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Overview

Restricted three-body problem is a special version of n-body problem where an infinitesi-
mal mass is attracted by the gravitation of two positive masses, called primaries, that follow
a solution of the Kepler problem. When not specified, restricted three-body problem means
the primaries follow a circular orbit with respect to their shared center of mass, that in a
rotating reference frame can be seen as two fixed points. Numerical methods are used in
these problems since analytical solutions do not exist. Hill’s problem is a modification of
the restricted three-body problem where the third body is close to the secondary primary.
Within this project, we started reviewing the Hill’s problem -equilibrium points, zero velocity
curves, etc.- when the zero velocity curve is a closed region around the origin, since we
are interested in ejection-collision orbits. After that we introduced a perturbation due to the
solar radiation pressure. This gives us a more realistic model if we can apply to an aster-
oid. After that, we studied the collision manifold. To do that, first the equations of motion
were regularized. We described the flow on the collision manifold. The equilibrium points
play an important role together with their stable and unstable invariant manifolds. Finally,
we studied the intersection of the previous invariant manifolds. This theoretical work aims
to describe the orbits that have a close approach to secondary primary. The study of the
ejection-collision orbits were the backbone of the close approaches. The characteristic
changes of the desired orbits depending on various parameters are also examined.



Dedicated to my nephew Ekim Demir...
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CHAPTER 1. INTRODUCTION

1.1. Historical Background

The history of orbital mechanics starts with the cooperation of two men; Tycho Brahe and
Johann Kepler. Their work lays the foundation of Newton’s most significant discoveries
nearly half a century after. Tycho Brahe was a Danish nobleman who had a great un-
derstanding of mechanics and an oppurtunity record the positions of planets accurately.
Where he lacked in theory and mathematics, came in Johann Kepler. Kepler was unable
to make reliable observations because of his health problems, but he had a keen talent
for mathematics and enough patience to use it on Tycho’s data. Since the time of Aristo-
tle it was assumed that planetary motion was build on circles. Working to fit geometrical
shapes to Tycho’s data, Kepler struggled between 1601-1606. In 1609, Kepler found the
orbit solution as an ellipse. Later he published his laws of planetary motion in that same
year and later in 1619.[1]

Isaac Newton laid the foundations of some of his most important work during the long
break he had to take a two year long break from University of Cambridge caused by the
plague outbreak. Amongst these work were the fundamental concepts of differential cal-
culus where he was explaining the motion of the Moon. The importance of those papers
could only be discovered after two decades. He was to explain the core of the description
made by Kepler. A question brought by a simple bet and the coincidence of Edmund Halley
bringing the question to Newton surfaced Newton’s work which explained and proved the
planetary motion. With Halley’s suggestion, after two years of preparation Newton pub-
lished The Mathematical Principles of Natural Philosophy, or the Principia, in 1687. With
Principia, Newton explained his laws of motion and the law of universal gravitation, which
paved the road to modern orbital mechanics.[2]

In 1767, Euler proposed a special form for the general three-body problem.[3] He explained
that three finite mass bodies aligned on a straight line with proper initial conditions and this
straight line rotating on their center of mass, these three bodies could have periodic orbits
following ellipses. In 1772, Lagrange proposed another form, in which the three bodies
would rest on the edges of a triangle with equal sides and they could revolve on elliptic
orbits while keeping their original configuration intact.[4] These two solutions are known
as particular solutions for the three-body problem. The formulation of circular restricted
three-body problem was lead by Euler in 1767.[3] Soon after, Lagrange followed this study
and came up with his Lagrange points which are five equilibrium points where the gravity
forces are in balance. In 1836, Jacobi developed an integral for the circular restricted three-
body problem using the rotating coordinate system introduced by Euler.[5] This integral
is named after him. Between 1877 and 1878, Hill developed zero velocity curves using
Jacobi’s integral.[6] [7] These curves determine the areas in which the bodies could travel
in space. Hill also introduced Hill’s problem where two bodies are remarkably smaller than
the first primary and established another class of periodic solutions.

After 1850s, Poincaré worked on and improved the understanding of the three-body prob-
lem. His biggest contribution has been his three volume book Les Méthodes Nouvelles
de la Mécanique Céleste which was published between 1892-1899.[8] His new qualitative
methods solved differential equations to establish and analyze prospective orbits. His work
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also described the unpredictable nature of the problem. This led to a new understanding
called chaos.

Heinrich Bruns in 1887 and Henri Poincaré in mid-1890’s proved that there is no general
solution of the three-body problem using algebraic formulas and integrals. Karl Sundman
found an infinite series that could be the ground work for such a solution in 1912.[9] Yet
this solution was converging extremely slowly and it further proved that there was no so-
phisticated solutions to this particular problem.[10]

Poincaré generalized the definition of periodic orbits put by Hill. He managed to establish
solutions for the restricted three-body problem for certain initial conditions. Bendixson fur-
ther studied one degree of freedom dynamical systems and their periodic solutions.[11]
His formulation of Poincaré-Bendixson theorem proves the existence of such systems.
Poincaré’s work made way for further studies from Darwin[12] [13], Moulton[14], Ström-
gren, Pedersen[15], Levi-Civita[16] and Lyapunov[17]. Between 1912 and 1915, Birkhoff
kept the work on generalizing and extending the ideas of Poincaré going.[18] [19] [20] He
developed recurrent motion concept, the explanation of existence of infinite periodic orbits
surrounding stable periodic orbits and a topological model for a specific restricted problem.

Singularities were a big problem when looking into solutions for the three-body problem.
They would end the solutions suddenly and they had to be eliminated. The process of
eliminating singularities is called regularization. The work on regularization was led by
Painlevé[21] [22] and continued by Levi-Civita[23], Bisconcini[24], Sundman[25] [26] [9],
Siegel and Moser[27] between 1896 and 1991.

Since closed-form solutions were not possible, infinite series solutions were the next focus
of researchers. Many tried to find such solutions. Some being disproven by Poincaré, all of
them failed to do so. Although Painlevé also did fail to find such a solution, he was sure that
in principle such solutions were possible. Sundman proved Painlevé right by developing a
power series solution which was mentioned earlier.

Hamiltonian systems conserve their total energy. These systems can be integrable or non-
integrable. Even non-integrable systems can have periodic orbit solutions given certain
initial questions. Researchers call these quadi-periodic solutions. The effects of perturba-
tion in such systems were explained by Kolmogorov in 1954.[28] Two seperate works by
Moser in 1962[29] and Arnold in 1963[30], proved the claims of Kolmogorov. These three
works form the KAM theorem.

Using the advances in computational simulations, Hénon and Szebehely identified many
periodic orbits between 1965 and 1974.[31] [32] [33] Moore discovered 8-type periodic or-
bit in 1993.[34] More discoveries followed by Chenciner, Montgomery, Suvakov and Dmi-
trasinovic in 2000s.[35] [36] Xiaoming Li and Shijun Liao published more than eighteen
hundred families of orbits in 2017.[37] [38] Li and Liao also published 234 new families for
unequal-mass free-fall three-body problem in 2018.[39] The three-body problem is finding
more and more applications in modern space science. These applications vary from the
examination of the motion of the Moon to exoplanets.
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1.2. State of the Art

1.2.1. General Three-Body Problem

The general three-body problem has been implemented in various astronomical settings.
Some of these settings are determination of mission trajectories, stellar formations and
galactic dynamics. When all three bodies in a three-body problem interacts with each
other without limitations on their orbit eccentricities, it is considered a general three-body
problem. An example of such problem is the triple stellar systems without hierarchy. They
are most likely to have close approaches and these situations must be taken with great
care. Some problems have large sources of numerical error and this makes it harder
to obtain meaningful results. Reipurth and Mikkola [2012][40] worked on such systems
where there exists a finite sized cloud around the three masses. Interaction with the cloud
makes the bodies increase their masses. Another problematic system example has wide
separation binary stars which have dynamical instabilities. The formation of close bina-
ries is also examined under the general three-body problem in the works of Fabrycky and
Tremaine [2007][41], Lidov [1962][42] and Kozai [1962][43]. Some stellar binary systems
may host planets. The examination of such systems were made in Gonczi and Froeschle
[1981][44], Rabl and Dvorak [1988][45], Dvorak et al. [1989][46], Holman and Wiegert
[1999][47], Pilat-Lohinger and Dvorak [2002][48], Pilat-Lohinger et al. [2003][49], Dvo-
rak et al. [2004][50], Musielak et al. [2005][51], Pilat-Lohinger and Dvorak [2008][52],
Haghighipour et al. [2010][53] and Cuntz [2014][54].

NASA’s Kepler data has been used to give exoplanet status to exoplanet candidates. A
statistical method has been used to identify false positive candidates. Such works are
present in Lissauer et al. [2014][55] and Rowe et al. [2014][56]. Before this method,
there was another method called transit timing variations (TTVs) to determine systems
with numerous planets. This method was used in Lissauer et al. [2011][57], Carter et
al. [2012][58], Holman et al. [2010][59] and Winn [2011][60]. A good example to be
presented is the discovery of Neptune with the orbit variations of Uranus in the works
of Adams [1846][61], Airy [1846][62], Challis [1846][63] and Galle [1846][64]. Coming to
a more recent work, Nesvorny et al. [2012][65] detected a non-transiting planet with the
observations of a transiting one. And again, Nesvorny [2013][66] discovered the behaviour
of planet pair on their interactions with each other. The possibility of discovery and the
required observation sensitivity related to perturbations were examined in Miralda-Escudé
[2002][67], Holman and Murray [2005][68] and Agol et al. [2005][69]. Some examples
of the application of general three-body problem in spaceflight missions are Apollo 8-10,
Hubble Space Telescope, CHANDRA X-Ray Observatory, SPITZER Space Telescope,
Kepler Space Telescope and the future James Webb Space Telescope.[70]

1.2.2. Restricted Three-Body Problem

The most practical simplification of the general three-body problem is the restricted three-
body problem. Thus it has been implemented in many researches and missions. The
examination of Earth-Moon-spacecraft system is based on an n-body problem with an ap-
proximation of restricted three-body problem. If the space craft is desired to travel further,
the method used is decoupling an n-body problem into a number of restricted three-body
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problems. A good example of this is the Jupiter-Ganymede-Europa-spacecraft system
decoupled into two restricted three-body problems in Gomez et al. [2001][71]. Another
case is Sun-Earth-Moon system. Since its inception by Newton [1687][72], this case in-
fluenced the theory of gravity. Newton’s work approximately 8 percent error margin. Hill
[1877,1878][6] [7] developed a general stability criterion. Gladman [1993] [73]improved
this criterion. After that, many works included this criterion such as in Cuntz and Yeager
[2009][74], Satyal et al. [2013][75] and Szenkovits and Mako [2008][76].

After Sun-Earth-Moon, Sun-Jupiter-asteroid system is the most studied restricted three-
body problem. Since asteroids have a really small mass, this system fits the restricted
three-body problem quite well. Nesvorny et al. [2002][77] studied the resonances of aster-
oids with Jupiter and likely three-body resonances in the Solar System.

Another possible system is a single start with giant and terrestial exoplanets. Mayor and
Queloz [1995][78] and Marcy and Butler [1995][79] discovered the first exoplanet. After
that, our knowledge of exoplanet expanded to thousands. For terrestial planets in the
habitable zone of various planets, regions of stability of orbits were found in Noble et al.
[2002][80]. Barnes and Greenberg [2006][81] established more exoplanets of solar plan-
etary systems. Kasting et al. [1993][82] established habitable zones for different spectral
stars. The possibility of habitable zones of stellar systems with giant exoplanets hav-
ing terrestial planets were examined in Jones et al. [2005][83]. Kopparapu and Barnes
[2010][84] established 4 extra-solar planetary systems that have the possibility of hosting
terrestial planets. Goldreich and Schlichting [2014][85] detailed the resonances in planar
circular restricted three-body problems. Other works on the detection of exoplanets are
Howard et al. [2012][86], Fressin et al. [2013][87] and Santerne et al. [2013][88].

Another setup for the restricted three-body problem is a single star with a giant exoplanet
and exomoon. Kasting et al. [1993][82] and Kopparapu and Barnes [2010][84] proposed
more systems with Jupiter-like planets in the habitable zone of host starts. Giant exoplan-
ets can make the exploration of terrestial planets harder because of their perturbation, the
smaller mass may have an unstable orbit. Another possibility is seen as exomoons orbiting
giant exoplanets in a habitable zone. Williams et al. [1997][89] discussed the possibility of
a Jupiter-like exoplanet with a Earth-sized moon. For further possibilities, there are works
of Canup and Ward [2006][90], Kipping [2009][91], Kipping et al. [2012, 2013b.a][92] [93]
[94] and Cuntz et al. [2013][95].

The last implementation to be mentioned here is binary stellar systems with a giant or
terrestial exoplanet. This is the most extreme study of the subject. Exoplanet can or-
bit one or both starts in the system. If it orbits only one star, this is called a satellite
type (S-type) and if it orbits both starts, this is called a planetary type (P-type) exoplanet.
The works focused on these are Dvorak [1982][96], Eggl et al. [2012][97], Kane and
Hinkel [2013][98], Kaltenegger and Haghighipour [2013][99], Haghighipour and Kalteneg-
ger [2013][100] and Cuntz [2014][54]. Doyle et al. [2011][101] and Pilat-Lohinger and
Funk [2010][102] focused on P-type exoplanets. Topological methods were discussed in
Musielak et al. [2005][51] and Cuntz et al. [2007][103]. Previous statistical methods
were implemented in the works of Holman and Wiegert [1999][47] and Dvorak [1984][104].
Eberle and Cuntz [2010a][105] worked on the stability of planets implementing Hamilton’s
Hodograph in Hamilton [1847][106]. The stability of smaller planets were studied in Eberle
and Cuntz [2010b][107], Quarles et al. [2012a][108] and Gozdziewski et al. [2013][109].
Quarles et al. [2012b][110] also studied the possibility of implementing an Earth-mass
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exoplanet into the system to discover the possibility of habitability.

1.2.3. Relativistic Three-Body Problem

The assumptions made on the previous section were spherical bodies and masses con-
sidered as point like particles. These assumptions of Newton’s gravity theory does not
apply when it comes to Einstein’s general relativity. Newton’s gravity can be considered as
a weak gravity field approximation of the GTR. GTR replaces the flat space-time with a 4D
space-time that is curved under the effect of gravity. Brumberg [1972] [1991][111] [112]
and Kopeikin et al. [2011][113] formulated relativistic celestial mechanics and applied its
methods. GTR can be only solved for one-body problem. N-body problems require ap-
proximations. Some works focusing on that are Brumberg [1991][112], Kopeikin et al.
[2011][113], Einstein et al. [1938][114] and Infeld [1957][115].

When there is no restrictions on masses, it is considered a general relativistic three-
body problem. The post-Newtonian equations for this problem are developed in Brum-
berg [1972][111], Brumberg [1991][112], Kopeikin et al. [2011][113], Saha and Tremaine
[1992][1994] [116] [117] and Kidder [1995][118]. Yamada and Asada [2010a][119] proved
the existence of post-Newtonian collinear solution. Yamada and Asada [2010b][120] also
proved the uniqueness of the relativistic collinear solution. Relativistic solution of the La-
grange solution can be found in Krefetz [1967][121], Ichita et al. [2011][122] and Yamada
and Asada [2012][123]. Imai et al. [2007][124] and Lousto and Nakano [2008][125] have
the relativistic 8-type periodic solution. Suvakov and Dmitrasinovic [2013][36] found the
relativistic version of 13 new periodic orbits.

The restricted relativistic three-body problem was first obtained by Brumberg [1972][111].
Douskos and Perdios [2002][126] obtained the equations of motion. Contopoulos [1976]
[127] and Bhatnagar and Hallan [1998][128] found the libration points. Linear stability of
these points were studied by Ragos et al. [2000][129], Douskos and Perdios [2002][126],
Bhatnagar and Hallan [1998][128] and Ahmed et al. [2006][130]. Brumberg [1991][112],
Kopeikin et al. [2011][113], Mandl and Dvorak [1984][131], Wanex [2003][132], Yamada
and Asada [2010a][119], Palit et al. [2009][133] and Migaszewski and Gozdziewski [2009][134]
explored the possible applications.

1.2.4. Hill’s Problem

The development of the Hill’s problem starts with the work of Hill [1878][7] on lunar theory.
Brown finished the theory Hill started over the years. The compilation of their work can
be seen in the work of Wilson [2010][135]. A power series solution was later proposed
for Hill’s problem by Henrard [1978][136]. Henrard [1979][137] also proposed a better
solution for the problem, this work was more accurate because it implemented the effects
of mass ratio which usually were neglected before. Meletlidou et al. [2001][138] proved
that independant from the Hamiltonian, Hill’s problem does not have a second analytic
integral of the motion. Llibre and Roberto [2011][139] examined the integrability of the
regularized Hill’s problem.

When it comes to methodological developments, Cabral and Castilho [2001][140] studied
a critical solution for the system. Delshams et al. [2008][141] computed a scattering map
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for the three-dimensional Hill’s problem. A symplectic integrator based on a generalized
leapfrog for efficient collision detection was developed in Quinn et al. [2009][142]. Hussein
and Santos [2013][143] developed explicit high order composition methods. These meth-
ods were used to integrate Hill’s problem based on a second order symmetric method.
Kozlov and Polekhin [2016][144] used planar restricted three-body problem to establish
the areas of a system that is always uncovered in a Hill’s region. Bhakta et al. [2017][145]
used numerical methods to produce target bands as best as possible.

As mentioned above, some works focused on three-dimensional orbits. Mikhalodimitrakis
[1979][146], Zagouras and Markellos [1984][147], Gomez et al. [2001][71] and Gopalakr-
ishnan and Muthusamy [2018][148] are examples of such studies.

An important aspect of applications lies in the study of collinear points of the system.
The works that focus on collinear points are Chauvineau and Mignard [1989][149], Simo
and Stuchi [1999][150], Arona and Masdemont [2007][151], Douskos [2010][152] and
Gopalakrishnan and Muthusamy [2018][148].

One of the most popular aspects of Hill’s problem is the possibility of working towards
periodic orbits. As they are obtained on this project like others, periodic orbits are highly
practical in mission design and celestial mechanics exploration. Some works that work on
periodic orbits are already mentioned but the rest of them can be listed as Perko [1982a]
[1982b] [1983][153] [154] [155], Hénon [1974][32] and Batkhin [2012a] [2012b][156] [157].

Different aspects and variations of the Hill’s problem have also been studied throughout the
years. Ichtiaroglu [1980][158] focused on elliptical Hill’s problem to find periodic continua-
tions. Villac and Scheeres [2004][159] studied the concept of periapsis on Hill’s problem,
examining close approaches of the system. Hénon [2005][160] focused on the asymmet-
ric periodic orbits. As a result, this work found some orbits that are symmetric on y axis
instead of x and some other that are not symmetric at all. Heggie [2000][161] and Vil-
lac and Scheeres [2003][162] focused on the dynamics of escape in Hill’s problems and
low-energy escape trajectories respectively.

Relating to this project more, the studies that focus on ejection-collision orbits must be
mentioned. Lacomba and Llibre [1987][163] focused on transversal ejection-collision or-
bits. Soon after, Delgado-Fernandez [1988][164] improved the study of transversal ejection-
collision orbits on a specific C range. Ollé at el. [2017][165] was the most recent study on
ejection-collision orbits and has been used as a guide reference for this project.

The last subject of focus for Hill’s problem to be mentioned is perturbations. Being a
crucial part of this project as well, these works are worthy of a mention and study. Starting
with the works that focus on radiation and moving on to oblateness, some examples will
be presented. Markellos et al. [1999][166] implemented the effects of radiation from both
primaries. The results were explored for the comparison of the macimum distance of stable
orbits and the predicted maximum solar flares. Markakis et al. [2008][167] focused on the
radiation effects on the Lyapunov orbits while considering oblateness as well. Perdiou
et al. [2012][168] implemented the radiation perturbation from the first primary and the
oblateness of the secondary primary. Yarnoz et al. [2014][169] focused on the specific
families of a and g with solar radiation pressure. This work also examines the possibilities
of applications to asteroids. Giancotti et al. [2014][170] studies the periodic orbits found
under solar radiation pressure to implement them to the mission Hayabusa 2. Vashkov’yak
[1998][171] and Markellos et al. [2000][172] focused on the stability of solutions concerning
the effects of oblateness. Perdiou et al. [2006] [173] is a work on the numerical examination
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of the oblateness of the second primary.

Other kinds of perturbation explorations also exist. Chauvineau [1991][174] worked on the
generalized Hill’s problem with a twist. There exists an external field of force deriving from
a central planet. This new potential is different because it is not restricted to Newton’s
inverse square law. Gentile et al. [2004][175] studies the stability of Hill’s equations when
they are quasi-periodically perturbed. The more detailed and varied perturbation study
grants a better approximation of the problem to the reality.

1.3. N-Body Problem

In order to provide a solid understanding of this work, the background will be presented
from the most general problem towards the more specific problem.

N being the number of bodies under inspection, n-body problem aims to inspect the motion
of a certain body. The body is under multiple gravitational forces and perturbations, which
will be mentioned in more detail later on. The main steps are to apply Newton’s law of
universal gravitation and to apply Newton’s second law of motion. Other elements that
affect the system like rocket thrust, atmospheric drag, solar radiation pressure or non-
symmetrical/non-spherical shape of the body should be added to the general formula.
[176]

Choosing a fitting coordinate system is a crucial job. Since none of the coordinate systems
have a full inertial quality certainty.

Figure 1.1: The n-body problem [176]

For every i th particle, there are position vectors of qi and masses of mi. According to
Newton’s second law, the sum of forces acting on a particle is the mass times the accel-
eration, mi · q̈i. Newton’s law of gravity has two set rules. The magnitude of forces acting
on a particle is proportional to the product of the two masses. These forces are inversely
proportional to the square of the distance between the two bodies. These forces are di-
rected from one particle towards another along a unit vector. Compiling all of these rules
presents the equations of motions. [177]
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miq̈i =
N

∑
j=1,i 6=j

Gmimj(qj − qi)

‖qi − qj‖3 =
∂U
∂qi

, (1.1)

where the self-potential (negative of the potential) is

U = ∑
1≤i≤j≤N

Gmimj

‖qi − qj‖
. (1.2)

The gravitational constant here is

G = 6.6732 · 10−11m3/sec2kg. (1.3)

These equations represent a general approach and may not support exceptions. Some
exceptions are common in space dynamics. A rocket using its fuel is a good example of
a system that does not conserve its total mass. Further simplifications can be made with
assumptions like a full spherical body or neglecting smaller forces acting on the system
namely perturbations.

Having the general expression for n-body problem, it is possible to reach the two-body
problem with certain steps. To repeat what was just explained, the assumptions are con-
sidering the bodies symmetrically spherical and neglecting internal/external forces other
than gravitation. Although in reality a fully inertial reference frame cannot be found, the
calculations are first handled with the assumption that such a reference frame is at hand.

(X’,Y’,Z’) is the inertial set of coordinates. (X,Y,Z) is parallel to the former coordinate sys-
tem, non-rotating and its origin is at the center of M.

Figure 1.2: Relative motion of two bodies [176]

The directions and magnitudes of r and r̈ measured in (X’,Y’,Z’) is equal to their mea-
surements in (X,Y,Z) because of the relation of (X,Y,Z) and (X’,Y’,Z’). Since the general
expression is obtained, (X’,Y’,Z’) coordinate system can be discarded and the measure-
ments can be made in (X,Y,Z) coordinate system alone. A further simplification can be
made by considering the second primary greatly smaller than the first primary and using
the gravitational parameter.[176]
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G(M + m) ≈ GM, (1.4)

µ ≡ GM. (1.5)

1.4. Three-Body Problem

Some of the greatest minds of 18th and 19th century focused on the classical Newtonian
three-body problem. The general problem remains unsolved today, but the advances in
computational science and mathematical methods brought more insight on the subject.
Newton was the one with the earliest approach to the three-body problem when he ex-
amined the motion of Earth and the Moon while also considering the effects of the Sun
over them. Euler brought the first and the simplest exact periodic solution to the problem
called the restricted three-body problem in 1767. Shortly after, Lagrange developed the
equilateral triangle solution in 1772. For arbitrary masses, these two solutions are the only
explicit solutions but for other special cases many solutions do exist. Jacobi, Delaunay
and Hill created the foundation of the modern theory for the restricted three-body problem.
Poincaré ends the classical period with his exceptional methods and his work was followed
by many to this day. [178]

The general three-body problem is presented first. As seen in the two-body problem, the
system is examined while the center of mass is the origin. Since from the beginning, the
external forces and torques are neglected. This leads to the assumption that the energy
and the angular momentum are conserved.

Figure 1.3: General three-body problem [178]

For the first exact solution, Euler’s solution is examined. The three bodies follow ellipses
with the same eccentricity while always being aligned on a straight line. They orbit around
the common center of mass and have the same period. Replacing the mid body position
amongst the three, three orbit families are found. These orbit families are merely theoreti-
cal, because the smallest perturbations make them unstable.
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Figure 1.4: Euler’s solution [178]

The second exact solution came from Lagrange. This solution was viable when G = 0,
which meant the relative position vector equations were equal. This meant the bodies
would align so that each of them would be on the edges of an equilateral triangle. Triangle
could rotate and change size but always keeps the relative positive vector relations. The
focal point of three orbits would be at the common center of mass with the orbits sharing
the same period as in Euler’s solution. This solution would be viable when one of the
bodies were much bigger than the other two. Variations of this solutions were made when
the bodies shared the same mass or more bodies were involved by Mongomery in 2001.
Yet, these solutions were not practically crucial since they demanded very strict initial
conditions.

Figure 1.5: Lagrange’s solution [178]

Burrau developed a solution for very specific initial configuration. This configuration had
three bodies of masses 3, 4 and 5 resting on the edges of a Pythagorean triangle, facing
the proportionally same sides of the triangle. The bodies start the configuration motionless
and start moving due to their interacting gravitation. In the end, while the bigger two
primaries bind in a binary, the third body escapes. This behaviour turned out to be very
common given various initial conditions were tested on such systems with similar mass
ratio.
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Figure 1.6: Burrau’s solution [178]

The general three-body problem has been implemented in many applications including
spacecraft missions of different variety. In an astronomical setting, general three-body
problem yields a wide array of applications. Three-body problem can be considered gen-
eral only when all the bodies of the system can interact without orbit eccentricity limita-
tions. An example can be triple stellar systems. These system include close approaches
and their calculations must be done precisely. Reaching to meaningful results require a
great care of limiting numerical errors. The investigation of the configuration of binary
systems are made with the implementation of the three-body problem. The possibility of
binary systems hosting planet have been brought to light with these investigations. The
classification of exoplanets often include the interaction of three bodies therefore the re-
quirement of three-body problem solutions. The deviation of the orbits comparing with
the observed data, creates the opportunity to detect and identify exoplanets. The same
method was used when discovering Neptune with the examination of the orbit variations
of Uranus. This method is also suggested for the discovery of exosolar moons. Outside
of astronomical setting and exoplanets, three-body problem is also implemented in space-
craft trajectory solutions. For small satellites, a special case of the three-body problem is
implemented, namely the restricted three-body problem. This is due to the mass of the
satellites being greatly smaller than the two primaries’ that its under the effect of. Bigger
payloads require different variations of the three-body problem. Some of the well known
examples of these are NASA’s Apollo 8-10 missions, Hubble Space Telescope and James
Webb Space Telescopes. [70]

Assumptions and simplifications are made for different versions of the three-body problem.
The most practical version is the restricted three-body problem where the third body is of
a negligible mass. Some of the example systems that could benefit from the restricted
three-body problem are binary stellar systems with a giant or terrestrial exoplanet, a single
star with a giant exoplanet and exomoon, a single star with giant and terrestial exoplanets,
Sun-Jupiter system with an asteroid, Sun-Earth-Moon system and Earth-Moon system
with a spacecraft.
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1.5. Hill’s Problem

The symmetric solutions for the Hill’s problem can be implemented when looking for so-
lutions of the restricted three-body problem. Around the smaller primary of a system,
spacecraft orbits and trajectories can be examined using these solutions.

Hill’s problem is a special case of the three-body problem where a zero mass body is
examined for its motion around a second primary body which is smaller than a first primary.
As in the restricted three-body problem, in default the problem is considered to have a
circular orbit. Thus, the two primaries rotate around their common center of mass in a
circular orbit. The problem can have their primaries orbit in an ellipse as well. If the zero
mass body moves on the plane of the primaries, this problem is called a planar problem.

The origin of the Hill’s problem rests with the suggestion of George William Hill on the Sun-
Earth-Moon system where he was examining the motion of the Moon. Hill followed Euler’s
ideas to use trigonometric series to formulate approximate periodic solutions. Many re-
searches studied and contributed to Hill’s problem. Although theoretically rich, Hill’s prob-
lem has practical value in terms of its applications as well. Studying the evolution of natural
satellites’ orbits, spacecraft mission design and the examination of star cluster dynamics
can be listed as some of these applications. The equations of motion go through transfor-
mations in order to establish the structure of periodic solutions. Considering their changes
under these transformations, periodic solutions can be divided into three categories: asym-
metric, singly symmetric and doubly symmetric. Depending on their Hamiltonian, periodic
solutions are established. These solutions are not isolated, but rather they form families
with equal parameters. Depending on their continuation over Jacobi constant, these fami-
lies can be categorized as closed, half-open and open families. [156]

The periodic solutions of Hill’s problem can be further studied to form periodic solutions for
both the general three-body problem and the restricted three-body problem.

Possible regions of space that could be accessed in motion is dictated by the first integral
of the Hill’s problem. This region is called Hill region. This expression equals zero when
the velocity is zero. This specific form of this constraint defines zero velocity curves. [179]

As an example of Hill’s problem where Earth and Sun are considered the two big primaries,
the assumptions made are taking the solar parallax, the solar eccentricity and the lunar
inclination as zero. The importance of Hill’s problem comes in its approach to the problem.
He presented a new definition for the first approximation of the motion of the moon. These
equations had more terms and they converged much faster than the series obtained prior
to his work. Prior to this work, the usual steps followed solving the two-body problem and
then modifying it. With Hill’s problem, the modified problem is solved and then its variations
are studied. Even today, new methods are development on the understanding of the Hill’s
problem.[33]

1.6. Perturbations

Observing the planetary motion, it is commonly observed that the theoretically expected
motion does not match the observations fully. The deviation seen on these motions are
called perturbations. Although these deviations seem odd at first, after examinations it
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has been established that these can be caused by many natural phenomena varying from
the gravitational effect of other bodies to additional forces out of Keplerian motion like
non-sphericality. Some other examples to known perturbations are solar radiation effects,
atmospheric drag-lift, magnetic effects and relativistic effects. Although their effects are
crucial, the perturbations that concern orbital flight are predictable and easily calculated.

Perturbations can wield effects as big as the main gravitational forces. Interplanetary mis-
sions’ accuracy depend on the understanding of the perturbations on effect. Even New-
ton’s work on the motion of the Moon was not accurate because of the perturbations he
did not put into account. Adams and Leverrier came up with the presence of Neptune
with their analysis on Uranus’ perturbed motion. Clairant successfully predicted the return
of Halley’s Comet with the calculations of perturbations caused by Jupiter and Saturn in
1759. The examination of the eccentricity of Earth’s orbit on its perturbation terms led to
the establishment of Earth’s shape.

Perturbation techniques can be categorized as special perturbations and general pertur-
bations. Equations of motions with all perturbing accelerations are approached with direct
numerical integration in special perturbations. This technique is less complex compared
to general perturbations. General perturbations are more complex to handle and they im-
plement analytic integration of series expansions of perturbing accelerations. As a result,
this technique requires more work but also yield a much better understanding of the prob-
lem, its origin and behaviour. The discoveries previously mentioned are a result of the
application of general perturbations. [176]

1.7. Solar Radiation Pressure

The radiation pressure was first discovered by Kepler in 1619. He suggested that the
reason why the tail of a comet would always point away from the Sun was the radiation
pressure pushing it away. When electromagnetic waves fall on a material, they interact with
the charges on it. Whether or not the wave was reflected or absorbed, it applies a force
on these charges and therefore on the material itself as well. This force can be calculated
using Electromagnetic Theory.

Solar radiation pressure is not much on Earth. Although it’s not as high as a large bright
star could produce, solar radiation pressure has significant effects over long periods of
time. An easy example of this is the Viking spacecraft. If the effects of solar radiation
pressure were not implemented on the mission calculations, it would miss the orbit of
Mars by 15000 km. The solar radiation pressure can be used to manufacture solar sails
which can drive probes to immense distances with low costs. [180]

When considering bodies with large area-to-mass ratios, the effects of solar radiation pres-
sure become higher. The orbital flight time and the trajectory itself can be highly impacted
by solar radiation pressure since it alters the energy of the system. [181]

When the first works began examining the effects of solar radiation pressure on satellites,
it was thought that it was negligible compared to the oblateness of the Earth or lunar-solar
gravitation’s effect. The mismatch of theory and practice created the need to work on this
subject. Further studies proved the significance of the solar radiation pressure. [182]
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In this chapter, the methodology used to reach the end goal is explained in detail. The
ideas and techniques used in the methodology is supported with the analytical steps taken
in this project. Various works on the field has been used as guidelines with the major
contribution coming from the lead of the supervisor. Although certain elements of the
project are present in this chapter, the results obtained through them are presented in the
next chapter.

2.1. Equations of Motion

This project considers the movement of three bodies on a flat surface. The equations for
the restricted-three body problem are written as

ẍ− 2ẏ = Ωx, (2.1)

ÿ + 2ẋ = Ωy, (2.2)

where

Ω = Ω(x,y) =
1− µ

r1
+

µ

r2
+

1
2
(x2 + y2) +

1
2

µ(1− µ), (2.3)

r2
1 = (x− µ)2 + y2, (2.4)

r2
2 = (x + 1− µ)2 + y2, (2.5)

are written, in synodic coordinates, as shown above. More details can be found in Szebe-
hely’s work on the theory of orbits.[33]

Afterwards a transfer of origin and scale is made in order to observe the movement near
the small body.

(x,y) −→ ((x + 1− µ)−1/3,yµ−1/3). (2.6)

The new coordinates are then

ẍ− 2ẏ = 3x− x(x2 + y2)−3/2 + µ1/3(6x2 + 3y2) + O(µ2/3), (2.7)

ÿ− 2ẋ = −y(x2 + y2)−3/2 − µ1/3(3xy) + O(µ2/3). (2.8)

After µ = 0 is applied to the equations, the equations of motion for Hill’s problem is ob-
tained.

ẍ− 2ẏ = 3x− x(x2 + y2)−3/2, (2.9)

15
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ÿ− 2ẋ = −y(x2 + y2)−3/2. (2.10)

Figure 2.1: Restricted three-body problem in sydonic coordinates [183]

Figure 2.2: Hill’s problem in sydonic coordinates [183]

The first integral of the Hill’s problem is called Jacobi.

C = 2Ω(x,y)− (ẋ2 + ẏ2), (2.11)

where

Ω(x,y) =
1
2
(3x2 + 2(x2 + y2)−1/2). (2.12)

It can be observed that the restricted problem around the small body looks like a dis-
turbance of the Hill’s problem. Also it should be noted that the Hill’s equations have a
singularity at (x,y) = (0,0). This corresponds to a binary collision.

2.2. Implementation of the Solar Radiation Pressure

At this stage, the expressions obtained before need to be altered so that the effect of
solar radiation pressure is also counted in the calculations. Certain assumptions are made
before acquiring the final equations of motion. The gravitational potential of the second
primary is considered a point, neglecting the effects of the shape factor. The second
primary orbits the first primary in a circular orbit. A rotating reference frame is used. This
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reference frame is fixed on the second primary as its origin and the first primary will reside
in the –x direction. The equations of motion are calculated through Szebehely’s work and
the mentioned assumptions are the following ones. [170]

ẍ− 2ẏ = − x
r3 + 3x + β, (2.13)

ÿ + 2ẋ = − y
r3 , (2.14)

z̈ = − z
r3 − z. (2.15)

The relation of r to x and y is like the expression shown below.

r =
√

x2 + y2. (2.16)

The remaining unknown variable beta represents the effect of the solar radiation pressure.
Since in this project the first primary is the Sun, beta always points away from the first
primary. Its calculation is made through the expression below.

β =
(1 + ρ)P0

Bκ2/3
s κ1/3

. (2.17)

The terms used in this expression are;

Reflectance of the spacecraft’s surface:ρ

Ratio of spacecraft’s mass and surface:B = M/A

Solar constant:P0 = 108kgkm3s−2m−2

Gravitational parameter of the Sun:κs

The only element here without an exact value is κ. It depends on the mass of the second
primary, which in this case in an asteroid. Since an asteroid’s volume varies and its density
is an uncertainty, only approximate values can be used. In the work of Giancotti (2014),
a range of values has been calculated as 27 < β < 55. The Jacobi constant is then
expressed as

C =
1
2
(ẋ2 + ẏ2 + ż2)− 1

r
− 3

2
x2 +

1
2

z2 − βx. (2.18)

From this point forward, the examination of the problem is made on x-y plane alone. There-
fore, the elements of z plane are neglected.

2.3. The Proof of Two Equilibrium Points

As mentioned before, the equilibrium points are obtained through the modification of the
equations of motion. For the sake of a complete explanation here, the mentioned expres-
sions are shown below.
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ẍ− 2ẏ = − x
r3 + 3x + β, (2.19)

ÿ + 2ẋ = − y
r3 . (2.20)

Fixing the first and second derivatives to zero is the first step. This is related to the zero
velocity and acceleration conditions on the equilibrium points. From the second expression
of the set, it can be seen that this condition applies when y = 0. This new condition is then
applied to the first expression on the set. This creates a two conditioned expression set
that will define the equilibrium points. [183]

x > 0−→ 3x3 + βx2 − 1 = 0, (2.21)

x < 0−→ 3x3 + βx2 + 1 = 0. (2.22)

In order to find the extrema points, the derivatives of these expressions are examined. In
this case they are the same.

9x2 + 2βx = 0, (2.23)

x = 0, x = −2β/9. (2.24)

According to Rolle’s theorem, on either side of these extremum points are two points of the
function that have the same value. On this case it means that either side of the extremum
points can have one or zero roots of the function. These roots are the equilibrium points of
interest. Each of these sections of the functions cannot have more than one root, because
that would mean the existence of more extremum points where there is none.

Figure 2.3: Extrema points

The rest of the examination is under the consideration that beta values are always positive,
since the goal of this project is to observe the results under beta values between 27-55.

According to Bolzano’s theorem, if a function is continuous between a and b, between
those values it takes every value between f(a) and f(b). Specifically, this means if the
function has values between positive and negative side of the spectrum, it has the zero
value at some point.

Now the three sections of this case will be examined with this knowledge. Both in the first
(left) and third (right) section, the function gets negative and positive values. This means
that function crosses y = 0 in these sections, giving two roots – equilibrium points. The
second (middle) section has positives values only for the beta values at hand. The lack of
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another extremum point in this section proves that the function cannot cross y = 0 under
this circumstances, solidifying the fact that there is not an equilibrium points here. All of this
examination concludes that this case has a total of two equilibrium points. These points
are simply found using the two expressions acquired for x < 0 and x > 0 in the beginning.

2.4. Zero-Velocity Curves

The importance and the function of zero-velocity curves were mentioned briefly on the
introduction chapter. This work has two main variables that defines the system. These
are energy and solar radiation pressure. For every couple of these values, zero-velocity
curves exist. These curves define the allowed regions of travel for a certain body. These
regions are separate or connected. Their connections happen around Lagrange points,
where the forces acting on a body are balanced.

These Lagrange points are also called libration points. They can be obtained through the
expressions of motion. The first step is to make reduction due to the assumptions. These
assumptions are that at these points the object has zero velocity and acceleration. These
assumption is applied through the reduction of the terms with ẋ, ẏ, ẍ, ÿ. The remaining
expressions can be used to calculate the libration points. The connections around these
points on zero-velocity curves allow objects to move from one region to another region.
These transfers are carried out by invariant manifolds of Lyapunov orbits.

The zero-velocity curves are plotted using the modified energy expressions. The same
reductions are made as in the libration points. The remaining expression is dependent on
x and y when the desired h for energy and beta for solar radiation pressure are input.

H =
1
2
(ẋ2 + ẏ2)− 1

r
− 3

2
x2 − βx, (2.25)

H = − 1√
x2 + y2

− 3
2

x2 − βx. (2.26)

The process made on analytical work is used to plot a specific zero-velocity curve. Another
approach is fixing the beta and plotting the zero-velocity curves of various h values along
this solar radiation pressure. A.3.
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(a) β = 27, h = −19 (b) β = 27, h = −20

(c) β = 27, h = −20.89 (d) β = 27, h = −22

Figure 2.4: The separation of the closed region in zero-velocity curves

These four plots show the evolution of the zero velocity curves for a specific solar radia-
tion pressure. As the energy level decreases, the area around the origin separates itself
from the right side and this separate area shows the closed Hill’s regions. In this closed
regions, it mathematically impossible for an object to leave without a change in the energy.
Simulating in these regions is the goal of this project. It serves a great advantage where
the possibility of escape for an orbit is mathematically impossible.

2.5. Regularization of the Singularity

At this point the regularization of the problem is needed. This mathematical technique is
used to get rid of the r terms on the denominator. Since this project aims to reach periodic
orbits through work building on top of ejection-collision orbits, the term “r”, namely the
distance from the origin, is crucial. The orbits of interest pass through really small r values,
even from r = 0 in theory. This creates a singularity on the Hamiltonian expression and
cripples the solution.

The first change starts with the expressions,

q1 = x, (2.27)
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q2 = y, (2.28)

p1 = ẋ− y, (2.29)

p2 = ẏ + x. (2.30)

For the next step, the derivatives of the expressions above are calculated such as,

q̇1 = ẋ = p1 + y = p1 + q2 =
∂H
∂p1

, (2.31)

q̇2 = ẏ = p2 − x = p2 − q1 =
∂H
∂p2

, (2.32)

ṗ1 = ẍ− ẏ = ẏ− x
r3 + 3x+ β = p2− q1−

q1

r3 + 3q1 + β = p2 + 2q1−
q1

r3 + β =−∂H
∂q1

,

(2.33)

ṗ2 = ÿ + ẋ = −ẋ− y
r3 = −p1 − q2 −

q2

r3 = −∂H
∂q2

. (2.34)

Using these expressions the Jacobi is calculated as

C(q1,q2, p1, p2), (2.35)

C =
1
2
(ẋ2 + ẏ2)− 1

r
− 3

2
x2 − βx, (2.36)

C =
1
2
((p1 + q2)

2 + (p2 − q1)
2)− 1

r
− 3

2
q2

1 − βq1, (2.37)

γ = p2
1 + q2

2 + 2p1q2 + p2
2 + q2

1 − 2p2q1, (2.38)

C =
1
2
(p2

1 + p2
2) + p1q2 − p2q1 +

q2
2

2
− q2

1 −
1
r
− βq1, (2.39)

H = C, (2.40)

H =
1
2
(p2

1 + p2
2) + p1q2 − p2q1 +

q2
2

2
− q2

1 −
1
r
− βq1. (2.41)

This expression goes through a simple notation change to fit the ones in Ollé’s work in
order to make the change to polar coordinates. [184]
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(q1,q2, p1, p2) −→ (x,y, Px, Py), (2.42)

H =
1
2
(P2

x + P2
y ) + yPx − xPy −

1
r
+

y2

2
− x2 − βx. (2.43)

As mentioned above, the canonical change of polar coordinates are shown below.

x = r cos(θ), (2.44)

y = r sin(θ), (2.45)

Px = Pr cos(θ)− Pθ

r
sin(θ), (2.46)

Py = Pr sin(θ) +
Pθ

r
cos(θ). (2.47)

As a result of these expressions, the Hamiltonian becomes

(P2
x + P2

y )→ P2
r cos(θ)2 +

P2
θ

r2 sin(θ)2 − 2
PrPθ

θ
sin(θ)cos(θ)+

P2
r sin(θ)2 +

P2
θ

r2 cos(θ)2 + 2
PrPθ

θ
sin(θ)cos(θ) = P2

r (cos(θ)2 + sin(θ)2)+

P2
θ

r2 (cos(θ)2 + sin(θ)2) = (cos(θ)2 + sin(θ)2)(P2
r +

P2
θ

r2 ) = P2
r +

P2
θ

r2 ,

(2.48)

H(r,θ, Pr, Pθ) =
1
2
(P2

r +
P2

θ

r2 ) + r sin(θ)(Pr cos(θ)− Pθ

r
sin(θ))−

r cos(θ)(Pr sin(θ) +
Pθ

r
cos(θ))− 1

r
+

r2 sin(θ)2

2
− r2 cos(θ)2 − βr cos(θ) =

1
2
(P2

r +
P2

θ

r2 )− Pθ sin(θ)2 − Pθ cos(θ)2 − 1
r
+

r2 sin(θ)2

2
− r2 cos(θ)2 − βr cos(θ),

(2.49)

H(r,θ, Pr, Pθ) =
1
2
(P2

r +
P2

θ

r2 )− Pθ −
1
r
+

r2 sin(θ)2

2
− r2 cos(θ)2 − βr cos(θ). (2.50)

The Hamiltonian ODE established through this expression are

ṙ =
∂H
∂Pr

= Pr, (2.51)
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θ̇ =
∂H
∂Pθ

=
Pθ

r2 − 1, (2.52)

Ṗr = −
∂H
∂r

=
P2

θ

r3 −
1
r2 − r sin(θ)2 + 2r cos(θ)2 + βcos(θ), (2.53)

Ṗθ = −
∂H
∂θ

= −3r2 sin(θ)cos(θ)− βr sin(θ). (2.54)

Using the work of McGehee[184], new variables are presented as

v = ṙr1/2, (2.55)

u = r3/2θ̇. (2.56)

and also expressions for the change of time

dt
dτ

= r3/2, (2.57)

′ =
d

dτ
. (2.58)

Making these changes, the set of ODE becomes

r′ =
dr
dt

d
dτ

= ṙr3/2 = vr−1/2r3/2 = vr, (2.59)

θ′ =
dθ

dt
d

dτ
= θ̇r3/2 = ur−3/2r3/2 = u, (2.60)

v′ =
dv
dt

d
dτ

= v̇r3/2 = (r̈r1/2 +
1
2

r−1/2ṙ2)r3/2 =

r̈r2 +
1
2

ṙ2r =
v2

2
+ u2 − 1 + 2ur3/2 + 3r3 cos(θ)2 + βr2 cos(θ),

(2.61)

u′ =
du
dt

d
dτ

= (
3
2

r1/2θ̇ + r3/2θ̈)r3/2 =

3
2

r2θ̇ + r3θ̈ = −1
2

vu− 2vr3/2 − 3r3 sin(θ)cos(θ)− βr2 sin(θ).
(2.62)

Following this set of ODE, the Hamiltonian becomes

P2
r = ṙ2 = (vr−1/2)2 = v2r−1, (2.63)
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Pθ = (θ̇ + 1)r2 = (ur−3/2 + 1)r2 = ur1/2 + r2, (2.64)

P2
θ = u2r + r4 + 2ur5/2, (2.65)

H =
1
2
(v2r−1+

u2r + r4 + 2ur5/2

r2 )−ur1/2− r2− 1
r
+

r2 sin(θ)2

2
− r2 cos(θ)2− βr cos(θ),

(2.66)

− r3 + r3 sin(θ)2 − 2r3 cos(θ)2 = −3r3 cos(θ)2, (2.67)

r2H = v2 + u2 − 2− 3r3 cos(θ)2 − 2βr2 cos(θ), (2.68)

H′ = 2H, (2.69)

β′ = 2β, (2.70)

rH′ = v2 + u2 − 2− 3r3 cos(θ)2 − β′r2 cos(θ). (2.71)

2.6. Collision Manifold

The system’s behavior is determined by its energy level. This energy level is H. For every
level there is a invariant manifold. This is defined for r = 0 and named the collision mani-
fold. Applying the r = 0 condition to Hamiltonian, the following expression is obtained.[184]

Λ = u2 + v2 = 2,θε[0,2π]. (2.72)

This defines a torus.
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Figure 2.5: The collision manifold [184]

S+ and S− are the two circumferences of equilibrium points on the system. These are ob-
tained by applying the conditions to the ODE set. Starting with r = 0, these circumferences
are

S+ = (0,θ,
√

2,0), (2.73)

S− = (0,θ,−
√

2,0). (2.74)

The stability of the equilibrium points needs to be determined. This can be achieved by
the linearization at the equilibrium points on these circumferences. Matrix M is calculated
through

r′ = R1, (2.75)

θ′ = R2, (2.76)

v′ = R3, (2.77)

u′ = R4. (2.78)


∂R1
∂r

∂R1
∂θ

∂R1
∂v

∂R1
∂u

∂R2
∂r

∂R2
∂θ

∂R2
∂v

∂R2
∂u

∂R3
∂r

∂R3
∂θ

∂R3
∂v

∂R3
∂u

∂R4
∂r

∂R4
∂θ

∂R4
∂v

∂R4
∂u


Applying the circumference conditions to this matrix, the result for this project becomes
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±
√

2 0 0 0
0 0 0 1
0 0 ±

√
2 0

0 0 0 ∓
√

2
2


Two versions of this matrix corresponds to S+ and S− respectively. Next, eigenvalues and
eigenvectors of this matrix are calculated.

λ1 =
√

2,λ2 = 0,λ3 =
√

2,λ4 = −
√

2
2

, (2.79)

v1 = (1,0,0,0),v2 = (0,1,0,0),v3 = (0,0,1,0),v4 = (0,−
√

2,0,1). (2.80)

λ1 = −
√

2,λ2 = 0,λ3 = −
√

2,λ4 =

√
2

2
, (2.81)

v1 = (1,0,0,0),v1 = (0,1,0,0),v1 = (0,0,1,0),v1 = (0,
√

2,0,1). (2.82)

S+ = (0,θ0,
√

2,0), (2.83)

S− = (0,θ0,−
√

2,0), (2.84)

(0,θ0,±
√

2,0) + a(1,0,0,0) + b(0,0,1,0) = (0,θ0,±
√

2,0) + (a,0,b,0). (2.85)

It is established that S+ has a 2d unstable manifold and a 1d stable manifold with S−

having a 2d stable manifold and a 1d unstable one. Any orbit that ejects from and collides
into origin must belong to 2d unstable manifold of S+ and 2d stable manifold of S−. Thus,
every ejection-collision becomes a heteroclinic orbit that connects a point from one of these
manifolds to another point from the other one.

Figure 2.6: The collision manifold with stable-unstable manifolds
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2.7. Ejection-Collision Orbits

In order to compute ejection orbits, first a tangent plane on an equilibrium point needs to
be established. This is done through eigenvectors. The vectors that correspond to both
eigenvalues that make 2d unstable S+ manifold and 2d stable S− manifold are (1,0,0,0)
and (0,0,1,0). Having constants a and b, these vectors combine to create (a,0,b,0). After
having the tangent plane, a perpendicular vector is calculated. First, Hamiltonian is written
in the form of[177]

0 = −rh + v2 + u2 + .... (2.86)

After, this expression is partially derived for four elements (r,θ,v,u). The condition r = 0 is
applied. The resulting values form the perpendicular vector for S+ and S−.

∂H
∂r

= −h, (2.87)

∂H
∂θ

= 0, (2.88)

∂H
∂v

= ±2
√

2, (2.89)

∂H
∂u

= 0, (2.90)

S+ −→ (−h,0,2
√

2,0), (2.91)

S− −→ (−h,0,−2
√

2,0). (2.92)

The perpendicular vector and tangent vector’s scalar product gives 0 and create this rela-
tion.

(a,0,b,0) · (−h,0,2
√

2,0) = 0, (2.93)

− ah + 2
√

2b = 0. (2.94)

(a,0,b,0) · (−h,0,−2
√

2,0) = 0, (2.95)

− ah− 2
√

2b = 0. (2.96)

This relation can be used to establish the tangent vector. When a = 1 condition is decided,
b can be calculated easily. The general form is
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(0,θ0,±
√

2,0) + s
w
‖w‖ . (2.97)

The specific form for this project is

(0,θ0,±
√

2,0) + α
(1,0,± h

2
√

2
,0)

‖(1,0,± h
2
√

2
,0)‖

, (2.98)

where α is taken as a small as 10−6. This last step is the bridge between analytical and
numerical work. Established form provides the initial conditions used in the next chapter.

2.8. Symmetrical Periodic Orbits

This work aims to find and characterize periodic orbits that are symmetrical. This symmetry
is established with the relation of (t, x,y, ẋ, ẏ)→ (−t, x,−y,−ẋ, ẏ). The representation
of the nature of symmetric periodic orbits can be observed on the x-y coordinates. The
symmetry is due to the x axis, this can be also defined as it is due to y = 0. This holds
great value in this observation.

As a starting point, a point on the y = 0 with velocity vector perpendicular to the y = 0 is
chosen around an intersection point. This means that y and ẋ of this point, at the start, is
zero. This point is then integrated until it reaches y = 0 again. When integration hits y = 0,
the set of values have changed to different x, ẋ and ẏ. The importance of observing ẋ at
this point is crucial. If ẋ reaches zero at y = 0 again, this means that velocity only has a
ẏ component, meaning it is perpendicular to y = 0 again. Since it is known that symmetry
exists, this means the half orbit that was just integrated exists on the other side of y = 0,
exactly mirrored. These two halves create a symmetrical periodic orbit.

The observation is made with a range of x values around an intersection point established.
The full set of values are translated to [r,θ,v,u] first. Integration is made until it reaches
y = 0, the crossing point is recorded after the set of values are translated to [x,y,ẋ, ẏ]
again. Starting from different x values and observing the ẋ at the crossing, it is possible
to see positive and negative values. The sign change is important, because the ẋ = 0
belongs in between the one previous and the one after integrations when the sign change
is observed.

Obtaining a symmetrical periodic orbit is the first goal of this exercise. The rest of the
work is about finding orbit families around this periodic orbits. The identity of a periodic
orbit consists of its solar radiation pressure, energy level, starting point and the number of
passes on y = 0 required to obtain this orbit. Keeping everything else fixed but the energy
and the starting point is the starting point of the next step. A slight change in energy should
result in a slight change in the starting point. An algorithm can be written to follow these
changes. The false position method is a powerful tool to implement here. For every step, h
is changed to a degree first. The new starting point to be determined is known to be close
to the original starting point. Establishing two points around the original starting point is
the starting setup. As long as a root is definitely between these two points, it can be found
through a number of steps. This is how another member of the same family is obtained.



CHAPTER 2. ANALYTICAL WORK 29

Finding more and more orbits is how a family of orbits are established. These families are
not infinitely available, they appear at certain energy levels and disappear on others.





CHAPTER 3. NUMERICAL RESULTS

This chapter focuses on the explanation of numerical methods used on implementing the
analytical work to achieve meaningful results on the subject. These results are presented
in a way to support the explanations and conclusions made. A higher number of result
output can be found on the appendix.

3.1. Existence of ECO

The numerical work starts with the help of the initial condition values collected during ana-
lytical work. This form has the following variables; α, h and θ. α is decided as a small value
between 10−7 and 10−5. For this project, it is decided to be 10−6. This form supports the
general problem but it is known that this project’s focus is on the modified problem. Consid-
ering solar radiation pressure, another variable -β- has been implemented as seen on the
analytical work. Throughout the numerical work, different h and beta values will be tested
in order to test the behaviour of the system on various situations. It should be remembered
that these two variables represent the energy of the system and the solar radiation pres-
sure constant respectively. Their evaluation corresponds to various real world situations.
Setting these two variables to a set of values access the solution of a specific situation.
Also, this leaves only θ as a variable for a specific study. This means the orbits of ejection
and collision are to be defined by θ.

Full set of initial conditions are obtained by varying θ between 0 and 2π. These conditions
belong to the tangent plane to the corresponding manifolds. For S+, these set of values
belong to the unstable manifold for ejection orbits. The initial conditions are integrated
forward in time. The Hamiltonian is checked throughout the process to see if the total
energy remains constant. This factor proves or disproves the solution system reliable.
Similarly for the S−, the initial conditions belong to the stable manifold for collision orbits.
The integration is made backwards in time for this part. The process still needs to support
the conservation of the total energy.

Following the establishment of reliable orbits, Poincaré sections will be used. Considering
Poincaré sections is a highly beneficial tool. Examining the passes through the polar coor-
dinate system plane for v = 0 provides the moments of maximum and minimum distance
to the origin passes in the system. In order to find the exact moment of these passes,
Newton’s method can be used. These passes can be named as D+

n for the integration of
S+ and D−n for the integration of S−. “n” is used to define the number of the pass from
the Poincaré section. Both Dn defines a set of points on the Poincaré section, when the
integration is made for a set value of initial conditions with varying θ between 0 and 2π.
These set of points form enclosed shapes on the Poincaré section.

There are many techniques to determine the existence of ECO. The method used in this
work is based on the intersection of D+ and D−. These intersection points can be visual-
ized on the Poincaré section. These points show that there are connections between the
ejection orbits of S+ and the collision orbits of S−. This is the first hint for the existence of
ejection-collision orbits. A.1.1. A.1.2.

31
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(a) β = 27, h = −21 (b) β = 32, h = −23

(c) β = 37, h = −25 (d) β = 42, h = −27

Figure 3.1: Curves D+
1 (blue) and D−1 (red) in (x,y) variables

Many examples have been plotted for a variety of energy and solar radiation pressure
values. As it can be seen from the examples shown above, all the spectrum under exam-
ination has two intersection points at least. These points are the hint of the existence of
orbits with close passes to collision and a more detailed examination around these points
is a good starting point to find them.

It is easy to notice that there is a clear unsymmetrical aspect to these plots. That is caused
by the affect of solar radiation pressure.

3.2. Zooming around an Intersection Point

Now that the intersection points can be established, the next step is to observe the be-
haviour of the points around these intersection points. In order to observe this, detailed
integrations around the close proximity of the intersection points need to be carried out.

The main principle is to start with establishing a grid around a set intersection point. The
coordinate system to base this grid on is at (r,θ). This means that two parameters that
will be changed to obtain this grid is r and θ. The other two parameters left for a full set of
initial conditions are v and u. Since Poincaré section will be used again, it is established
that v is zero in theory. All of the points that will be under inspection will be on Poincaré
section, allowing the integration to start on Poincaré section. The set intersection point
that will define the grid already has zero as the value of v theoretically. In practice, this
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value can be extremely small, not zero. Yet, this value can be also used as the v value of
the initial set. Now that three of the four values are established, the remaining is u. The
calculation of u is pretty straight forward. For every point on the grid, the value of u will be
calculated using the energy expression and the set [r,θ,v]. Every set of [r,θ,v,u] satisfies
the fixed energy requirement. An example that is used for this work is shown below. A.2.

u =
√

rH′ − v2 + 2 + 3r3 cos(θ)2 + β′r2 cos(θ). (3.1)

Having a grid of points around an intersection and full sets of values of them, it is time
to start the integration. What was done when trying to find the intersection points was
to stop the integration exactly on Poincaré section and record this crossing point. For this
examination, the integration is not stopped at Poincaré section, instead it is allowed to pass
through this section multiple times. The amount of passes is controlled before the start of
the integration and every point for every pass through the Poincaré section is recorded in
an array. These points can be plotted and observed, carrying certain characteristics of the
orbits of interest.

(a) β = 27, h = −21 (b) β = 27, h = −25 (c) β = 27, h = −29

(d) β = 27, h = −29 (e) β = 37, h = −29 (f) β = 47, h = −29

Figure 3.2: Poincaré section v = 0 for a higher number of iterates of points around ECO
in (x,y) variables

Two sets of plots are used to make observations. In both sets of plots, it can be seen
that there are two main areas where periodic orbits lie in a closed shape. The first set is
where the solar radiation pressure is fixed and the energy level is changed. Lowering the
energy causes two areas to expand in size but get closer in distance. These factors makes
it harder to find periodic orbits. This means when the energy decreases, periodic orbits
lie in a more collapsed range as well. The second set of plots have a fixed energy level
but the solar radiation pressure is increased. This acts as in a manner where the energy
would increase. The separate closed curves collapse in size while moving away from one
another.
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3.3. Periodic Orbit Families

With the methods mentioned during analytical work, many periodic orbits have been found.
This exploration is made for four different conditions. Two for the negative and positive
starting points and two for direct and retrograde orbits. When a starting point is integrated
in order to find a periodic orbits there are many possibilities to find an orbit. It may not
pass from y = 0 with ẋ = 0 the first time. Yet, as the integration proceeds this y = 0 pass
criteria can be met during further passes. Periodic orbits obtained from different number
of passes provide periodic passes with differences of appearance. Periodic orbits exist on
their multiplication of the number of the passes as well. For examples, a first pass periodic
orbit exists on all other passes or a third pass periodic orbit exists on 6th and 9th passes
as well. Although a wide range of different pass orbits have been observed, the focus of
this work is on 5th and fewer pass periodic orbits.

At this point, having a wide variety of periodic orbits found, some deductions can be made.
For each solar radiation pressure value, there are certain energy levels that are the limit for
a closed Hill’s region. In order to stay in this region, the explorations are made starting from
this energy and then decreasing it. As it was mentioned, higher the energy more likely the
region opens. The exploration is made between 27 and 55 solar radiation pressure within
the focus of this project.

The same patterns are seen for all four different scenarios with different signs of x and u,
that is why the remarks will be generally made for all of them. Starting the exploration from
the minimum solar radiation pressure and staying close to the limit energy, periodic orbits
with all the number of passes can be found. In this case those are first, second, third, fourth
and fifth passes. The first pass periodic orbits can be found close to the origin, as they
have been hinted when zooming to the intersection points. These orbits can be repeatedly
found on other passes as mentioned before. The other periodic orbits with a higher number
of pass can be found away from the origin as they have been hinted on the second closed
curves of zooming in intersection points. For the same solar radiation pressure, decreasing
the energy almost instant causes the disappearance of the orbits with higher number of
passes. The first pass orbits keep residing even if the energy decreases. Every time
the solar radiation pressure is increased, the exploration starts from the maximum energy
limit for closed regions. Observing these limit conditions for increasing solar radiation
pressure yields a meaning of its own. As mentioned before, the exploration starts with the
lowest solar radiation pressure for all four different scenarios. The first case has all the
variety of periodic orbits, but as solar radiation decreases the availability of certain orbits
change. The first pass orbits always exists. If their starting point is positive, most of its
path goes through negative side. That is the reason why they are harder to constrain with
the diminishing allowed range of x. Higher pass orbits are a different story. They reside
in the same sign as their staring point. With increasing the solar radiation pressure, the
higher level orbits become less and less available. The lower the number of pass, the
earlier a type orbits becomes unavailable. In other words, second pass orbits disappear
much sooner than third pass orbits and so on. If a certain type of orbit is found on a set of
values, it is clear that other types of orbits with higher number of pass can also be found
here.

Some other remarks can be made specifically on the starting points of the periodic orbits
found. As energy decreases, the absolute value of starting points decrease as well. This
relation is the opposite for solar radiation pressure. As it increases, the absolute values
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of starting points decrease. The first pass orbits always have starting points close to the
origin. On the other hand higher pass orbits always have starting points closer to the
limits of the closed region. These closed regions collapse with the decreasing energy or
increasing solar radiation pressure. An important note is about the evolution of starting
points depending on the number of passes. As the number of passes increase for higher
pass orbits, the starting points get smaller absolute values. This is a crucial information,
because it explains why higher the number of passes, easier it is to find them. With a
smaller value of starting point, any orbit becomes more likely to exist despite the collapsing
nature of closed region under the affect of changing parameters. A.4.1. A.4.2. A.4.3.
A.4.4.

After individual orbits, the focus shifts to families of orbits. Just as a reminder, the families
of orbits are found with changing the energy of a certain periodic orbit’s energy and finding
its changed starting point. As it was mentioned on the availability of periodic orbits, the
families are also affected by the collapsing closed regions and their limitations. The four
conditions have different behaviour of families but their limitations of closed region is com-
mon. The closed region collapses with the decrease of energy at all times. It is known now
that the higher pass periodic orbits start close their closed region limits already. When the
collapse reaches this starting point, the the family of orbits disappear. This is inevitable.
This idea is presented with two different cases below. A.5.1. A.5.2. A.5.3. A.5.4.

In this work positive and negative x starting points are presented with the notation +x and
−x. The direct and retrograde orbits have the notation +u and −u respectively.

(a) 4th pass family on β = 27, h = −21 (b) 4th pass family on β = 32, h = −23

Figure 3.3: The disappearance of orbit families due to closed region limits (red)

The families of orbits are represented with the characteristic curves that track the energy
change and the corresponding starting point change. The results are reached with the
observation of such curves.

The first pass orbits will be discussed first. These orbits have two points where they cross
y = 0 perpendicularly. This means they can be found on two different conditions. A ret-
rograde orbit with a positive x starting point can also be found as a retrograde orbits with
a negative x starting point. The opposite sign relationship applies on odd-numbered pass
orbits and the even-numbered pass orbits have a same sign starting point relationship.
Yet although the same orbit can be found in different conditions, the characteristic curves
created from different conditions are not the same. The first pass orbit starting points for
positive x – retrograde and negative x – direct conditions are really close to the origin. Yet,
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the orbit families found here are bigger in terms of size. This means a certain orbit found
here can be tracked for a wider range. The first pass orbit starting points for negative x –
retrograde and positive x – direct conditions are the opposite. They are far away from the
origin and they have narrower range for their families of orbit.

(a) +x− u (b) −x + u

(c) +x + u (d) −x− u

Figure 3.4: 1st pass family orbits at β = 27
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(a) +x− u (b) −x + u

(c) +x + u (d) −x− u

Figure 3.5: 1st pass family orbits at β = 32

After the first pass orbits, the focus is now on higher pass orbits which more or less act
similar between them. As it was established on the availability of periodic orbits, the fami-
lies of orbits have similar a nature when it comes to the size of the family. As the number of
passes increase, the family can be tracked further. Also as the energy decreases or solar
radiation pressure increases, the family size decreases in a similar manner.
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(a) 4th pass +x− u (b) 5th pass +x− u

(c) 4th pass +x + u (d) 5th pass +x + u

Figure 3.6: 4th and 5th pass family orbits at β = 27
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(a) 4th pass +x− u (b) 5th pass +x− u

(c) 4th pass +x + u (d) 5th pass +x + u

Figure 3.7: 4th and 5th pass family orbits at β = 32
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3.4. Plotting Orbits

After all the preliminary work, this part of the project is the most straight forward part.
A script will be written to follow initial set of values over the equations of motion. Two
criteria is set for energy and solar radiation pressure. For the first part, the initial conditions
are chosen with θ and v as zero. When these two are zero, the x value is equal to the
corresponding r value. This value is obtained from the intersection points of the system
with the set energy and solar radiation pressure. The value of u is again calculated through
the energy relation. At this point, all of the starting conditions are set. They are integrated
as long as desired, afterwards the results are presented after they have been translated
into [x,y,ẋ, ẏ]. This presentation represents the motion of the system in the real world.

The first part has initial values closest to the intersection points. There are endless couples
of energy and solar radiation pressure to be examined. All of these couples have different
intersection points that show the existence of periodic orbits. Within this project, the focus
is on a certain range of energy level and solar radiation pressure. In short, the real goal
is to observe the desired periodic orbits. After the first part, the variations of the prior
conditions will be examined to have a better grasp of the behaviour of the system. One of
the approaches is moving away from the intersection points. Starting r values more and
more away from the intersection points is how these orbits are achieved. The other method
is sticking to the r values obtained from the intersection points, but starting the integration
with θ values other than zero.

There are orbits to be found outside of symmetrical periodic orbits in this system. Because
the system is in a closed region, even random orbits do not escape the system. These or-
bits are called quasi-periodic orbits. Some examples are presented below with a changing
energy level. A.6.
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(a) β = 27, h = −21 at x = 0.1608 (b) β = 27, h = −25 at x = 0.1030

(c) β = 27, h = −26 at x = 0.0962 (d) β = 27, h = −30 at x = 0.0775

Figure 3.8: Quasi-periodic orbits starting with θ = 0 for 500 integration time

Quasi-periodic orbits scan a certain area with a certain rate. They may have use for certain
mission criteria, but they are not the focus of this project.

Periodic orbits slightly alter their appearance depending on all the varying parameters
talked about so far but their general structure is similar within the same number of pass
type. The examples of each type until the sixth pass orbits are presented below.
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(a) 1st pass at x = 0.000304 (b) 2nd pass at x = 0.188690

(c) 3rd pass at x = 0.173650 (d) 4th pass at x = 0.153938

(e) 5th pass at x = 0.135066 (f) 6th pass at x = 0.117796

Figure 3.9: Examples of orbits of different passes at β = 27, h = 20.8947 for +x− u

3.5. Period and Range

An important aspect of this work is the comparison of the characteristics of the different
periodic orbit families. Two of these characteristics which is examined here are the period
of an orbit and its maximum-minimum distance from the origin. These comparisons can be
made with the starting point-energy couples gathered in the periodic orbit families. These
couples make the characteristic curves of such families.

For period, it is necessary to implement a fifth equation for the real time into the set of
four equations of motion. The integration is not made in real time, that is why an extra
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expression is needed. After this implementation, the time passed can be observed through
the output array, along [r,θ,v,u]. It should be noted that along the characteristic curves are
the points gathered when the orbits reach their half-period. This means that the time
observed should be doubled in order to obtain the full period of any orbit. A.7.

(a) −x− u at 3.4d (b) −x + u at 3.4b

(c) +x− u at 3.4a (d) +x + u at 3.4c

Figure 3.10: Periodic characteristic curves of 1st pass family orbits for β = 27

The same number of pass periodic orbits have similar behaviour. The four examples above
are all for β = 27 and for the first pass. Although the rest have decreasing period with
decreasing energy, the condition where starting point is negative on direct orbits is the
opposite. For the higher pass orbits, the behaviour becomes also the opposite to the first
pass orbits. Fourth and fifth pass examples of positive starting point – direct orbits are
presented below, fitting the conclusion.
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(a) 4th pass +x + u at 3.6c (b) 5th pass +x + u at 3.6d

Figure 3.11: Periodic characteristic curves of 4th-5th pass family orbits for β = 27

For the range, there are two aspects that are crucial. These are the minimum distance
and the maximum distance to the origin. Either using the half period or full period are
applicable here. Since the code for the orbits plot using roughly every point on the orbits,
these set of points are where the maximum and the minimum distance to the origin are
obtained. The set of values has the first variable “r”, which depicts the distance to the
origin. Certain functions to find the maximum and the minimum values of an array exist in
many programming languages. For every set energy level on the family, these points are
found this way. Two different plots can be brought together afterwards; the first one being
the relationship between the energy level and the maximum distance, the other one being
the relationship between the energy level and the minimum distance.

The minimum distance characteristic curves corresponding to the period characteristic
curves for the first pass periodic orbit examples above are presented below.
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(a) −x− u at 3.4d (b) −x + u at 3.4b

(c) +x− u at 3.4a (d) +x + u at 3.4c

Figure 3.12: Min distance characteristic curves of 1st pass family orbits for β = 27

The minimum distance characteristic curves corresponding to the period characteristic
curves for the fourth and fifth pass orbits are below.

(a) 4th pass +x + u at 3.6c (b) 5th pass +x + u at 3.6d

Figure 3.13: Min distance characteristic curves of 4th-5th pass family orbits for β = 27

The maximum distance characteristic curves corresponding to the period characteristic
curves for the first pass periodic orbit examples above are presented below.
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(a) −x− u at 3.4d (b) −x + u at 3.4b

(c) +x− u at 3.4a (d) +x + u at 3.4c

Figure 3.14: Max distance characteristic curves of 1st pass family orbits for β = 27

The maximum distance characteristic curves corresponding to the period characteristic
curves for the fourth and fifth pass orbits are below.

(a) 4th pass +x + u at 3.6c (b) 5th pass +x + u at 3.6d

Figure 3.15: Max distance characteristic curves of 4th-5th pass family orbits for β = 27

All of these plots give some sense of correlation between the range of the orbit and the
period of the orbit. Since these orbits have the origin of ejection-collision orbits, periapsis
of the orbits are greatly smaller than apoapsis of the orbits with varying difference. This
means that a change in the maximum range of an orbit has a bigger impact on the change
of the period of the orbit. An increasing minimum range and maximum range usually are
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good hints of an increasing period. Yet, the maximum range has a bigger weight as said
before. The example of positive x – direct orbit families fit this statement. This means
even a decreasing minimum distance and an increasing maximum distance will most likely
mean an increasing period.

Minimum range and maximum range hold meaningful values when it comes to mission
design, but their effect is not the only one present when it comes to the change of period
of an orbit. Although the same pass orbits share a similar structure overall, their specific
shape can affect the period of the orbit as well.





CHAPTER 4. CONCLUSIONS AND
ACKNOWLEDGEMENTS

4.1. Conclusions

The aim of this project was to examine a perturbed Hill’s problem. The effects of solar
radiation pressure have been implemented into the system to achieve a more realistic and
practical solution of such a system. The base of this work rests on the ejection-collision
manifolds on the closed regions. Closed regions are preferred in order to obtain systems
which have bodies that are naturally incapable of escape.

A magnitude of symmetrical periodic orbits have been found in the desired nature. These
orbits have been classified due to their number of pass and rotation in order to reach some
patterns for these classes. The effects of change in energy and solar radiation pressure
have been observed. Found orbits belong in orbit families with widely different specifica-
tions. These families varied in size and the energy-solar radiation pressure gap of exis-
tence. Examining the characteristic curves of orbits families, their reason of disappearance
and the common behaviour of specific classes have been established. For the sake of a
better understanding of a dynamical system and seeking the possibilities of plausible mis-
sion design, the family of orbits have been explored in a way that many other properties
have also been examined. The properties like period and range had correlations to the
factors at play. Those are also established in this work.

It is known that closed regions open up at the equilibrium points of the system. A future
work could be based on open regions. In open regions, the existence of Lyapunov or-
bits around the equilibrium points and their associate invariant manifolds would play an
important dynamical role with the ejection-collision manifolds. The study of such systems
would be a fitting continuation of this project and it would have a higher scope with valuable
results.
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APPENDIX A. THE COMPLETE SET OF CODES

A.1. Existence of ECO

A.1.1. Integration - Forwards in Time

% Forwards in time

g=@(t,x) [x(3)*x(1);x(4);(x(3)^2)/2+(x(4)^2)-1+2*x(4)*(x(1)^(1.5))+3*(x(1)^3)...
*(cos(x(2))^2)+27*(x(1)^2)*cos(x(2));-0.5*x(3)*x(4)-2*x(3)*(x(1)^(1.5))...
-3*(x(1)^3)*sin(x(2))*cos(x(2))-27*(x(1)^2)*sin(x(2))];

result1=[];

for i=0:0.01:(2*pi)

teta=i;

t0=0;

alfa=1e-6;

h=-21;

n0rm=sqrt(1+((h^2)/8));

[t,xa]=ode45(@(t,x) g(t,x), [t0 (t0+0.1)], [(alfa/n0rm) (teta) ((alfa*...
((h/(2*sqrt(2)))/n0rm))+sqrt(2)) (0)]);

Control=1;

while Control>=0

%t0=t0+0.1;

[t,xa]=ode45(@(t,x) g(t,x), [t0 (t0+0.1)], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))]);

Control=dot(xa(1,3),xa(end,3));

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);
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t1=t0-((xa(1,3))/((xa(1,3)^2)/2+(xa(1,4)^2)-1+2*xa(1,4)*(xa(1,1)^(1.5))...
+3*(xa(1,1)^3)*(cos(xa(1,2))^2)+27*(xa(1,1)^2)*cos(xa(1,2))));

while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) (cross3) (cross4)]);

t1=t0-((xa(end,3))/((xa(end,3)^2)/2+(xa(end,4)^2)-1+2*xa(end,4)*(xa(end,1)^(1.5))...
+3*(xa(end,1)^3)*(cos(xa(end,2))^2)+27*(xa(end,1)^2)*cos(xa(end,2))));

end

result1=[result1;xa(end,1) xa(end,2) xa(end,3) xa(end,4)];

end

A.1.2. Integration - Backwards in Time

% Backwards in time

g=@(t,x) [x(3)*x(1);x(4);(x(3)^2)/2+(x(4)^2)-1+2*x(4)*(x(1)^(1.5))+3*(x(1)^3)...
*(cos(x(2))^2)+27*(x(1)^2)*cos(x(2));-0.5*x(3)*x(4)-2*x(3)*(x(1)^(1.5))-3*...
(x(1)^3)*sin(x(2))*cos(x(2))-27*(x(1)^2)*sin(x(2))];

result2=[];

for i=0:0.01:(2*pi)

teta=i;

t0=0;

alfa=1e-6;

h=-30;

n0rm=sqrt(1+((h^2)/8));

[t,xa]=ode45(@(t,x) g(t,x), [t0 (t0-0.1)], [(alfa/n0rm) (teta) ((alfa*((-h/...
(2*sqrt(2)))/n0rm))-sqrt(2)) (0)]);

Control=1;



while Control>=0

%t0=t0-0.1;

[t,xa]=ode45(@(t,x) g(t,x), [t0 (t0-0.1)], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))]);

Control=dot(xa(1,3),xa(end,3));

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

t1=t0-((xa(1,3))/((xa(1,3)^2)/2+(xa(1,4)^2)-1+2*xa(1,4)*(xa(1,1)^(1.5))...
+3*(xa(1,1)^3)*(cos(xa(1,2))^2)+27*(xa(1,1)^2)*cos(xa(1,2))));

while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) (cross3) (cross4)]);

t1=t0-((xa(end,3))/((xa(end,3)^2)/2+(xa(end,4)^2)-1+2*xa(end,4)*(xa(end,1)^(1.5))...
+3*(xa(end,1)^3)*(cos(xa(end,2))^2)+27*(xa(end,1)^2)*cos(xa(end,2))));

end

result2=[result2;xa(end,1) xa(end,2) xa(end,3) xa(end,4)];

end

A.2. Zooming around an Intersection Points

% Starting with one intersection point - manually input data set.

r=0.160203411681009;
teta=6.27888412224692;
v=-1.01602472095397e-12;
u=-0.184302691884947;

bt=27;

% The value of h is calculated with the data above for control and in order



% to use it to calculate u values inside the grid.

%control_h=(((v^2)+(u^2)-2-(3*(r^3)*((cos(teta))^2))-(54*(r^2)*(cos(teta))))/r);%

g=@(t,x) [x(3)*x(1);x(4);(x(3)^2)/2+(x(4)^2)-1+2*x(4)*(x(1)^(1.5))+3*(x(1)^3)*...
(cos(x(2))^2)+bt*(x(1)^2)*cos(x(2));-0.5*x(3)*x(4)-2*x(3)*(x(1)^(1.5))-3*...
(x(1)^3)*sin(x(2))*cos(x(2))-bt*(x(1)^2)*sin(x(2))];

% The set of values are transfered into different names to not cause a mess
% when the original set of data is used for the for loops.

r_set=r;
teta_set=teta;
v_set=v;
h=-21;
rings=[];

for i=(r-0.04):0.01:(r)

r_set=i;

for j=(teta):0.001:(teta)

teta_set=j;

u_set=(-1)*sqrt((r_set*(h))-(v_set^2)+2+(3*(r_set^3)*((cos(teta_set))^2))...
+((2*bt)*(r_set^2)*(cos(teta_set))));

%now we have [r_set,teta_set,v_set,u_set]%

t0=0;

[t,xa]=ode45(@(t,x) g(t,x), [t0 (t0+0.1)], [(r_set) (teta_set) ...
(v_set) (u_set)]);

Control=1;

while Control>=0

%t0=t0+0.1;

[t,xa]=ode45(@(t,x) g(t,x), [t0 (t0+0.1)], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))]);

Control=dot(xa(1,3),xa(end,3));

end



cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

t1=t0-((xa(1,3))/((xa(1,3)^2)/2+(xa(1,4)^2)-1+2*xa(1,4)*(xa(1,1)^(1.5))...
+3*(xa(1,1)^3)*(cos(xa(1,2))^2)+bt*(xa(1,1)^2)*cos(xa(1,2))));

while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) (cross3) (cross4)]);

t1=t0-((xa(end,3))/((xa(end,3)^2)/2+(xa(end,4)^2)-1+2*xa(end,4)*(xa(end,1)^(1.5))...
+3*(xa(end,1)^3)*(cos(xa(end,2))^2)+bt*(xa(end,1)^2)*cos(xa(end,2))));

end

rings=[rings;xa(end,1) xa(end,2) xa(end,3) xa(end,4)];

% After the first of crossing in v=0, the process is repeated 99
% more times to have 100 passes per data set.

for k=1:499

t0=0;

[t,xa]=ode45(@(t,x) g(t,x), [t0 (t0+0.1)], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))]);

Control=1;

while Control>=0

%t0=t0+0.1;

[t,xa]=ode45(@(t,x) g(t,x), [t0 (t0+0.1)], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))]);

Control=dot(xa(1,3),xa(end,3));

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);



t1=t0-((xa(1,3))/((xa(1,3)^2)/2+(xa(1,4)^2)-1+2*xa(1,4)*(xa(1,1)^(1.5))...
+3*(xa(1,1)^3)*(cos(xa(1,2))^2)+bt*(xa(1,1)^2)*cos(xa(1,2))));

while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) (cross3) (cross4)]);

t1=t0-((xa(end,3))/((xa(end,3)^2)/2+(xa(end,4)^2)-1+2*xa(end,4)*(xa(end,1)^(1.5))...
+3*(xa(end,1)^3)*(cos(xa(end,2))^2)+bt*(xa(end,1)^2)*cos(xa(end,2))));

end

rings=[rings;xa(end,1) xa(end,2) xa(end,3) xa(end,4)];

end

end

end

A.3. Zero-Velocity Curves

%Checking out the zero-velocity curves%

hh=-21;
btbt=27;

[x,y]=meshgrid(-0.5:0.01:0.5,-0.5:0.01:0.5);
z= -1*(2./sqrt(x.^2+y.^2)+3.*x.^2+2.*btbt.*x);
contourf(x,y,z,100)

[C,h]=contourf(x,y,z,100);
clabel(C,h)

A.4. Observation of Velocity on Various Starting Points

A.4.1. Negative x - Negative u

h=-21;
bt=27;



how_many_pass=2;

x0=-0.078829;
check_xdot=[];

options=odeset(’AbsTol’,1.e-12,’RelTol’,1.e-10);

g=@(t,x) [x(3)*x(1);x(4);(x(3)^2)/2+(x(4)^2)-1+2*x(4)*(x(1)^(1.5))+3*(x(1)^3)*...
(cos(x(2))^2)+bt*(x(1)^2)*cos(x(2));-0.5*x(3)*x(4)-2*x(3)*(x(1)^(1.5))-3*...
(x(1)^3)*sin(x(2))*cos(x(2))-bt*(x(1)^2)*sin(x(2))];

for i=(x0-0.0001):0.000001:(x0+0.0001)

hp=0;

x0_set=i;

r=(-1)*x0_set;
teta=pi;
v=0;
u=-sqrt(-(-r*h+v^2-2-3*r^3*(cos(teta))^2-2*bt*r^2*cos(teta)));

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(r) (teta) (v) (u)], options);
hp=hp+0.1;

Control=1;

while Control>=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

hp=hp+0.1;

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;



y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

hp=hp-0.1;

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))+(xa(1,1)*...
xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) (cross3) ...
(cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end

hp=hp+t0;

%For more than one passes%

for j=2:how_many_pass

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) (xa(end,3)) ...
(xa(end,4))], options);

hp=hp+0.1;

Control=(-1)^(j-1);

if Control==1

while Control>=0



[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

hp=hp+0.1;

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

else

while Control<=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

hp=hp+0.1;

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;



y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

end

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

hp=hp-0.1;

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))+(xa(1,1)*...
xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) (cross3) ...
(cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end

hp=hp+t0;

%Recording%

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;



q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

fp=hp*2;
check_xdot=[check_xdot;x0_set x y xdot ydot fp];

end

sz=1;

scatter(check_xdot(:,1),check_xdot(:,4),sz)

A.4.2. Negative x - Positive u

h=-21;
bt=27;

how_many_pass=6;

x0=-0.018226;
check_xdot=[];

options=odeset(’AbsTol’,1.e-12,’RelTol’,1.e-10);

g=@(t,x) [x(3)*x(1);x(4);(x(3)^2)/2+(x(4)^2)-1+2*x(4)*(x(1)^(1.5))+3*...
(x(1)^3)*(cos(x(2))^2)+bt*(x(1)^2)*cos(x(2));-0.5*x(3)*x(4)-2*x(3)*...
(x(1)^(1.5))-3*(x(1)^3)*sin(x(2))*cos(x(2))-bt*(x(1)^2)*sin(x(2))];

for i=(x0-0.0001):0.000001:(x0+0.0001)

hp=0;

x0_set=i;

r=(-1)*x0_set;
teta=pi;
v=0;
u=sqrt(-(-r*h+v^2-2-3*r^3*(cos(teta))^2-2*bt*r^2*cos(teta)));



[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(r) (teta) (v) (u)], options);
hp=hp+0.1;

Control=-1;

while Control<=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

hp=hp+0.1;

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

hp=hp-0.1;

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))+(xa(1,1)*...
xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6

t0=t1;



[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) (cross3) (cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end

hp=hp+t0;

%For more than one passes%

for j=2:how_many_pass

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

hp=hp+0.1;

Control=(-1)^j;

if Control==1

while Control>=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

hp=hp+0.1;

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;



end

else

while Control<=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

hp=hp+0.1;

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

end

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

hp=hp-0.1;

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))+...
(xa(1,1)*xa(1,4)*cos(xa(1,2)))));



while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) (cross3) ...
(cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end

hp=hp+t0;

%Recording%

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

fp=hp*2;
check_xdot=[check_xdot;x0_set x y xdot ydot fp];

end

sz=1;

scatter(check_xdot(:,1),check_xdot(:,4),sz)

A.4.3. Positive x - Negative u

h=-21;



bt=33;

how_many_pass=7;

x0=0.02;
check_xdot=[];

options=odeset(’AbsTol’,1.e-12,’RelTol’,1.e-10);

g=@(t,x) [x(3)*x(1);x(4);(x(3)^2)/2+(x(4)^2)-1+2*x(4)*(x(1)^(1.5))+3*...
(x(1)^3)*(cos(x(2))^2)+bt*(x(1)^2)*cos(x(2));-0.5*x(3)*x(4)-2*x(3)*...
(x(1)^(1.5))-3*(x(1)^3)*sin(x(2))*cos(x(2))-bt*(x(1)^2)*sin(x(2))];

for i=(x0-0.01):0.0001:(x0+0.11)

hp=0;

x0_set=i;

r=(1)*x0_set;
teta=0;
v=0;
u=-sqrt(-(-r*h+v^2-2-3*r^3*(cos(teta))^2-2*bt*r^2*cos(teta)));

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(r) (teta) (v) (u)], options);
hp=hp+0.1;

Control=-1;

while Control<=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

hp=hp+0.1;

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);



x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

hp=hp-0.1;

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))+(xa(1,1)*...
xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) (cross3) ...
(cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end

hp=hp+t0;

%For more than one passes%

for j=2:how_many_pass

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

hp=hp+0.1;

Control=(-1)^j;

if Control==1

while Control>=0



[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

hp=hp+0.1;

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

else

while Control<=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2))...
(xa(end,3)) (xa(end,4))], options);

hp=hp+0.1;

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);



x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

end

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

hp=hp-0.1;

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))+(xa(1,1)*...
xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) ...
(cross3) (cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end

hp=hp+t0;

%Recording%

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;



q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

fp=hp*2;
check_xdot=[check_xdot;x0_set x y xdot ydot fp];

end

sz=1;

scatter(check_xdot(:,1),check_xdot(:,4),sz)

A.4.4. Positive x - Positive u

h=-21;
bt=27;

how_many_pass=5;

x0=0.128482;
check_xdot=[];

options=odeset(’AbsTol’,1.e-12,’RelTol’,1.e-10);

g=@(t,x) [x(3)*x(1);x(4);(x(3)^2)/2+(x(4)^2)-1+2*x(4)*(x(1)^(1.5))+3*...
(x(1)^3)*(cos(x(2))^2)+bt*(x(1)^2)*cos(x(2));-0.5*x(3)*x(4)-2*x(3)*...
(x(1)^(1.5))-3*(x(1)^3)*sin(x(2))*cos(x(2))-bt*(x(1)^2)*sin(x(2))];

for i=(x0-0.0001):0.000001:(x0+0.0001)

hp=0;

x0_set=i;

r=(1)*x0_set;
teta=0;
v=0;
u=sqrt(-(-r*h+v^2-2-3*r^3*(cos(teta))^2-2*bt*r^2*cos(teta)));



[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(r) (teta) (v) (u)], options);
hp=hp+0.1;

Control=1;

while Control>=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

hp=hp+0.1;

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

hp=hp-0.1;

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))+...
(xa(1,1)*xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6



t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) ...
(cross3) (cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end

hp=hp+t0;

%For more than one passes%

for j=2:how_many_pass

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

hp=hp+0.1;

Control=(-1)^(j-1);

if Control==1

while Control>=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

hp=hp+0.1;

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;



Control=y;

end

else

while Control<=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

hp=hp+0.1;

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

end

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

hp=hp-0.1;

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))+...



(xa(1,1)*xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) ...
(cross3) (cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end

hp=hp+t0;

%Recording%

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

fp=hp*2;
check_xdot=[check_xdot;x0_set x y xdot ydot fp];

end

sz=1;

scatter(check_xdot(:,1),check_xdot(:,4),sz)



A.5. Characteristic Curves

A.5.1. Negative x - Negative u

%Finding the characteristic curve%

char_curve=[];
period_curve=[];

for k=(-21):(-0.01):(-21.1)

h=k;
bt=27;

how_many_pass=2;

x0=-0.0788;
check_xdot=[];

options=odeset(’AbsTol’,1.e-12,’RelTol’,1.e-10);

g=@(t,x) [x(3)*x(1);x(4);(x(3)^2)/2+(x(4)^2)-1+2*x(4)*(x(1)^(1.5))...
+3*(x(1)^3)*(cos(x(2))^2)+bt*(x(1)^2)*cos(x(2));-0.5*x(3)*x(4)...
-2*x(3)*(x(1)^(1.5))-3*(x(1)^3)*sin(x(2))*cos(x(2))-bt*(x(1)^2)*sin(x(2))];

for i=(x0-0.0001):0.0002:(x0+0.0001)

x0_set=i;

r=(-1)*x0_set;
teta=pi;
v=0;
u=-sqrt(-(-r*h+v^2-2-3*r^3*(cos(teta))^2-2*bt*r^2*cos(teta)));

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(r) (teta) (v) (u)], options);

Control=1;

while Control>=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);



pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))...
+(xa(1,1)*xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) ...
(cross3) (cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end

%For more than one passes%

for j=2:how_many_pass

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

Control=(-1)^(j-1);



if Control==1

while Control>=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

else

while Control<=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);



p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

end

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))+...
(xa(1,1)*xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) ...
(cross3) (cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end

%Recording%

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);



q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

check_xdot=[check_xdot;x0_set x y xdot ydot];

end

sol_step=(check_xdot(1,1)*check_xdot(2,4)-check_xdot(2,1)*check_xdot(1,4))/...
(check_xdot(2,4)-check_xdot(1,4));

x0_set=sol_step;

r=(-1)*x0_set;
teta=pi;
v=0;
u=-sqrt(-(-r*h+v^2-2-3*r^3*(cos(teta))^2-2*bt*r^2*cos(teta)));

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(r) (teta) (v) (u)], options);

Control=1;

while Control>=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;



ydot=p2-x;

Control=y;

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))+...
(xa(1,1)*xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) ...
(cross3) (cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end

%For more than one passes%

for j=2:how_many_pass

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

Control=(-1)^(j-1);

if Control==1

while Control>=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);



pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

else

while Control<=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

end



end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))+...
(xa(1,1)*xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) ...
(cross3) (cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end

%Recording%

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

%Finding the spot with a tolerance%

while abs(xdot)>1e-6



if xdot<=0

open=sol_step;
close=check_xdot(2,1);

else

open=check_xdot(1,1);
close=sol_step;

end

check_xdot=[];

for i=(open):(close-open):(close)

x0_set=i;

r=(-1)*x0_set;
teta=pi;
v=0;
u=-sqrt(-(-r*h+v^2-2-3*r^3*(cos(teta))^2-2*bt*r^2*cos(teta)));

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(r) (teta) (v) (u)], options);

Control=1;

while Control>=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;



xdot=p1+y;
ydot=p2-x;

Control=y;

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))...
+(xa(1,1)*xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) ...
(cross3) (cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end

%For more than one passes%

for j=2:how_many_pass

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

Control=(-1)^(j-1);

if Control==1

while Control>=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);



u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

else

while Control<=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end



end

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))...
+(xa(1,1)*xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) ...
(cross3) (cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end

%Recording%

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

check_xdot=[check_xdot;x0_set x y xdot ydot];



end

hp=0;

sol_step=(check_xdot(1,1)*check_xdot(2,4)-check_xdot(2,1)*check_xdot(1,4))/...
(check_xdot(2,4)-check_xdot(1,4));

x0_set=sol_step;

r=(-1)*x0_set;
teta=pi;
v=0;
u=-sqrt(-(-r*h+v^2-2-3*r^3*(cos(teta))^2-2*bt*r^2*cos(teta)));

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(r) (teta) (v) (u)], options);
hp=hp+0.1;

Control=1;

while Control>=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

hp=hp+0.1;

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

hp=hp-0.1;



cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))+...
(xa(1,1)*xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) ...
(cross3) (cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end

hp=hp+t0;

%For more than one passes%

for j=2:how_many_pass

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

hp=hp+0.1;

Control=(-1)^(j-1);

if Control==1

while Control>=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

hp=hp+0.1;

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);



pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

else

while Control<=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

hp=hp+0.1;

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

end



end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

hp=hp-0.1;

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))+...
(xa(1,1)*xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) ...
(cross3) (cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end

hp=hp+t0;

%Recording%

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;



end

char_curve=[char_curve;h sol_step];
fp=hp*2;
period_curve=[period_curve;h fp];

end

plot(char_curve(:,1),char_curve(:,2))
%plot(period_curve(:,1),period_curve(:,2))

A.5.2. Negative x - Positive u

%Finding the characteristic curve%

char_curve=[];
period_curve=[];

for k=(-21):(-0.0001):(-21.0001)

h=k;
bt=27;

how_many_pass=6;

x0=-0.018226;
check_xdot=[];

options=odeset(’AbsTol’,1.e-12,’RelTol’,1.e-10);

g=@(t,x) [x(3)*x(1);x(4);(x(3)^2)/2+(x(4)^2)-1+2*x(4)*(x(1)^(1.5))+...
3*(x(1)^3)*(cos(x(2))^2)+bt*(x(1)^2)*cos(x(2));-0.5*x(3)*x(4)-2*...
x(3)*(x(1)^(1.5))-3*(x(1)^3)*sin(x(2))*cos(x(2))-bt*(x(1)^2)*sin(x(2))];

for i=(x0-0.0001):0.0002:(x0+0.0001)

x0_set=i;

r=(-1)*x0_set;
teta=pi;
v=0;
u=sqrt(-(-r*h+v^2-2-3*r^3*(cos(teta))^2-2*bt*r^2*cos(teta)));

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(r) (teta) (v) (u)], options);



Control=-1;

while Control<=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))+...
(xa(1,1)*xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) ...
(cross3) (cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));



end

%For more than one passes%

for j=2:how_many_pass

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2))...
(xa(end,3)) (xa(end,4))], options);

Control=(-1)^j;

if Control==1

while Control>=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2))...
(xa(end,3)) (xa(end,4))], options);

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

else

while Control<=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);



r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

end

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))+...
(xa(1,1)*xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) ...
(cross3) (cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end



%Recording%

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

check_xdot=[check_xdot;x0_set x y xdot ydot];

end

sol_step=(check_xdot(1,1)*check_xdot(2,4)-check_xdot(2,1)*check_xdot(1,4))/...
(check_xdot(2,4)-check_xdot(1,4));

x0_set=sol_step;

r=(-1)*x0_set;
teta=pi;
v=0;
u=sqrt(-(-r*h+v^2-2-3*r^3*(cos(teta))^2-2*bt*r^2*cos(teta)));

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(r) (teta) (v) (u)], options);

Control=-1;

while Control<=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);



pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))+...
(xa(1,1)*xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) ...
(cross3) (cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end

%For more than one passes%

for j=2:how_many_pass

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

Control=(-1)^j;



if Control==1

while Control>=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

else

while Control<=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2))...
(xa(end,3)) (xa(end,4))], options);

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);



x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

end

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))+...
(xa(1,1)*xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) ...
(cross3) (cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end

%Recording%

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);



p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

%Finding the spot with a tolerance%

while abs(xdot)>1e-6

if xdot<=0

open=sol_step;
close=check_xdot(2,1);

else

open=check_xdot(1,1);
close=sol_step;

end

check_xdot=[];

for i=(open):(close-open):(close)

x0_set=i;

r=(-1)*x0_set;
teta=pi;
v=0;
u=sqrt(-(-r*h+v^2-2-3*r^3*(cos(teta))^2-2*bt*r^2*cos(teta)));

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(r) (teta) (v) (u)], options);

Control=-1;

while Control<=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);



pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))...
+(xa(1,1)*xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) ...
(cross3) (cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end

%For more than one passes%

for j=2:how_many_pass

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

Control=(-1)^j;



if Control==1

while Control>=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

else

while Control<=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);



p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

end

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))...
+(xa(1,1)*xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) ...
(cross3) (cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end

%Recording%

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);



q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

check_xdot=[check_xdot;x0_set x y xdot ydot];

end

hp=0;

sol_step=(check_xdot(1,1)*check_xdot(2,4)-check_xdot(2,1)*check_xdot(1,4))/...
(check_xdot(2,4)-check_xdot(1,4));

x0_set=sol_step;

r=(-1)*x0_set;
teta=pi;
v=0;
u=sqrt(-(-r*h+v^2-2-3*r^3*(cos(teta))^2-2*bt*r^2*cos(teta)));

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(r) (teta) (v) (u)], options);
hp=hp+0.1;

Control=1;

while Control<=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

hp=hp+0.1;

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);



x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

hp=hp-0.1;

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))+...
(xa(1,1)*xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) ...
(cross3) (cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end

hp=hp+t0;

%For more than one passes%

for j=2:how_many_pass

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

hp=hp+0.1;

Control=(-1)^j;

if Control==1



while Control>=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

hp=hp+0.1;

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

else

while Control<=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

hp=hp+0.1;

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);



x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

end

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

hp=hp-0.1;

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))+...
(xa(1,1)*xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) ...
(cross3) (cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end

hp=hp+t0;

%Recording%

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);



pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

end

char_curve=[char_curve;h sol_step];
fp=hp*2;
period_curve=[period_curve;h fp];

end

plot(char_curve(:,1),char_curve(:,2))
%plot(period_curve(:,1),period_curve(:,2))

A.5.3. Positive x - Negative u

%Finding the characteristic curve%

char_curve=[];
period_curve=[];

for k=(-21):(-0.02):(-21.3)

h=k;
bt=27;

how_many_pass=4;

x0=0.1546;
check_xdot=[];

options=odeset(’AbsTol’,1.e-12,’RelTol’,1.e-10);

g=@(t,x) [x(3)*x(1);x(4);(x(3)^2)/2+(x(4)^2)-1+2*x(4)*(x(1)^(1.5))+...
3*(x(1)^3)*(cos(x(2))^2)+bt*(x(1)^2)*cos(x(2));-0.5*x(3)*x(4)-2*...
x(3)*(x(1)^(1.5))-3*(x(1)^3)*sin(x(2))*cos(x(2))-bt*(x(1)^2)*sin(x(2))];



for i=(x0-0.0001):0.0002:(x0+0.0001)

x0_set=i;

r=(1)*x0_set;
teta=0;
v=0;
u=-sqrt(-(-r*h+v^2-2-3*r^3*(cos(teta))^2-2*bt*r^2*cos(teta)));

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(r) (teta) (v) (u)], options);

Control=-1;

while Control<=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))+...



(xa(1,1)*xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) ...
(cross3) (cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end

%For more than one passes%

for j=2:how_many_pass

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

Control=(-1)^j;

if Control==1

while Control>=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;



Control=y;

end

else

while Control<=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

end

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))+...
(xa(1,1)*xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6



t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) ...
(cross3) (cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end

%Recording%

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

check_xdot=[check_xdot;x0_set x y xdot ydot];

end

sol_step=(check_xdot(1,1)*check_xdot(2,4)-check_xdot(2,1)*check_xdot(1,4))/...
(check_xdot(2,4)-check_xdot(1,4));

x0_set=sol_step;

r=(1)*x0_set;
teta=0;
v=0;
u=-sqrt(-(-r*h+v^2-2-3*r^3*(cos(teta))^2-2*bt*r^2*cos(teta)));

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(r) (teta) (v) (u)], options);

Control=-1;



while Control<=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))+...
(xa(1,1)*xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) ...
(cross3) (cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));



end

%For more than one passes%

for j=2:how_many_pass

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

Control=(-1)^j;

if Control==1

while Control>=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

else

while Control<=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

r=xa(end,1);



teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

end

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))+...
(xa(1,1)*xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) ...
(cross3) (cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end

%Recording%



r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

%Finding the spot with a tolerance%

while abs(xdot)>1e-6

if xdot<=0

open=sol_step;
close=check_xdot(2,1);

else

open=check_xdot(1,1);
close=sol_step;

end

check_xdot=[];

for i=(open):(close-open):(close)

x0_set=i;

r=(1)*x0_set;
teta=0;
v=0;
u=-sqrt(-(-r*h+v^2-2-3*r^3*(cos(teta))^2-2*bt*r^2*cos(teta)));

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(r) (teta) (v) (u)], options);



Control=-1;

while Control<=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))...
+(xa(1,1)*xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2)...
(cross3) (cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));



end

%For more than one passes%

for j=2:how_many_pass

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

Control=(-1)^j;

if Control==1

while Control>=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

else

while Control<=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);



r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

end

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))...
+(xa(1,1)*xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) ...
(cross3) (cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end



%Recording%

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

check_xdot=[check_xdot;x0_set x y xdot ydot];

end

hp=0;

sol_step=(check_xdot(1,1)*check_xdot(2,4)-check_xdot(2,1)*check_xdot(1,4))/...
(check_xdot(2,4)-check_xdot(1,4));

x0_set=sol_step;

r=(1)*x0_set;
teta=0;
v=0;
u=-sqrt(-(-r*h+v^2-2-3*r^3*(cos(teta))^2-2*bt*r^2*cos(teta)));

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(r) (teta) (v) (u)], options);
hp=hp+0.1;

Control=-1;

while Control<=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

hp=hp+0.1;

r=xa(end,1);



teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

hp=hp-0.1;

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))+...
(xa(1,1)*xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) ...
(cross3) (cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end

hp=hp+t0;

%For more than one passes%



for j=2:how_many_pass

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

hp=hp+0.1;

Control=(-1)^j;

if Control==1

while Control>=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

hp=hp+0.1;

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

else

while Control<=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

hp=hp+0.1;

r=xa(end,1);



teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

end

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

hp=hp-0.1;

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))+...
(xa(1,1)*xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) ...
(cross3) (cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end



hp=hp+t0;

%Recording%

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

end

char_curve=[char_curve;h sol_step];
fp=hp*2;
period_curve=[period_curve;h fp];

end

plot(char_curve(:,1),char_curve(:,2))
%plot(period_curve(:,1),period_curve(:,2))

A.5.4. Positive x - Positive u

%Finding the characteristic curve%

char_curve=[];
period_curve=[];

for k=(-21):(-0.02):(-21.08)

h=k;
bt=27;



how_many_pass=7;

x0=0.161150;
check_xdot=[];

options=odeset(’AbsTol’,1.e-12,’RelTol’,1.e-10);

g=@(t,x) [x(3)*x(1);x(4);(x(3)^2)/2+(x(4)^2)-1+2*x(4)*(x(1)^(1.5))+...
3*(x(1)^3)*(cos(x(2))^2)+bt*(x(1)^2)*cos(x(2));-0.5*x(3)*x(4)-2*...
x(3)*(x(1)^(1.5))-3*(x(1)^3)*sin(x(2))*cos(x(2))-bt*(x(1)^2)*sin(x(2))];

for i=(x0-0.001):0.002:(x0+0.001)

x0_set=i;

r=(1)*x0_set;
teta=0;
v=0;
u=sqrt(-(-r*h+v^2-2-3*r^3*(cos(teta))^2-2*bt*r^2*cos(teta)));

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(r) (teta) (v) (u)], options);

Control=1;

while Control>=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;



end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))+...
(xa(1,1)*xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) ...
(cross3) (cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end

%For more than one passes%

for j=2:how_many_pass

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

Control=(-1)^(j-1);

if Control==1

while Control>=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2))...
(xa(end,3)) (xa(end,4))], options);

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;



q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

else

while Control<=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

end

end



cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))+...
(xa(1,1)*xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) ...
(cross3) (cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end

%Recording%

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

check_xdot=[check_xdot;x0_set x y xdot ydot];

end

sol_step=(check_xdot(1,1)*check_xdot(2,4)-check_xdot(2,1)*check_xdot(1,4))/...
(check_xdot(2,4)-check_xdot(1,4));



x0_set=sol_step;

r=(1)*x0_set;
teta=0;
v=0;
u=sqrt(-(-r*h+v^2-2-3*r^3*(cos(teta))^2-2*bt*r^2*cos(teta)));

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(r) (teta) (v) (u)], options);

Control=-1;

while Control<=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))+...
(xa(1,1)*xa(1,4)*cos(xa(1,2)))));



while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) ...
(cross3) (cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end

%For more than one passes%

for j=2:how_many_pass

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

Control=(-1)^(j-1);

if Control==1

while Control>=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;



end

else

while Control<=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

end

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))+...
(xa(1,1)*xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6



t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) ...
(cross3) (cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end

%Recording%

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

%Finding the spot with a tolerance%

while abs(xdot)>1e-6

if xdot<=0

open=sol_step;
close=check_xdot(2,1);

else

open=check_xdot(1,1);
close=sol_step;

end

check_xdot=[];



for i=(open):(close-open):(close)

x0_set=i;

r=(1)*x0_set;
teta=0;
v=0;
u=sqrt(-(-r*h+v^2-2-3*r^3*(cos(teta))^2-2*bt*r^2*cos(teta)));

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(r) (teta) (v) (u)], options);

Control=-1;

while Control<=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))...



+(xa(1,1)*xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) ...
(cross3) (cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end

%For more than one passes%

for j=2:how_many_pass

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

Control=(-1)^(j-1);

if Control==1

while Control>=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;



Control=y;

end

else

while Control<=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

end

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))...
+(xa(1,1)*xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6



t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) ...
(cross3) (cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end

%Recording%

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

check_xdot=[check_xdot;x0_set x y xdot ydot];

end

hp=0;

sol_step=(check_xdot(1,1)*check_xdot(2,4)-check_xdot(2,1)*check_xdot(1,4))/...
(check_xdot(2,4)-check_xdot(1,4));

x0_set=sol_step;

r=(1)*x0_set;
teta=0;
v=0;
u=sqrt(-(-r*h+v^2-2-3*r^3*(cos(teta))^2-2*bt*r^2*cos(teta)));

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(r) (teta) (v) (u)], options);



hp=hp+0.1;

Control=-1;

while Control<=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

hp=hp+0.1;

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

hp=hp-0.1;

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))+...
(xa(1,1)*xa(1,4)*cos(xa(1,2)))));

while abs(t1-t0)>1e-6

t0=t1;



[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) ...
(cross3) (cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end

hp=hp+t0;

%For more than one passes%

for j=2:how_many_pass

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

hp=hp+0.1;

Control=(-1)^(j-1);

if Control==1

while Control>=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

hp=hp+0.1;

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;



end

else

while Control<=0

[t,xa]=ode45(@(t,x) g(t,x), [0 0.1], [(xa(end,1)) (xa(end,2)) ...
(xa(end,3)) (xa(end,4))], options);

hp=hp+0.1;

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

Control=y;

end

end

end

cross1=xa(1,1);
cross2=xa(1,2);
cross3=xa(1,3);
cross4=xa(1,4);

hp=hp-0.1;

t0=0;

t1=t0-((xa(1,1)*sin(xa(1,2)))/((xa(1,3)*xa(1,1)*sin(xa(1,2)))+...
(xa(1,1)*xa(1,4)*cos(xa(1,2)))));



while abs(t1-t0)>1e-6

t0=t1;

[t,xa]=ode45(@(t,x) g(t,x), [0 t0], [(cross1) (cross2) ...
(cross3) (cross4)], options);

t1=t0-((xa(end,1)*sin(xa(end,2)))/((xa(end,3)*xa(end,1)*sin(xa(end,2)))...
+(xa(end,1)*xa(end,4)*cos(xa(end,2)))));

end

hp=hp+t0;

%Recording%

r=xa(end,1);
teta=xa(end,2);
v=xa(end,3);
u=xa(end,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);
p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

end

char_curve=[char_curve;h sol_step];
fp=hp*2;
period_curve=[period_curve;h fp];

end

plot(char_curve(:,1),char_curve(:,2))
%plot(period_curve(:,1),period_curve(:,2))



A.6. Plotting Orbits

clear all
close all
dr=@(r,th,v,u) r*v;
dth=@(r,th,v,u) u;
dv=@(r,th,v,u) v^2/2+u^2-1+2*u*r^(3/2)+3*r^3*(cos(th))^2-27*r^2*cos(th);
du=@(r,th,v,u) -(1/2)*u*v-2*v*r^(3/2)-3*r^3*cos(th)*sin(th)+27*r^2*sin(th);
deriv=@(t,X) [dr(X(1),X(2),X(3),X(4)); dth(X(1),X(2),X(3),X(4));...
dv(X(1),X(2),X(3),X(4));du(X(1),X(2),X(3),X(4))];
h=-30;
rr=0.06;
thth=pi;
vv=0;
uu=-sqrt(-(-rr*h+vv^2-2-3*rr^3*(cos(thth))^2+54*rr^2*cos(thth)));
Xini=[rr,thth,vv,uu];
%
options=odeset(’AbsTol’,1.e-12,’RelTol’,1.e-10);
%
[t,X]=ode45(deriv,[0,100],Xini,options);
%
length(t)
jacobi=(h*X(:,1))-(X(:,3).^2+X(:,4).^2-2-3*X(:,1).^3.*(cos(X(:,2))).^2...
+54*X(:,1).^2.*cos(X(:,2)));

A.7. Period and Range

% clear all
% close all

[m,n]=size(char_curve);
the_range=[];
real_time=[];

for z=1:1:m

h_set=char_curve(z,1);
rr_set=char_curve(z,2);

bt=27;

dr=@(r,th,v,u,T) r*v;
dth=@(r,th,v,u,T) u;
dv=@(r,th,v,u,T) v^2/2+u^2-1+2*u*r^(3/2)+3*r^3*(cos(th))^2+bt*r^2*cos(th);
du=@(r,th,v,u,T) -(1/2)*u*v-2*v*r^(3/2)-3*r^3*cos(th)*sin(th)-bt*r^2*sin(th);



dT=@(r,th,v,u,T) r^(1.5);
deriv=@(t,X) [dr(X(1),X(2),X(3),X(4),X(5)); dth(X(1),X(2),X(3),X(4),X(5));dv(X(1)...

,X(2),X(3),X(4),X(5));du(X(1),X(2),X(3),X(4),X(5));dT(X(1),X(2),X(3),X(4),X(5))];
h=h_set;
rr=-1*rr_set;
thth=pi;
vv=0;
uu=-sqrt(-(-rr*h+vv^2-2-3*rr^3*(cos(thth))^2-2*bt*rr^2*cos(thth)));
TT=0;
Xini=[rr,thth,vv,uu,TT];
%
options=odeset(’AbsTol’,1.e-12,’RelTol’,1.e-10); % precision of the method
% the default is AbsTol=1.e-6 and RelTol=1.e-3
[t,X]=ode45(deriv,[0,period_curve(z,2)],Xini,options);
%
length(t)
jacobi=(h*X(:,1))-(X(:,3).^2+X(:,4).^2-2-3*X(:,1).^3.*(cos(X(:,2))).^2...

-2*bt*X(:,1).^2.*cos(X(:,2)));

minr=min(X(:,1));
maxr=max(X(:,1));
the_range=[the_range;h minr maxr];
real_time=[real_time; X(end,5)];

end

plot(the_range(:,1),the_range(:,2)) %or (:,3)
plot(the_range(:,1),real_time(:,1));

%Beyond this point is for plotting the orbit%
%plot(X(:,1).*cos(X(:,2)),X(:,1).*sin(X(:,2)))

j=ans;

orbit_xy=[];

for i=1:j

r=X(i,1);
teta=X(i,2);
v=X(i,3);
u=X(i,4);

pr=v*r^(-1/2);
pteta=u*r^(1/2)+r^2;

q1=r*cos(teta);
q2=r*sin(teta);



p1=pr*cos(teta)-(pteta/r)*sin(teta);
p2=pr*sin(teta)+(pteta/r)*cos(teta);

x=q1;
y=q2;
xdot=p1+y;
ydot=p2-x;

orbit_xy=[orbit_xy;x y xdot ydot];

end

plot(orbit_xy(:,1),orbit_xy(:,2))
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