amazon
3 Average	words Average	number	of	words	per	sentence Amazon
4 #	of	adjectives Total	number	of	adjectives	in	a	review Amazon
5 #	of	adverbs Total	number	of	adverbs	in	a	review Amazon
6 #	of	grammar	errors Total	number	of	grammar	errors	and	wrong	spellings	in	a	review Amazon
7 #	of	subjective	sentences Total	number	of	subjective	sentences	in	a	review Amazon
8 #	of	objective	sentences Total	number	of	objective	sentences	in	a	review Amazon
9 #	of	total	elapsed	days Time	elapsed	in	days	since	the	date	on	which	a	review	was	posted Amazon
10 #	of	referred	products Total	number	of	referred	products	in	the	review Amazon
11 #	of	product	features Total	number	of	referred	products	in	the	review Amazon

12 #	of	sentences	referring	to	product	
features

Total	number	of	sentences	referring	to	mentioned	product	features	in	the	review	
or	comment Amazon

13 #	of	product	features	/	#	of	sentences	
referring	to	product	features

Relation	between	the	total	number	of	product	features	mentioned	and	the	total	
number	of	sentences	referring	to	mentioned	product	features	in	the	review	or	
comment.

Amazon

14 #	of	sentences	referring	to	product	
features	/	#	of	sentences

Relation	between	number	of	sentences	referring	to	product	features	and	the	total	
number	of	sentences	in	the	review	or	comment Amazon

15 The	self-information	sum	of	product	
features

Estimation of the information gained for different sentiments for a product feature
occuring	in	a	review Amazon

16 The	divergence	of	sentiment	sentences Sum	of	self-information	for	three	different	sentiment	(positive,	negative	and	
neutral)	for	every	product	feature	occuring	in	a	review Amazon

17 The	strength	of	sentiment	sentences Sum	of	the	maximum	of	self-information	for	three	different	sentiments	for	the	sum	
of	the	different	product	features	mentioned	in	a	review Amazon

Kim	et	al.,	2006

Liu	et	al.,	2012

Helpfulness	from	designer’s	point	of	view
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1 #	of	words Total	number	of	words	in	a	review Amazon

2 #	of	sentences Total	number	of	sentences	in	a	review Amazon

3 Average	length	of	sentence Average	number	of	words	per	sentence Amazon

4 #	of	adjectives Total	number	of	adjectives	in	a	review Amazon

5 #	of	adverbs Total	number	of	adverbs	in	a	review Amazon

6 #	of	subjective	sentences Total	number	of	grammar	errors	and	wrong	spellings	in	a	review Amazon

7 #	of	objective	sentences Total	number	of	subjective	sentences	in	a	review Amazon

8 #	of	total	elapsed	days Total	number	of	objective	sentences	in	a	review Amazon

9 #	of	referred	products Time	elapsed	in	days	since	the	date	on	which	a	review	was	posted Amazon

10 #	of	product	features Total	number	of	referred	products	in	the	review Amazon

11
#	of	sentences	referring	to	product	

features
Total	number	of	referred	products	in	the	review Amazon

12
#	of	product	features	/	#	of	sentences	

referring	to	product	features

Total	number	of	sentences	referring	to	mentioned	product	features	in	the	review	

or	comment
Amazon

13 #	of	product	features	/	#	of	sentences

Relation	between	the	total	number	of	product	features	mentioned	and	the	total	

number	of	sentences	referring	to	mentioned	product	features	in	the	review	or	

comment.

Amazon

14
#	of	sentences	referring	to	product	

features	/	#	of	sentences

Relation	between	number	of	sentences	referring	to	product	features	and	the	total	

number	of	sentences	in	the	review	or	comment
Amazon

15
The	self-information	sum	of	product	

features

Estimation of the information gained for different sentiments for a product feature

occuring	in	a	review
Amazon

16 The	divergence	of	sentiment	sentences
Sum	of	self-information	for	three	different	sentiment	(positive,	negative	and	

neutral)	for	every	product	feature	occuring	in	a	review
Amazon

17 The	strength	of	sentiment	sentences
Sum	of	the	maximum	of	self-information	for	three	different	sentiments	for	the	sum	

of	the	different	product	features	mentioned	in	a	review
Amazon

18 #	of	reviews
Total	number	of	posts	posted	by	the	reviewer	in	the	past	in	that	social	media	

source.	The	volume	of	reviews	posted	indicates	the	expertise	of	the	reviewer.
Amazon

19 The	grade	of	reviewer

The	grade	of	a	reviewer	indicates	the	reviewer’s	activeness	on	the	website:	if	the	

reviewer	is	highly	active,	is	more	likely	to	provide	thorough	explanations	of	their	

viewpoints.

Amazon

20 Whether	pros	is	filled	or	not Does	the	review	have	pros? Amazon

21 Whether	cons	is	filled	or	not Does	the	review	have	cons? Amazon

22 #	of	labels Total	number	of	labels	in	the	review Amazon

23 #	of	helpful	votes
Total	number	of	helpful	votes		obtained	indicates	the	evaluation	level	from	other	

consumers
Amazon

24 #	of	replies The	total	number	of	replies	indicates	the	evaluation	level	from	other	consumers Amazon

25 #	of	stars The	total	number	of	stars	indicates	the	evaluation	level	from	other	consumers Amazon

Qi	et	al.,	2016

Table A.5. Variables for describing helpfulness from two points of view. 
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Appendix	B:	Helpfulness	variables	grouped	into	concepts	
___________________________________________________________________________________________________________________________________________________________________________	
Second	appendix	gathers	all	the	authors	proposed	variables	related	with	helpfulness	definition	taking	into	account	if	they	have	been	related	with	customer’s	
or	designers’	perspective. 
 

	

Group Concept Nº	times	per	
concept Variables Nº	times	per	

variable References Customer's	
perspective

Designer's	
perspective

#	of	adjectives 2 Zhang	(2014);	Kim	et	al.	(2006)
%	of	adjectives 2 Liu	et	al.	(2012);	Qi	et	al.	(2016)

#	of	words 6
Otterbacher	(2009);	Ghoose	et	al.	(2011);	
Zhang	(2014);	Kim	et	al.	(2006);	Liu	et	al.	

(2012);	Qi	et	al.	(2016)
Average	words 1 Liu	et	al.	(2012)

Words	per	sentence	ratio 2 Otterbacher	(2009);	Zhang	(2014)
Average	length	of	sentence 1 Qi	et	al.	(2016)

#	of	sentences 6 #	of	sentences 6
Otterbacher	(2009);	Ghoose	et	al.	(2011);	

Zhang	(2014);	Liu	et	al.	(2012);	Qi	et	al.	(2016);	
Kim	et	al.	(2006)

X X

Length	(chars) 2 Pan	et	al.	(2011);	Ghoose	et	al.	(2011)
Characters-to-sentence	ratio 1 Otterbacher	(2009)

#	of	adverbs 2 Liu	et	al.	(2012);	Qi	et	al.	(2016)
%	of	adverbs 2 Zhang	(2014);	Kim	et	al.	(2006)

#	of	spelling	errors 1 Ghoose	et	al.	(2011)
Error	per	sentence 1 Zhang	(2014)
Grammar	errors 1 Liu	et	al.	(2012)

Perplexity	of	
textual	review 1 Perplexity	of	textual	review 1 Otterbacher	(2009) X

Entropy	of	textual	
review 1 Entropy	of	textual	review 1 Otterbacher	(2009) X

Centroid	of	textual	
review 1 Centroid	of	textual	review 1 Otterbacher	(2009) X

#	of	verbs 2 %	of	verbs 2 Zhang	(2014);	Kim	et	al.	(2006) X
#	of	nouns 2 %	of	nouns 2 Zhang	(2014);	Kim	et	al.	(2006) X

#	of	unigrams 1 #	of	unigrams 1 Kim	et	al.	(2006) X
#	of	bigrams 2 #	of	bigrams 2 Otterbacher	(2009);	Kim	et	al.	(2006) X

#	of	labels 1 Qi	et	al.	(2016)
HTML 1 Kim	et	al.	(2006)

LINGUISTIC	
FEATURES

%	of	adjectives

#	of	words

4

4

10

#	of	errors 3

#	of	adverbs

3#	of	characters

Content	format 2

X X

X X

X

X X

X X

X X
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Positive	references 1 Zhang	(2014)
Negative	references 1 Zhang	(2014)

Polarity 1 Zhang	(2014)
Subjectivity 1 Zhang	(2014)

Sentiment	difference 1 Zhang	(2014)
#	of	subjective	sentences 2 Liu	et	al.	(2012);	Qi	et	al.	(2016)
#	of	objective	sentences 2 Liu	et	al.	(2012);	Qi	et	al.	(2016)
#	of	question	sentences 1 Kim	et	al.	(2006)

#	of	exclamation	sentences 1 Kim	et	al.	(2006)
The	divergence	of	sentiment	sentences 2 Liu	et	al.	(2012);	Qi	et	al.	(2016)
The	strength	of	sentiment	sentences 2 Liu	et	al.	(2012);	Qi	et	al.	(2016)

Average	probability	of	a	sentence	being	
subjective

1 Ghoose	et	al.	(2011)

St	Dev	of	the	subjectivity	probability 1 Ghoose	et	al.	(2011)
Cosine 1 Otterbacher	(2009)

Normalized	longest	common	subsequence	
between	two	texts

1 Otterbacher	(2009)

#	of	product	features 3
Kim	et	al.	(2006);	Liu	et	al.	(2012);	Qi	et	al.	

(2016)
General-Inquirer 1 Kim	et	al.	(2006)

#	of	sentences	referring	to	PF 2 Liu	et	al.	(2012);	Qi	et	al.	(2016)
#	of	PF	/	#	of	sentences	referring	to	PF 2 Liu	et	al.	(2012);	Qi	et	al.	(2016)
#	of	sentences	referring	to	PF	/	#	of	total	

sentences
2 Liu	et	al.	(2012);	Qi	et	al.	(2016)

Self-information	sum	of	PF 2 Liu	et	al.	(2012);	Qi	et	al.	(2016)
#	of	referred	products 2 Liu	et	al.	(2012);	Qi	et	al.	(2016)

Product	type 1 Pan	et	al.	(2011)
Product	rating 1 Otterbacher	(2009)

Reviews	posted	of	a	
product

2 #	of	reviews	posted	of	a	product 2 Ghoose	et	al.	(2011);	Pan	et	al.	(2011) X

Retail	price 1 Ghoose	et	al.	(2011)
Sales	rank 1 Ghoose	et	al.	(2011)

SENTIMENT	
ANALYSIS

PRODUCT	
FEATURES

17

2Other

2
Textual	similarities	
with	external	texts

Sentiment	

Product	
information

4

12
#	of	product	
features

X X

X

X X

XX

X
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#	of	elapsed	days 6 #	of	elapsed	days 6
Otterbacher	(2009);	Ghoose	et	al.	(2011);	Pan	
et	al.	(2011);	Zhang	(2014);	Liu	et	al.	(2012);	Qi	

et	al.	(2016)
X X

#	of	helpful	votes 4 Otterbacher	(2009);	Ghoose	et	al.	(2011);	Pan	
et	al.	(2011);	Qi	et	al.	(2016)

Total	votes 1 Ghoose	et	al.	(2011)
Helpful	votes	/	Total	votes 2 Ghoose	et	al.	(2011);	Zhang	(2014)
Reviewer	history	macro 1 Ghoose	et	al.	(2011)

Reviewer	history	micro 1 Ghoose	et	al.	(2011)

Past	helpful	votes 1 Ghoose	et	al.	(2011)
Past	total	votes 1 Ghoose	et	al.	(2011)
#	of	replies 1 Qi	et	al.	(2016)

Stars 2 Kim	et	al.	(2006);	Qi	et	al.	(2016)
Average	rating	of	posted	reviews 1 Ghoose	et	al.	(2011)

ARI 1 Ghoose	et	al.	(2011)
Gunning	Index 1 Ghoose	et	al.	(2011)

Coleman-Liau	Index 1 Ghoose	et	al.	(2011)
Flesch	Reading	Ease 1 Ghoose	et	al.	(2011)

Flesch-Kincaid	Grade	Level 1 Ghoose	et	al.	(2011)
SMOG 1 Ghoose	et	al.	(2011)

Moderate	review 1 Ghoose	et	al.	(2011)
Real	name 2 Otterbacher	(2009);	Ghoose	et	al.	(2011)
Nick	name 1 Ghoose	et	al.	(2011)
Hobbies 1 Ghoose	et	al.	(2011)
Birthday 1 Ghoose	et	al.	(2011)
Location 1 Ghoose	et	al.	(2011)
Web	Page 1 Ghoose	et	al.	(2011)
Interests 1 Ghoose	et	al.	(2011)
Snippet 1 Ghoose	et	al.	(2011)

Any	disclosure 1 Ghoose	et	al.	(2011)
Reviewer	has	top	reviewer	badge 1 Otterbacher	(2009)

Reviewer’s	rank	in	the	community 3 Otterbacher	(2009);	Ghoose	et	al.	(2011);	Qi	et	
al.	(2016)

Top-10	reviewer 1 Ghoose	et	al.	(2011)
Top-50	reviewer 1 Ghoose	et	al.	(2011)
Top-100	reviewer 1 Ghoose	et	al.	(2011)
Top-500	reviewer 1 Ghoose	et	al.	(2011)

Reviews	posted	of	a	
reviewer 4 Total	reviews	posted	by	the	reviewer 4 Otterbacher	(2009);	Ghoose	et	al.	(2011);	

Zhang	(2014);	Qi	et	al.	(2016) X X

Customer	rating 2 Customer	rating 2 Pan	et	al.	(2011);	Zhang	(2014) X

REVIEW	
RELATED

REVIEWER	
RELATED

Review	rating 11

8Reviewer	rating

3

#	of	helpful	votes 11

Reviewer	uses	real	
name

Reviewer	
information 7 X

X

X X

X X

X X
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Group Concept References Customer's	
perspective

Designer's	
perspective

%	of	adjectives Kim	et	al.	(2006);	Liu	et	al.	(2012);	Zhang	(2014);	Qi	et	al.	
(2016)

X X

#	of	words Kim	et	al.	(2006);	Otterbacher	(2009);	Ghoose	et	al.	(2011);	
Liu	et	al.	(2012);	Zhang	(2014);	Qi	et	al.	(2016)

X X

#	of	sentences Otterbacher	(2009);	Ghoose	et	al.	(2011);	Zhang	(2014);	Liu	
et	al.	(2012);	Qi	et	al.	(2016);	Kim	et	al.	(2006)

X X

#	of	characters Otterbacher	(2009);	Pan	et	al.	(2011);	Ghoose	et	al.	(2011) X

#	of	adverbs Kim	et	al.	(2006);	Liu	et	al.	(2012);	Zhang	(2014);	Qi	et	al.	
(2016)

X X

#	of	errors Ghoose	et	al.	(2011);	Liu	et	al.	(2012);	Zhang	(2014) X X

#	of	verbs Zhang	(2014);	Kim	et	al.	(2006) X

#	of	nouns Zhang	(2014);	Kim	et	al.	(2006) X

Content	format Kim	et	al.	(2006);	Qi	et	al.	(2016) X X

Sentiment	difference Kim	et	al.	(2006);	Ghoose	et	al.	(2011);	Liu	et	al.	(2012);	
Zhang	(2014);	Qi	et	al.	(2016)

X X

#	of	product	features Kim	et	al.	(2006);	Liu	et	al.	(2012);	Qi	et	al.	(2016) X X

#	of	elapsed	days
Otterbacher	(2009);	Ghoose	et	al.	(2011);	Pan	et	al.	(2011);	

Zhang	(2014);	Liu	et	al.	(2012);	Qi	et	al.	(2016) X X

#	of	helpful	votes Otterbacher	(2009);	Ghoose	et	al.	(2011);	Pan	et	al.	(2011);	
Zhang	(2014);	Qi	et	al.	(2016)

X X

Review	rating Kim	et	al.	(2006);	Ghoose	et	al.	(2011);	Qi	et	al.	(2016) X X

Reviewer	uses	real	name Otterbacher	(2009);	Ghoose	et	al.	(2011) X

Reviewer	information Ghoose	et	al.	(2011) X

Reviewer	rating Otterbacher	(2009);	Ghoose	et	al.	(2011);	Qi	et	al.	(2016) X X

Reviews	posted	of	a	reviewer Otterbacher	(2009);	Ghoose	et	al.	(2011);	Zhang	(2014);	Qi	
et	al.	(2016)

X X

Customer	rating Pan	et	al.	(2011);	Zhang	(2014) X

TEXT	
RELATED

REVIEWER	
RELATED

REVIEW	
RELATED
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Appendix	C:	Extracted	reviews	
______________________________________________________________________________________________________________	
First	appendix	collects	the	reviews	extracted	from	different	social	media	sources	considered	in	the	
thesis:	Facebook,	Twitter	and	iMore	forum.	The	publication	date	and	hour,	and	hyperlink	of	each	
review	is	specified.		

C.1	Twitter	reviews	
 
Table	A.1	contains	the	fourteen	Twitter	reviews	gathered	for	the	study.	For	this	social	
media	source,	data	pertaining	to	Volvo	V60	model	has	been	gathered	on	April	and	May	
2018.	 Only	 tweets	 containing	 the	 model	 of	 the	 car	 have	 been	 extracted	 –V60.	 The	
publication	hour	is	referenced	in	Central	European	Time	zone	–CET.			

	
Review	and	hyperlink	

Publication	date	
and	hour	

1	

https://twitter.com/IDEES_JFX/status/968521562402910209	

27-02-2018	 13:21	

2	

	
https://twitter.com/TeddYang/status/981412650864259072	

04-04-2018	 04:06	

3	

	
https://twitter.com/ndecrock/status/27658940951044097	

19-01-2011	 06:29	

4	

	
https://twitter.com/TheCapeTownGuy/status/818408248546131969	

09-01-2017	 07:45	

5	

	
https://twitter.com/markpatsavas/status/966363654370267136	

21-02-2018	 14:27	

6	
	

https://twitter.com/johanschwartz/status/701727589233258496	

22-02-2016	 08:17	



 52	

7	

	
https://twitter.com/longmayyourun75/status/967038836479025153	

23-02-2018	 11:09	

8	

	
https://twitter.com/CConceptCreator/status/966670585202962434	

22-02-2018	 10:46	

9	

	
https://twitter.com/zebra9780/status/966710802261643264	

22-02-2018	 13:26	

10	

https://twitter.com/Jokerphone/status/966606908810444800	

22-02-2018	 06:33	

11	

	
https://twitter.com/CConceptCreator/status/964132775774310400	

15-02-2018	 10:42	

12	

https://twitter.com/outside05/status/981821847833628672	

05-04-2018	 07:12	

13	

https://twitter.com/alexgrantuk/status/977244466363994113	

23-03-2018	 15:03	

14	

https://twitter.com/j3s5ef1n3m4n/status/973347692297400321	

12-03-2018	 20:59	
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15	

https://twitter.com/ROBANDTHEMOB/status/971725181923274752	

08-03-2018	 09:31	

16	

https://twitter.com/ROBANDTHEMOB/status/970906954527920128	

06-03-2018	 03:20	

17	

https://twitter.com/MartinW_cap_hpi/status/970984547516108800	

06-03-2018	 08:28	

18	

https://twitter.com/GregStory1976/status/966709438856990728	

22-02-2018	 13:21	

19	

https://twitter.com/Jon_Birch/status/966565479065284610	

22-02-2018	 03:49	

20	

https://twitter.com/JiwanB/status/963018364720467969	

12-02-2018	 08:54	

21	

 
https://twitter.com/maheenstar1/status/998318372579434496	

20-05-2018	 14:43	

22	
	

https://twitter.com/itzt_/status/998283776017948672	

20-05-2018	 17:26	

23	

 
https://twitter.com/LordHumphreys/status/998244505622122499	

20-05-2018	 09:50	
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24	

	
https://twitter.com/ListersVolvo/status/997379240596303872	

18-05-2018	 05:31	

25	
	

https://twitter.com/neilmbriscoe/status/997156506645786624	

17-05-2018	 14:46	

26	

	
https://twitter.com/BBC_TopGear/status/996835307461992448	

16-05-2018	 17:30	

27	

	
https://twitter.com/AutoExpress/status/996631336361381888	

16-05-2018	 04:00	

28	

	
https://twitter.com/autocar/status/996413295950225408	

15-05-2018	 13:33	

29	

 
https://twitter.com/autocar/status/998262197129269248	

20-05-2018	 16:00	

30	

	
https://twitter.com/TMSMotorGroup/status/996769390463942657	

16-05-2018	 13:08	

31	

	

16-05-2018	 06:11	

32	

 
https://twitter.com/whatcar/status/996480587358601216	

15-05-2018	 18:01	

33	

	
https://twitter.com/ListersVolvo/status/997462150607179782	

18-05-20108	 11:01	
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34	

 
https://twitter.com/bahnstorm/status/998132723603488772	

	
20-05-2018	

	
07:26	

35	

 
https://twitter.com/autonewssiite/status/997913879563915264	

19-05-2018	 16:56	

36	

	
https://twitter.com/neconnected/status/998156748807704576	

20-05-2018	 09:01	

37	

	
https://twitter.com/MotorsMotion/status/998127556086960129	

20-05-2018	 07:05	

38	

 
https://twitter.com/CarsUK/status/997507971461632005	

18-05-2018	 14:03	

39	

	
https://twitter.com/CarbuyerUK/status/996435144943730690	

15-05-2018	 15:00	

40	

	
https://twitter.com/cole_marzen/status/997584681846689795	

18-05-2018	 19:08	
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C.2	Facebook	reviews	
	

Review	and	hyperlink	
Extraction	date	

and	hour	

1	

https://www.facebook.com/pg/volvocars/posts/	

01-03-
2018	

10a
m	

2	

https://www.facebook.com/pg/volvocars/posts/	

28-03-
2018	

11a
m	

3	

https://www.facebook.com/pg/volvocars/posts/	

01-03-
2018	

10a
m	

4	

https://www.facebook.com/pg/volvocars/posts/	

09-03-
2018	

11.4
1am	

5	

	

	 	

6	

https://www.facebook.com/AutoExpress/?hc_ref=ARQepoPOXQVfyQZIZKUBnOBZdzYBRuI
2Lik6DD97QXrptreaDS6417wZr920LYqwrRk&fref=nf	

10-03-
2018	

03.3
0pm	
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7	

	

	 	

8	

	

	 	

9	

https://www.facebook.com/pg/volvocars/posts/	

06-03-
2018	

08.0
2pm	

10	

https://www.facebook.com/pg/volvocars/posts/	

05-03-
2018	

10.0
3am	

11	

https://www.facebook.com/pg/volvocars/posts/	

05-03-
2018	

10.0
3am	

12	

https://www.facebook.com/pg/volvocars/posts/	

05-03-
2018	

10.0
3am	

13	

https://www.facebook.com/pg/volvocars/posts/	

05-03-
2018	

10.0
3am	

14	

https://www.facebook.com/pg/volvocars/posts/	

05-03-
2018	

10.0
3am	
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15	

https://www.facebook.com/pg/volvocars/posts/	

07-03-
2018	

10.1
9am	

16	

https://www.facebook.com/pg/volvocars/posts/	

07-03-
2018	

10.1
9am	

17	

https://www.facebook.com/AutoExpress/posts		

10-03-
2018	

03.3
0pm	

18	

https://www.facebook.com/pg/volvocars/posts/	

09-03-
2018	

11.4
1am	

19	

https://www.facebook.com/pg/volvocars/posts/	

06-03-
2018	

08.0
2pm	

20	

https://www.facebook.com/pg/volvocars/posts/	

05-03-
2018	

10.0
3am	

21	
 

https://www.facebook.com/pg/volvocars/posts/ 

02-05-
2018	

21:5
5	

22	
 

https://www.facebook.com/pg/volvocars/posts/ 

02-05-
2018	

16:2
0	

23	
 

https://www.facebook.com/pg/volvocars/posts/ 

03-05-
2018	

15:3
8	

24	
 

https://www.facebook.com/pg/volvocars/posts/ 

28-03-
2018	

16:1
2	

25	
 

https://www.facebook.com/pg/volvocars/posts/ 

28-03-
2018	

12:2
1	

26	

 
https://www.facebook.com/pg/volvocars/posts/ 

29-03-
2018	

04:3
5	
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27	
 

https://www.facebook.com/pg/volvocars/posts/ 

01-04-
2018	

21:3
1	

28	
 

https://www.facebook.com/pg/volvocars/posts/ 

26-03-
2018	

14:2
2	

29	
 

https://www.facebook.com/pg/volvocars/posts/ 

26-03-
2018	

12:3
2	

30	
 

https://www.facebook.com/pg/volvocars/posts/ 

10-03-
2018	

10:1
7	

31	
 

https://www.facebook.com/pg/volvocars/posts/ 

09-03-
2018	

12:2
8	

32	
 

https://www.facebook.com/pg/volvocars/posts/ 

09-03-
2018	

20:1
0	

33	
 

https://www.facebook.com/pg/volvocars/posts/ 

09-03-
2018	

13:4
8	

34	
 

https://www.facebook.com/pg/volvocars/posts/ 

07-03-
2018	

10:4
4	

35	
 

https://www.facebook.com/pg/volvocars/posts/ 

07-03-
2018	

11:4
4	

36	
 

https://www.facebook.com/pg/volvocars/posts/ 

06-03-
2018	

22:1
1	

37	
 

https://www.facebook.com/pg/volvocars/posts/ 

05-03-
2018	

16:5
5	

38	
 

https://www.facebook.com/pg/volvocars/posts/ 

01-03-
2018	

10:1
6	

39	
 

https://www.facebook.com/pg/volvocars/posts/ 

27-02-
2018	

14:1
1	

40	  
https://www.facebook.com/pg/volvocars/posts/ 

24-02-
2018	

05:4
2	
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C.3	iMore	Forum	reviews	
	
	 Review	and	hyperlink	

Extraction	date	
and	hour	

1	

	
https://forums.imore.com/iphone-7/371883-what-color-iphone-7-should-you-
get.html	

09-08-2016	 10.16	
am	

2	

	
https://forums.imore.com/iphone-7/371883-what-color-iphone-7-should-you-get-
8.html	

02-06-2017	 05.06	
am	

3	

https://forums.imore.com/iphone-7/371883-what-color-iphone-7-should-you-get-
8.html	

03-06-2017	 08.19	
am	

4	

	
https://forums.imore.com/iphone-7/371883-what-color-iphone-7-should-you-get-
8.html	

03-06-2017	 11.27	
pm	

5	

	
https://forums.imore.com/iphone-7/371883-what-color-iphone-7-should-you-get-
6.html	

28-11-2016	 05.06	
am	
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6	

https://forums.imore.com/iphone-7/395310-how-your-battery-life-ios-11-0-3-
iphone-7-a.html#post3001553	

18-10-2017	 07.43	
pm	

7	

	
https://forums.imore.com/iphone-7/395310-how-your-battery-life-ios-11-0-3-
iphone-7-a.html#post3001553	

18-10-2017	 07.51	
pm	

8	

https://forums.imore.com/iphone-7/395310-how-your-battery-life-ios-11-0-3-
iphone-7-a.html#post3001553	

19-10-2017	 11.18	
am	

9	

https://forums.imore.com/iphone-7/371868-you-ok-no-audio-jack.html	

08-09-2016	 08.22	
am	

10	

https://forums.imore.com/iphone-7/371868-you-ok-no-audio-jack.html	

08-09-2016	 08.42	
am	

11	

https://forums.imore.com/iphone-7/371868-you-ok-no-audio-jack-2.html	

08-09-2016	 11.56	
am	

12	

	
https://forums.imore.com/iphone-7/371868-you-ok-no-audio-jack-2.html	

08-09-2016	 12.03	
pm	
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13	

https://forums.imore.com/iphone-7/371868-you-ok-no-audio-jack-2.html	

08-09-2016	 01.35	
pm	

14	

https://forums.imore.com/iphone-7/371868-you-ok-no-audio-jack-2.html	

08-09-2016	 02.24	
pm	

15	

https://forums.imore.com/iphone-7/371868-you-ok-no-audio-jack-2.html	

08-09-2016	 03.31	
pm	

16	

https://forums.imore.com/iphone-7/371868-you-ok-no-audio-jack-2.html	

08-09-2016	 06.46	
pm	

17	

https://forums.imore.com/iphone-7/371883-what-color-iphone-7-should-you-get-
4.html	

06-10-2016	 08.21	
pm	

18	

https://forums.imore.com/iphone-7/371883-what-color-iphone-7-should-you-get-
4.html	

20-10-2016	 04.53	
pm	
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19	

https://forums.imore.com/iphone-7/371883-what-color-iphone-7-should-you-get-
4.html	

21-10-2016	 05.25	
am	

20	

https://forums.imore.com/iphone-7/371883-what-color-iphone-7-should-you-get-
4.html	

22-10-2016	 02.57	
pm	

21	

	
https://forums.imore.com/showthread.php?t=397789&p=3024610&viewfull=1#po
st3024610	

11-12-2017	 06:27	
pm	

22	
	

https://forums.imore.com/showthread.php?t=400492&p=3047869&viewfull=1#po
st3047869	

05-03-2018	 05:52	
am	

23	
 

https://forums.imore.com/showthread.php?t=396262&p=3036885&viewfull=1#po
st3036885 

19-01-2018	 04:20	
am	

24	

 
https://forums.imore.com/showthread.php?t=373538&p=2818170&viewfull=1#po
st2818170 

21-09-2016	 12:23	
am	

25	

	
https://forums.imore.com/showthread.php?t=387719&p=2931932&viewfull=1#po
st2931932	

23-04-2017	 01:41	
pm	
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26	

	
https://forums.imore.com/showthread.php?t=395310&p=3001294&viewfull=1#po
st3001294	

18-10-2017	 01:49	
pm	

27	

	
https://forums.imore.com/showthread.php?t=395310&p=3001553&viewfull=1#po
st3001553	

19-10-2017	 11:51	
am	

28	

	
https://forums.imore.com/showthread.php?t=394617&p=2994991&viewfull=1#po
st2994991	

29-09-2017	 01:24	
pm	

29	

	
https://forums.imore.com/showthread.php?t=394617&p=2996739&viewfull=1#po
st2996739	

04-10-2017	 02:58	
am	

30	

 
https://forums.imore.com/showthread.php?t=371883&p=2802030&viewfull=1#po
st2802030 

08-09-2016	 05:11	
pm	

31	

	
https://forums.imore.com/showthread.php?t=371883&p=2802141&viewfull=1#po
st2802141	

05-09-2016	 06:24	
pm	
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32	

 
https://forums.imore.com/showthread.php?t=394013&p=2989194&viewfull=1#po
st2989194 

20-09-2017	 03:50	
am	

33	

	
https://forums.imore.com/showthread.php?t=389322&p=2948160&viewfull=1#po
st2948160	

02-06-2017	 01:24	
pm	

34	

 
https://forums.imore.com/showthread.php?t=390203&p=2955304&viewfull=1#po
st2955304 

20-06-2017	 10:16	
am	

35	

 
https://forums.imore.com/showthread.php?t=390203&p=2955622&viewfull=1#po
st2955622 

21-06-2017	 06:33	
am	

36	

 
https://forums.imore.com/showthread.php?t=389381&p=2948986&viewfull=1#po
st2948986 

05-06-2017	 11:33	
am	

37	

 
https://forums.imore.com/showthread.php?t=388553&p=2939806&viewfull=1#po
st2939806 

12-05-2017	 05:50	
am	
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38	

 
https://forums.imore.com/showthread.php?t=401989&p=3056996&viewfull=1#po
st3056996 

14-04-2018	 10:41	
am	

39	

https://forums.imore.com/showthread.php?t=400931&p=3049950&viewfull=1#po
st3049950	

15-03-2018	 04:48	
am	

40	

	
https://forums.imore.com/showthread.php?t=400492&p=3047037&viewfull=1#po
st3047037	

01-03-2018	 09:31	
am	

 	



 67	

Appendix	C:	Review’s	helpfulness	evaluation	
______________________________________________________________________________________________________________	
Third	appendix	includes	classification	between	H/NH	for	filling	up	each	factor	in	the	HOQ	of	each	
extracted	review	in	each	SM	source.		
	

The	reviews	have	been	classified	in	helpful	–H–	or	unhelpful	–NH–	by	two	engineers	–
with	1	representing	helpful	and	0	representing	not	helpful.		

C.1	Twitter	reviews	
 
	 F1	 F2	 F3	 F4	 F5	 F6	
1	 1	 0	 0	 1	 0	 0	
2	 0	 0	 0	 0	 0	 0	
3	 0	 0	 1	 1	 0	 0	
4	 1	 0	 0	 0	 0	 0	
5	 1	 0	 1	 1	 0	 0	
6	 1	 0	 0	 1	 0	 0	
7	 1	 0	 1	 0	 0	 0	
8	 0	 0	 0	 0	 0	 0	
9	 1	 0	 0	 1	 0	 0	
10	 1	 0	 0	 0	 0	 0	
11	 1	 0	 0	 1	 0	 0	
12	 0	 0	 0	 1	 0	 0	
13	 1	 0	 0	 0	 0	 0	
14	 1	 0	 0	 1	 0	 0	
15	 1	 0	 0	 1	 0	 0	
16	 1	 0	 0	 0	 0	 0	
17	 1	 0	 0	 0	 0	 0	
18	 0	 0	 0	 0	 0	 0	
19	 0	 0	 0	 0	 0	 0	
20	 1	 0	 0	 1	 0	 0	
21	 0	 0	 0	 0	 0	 0	
22	 0	 0	 0	 0	 0	 0	
23	 1	 0	 0	 1	 0	 0	
24	 0	 0	 0	 1	 0	 0	
25	 1	 0	 0	 0	 0	 0	
26	 0	 0	 0	 0	 0	 0	
27	 0	 0	 0	 0	 0	 0	
28	 1	 0	 0	 1	 0	 0	
29	 0	 0	 0	 0	 0	 0	
30	 1	 0	 0	 1	 0	 0	
31	 0	 0	 1	 1	 0	 0	
32	 1	 0	 0	 1	 0	 0	
33	 1	 0	 0	 0	 0	 0	
34	 0	 0	 1	 0	 0	 0	
35	 0	 0	 0	 0	 0	 0	
36	 0	 0	 0	 0	 0	 0	
37	 0	 0	 0	 0	 0	 0	
38	 0	 0	 0	 0	 0	 0	
39	 0	 0	 0	 0	 0	 0	
40	 0	 0	 0	 0	 0	 0	

Table	C.6.	Perceived	helpfulness	of	the	fourteen	gathered	Twitter	reviews	
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C.2	Forums	reviews	
 
	 F1	 F2	 F3	 F4	 F5	 F6	
1	 1	 0	 0	 1	 0	 0	
2	 1	 0	 0	 1	 0	 0	
3	 1	 0	 0	 1	 0	 0	
4	 1	 0	 0	 0	 0	 0	
5	 1	 0	 0	 1	 0	 0	
6	 1	 0	 0	 1	 0	 0	
7	 1	 0	 0	 1	 0	 0	
8	 1	 0	 1	 1	 0	 0	
9	 1	 0	 0	 1	 0	 0	
10	 1	 0	 0	 1	 0	 0	
11	 1	 0	 0	 1	 0	 0	
12	 1	 0	 0	 1	 0	 0	
13	 1	 0	 0	 1	 0	 0	
14	 1	 0	 0	 1	 0	 0	
15	 1	 0	 0	 1	 0	 0	
16	 1	 0	 0	 1	 0	 0	
17	 1	 0	 0	 1	 0	 0	
18	 1	 0	 0	 1	 0	 0	
19	 1	 0	 0	 1	 0	 0	
20	 1	 0	 0	 1	 0	 0	
21	 0	 0	 0	 1	 0	 0	
22	 0	 0	 0	 0	 0	 0	
23	 0	 0	 0	 0	 0	 0	
24	 0	 0	 0	 0	 0	 0	
25	 0	 0	 0	 0	 0	 0	
26	 0	 0	 0	 0	 0	 0	
27	 1	 0	 0	 1	 0	 0	
28	 1	 0	 0	 1	 0	 0	
29	 0	 0	 0	 0	 0	 0	
30	 1	 0	 0	 1	 0	 0	
31	 1	 0	 0	 1	 0	 0	
32	 1	 0	 0	 1	 0	 0	
33	 1	 0	 0	 1	 0	 0	
34	 0	 0	 0	 0	 0	 0	
35	 1	 0	 0	 1	 0	 0	
36	 0	 0	 0	 0	 0	 0	
37	 0	 0	 0	 0	 0	 0	
38	 0	 0	 0	 0	 0	 0	
39	 0	 0	 0	 0	 0	 0	
40	 0	 0	 0	 0	 0	 0	

Table	C.7.	Perceived	helpfulness	of	the	fourteen	gathered	Forum	reviews	
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Appendix	D:	Review’s	variable	values	
___________________________________________________________________________________________________________________________________________________________________________	
Third	appendix	includes	the	values	for	each	value	and	each	review.		
	

D.1	Twitter	reviews	
 
Table	D.1	contains	the	value	for	each	variable	for	all	Twitter	extracted	reviews.		
	

	 #	of	chars	 #	of	words	
/	#	of	chars	

#	of	sentences	
/	#	of	words	

%	of	
adjectives	

%	of	
adverbs	 %	of	verbs	 %	of	nouns	 #	of	errors	/	

#	of	words	
Content	
format	 Absolute	SD	 #	of	PF	 #	of	referred	

products	

1	 272	 19,49%	 11,32%	 9,43%	 7,55%	 15,09%	 15,09%	 0,00%	 0	 3	 2	 3	

2	 49	 16,33%	 12,50%	 12,50%	 0,00%	 12,50%	 12,50%	 0,00%	 1	 0	 1	 1	

3	 61	 18,03%	 18,18%	 45,45%	 9,09%	 0,00%	 18,18%	 0,00%	 1	 4	 0	 2	

4	 116	 18,10%	 4,76%	 14,29%	 0,00%	 9,52%	 9,52%	 0,00%	 1	 3	 0	 1	

5	 118	 11,86%	 14,29%	 21,43%	 0,00%	 14,29%	 21,43%	 0,00%	 1	 0	 1	 2	

6	 63	 14,29%	 11,11%	 11,11%	 11,11%	 0,00%	 22,22%	 0,00%	 1	 0	 0	 1	

7	 279	 17,20%	 10,42%	 8,33%	 4,17%	 14,58%	 25,00%	 4,17%	 0	 0	 2	 5	

8	 126	 19,05%	 12,50%	 8,33%	 8,33%	 16,67%	 8,33%	 0,00%	 0	 2	 0	 1	

9	 64	 18,75%	 16,67%	 25,00%	 25,00%	 16,67%	 25,00%	 0,00%	 0	 2	 1	 2	

10	 25	 16,00%	 25,00%	 25,00%	 0,00%	 25,00%	 25,00%	 0,00%	 0	 1	 1	 1	

11	 202	 19,80%	 10,00%	 17,50%	 17,50%	 17,50%	 7,50%	 2,50%	 0	 4	 1	 1	

12	 205	 17,07%	 11,43%	 11,43%	 2,86%	 8,57%	 5,71%	 0,00%	 1	 2	 1	 2	

13	 220	 18,64%	 9,76%	 14,63%	 12,20%	 17,07%	 14,63%	 2,44%	 0	 1	 2	 3	
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14	 240	 17,08%	 9,76%	 9,76%	 0,00%	 14,63%	 21,95%	 0,00%	 0	 2	 4	 1	

15	 279	 16,49%	 4,35%	 6,52%	 0,00%	 10,87%	 15,22%	 0,00%	 1	 0	 3	 1	

16	 274	 15,33%	 4,76%	 4,76%	 4,76%	 14,29%	 16,67%	 0,00%	 0	 3	 1	 1	

17	 112	 17,86%	 5,00%	 25,00%	 5,00%	 10,00%	 25,00%	 0,00%	 0	 1	 1	 1	

18	 62	 20,97%	 7,69%	 23,08%	 7,69%	 7,69%	 15,38%	 0,00%	 0	 2	 1	 1	

19	 189	 17,99%	 8,82%	 14,71%	 0,00%	 14,71%	 20,59%	 0,00%	 1	 1	 1	 1	

20	 274	 15,69%	 11,63%	 11,63%	 9,30%	 18,60%	 20,93%	 0,00%	 0	 1	 3	 1	

21	 62	 17,74%	 9,09%	 18,18%	 0,00%	 18,18%	 18,18%	 0,00%	 1	 1	 0	 1	

22	 53	 16,98%	 11,11%	 44,44%	 0,00%	 0,00%	 22,22%	 0,00%	 0	 1	 0	 1	

23	 181	 16,57%	 6,67%	 20,00%	 6,67%	 16,67%	 13,33%	 0,00%	 0	 3	 1	 1	

24	 226	 15,93%	 5,56%	 8,33%	 8,33%	 16,67%	 16,67%	 2,78%	 1	 1	 1	 1	

25	 59	 16,95%	 10,00%	 10,00%	 20,00%	 10,00%	 10,00%	 0,00%	 1	 1	 0	 1	

26	 102	 17,65%	 16,67%	 38,89%	 5,56%	 5,56%	 11,11%	 0,00%	 1	 0	 0	 1	

27	 68	 20,59%	 14,29%	 14,29%	 0,00%	 14,29%	 7,14%	 0,00%	 1	 0	 0	 1	

28	 151	 14,57%	 9,09%	 40,91%	 0,00%	 9,09%	 22,73%	 0,00%	 0	 2	 1	 1	

29	 71	 18,31%	 15,38%	 23,08%	 7,69%	 15,38%	 7,69%	 0,00%	 0	 0	 0	 1	

30	 221	 17,19%	 7,89%	 26,32%	 5,26%	 7,89%	 15,79%	 0,00%	 1	 3	 1	 1	

31	 203	 16,26%	 6,06%	 21,21%	 6,06%	 9,09%	 18,18%	 0,00%	 0	 0	 1	 1	

32	 148	 19,59%	 3,45%	 20,69%	 3,45%	 6,90%	 17,24%	 0,00%	 0	 2	 1	 1	

33	 177	 17,51%	 6,45%	 32,26%	 3,23%	 12,90%	 19,35%	 0,00%	 0	 4	 0	 1	
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34	 107	 18,69%	 5,00%	 20,00%	 0,00%	 15,00%	 5,00%	 0,00%	 0	 0	 0	 1	

35	 208	 21,63%	 6,67%	 20,00%	 2,22%	 11,11%	 22,22%	 2,22%	 0	 1	 0	 2	

36	 82	 15,85%	 7,69%	 30,77%	 0,00%	 7,69%	 23,08%	 0,00%	 0	 1	 0	 1	

37	 109	 15,60%	 11,76%	 17,65%	 0,00%	 0,00%	 5,88%	 0,00%	 1	 0	 0	 1	

38	 100	 11,00%	 9,09%	 9,09%	 0,00%	 9,09%	 27,27%	 0,00%	 1	 0	 0	 1	

39	 65	 18,46%	 8,33%	 25,00%	 8,33%	 8,33%	 8,33%	 0,00%	 1	 0	 0	 1	

40	 135	 14,07%	 10,53%	 10,53%	 0,00%	 10,53%	 21,05%	 0,00%	 1	 1	 0	 1	

Table	D.8.	Variables’	value	for	Twitter	reviews	

D.2	Forums	reviews	
 

	 #	of	chars	 #	of	words	
/	#	of	chars	

#	of	sentences	
/	#	of	words	

%	of	
adjectives	

%	of	
adverbs	 %	of	verbs	 %	of	nouns	 #	of	errors	/	

#	of	words	
Content	
format	 Absolute	SD	 #	of	PF	 #	of	referred	

products	

1	 256	 19,92%	 7,84%	 17,65%	 9,80%	 13,73%	 7,84%	 0,00%	 0	 1	 2	 2	

2	 146	 20,55%	 3,33%	 23,33%	 6,67%	 10,00%	 10,00%	 3,33%	 0	 2	 3	 1	

3	 566	 19,08%	 4,63%	 12,96%	 25,93%	 16,67%	 10,19%	 1,85%	 0	 3	 1	 1	

4	 113	 19,47%	 4,55%	 13,64%	 22,73%	 18,18%	 4,55%	 0,00%	 0	 2	 0	 3	

5	 75	 20,00%	 6,67%	 20,00%	 6,67%	 13,33%	 6,67%	 6,67%	 0	 1	 2	 1	

6	 149	 22,15%	 6,06%	 18,18%	 18,18%	 12,12%	 3,03%	 3,03%	 0	 2	 1	 2	

7	 162	 20,37%	 6,06%	 15,15%	 12,12%	 15,15%	 12,12%	 0,00%	 0	 2	 2	 1	

8	 227	 20,26%	 6,52%	 19,57%	 4,35%	 13,04%	 15,22%	 0,00%	 0	 0	 2	 2	

9	 262	 19,08%	 6,00%	 10,00%	 6,00%	 18,00%	 16,00%	 0,00%	 0	 0	 3	 1	
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10	 134	 18,66%	 8,00%	 20,00%	 8,00%	 16,00%	 20,00%	 0,00%	 0	 2	 3	 1	

11	 329	 17,33%	 1,75%	 19,30%	 8,77%	 17,54%	 12,28%	 0,00%	 0	 2	 3	 2	

12	 269	 16,73%	 8,89%	 20,00%	 13,33%	 13,33%	 13,33%	 2,22%	 0	 2	 3	 1	

13	 827	 17,41%	 4,86%	 18,75%	 11,11%	 11,11%	 19,44%	 0,00%	 0	 4	 7	 1	

14	 272	 19,12%	 1,92%	 5,77%	 17,31%	 21,15%	 21,15%	 0,00%	 0	 1	 3	 1	

15	 646	 19,81%	 4,69%	 8,59%	 10,94%	 17,97%	 18,75%	 0,00%	 0	 2	 2	 1	

16	 314	 20,06%	 7,94%	 9,52%	 11,11%	 19,05%	 19,05%	 0,00%	 0	 2	 3	 1	

17	 109	 21,10%	 26,09%	 17,39%	 8,70%	 17,39%	 8,70%	 0,00%	 0	 1	 1	 2	

18	 300	 19,33%	 6,90%	 20,69%	 13,79%	 17,24%	 10,34%	 0,00%	 0	 2	 3	 3	

19	 149	 21,48%	 9,38%	 28,13%	 6,25%	 12,50%	 12,50%	 0,00%	 0	 2	 2	 1	

20	 176	 20,45%	 5,56%	 13,89%	 8,33%	 16,67%	 16,67%	 2,78%	 0	 1	 2	 1	

21	 50	 22,00%	 9,09%	 27,27%	 9,09%	 18,18%	 18,18%	 0,00%	 0	 0	 0	 1	

22	 62	 20,97%	 23,08%	 7,69%	 0,00%	 30,77%	 7,69%	 0,00%	 0	 0	 0	 1	

23	 70	 15,71%	 18,18%	 9,09%	 0,00%	 18,18%	 27,27%	 0,00%	 0	 0	 0	 1	

24	 320	 19,38%	 8,06%	 16,13%	 12,90%	 17,74%	 17,74%	 1,61%	 0	 2	 0	 4	

25	 91	 23,08%	 9,52%	 9,52%	 9,52%	 23,81%	 4,76%	 0,00%	 0	 0	 0	 1	

26	 65	 20,00%	 7,69%	 15,38%	 15,38%	 30,77%	 7,69%	 0,00%	 0	 0	 0	 1	

27	 292	 20,55%	 6,67%	 8,33%	 15,00%	 15,00%	 15,00%	 0,00%	 0	 1	 3	 1	

28	 108	 21,30%	 8,70%	 4,35%	 21,74%	 17,39%	 17,39%	 0,00%	 0	 0	 3	 1	

29	 42	 21,43%	 11,11%	 11,11%	 0,00%	 11,11%	 11,11%	 0,00%	 0	 0	 0	 1	
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30	 50	 18,00%	 11,11%	 22,22%	 11,11%	 11,11%	 11,11%	 0,00%	 0	 0	 2	 1	

31	 69	 23,19%	 6,25%	 12,50%	 6,25%	 18,75%	 12,50%	 6,25%	 0	 0	 2	 1	

32	 148	 20,27%	 10,00%	 20,00%	 13,33%	 10,00%	 13,33%	 0,00%	 0	 2	 2	 1	

33	 197	 19,29%	 7,89%	 7,89%	 18,42%	 10,53%	 21,05%	 0,00%	 0	 0	 1	 1	

34	 88	 18,18%	 12,50%	 12,50%	 12,50%	 25,00%	 18,75%	 0,00%	 0	 0	 0	 1	

35	 128	 18,75%	 4,17%	 16,67%	 12,50%	 12,50%	 20,83%	 0,00%	 0	 1	 1	 1	

36	 150	 21,33%	 6,25%	 25,00%	 9,38%	 21,88%	 3,13%	 0,00%	 0	 1	 0	 3	

37	 58	 17,24%	 20,00%	 20,00%	 0,00%	 10,00%	 10,00%	 0,00%	 0	 1	 0	 1	

38	 66	 18,18%	 8,33%	 16,67%	 0,00%	 16,67%	 25,00%	 0,00%	 0	 0	 0	 1	

39	 59	 23,73%	 7,14%	 21,43%	 7,14%	 14,29%	 14,29%	 0,00%	 0	 0	 0	 1	

40	 86	 20,93%	 16,67%	 5,56%	 11,11%	 22,22%	 11,11%	 0,00%	 0	 0	 0	 1	

Table	D.9.	Variables’	value	for	Forum	reviews	
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Appendix	E:	Plots	
______________________________________________________________________________________________________________	
Fourth	appendix	 includes	the	plots	 for	each	considered	variable	 in	the	methodology	related	with	
each	of	the	six	groups	of	QFD	factors,	distinguishing	between	helpful	and	unhelpful	reviews.		
	

E.1	Twitter	reviews	
 
F1:	Customer	Attributes	
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F3:	Customer	evaluation	(competitors)	
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F4:	Engineering	characteristics	and/or	product	targets	related	
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E.2	Facebook	reviews	
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F3:	Customer	evaluation	(competitors)	
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F4:	Engineering	characteristics	and/or	product	targets	related	
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E.3	iMore	Forum	reviews	
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Appendix	F:	Variable	results	
______________________________________________________________________________________________________________	
Seventh	 appendix	 includes	 the	 tables	 with	 the	 relation	 between	 analyzed	 variables	 and	 HoQ	
required	information	factors	for	each	SM	source.	
	
	 QFD	variables	

	 R1	 R2	 R3	 R4	 R5	 R6	

Variable	
Customer	
attributes	

Customer	
attributes	
importance	

Customer	
evaluation	

(competitors)	

Engineering	
characteristics	

Correlation	
matrix	

Relationship	
matrix	

#	of	
characters	

1	 0	 0	 1	 0	 0	

#	of	words	/	#	
of	characters	

0	 0	 0	 0	 0	 0	

#	of	sentences	
/	#	of	words	

0	 0	 0	 0	 0	 0	

%	of	
adjectives	

0	 0	 0	 0	 0	 0	

%	of	adverbs	
1	 0	 0	 0	 0	 0	

%	of	verbs	
1	 0	 0	 0	 0	 0	

%	of	nouns	
0	 0	 0	 0	 0	 0	

#	of	errors		
/	#	of	words	

1	 0	 0	 0	 0	 0	

Content	
format	

0	 0	 0	 0	 0	 0	

Absolute	
sentiment	
difference	

1	 0	 0	 0	 0	 0	

#	of	PF	
1	 0	 0	 1	 0	 0	

#	of	referred	
products	

0	 0	 0	 0	 0	 0	

Table	F.1.	Significant	variables	for	HOQ	construction	for	Twitter	reviews	
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	 QFD	variables	

	 R1	 R2	 R3	 R4	 R5	 R6	

Variable	
Customer	
attributes	

Customer	
attributes	
importance	

Customer	
evaluation	

(competitors)	

Engineering	
characteristics	

Correlation	
matrix	

Relationship	
matrix	

#	of	
characters	

1	 0	 0	 1	 0	 0	

#	of	words	/	#	
of	characters	

0	 0	 0	 0	 0	 0	

#	of	sentences	
/	#	of	words	

1	 0	 1	 1	 0	 0	

%	of	
adjectives	

0	 0	 0	 1	 0	 0	

%	of	adverbs	
0	 0	 0	 0	 0	 0	

%	of	verbs	
0	 0	 0	 0	 0	 0	

%	of	nouns	
0	 0	 0	 0	 0	 0	

#	of	errors		
/	#	of	words	

0	 0	 0	 0	 0	 0	

Content	
format	

0	 0	 0	 0	 0	 0	

Absolute	
sentiment	
difference	

0	 0	 0	 0	 0	 0	

#	of	PF	
1	 0	 0	 1	 0	 0	

#	of	referred	
products	

0	 0	 0	 0	 0	 0	

Table	F.2.	Significant	variables	for	HOQ	construction	for	Facebook	reviews	
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	 QFD	variables	

	 R1	 R2	 R3	 R4	 R5	 R6	

Variable	
Customer	
attributes	

Customer	
attributes	
importance	

Customer	
evaluation	

(competitors)	

Engineering	
characteristics	

Correlation	
matrix	

Relationship	
matrix	

#	of	
characters	

1	 0	 0	 1	 0	 0	

#	of	words	/	#	
of	characters	

0	 0	 0	 0	 0	 0	

#	of	sentences	
/	#	of	words	

1	 0	 0	 1	 0	 0	

%	of	
adjectives	

0	 0	 0	 0	 0	 0	

%	of	adverbs	
1	 0	 0	 0	 0	 0	

%	of	verbs	
1	 0	 0	 1	 0	 0	

%	of	nouns	
0	 0	 0	 0	 0	 0	

#	of	errors		
/	#	of	words	

1	 0	 0	 1	 0	 0	

Content	
format	

-	 -	 -	 -	 -	 -	

Absolute	
sentiment	
difference	

1	 0	 0	 1	 0	 0	

#	of	PF	
1	 0	 0	 1	 0	 0	

#	of	referred	
products	

0	 0	 0	 0	 0	 0	

Table	F.3.	Significant	variables	for	HOQ	construction	for	Forum	reviews	

	
	


