
Development of a WebApp for testing and tuning a Formula Student Page 1

Summary

Formula Student is a world-wide engineering competition where students from different
universities work to design, build, test and race a single-seater. ETSEIB Motorsport is the
Formula Student team of ETSEIB that has taken part in this competition since 2007,
developing year after year a new prototype.

In order to increase the performance of a car on track, the testing phase is key. During this
phase, different parameters of the vehicle are modified in order to study its influence on the
performance of the car and find the best range of values for each one to obtain the best
performance during the competition.

This project aims to implement a tool to ease and standardize the testing procedure in the
ETSEIB Motorsport team. The main goals are to find a solution that allows the team to register
data following a standard procedure, that is device and location independent to guarantee
access to all team members and, finally, that allows to export the registered data for further
analysis with other software tools.

To meet the requirements, a web application has been developed using the Django
Framework. The final output is a tool that meets all initial requirements and eases the
procedure of data registration and consultation during the testing sessions with the prototypes
developed by ETSEIB Motorsport.

Page 2 Report

Development of a WebApp for testing and tuning a Formula Student Page 3

Index
SUMMARY ___ 1

INDEX ___ 3

INDEX OF FIGURES__ 5

INDEX OF TABLES __ 7

GLOSSARY___ 8

1. PREFACE __ 9
1.1. Formula Student ... 9
1.2. ETSEIB Motorsport .. 11
1.3. Project origin ... 12
1.4. Motivations ... 13

2. INTRODUCTION __ 14
2.1. Project Objectives .. 14
2.2. Project Scope ... 14

3. BACKGROUND AND VIABILITY STUDIES.____________________ 15
3.1. CAT09e... 15
3.2. CAT10e... 17
3.3. Future requirements ... 18
3.4. Final Functionalities. .. 19

3.4.1. Registration of a testing session. .. 19
3.4.2. Request old data ... 21

4. STUDY OF POSSIBLE SOLUTIONS. _________________________ 22
4.1. Study of the tools for the implementation of a WebApp 22

4.1.1. Front-end ... 22
4.1.2. Framework ... 23

4.2. Django structure and basic concepts. ... 24
4.2.1. Django Templates, Blocks and Variables. ... 25
4.2.2. Django Models and Forms. ... 26
4.2.3. Django Views... 26

5. IMPLEMENTATION. _______________________________________ 28
5.1. Solution schema. .. 28
5.2. Solution internal structure. ... 30

Page 4 Report

5.3. User interface. .. 31
5.3.1. Templates .. 32
5.3.2. Blocks .. 41

5.4. Registration of data .. 42
5.4.1. Django Models .. 42

5.5. Consultation of data. .. 47
5.5.1. Onsite. Data Tables. ... 47
5.5.2. Downloading data. .. 48

5.5.2.1. Import_Export Library Approach. .. 49

5.5.2.2. Django Utils Approach. .. 50
5.6. Data manipulation. ... 51

5.6.1. Lap time analysis. ... 51
5.6.2. Parameters of best result. ... 52

6. TEST AND VALIDATION. ___________________________________ 54
6.1. Detected errors and correction .. 54

7. ECONOMIC STUDY. _______________________________________ 56
7.1. Human Resources ... 56
7.2. Hardware and Software ... 57
7.3. Final Cost .. 57

8. ENVIRONMENTAL IMPACT. ________________________________ 58

9. PLANIFICATION. ___ 59

CONCLUSIONS __ 61

ACKNOWLEDGEMENTS _______________________________________ 62

BIBLIOGRAPHY __ 63
Bibliographic references .. 63
Complementary bibliography ... 64

Development of a WebApp for testing and tuning a Formula Student Page 5

Index of Figures

Figure 1.1 CAT10e (season 2016-2017) during a testing session at Castellolí facilities 12

Figure 3.1 Testing template during season 2015-2016. Registration of Setup parameters. The
Setdown template register the same parameters but at the end of the session. 16

Figure 3.2 Template for Skid Pad event used in season 2016-2017 by ETSEIB Motorsport in
the development of the CAT10e. .. 17

Figure 3.3 Process to create a new testing session... 20

Figure 4.1 Django architecture. Visual representation of the interaction between the different
components of a Django project whenever a user is interaction with the web. 25

Figure 5.1 User path along the application following the logical structure starting from the Home
page ... 29

Figure 5.2 View for driver registration. At the top of the page it is displayed the navigation bar.
Centered on the page is the form with the different fields requested to create a new driver
profile. .. 32

Figure 5.3 View of the page with the driver's table. .. 33

Figure 5.4 View of the page concerning the creation of a new testing session 34

Figure 5.5 View for run registration of an Autocross. ... 35

Figure 5.6 View for run registration of an Autocross. The form to register the impact on the
vehicle is hidden while the information about the setup being used is displayed. 38

Figure 5.7 View of the results from the different testing sessions from the Autocross event. 40

Figure 5.8 View of the Best Results page with all fields hidden .. 40

Figure 5.9 View of the Best Results page with all fields displayed .. 41

Figure 5.10 Testing and Driver Models. The figure shows the different fields and tables
composing each model and the relations between them... 43

Figure 5.11 Results, Acceleration, Autocross and Skid Pad Models. The figure shows the
different fields and tables composing each model and the relations between them. 44

Page 6 Report

Figure 5.12 Lap Time and Endurance Models. The figure shws the different fields and tables
composing each model and the relations between them .. 45

Figure 5.13 Relation between different fields along different models. 48

Figure 9.1 Temporal planning of the project. ... 60

Development of a WebApp for testing and tuning a Formula Student Page 7

Index of Tables

Table 7.1 Detailed Human Resources cost of the project ... 56

Table 7.2 Detailed Hardware and Software costs .. 57

Table 8.1 CO2 emissions calculation. ... 58

Page 8 Report

Glossary

Event Each of the different tests in which a Formula Student competition is divided.

Parameters Configurable parts of the prototype that are object of study in the performance
of the car.

Framework In terms of Web, it is a collection of packages or modules which allow
developers to write Web applications without having to handle such low-level
details as protocols, sockets or process/thread management.

SOC State of Charge. Percentage of energy available.

DRS Drag Reduction System.

HTML HyperText Markup Language

CSS Cascade Style Sheets

JS JavaScript

WSGI Web Server Gateway Interface. Calling convention for web servers to forward
requests to web applications or frameworks written in the Python programming
language

RWD Responsive Web Design. Approach in web design that renders web pages
adapting to its size.

Werkzeug Python WSGI utility library

Jinja2 Templating language for Python

Development of a WebApp for testing and tuning a Formula Student Page 9

1. Preface

1.1. Formula Student

Formula Student is a world-wide engineering competition where students have to design, build
and race a single-seater. This competition has its origins in 1981 in the United States when
the first event was organized by the Society of Automotive Engineering under the name of
Formula SAE. Years later, in 1998, the first European competition took place in the United
Kingdom organized by IMechE (The Institution of Mechanical Engineers) under the name of
Formula Student.

Since this days, the competition has spread all around the globe holding competitions in Japan,
Australia, different locations in Europe and America among others. This competition aims to
approach students to real world problems and, as a consequence, narrow the gap between
industry and university.

Teams can take part into two different categories: combustion vehicles or electric vehicles.
Both categories take part in the same competition structure. It is based on different events
where both the vehicle performance and the engineering skills of the teams are evaluated.
Each competition can be divided into three parts:

• Scrutineering. Technical inspection of the vehicle. The aim is to determine whether the
vehicle has been designed and built under the rules stablished by the competition.
These rules have as purpose to guarantee the safety of the vehicle towards the driver
and all the other attendants to the competition. It has no effect on the final score of the
team, but it is necessary to succeed it to be able to take part in the dynamic events.

• Static events (325p). Three events with the aim to evaluate the engineering skills of
the team.

o Business Plan Event (75p). Students have to develop a business plan based
on their built car and presented to an investors’ committee which is represented
by the judges.

o Cost and Manufacturing Event (100p). The event consists on the development
of a written report and a discussion with judges about the cost of the vehicle
and its manufacturing process. Different documents are hand on where it is
detailed the BOM of the prototype, the cost of required parts and alternative
manufacturing processes to reduce the price or carbon footprint among other

Page 10 Report

factors.

o Design Event (150p). The team has to present to judges - experts in the field -
their prototype in terms of design. Design choices, evaluation of alternatives
and the whole process followed to achieve the final solution are evaluated.

• Dynamic events (675p). The performance of the vehicle is evaluated on the track.

o Acceleration (75p). The vehicle proves its acceleration capacity in a 75m
straight.

o Skid Pad (75p). Its aim is to prove the lateral acceleration capacity of the vehicle
in an “eight-shape” circuit. The prototype has to perform two consecutive laps
on each circle and only the second one is taken into account for the score.

o Autocross (100p). The single-seater races on a circuit of around one-kilometre
length through straights and curves. The time performed is taken into account
as a reflex of the driving dynamics and handling qualities of the vehicle.

Figure. 1.1. Distribution of the score for a Formula Student event [1].

Development of a WebApp for testing and tuning a Formula Student Page 11

o Endurance (325p). A 22km race proves the durability of the vehicle under long-
term conditions. The race is completed by two drivers, each one performing
11km and with an intermediate stop to do a driver change.
During the endurance, also the efficiency (100p) of the vehicle is evaluated as
their fuel consumption or battery usage, depending on the vehicle type.

1.2. ETSEIB Motorsport

ETSEIB Motorsport is the Formula Student team of the Escola Tècnica Superior d’Enginyeria
Industrial de Barcelona. This team has taken part in the competition since 2007. During the
first four years, the team took part in the combustion category developing four different cars:
from CAT01 to CAT04. In 2011 the team moved to the electric category developing its first
single-seater: the CAT05e. Since that year ETSEIB Motorsport has developed a new vehicle
year after year evolving through the time and obtaining great results in the different
competitions.

Last year’s season the team celebrated its tenth anniversary developing the CAT10e. This
prototype is the sixth designed and built in the electric category. Its development structured
the season in the following parts:

• Design. The design process implies defining the whole vehicle in terms of size,
structure, materials, etc. A final CAD of the vehicle is achieved as a result.

• Build. The previously defined design becomes real. All the parts that make up the
vehicle are manufactured and assembled together. The result is a ready-to-race
prototype.

• Test. The vehicle needs to be tested and tuned before taking part in the competitions
to ensure the best possible results are achieved. The time performed on the different
events under different conditions is measured and studied to improve the performance
of the car.

• Compete. In the season 2016-2017 ETSEIB Motorsport took part in the three most
reputed competitions of electric Formula Student: Formula Student Austria (Red Bull
Ring, July 31st – August 4th), Formula Student Germany (HockenheimRing, August 8th
– August 13th) and Formula Student Spain (Circuit de Barcelona-Catalunya, August
23rd – August 27th).

Page 12 Report

1.3. Project origin

This year the team is developing the CAT11e, an electric single-seater that aims to beat the
results of its predecessors as well as achieve the highest scores in all the competitions.

Part of the road to success is based on the testing period, when the car is tested on the
racetrack to detect possible errors in the different systems as well as find the best configuration
of parameters to achieve the maximum performance on the track. Is in this part of the
development process where this project is framed.

The testing phase has gained importance in the season schedule during the last two years.
The establishment of a standardized procedure and creation of a testing protocol turns into a
necessity to avoid inefficient testing sessions and ensure the information transfer along time.

To study the evolution of the process until the date, only the two previous seasons will be taken
into account. The main reason for this choice is the fact that there is no information available
from previous years mainly because testing was carried along with competitions and done to
prevent possible failures of the vehicle rather than tuning parameters and optimizing its
performance.

Figure 1.1 CAT10e (season 2016-2017) during a testing session at
Castellolí facilities

Development of a WebApp for testing and tuning a Formula Student Page 13

1.4. Motivations

The main motivation of this project is to improve the procedure of the testing process to achieve
meaningful results in less time and ensure the access to this information along time for the
development of future CATs.

Moreover, it must be taken into account also the motivation that generates the participation in
a project such as Formula Student where all the previously acquired knowledge is proved on
a real engineering problem.

Finally, this project aims to generate the base of a long-lasting tool that contributes to improve
the quality of the work carried on in the upcoming seasons.

Page 14 Report

2. Introduction

2.1. Project Objectives

The aim of this project is to ease the data collection during the testing sessions as well as
generate a standard procedure to facilitate the analysis of the evolution along the years. To
achieve this main objective, the following requirements will have to be fulfilled during the
development of this project:

• Study the actual procedure in data collection during the testing sessions, detect key
weaknesses and possible solutions to them.

• Study of the needs with respect to the data that must be collected during the testing
sessions.

• Develop a solution that matches the following requirements:

o Ensure the possibility to register and save data in the required way for each
event.

o Guarantee easy access with different devices and different locations.

o Possibility to consult and download the recorded data for further analysis with
other software tools.

o Generate an intuitive documentation to ensure its usage along the years.

2.2. Project Scope

This project found its framework in the season 2017-2018 of the team ETSEIB Motorsport. It
will be developed to be tested before the current season’s competitions. Nevertheless, its
usage for a concrete date cannot be guaranteed as it depends on the development of the
CAT11e, the current season’s vehicle.

The collection of data will be done by hand and introduced by the user via the developed tool.
The project will not deal with the collection of data via the telemetry system of the car neither
the communication with any other data acquisition system implemented.

Development of a WebApp for testing and tuning a Formula Student Page 15

3. Background and viability studies.

During the design and manufacturing phases, the behaviour of the prototype is studied and
simulated based on a model. Once the prototype is finished, this model has to be validated by
reproducing the same challenges on the track. Moreover, the strengths and weaknesses of
the car need to be found in order to optimize its performance on the competitions.

A normal testing session consist on the repetition of the same procedure (usually reproducing
one of the events of the competition) changing different parameters and registering these
changes. The aim is to study their influence on the performance and find the best possible
combination to increase the possibility to achieve a higher score on the later competitions.

3.1. CAT09e

The CAT09e is the prototype developed in the season 2015-2016. This season was the first
in which testing was carried out before competitions and integrated in the season schedule.

The registration of parameters was done by hand using templates. Those templates were
designed by the dynamics department of the team and then, were mainly focused on the
registration of dynamic parameters.

The dynamic parameters were registered together with the performance of the car and
compared to the simulations based on the model of the vehicle. Other parameters related to
powertrain and electronics were registered by hand too but not studied afterwards. Finally, the
aerodynamic parameters were tested shortly (one testing session) to prove and validate
simulation results.

As seen in Figure 3.1, the main parameters that were registered concerned the dynamics
department. From this example, three different categories can be distinguished:

• Environment:

o Responsible (Engineer)
o Vehicle (Chassis)
o Circuit
o Lap Distance
o Driver
o Date

o Fuel (SOC – Percentage of usable battery-
of the battery in the case of an electric
vehicle)

o Event (in case the template is filled in

during a competition)

Page 16 Report

Figure 3.1 Testing template during season 2015-2016. Registration of Setup parameters.
The Setdown template register the same parameters but at the end of the session.

• Suspensions’ parameters:
o Toe
o Camber

o Caster
o Weight

Development of a WebApp for testing and tuning a Formula Student Page 17

o Ride height
o Springs
o Dampers

o Damper setting
o Packer gap
o Roll bar

Each of these parameters, expect for the roll bar, is register for each wheel or axis of the
prototype.

• Other dynamic parameters:
o Brakes
o Tire pressure
o Brake bias
o Anti-roll bar
o Notes

3.2. CAT10e

Taking as base the previous season, the schedule of the development of the CAT10e
integrated one month of testing previous of the competition.

In 2016-2017 season. The registration evolved from printed templates to templates in excel
adapted to each event.

Figure 3.2 Template for Skid Pad event used in season 2016-2017 by ETSEIB Motorsport in
the development of the CAT10e.

The Figure 3.2 shows one example of template. Each template was adapted to the specific
event carried on and was slightly modified during the session to adapt better to the needs and
circumstances of the day.

The main changes introduced with respect to the previous season are:

Page 18 Report

• Creation of a specific template for each event.

• Registration of parameters concerning different sections (dynamics, powertrain and
aerodynamics) in the same sheet.

• Registration of both setup and setdown in the same sheet.

In the previous example four parts can be distinguished:

• Left column group. Registration of the performance of the vehicle in each “run”. The
performance is measured as the time required to complete each lap and the number
or cones touched during the run.

• Middle column group. Registration of the effect on different systems of the car.
Specifically, it takes record of the effect of each run in the temperature of the motor,
inverter and battery and the state of charge of the battery. The effect is measured as
the difference in the previous mentioned values between the beginning and end of the
run.
It also includes a final space for comments. Changes of some parameters are
registered in this section.

• Right column group. Registration of all dynamic, aerodynamic and powertrain initial
parameters.

• Other relevant information is registered in the upper part of the template. This
information is the date, driver and its weight. Although the initial plan was to keep track
of the driver’s weight during the season this parameter was hardly ever registered.

3.3. Future requirements

Based on the experience of the two previous seasons, the requirements of the tool to be
developed are listed below:

• Flexibility – different templates for different events
• Registration of setup and setdown

• Registration of the performance in each run and possible problems (comments/notes
section)

• Registration of characteristics not concerning the vehicle directly:
o Circuit
o Driver
o Date

Development of a WebApp for testing and tuning a Formula Student Page 19

• Prototype parameters:
o Dynamic parameters
§ Camber
§ Toe
§ Ride height
§ Brakes temperature

§ Tire’s pressure
§ Weight
§ Dampers’ setting
§ Roll and antiroll bar

o Powertrain parameters
§ SOC
§ Battery’s temperature
§ Motor’s temperature
§ Inverter’s temperature
§ Mode (sets the current limitation and other electric parameters)

o Aerodynamic parameters
§ Adjustable wings’ configuration
§ DRS availability

3.4. Final Functionalities.

The two main functionalities of the presented solution are explained in sections 3.4.1 and 3.4.2
as from a user point of view. Technical details about the implementation are developed in
section 5.

3.4.1. Registration of a testing session.

When performing a testing session, the following information needs to be registered:

• Information concerning the environment (driver, location, day)

• Information about the car status (setup)
• Information about the car performance (the performance is measured as the time

needed to complete a run)
• Information about the impact on the car (influence of a run in the different systems of

the prototype).

This information cannot be registered in a random order but only in the previously mentioned
one as otherwise the relation between the different fields could not be the expected one. That
will result in a bad analysis of the data.

Page 20 Report

Therefore, the process will be set to be the following:

1. Selection of the event to be performed.
2. Registration of data concerning the environment.

a. The driver is chosen from a driver’s database. If the required driver has not
been previously registered, the user will have to first create its profile before
continuing with the event registration.

3. Registration of setup of the car. Initial parameters concerning the different systems of
the vehicle.

4. Registration of runs:
a. Before the run, registration of the state of those systems whose changes is

subject of study.
b. After the run, registration of the time and state of the previously mentioned

systems.
5. While the setup of the car is not changed, registration of runs can be performed. If any

parameter needs to be changed, it will be mandatory to go back to point 2 and make
the concerning changes in the previously registered setup.

Figure 3.3 Process to create a new testing session.

Select the
EVENT

Choose an
existing DRIVER
or create a new

profile

Register the
SETUP

Register TIME
and EFFECTS of
each run in the

car

Consult the
RESULTS and/or

DOWNLOAD
them

Development of a WebApp for testing and tuning a Formula Student Page 21

3.4.2. Request old data

At section 3.4.1, it is shown how to register data and the procedure followed for each testing
session. But as important as registering these data is to be able to analyse it. Therefore, it is
important to have access to the previously registered data.

In the developed tool, two different ways to access the information have been developed:

• Online access. It allows to consult the data registered up to the moment by accessing
it through the different events. The information is shown in a table where each run
corresponds to a row. The columns are different fields concerning the event (data,
location, driver, lap time, setup identifier, etc.) but in a reduced version to guarantee it
can be easily read by the user.
Apart from the events’ information, the user has access to the list of drivers registered
up to the moment and all the used setups in the different sessions. That is useful as
all runs are associated with a driver and a setup and therefore, further information of
both the driver and the setup can be consulted in more detail by accessing to the
correspondent table.

• File access. As important to be able to consult data is to be able to analyse it. Analysis
of data recorded by different sensors in the vehicle is performed with third party
software after the testing sessions. Being able to integrate the data recorded by the
prototype’s sensors with the one registered via the WebApp becomes a key feature
for the utility of the developed tool.

With this aim, all the information is available to be downloaded as .csv file. A different format
is given to the files depending on the information requested but, as in the online consultation,
each row represents one entry of the table while the columns refer to different parameters
concerning the topic.

Page 22 Report

4. Study of possible solutions.

As mentioned previously in section 2.1, the purpose is to develop a tool that eases the
registration of information during testing sessions and its further analysis. Up to now, paper
templates or excel sheets have been used providing good results but being always constrained
by the further availability of the information.

The option of commercial software solutions has been discarded due to the high degree of
customisation required for the type of tests developed.

Finally, to cope with the previously mentioned limitations, the idea of developing a WebApp
tool has raised as a way to provide an easy-usable and accessible solution as well as ensure
the correct storage of the information without limiting its access.

The main reasons leading to this choice are the availability of a multidevice tool allowing both
consultancy and registration of data independently of the location and the owner of the device.
Moreover, it allows flexibility in terms of possible future improvements while still creates a
standardized procedure to ease data comparison along the seasons.

4.1. Study of the tools for the implementation of a WebApp

A study of the available tools in the market for the implementation of the solution is conducted
in the following section dividing its content of the different needs.

4.1.1. Front-end

Concerning the front-end of the site to be developed, the main requirements are functionality
and adaptability without neglecting the importance of the aesthetics. The tool must be intuitive
and user-friendly, it means, easy to use.

For its development, the three basic tools to be used are:

• Hypertext Markup Language (HTML). Defines and structures the content of the
website by using a simple markup language.
The version to be used is HTML5, the latest version of HTML released on October
2014 [2]. This markup languages will allow to define the structure and content of the
site.

• Cascade Style Sheets (CSS). Controls the styling (font, layout, etc.) of the site.

Development of a WebApp for testing and tuning a Formula Student Page 23

• JavaScript (JS). Language that allows the control of the behaviour of different
elements. This programming language will be used to implement functions to make the
site dynamic and allow the interaction with the content.

These three tools are the basics for the development of a website. For their implementation, a
basic knowledge must be first acquired what will give the implementation of this project an
educative approach too.

In addition to the previously mentioned tools, Bootstrap 4 library will be used. It is an open-
source front-end component library for developing responsive sites with HTML, CSS and JS
[4]. It provides templates for different front-end objects easing their implementation and
avoiding code repetition along the site.

4.1.2. Framework

For the development of a web application, different software frameworks are available. They
provide a standard way to build web applications by automatizing common activities performed
in web development.

Among all the possibilities, only those frameworks implemented in Python will be considered.
Python is a high-level programming language for general-purpose. It is also the language
taught at ETSEIB, one of the reasons why it has been chosen for the framework as it does not
require learning a new programming language. Moreover, Python is currently one of the most
used programming languages for data analysis what results in a great amount of information
for learning to implement specific functions as well as a wide variety of public libraries
concerning this topic.

The three possible frameworks considered has been Flask, Pyramid and Django.

• Flask: microframework written in Python based on Werkzeug and Jinja 2. It does not
include database abstraction layer, form validation or any other functionality that a pre-
existing third-party provide.

• Pyramid: minimalistic platform-independent framework written in Python and based
on WSGI. It may be a really flexible framework what, in this case, may result into a
difficulty as makes the learning curve harder at the beginning [3].

• Django: high-level Python Web framework that follows the model-view-controller
(MVC) architectural pattern. Its main goal is to ease the creation of database-driven
websites.

The final decision has been to adopt Django as a framework due to its easy and quick
implementation. Although Django is initially though for bigger projects and other frameworks

Page 24 Report

such as Flask will suit better a project of the size of the one to be implemented, Django has
two main advantages in favour:

• Admin Panel. It provides an automatic and customizable admin panel that eases the
management of the content.

• Database Management. It includes an ORM (Object-Relational Mapping) that allows
relational databases to interact with the data generated in the application. Django
allows creating models, tables and forms that ease the handling of data even without
previous knowledge of databases.

4.2. Django structure and basic concepts.

Django is a python framework based on an MVC architecture. MVC stands for Model-View-
Controller which is a software design pattern for developing web applications. The Model is
the part responsible for handling the data (it deals with the database). The View is responsible
for the display of the information requested by the user. Finally, the Controller is the part
controlling the interaction between the Model and the View.

In the particular case of Django, the architecture is set as MTV (Model – Template – View).
This is a special case of MVC. The main difference is that Django itself takes care of the
controller part while the developer has to take care of the Templates. Templates are the
representation layer containing information about the display of the data.

Django’s architecture can be further explained but this topic will not be addressed in detail.
Only relevant information to understand the structure of the developed solution and how it
works will be first explained. For further information about Django architecture or steps to
implement a project in Django, a project to be consulted is:

• Espais ETSEIB. Desenvolupament d’una pàgina web amb un framework de Python
(Sun Xu, Wan Li; 2015) [8]

Development of a WebApp for testing and tuning a Formula Student Page 25

4.2.1. Django Templates, Blocks and Variables.

A Django Template is a text file that can generate any text-based format such as HTML.
Django templates allow to define the user-facing layer separating the design from the logic of
the application.

Django Templates allow defining variables inside the content to be displayed. They are placed
between curly brackets {{ }} and whenever the template engine encounters a variable, it will
evaluate it and replace it with the result. The variables are passed to the template through the
context. The context has the form of a Python dictionary where the keys are the variables and
the arguments are the value of these variables.

Django Templates also incorporate an inheritance system that allows sharing a HTML code
through different templates that have common parts. The system allows to insert the not
shared parts as blocks in the template. Those blocks are also text files that define the view of
a context.

The usage of templates, variables and blocks in the project is explained in section 5.3.

Figure 4.1 Django architecture. Visual representation of the interaction between the different
components of a Django project whenever a user is interaction with the web. Retrieved from:

Devopedia. 2017. "Django." Version 17, November 1. Accessed 2018-05-19.
https://devopedia.org/django

Page 26 Report

4.2.2. Django Models and Forms.

A Model is a description of the data stored in the database. It contains the fields and behaviors
of the data being stored.

Models are defined as Python classes that inherit from a the models.Model Django class which
is the one handling many of the features that Django classes offer and the interaction with the
database.

Each model corresponds to a table in the database (unless otherwise specified) and each
instance of the corresponding class is related to a row in the table. Fields correspond to
columns, and they can be specified as Django Fields. Django Fields provide useful features
such as information verification. It means that if a field is specified to be an email field and the
user enters a birthdate, Django will raise up an error asking the user to verify the provided data
as it appears to be incorrect.

Additionally, each Django Model can be associated to a Form that will allow to create an HTML
view of a form with the same fields that has the model to which is related (unless specific
modification). Again, data can be validated thanks to specifying the type of field in the model.
Thanks to widgets, the display of the form can be handled by the designer of the page
alternatively from the default display provided by Django.

Finally, another characteristic to point out are the relational fields. Those are
ManytoManyField, OnetoOneField and ForeignKey. Those fields allow to designate a model
instance as an attribute of another model instance. Relational fields and their usage in the
project are further explained in section 5.4.1, specifically trough the Skid Pad model.

4.2.3. Django Views.

Django projects always contains a views.py file which is the layer in charge of handling the
requests of the page.

The views file contains functions or classes that matches requests from the user with a specific
content. Each view is responsible of either returning an HttpResponse object containing the
content to be displayed or raising an exception. Its basic function is to retrieve data based on
the parameters obtained, load a template and render it including the retrieved data.

Each request has a special attribute that distinguish it. It can be either GET or POST type
which will define the type of interaction between the user and the database. GET requests are

Development of a WebApp for testing and tuning a Formula Student Page 27

used when only to consult data and when there is no further interaction between the user and
the database. Instead, POST requests are used when the user is sharing information to be
included in the database or processed in another way.

Most part of the views used in this project are defined as classes that inherit from
Django.views.generic.TemplateView superclass. Those classes incorporate methods to treat
in a different way GET or POST requests.

Page 28 Report

5. Implementation.

The current project has been implemented following an iterative process. First, a basic
approach has been reached to ensure the requirements were met even in a rudimentary way.
From that basic structure, more complex relations have been introduced to make the user-
experience better and the quality of the recorded data of higher grade.

As a result, the application developed meets all the initial requirements and offer some extra
ones adopted under suggestion of the final users, team members of ETSEIB Motorsport.

5.1. Solution schema.

The structure of the solution has been designed following the information flow described in
Registration of a testing session.3.4.1

Figure 5.1 represents the structure chosen. It explains how the user moves along the page
starting from the Home page to any point in the application following the logical path. There is
also the possibility to move from point A to B (A and B being any page of the application) using
the navigation bar.

The points marked with the database icon represent a process where a new instance of a
model is created.

Development of a WebApp for testing and tuning a Formula Student Page 29

Figure 5.1 User path along the application following the logical structure starting from the
Home page

Page 30 Report

5.2. Solution internal structure.

To ensure the compliance with the initial requirements, the developed tool has been developed
taken advantage of the Django structure. The whole application is divided into different
directories:

• EM

Its name stands for ETSEIB Motorsport. This directory contains 4 files required by Django to
launch an application. Those files contain information about the database type (in this case,
SQLite3), URLs, used templates and some other details.

• Static

Contains information concerning the view of the application. Inside this information is also
organized into other directories that contain CSS files, JavaScript files, images and code
concerning third party libraries.

• Templates

Contains text files (Django templates) that will be rendered as HTML files and that determine
the user interface of the application. The templates are divided itself into two directories:
testing, containing the main templates, and blocks, containing files that determine the content
of a block that will be integrated in a bigger template view.
The implemented templates and blocks is further explained in section 5.3

• Testing

Contains python files that are the ones handling the actions performed by the user and the
response given by the application.

The files integrated in this directory are:

• admin.py
Allows the access to some tables of the database through the admin interface
provided by Django.

• apps.py
Determines the apps of the project. In this case, the project contains only one app:
testing.

Development of a WebApp for testing and tuning a Formula Student Page 31

• urls.py
Contains information about the URLs. Each URL is linked to the corresponding view
function that will determine the actions to be performed and the content to be
displayed.

• views.py
Contains view functions and classes. The view functions and classes are the ones in
charge of handling the requests made by the user. In this project, all views have been
implemented as classes (subclasses of Django.view.generic.TemplateView class) to
provide different responses as function of the request type. Only the home page is
implemented with a view function.
Other helper functions such as the ones in charge of computing statistics are also
implemented in this file.

• models.py
Contains the definition of all Django models used in the project.

• forms.py
Contains the definition of all Django forms used in the project.

• tables.py
Contains the definition of all Django tables used in the project.

• resources.py
Contains the definition of the resources classes. These classes inherit from a
superclass of the resources library and handle the generation of .xls files for the
corresponding models.

• exports.py
Contains the functions in charge of generating .csv files for each model.

5.3. User interface.

The user interface has been developed in a responsive way. It means it can be used in devices
of different sizes such as laptops, phones, etc. and the interface will adapt to each situation to
display the information in a readable way.

The user will be able to perform two main actions: register data or consult it. In both cases the
interaction is performed via a simplified interface that shows all the necessary information in a
structured way and which is easy to interact with.

The structure of the pages is based on blocks that are shared when possible to reduce the
amount of code and simplify the process of performing changes on the view of common
elements.

Page 32 Report

5.3.1. Templates

The developed solution counts on the following templates:

• Home:

Defines the view of the landing page of the WebApp. It contains the navigation bar block, a
welcome message and different boxes with links to related websites of general interest for the
team.

• New Driver:

View of the page for driver’s registration. Contains the view of the form for entering the related
data to a driver. The fields of the Driver’s model are instantiated using widgets. A Django widget
is the representation of an HTML input element. The widget handles the rendering of the
HTML, and the extraction of data from a GET/POST dictionary that corresponds to the widget.

Figure 5.2 View for driver registration. At the top of the page it is displayed the navigation
bar. Centered on the page is the form with the different fields requested to create a new

driver profile.

Development of a WebApp for testing and tuning a Formula Student Page 33

• Drivers:

View of the table with the existing drivers. The template of the view includes the request of a
Django Table. Django takes care of the rendering of the table with the corresponding
information what eases the process and simplifies the code.
Just under the table is displayed the button that allows to download the information as an Excel
file.

Figure 5.3 View of the page with the driver's table.

Page 34 Report

• New Testing:

View corresponding to the page where the user creates a new testing session. Its main content
is the form where the user can enter all the information for initiating a new testing session. The
form is divided into different sections differentiating the type of parameters requested.

• Event:

The template for the view of Acceleration, Skid Pad and Autocross runs. For all cases, different
parts of the view can be distinguished (see Figure 5.5 and Figure 5.6). This example will be
used to outline the relation between the code and the final view for the user and explain the
usage of different Django template features.

Figure 5.4 View of the page concerning the creation of a new testing session

Development of a WebApp for testing and tuning a Formula Student Page 35

The template of the page begins with the head where the different libraries used are stated
and the style of some elements is specified. Previously, the type of document (HTML in this
case) and the language to be used are specified.

In the head section, it is specified:

• Style

• JavaScript scripts. (such as showing or hiding the tables containing the setup
information)

• Libraries (bootstrap)

1 3 4

2

6
5

Figure 5.5 View for run registration of an Autocross. The different areas of the page are framed and
referenced with a number. The form to register the impact on the vehicle is being displayed while the

information about the setup being used is hidden.

Page 36 Report

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.
css">
 <script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js"><
/script>
 <script
src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js
"></script>
 <title>Testing session</title>
 <style>
 #info1 {
 font-weight: bold;
 padding-left: 15px;
 }

 #info2 {
 padding-right: 10px;
 }
 </style>
</head>

After the head, the body of the page is where the content is specified. The common element
for all the pages in the developed web is the navigation bar. It is included as a block, what
means that the code in charge of all its specifications is in a different file and is included in the
main file through the include function that Django allows to incorporate in the templates.

<body>

<-- Navigation bar and event title! -->
<div>
 {% include 'blocks/nav.html' %}
 <h1 align="center">{{ data.event }}</h1>
</div>

{% load render_table from django_tables2 %}

Moreover, the function to render tables is incorporated so that the Django engine knows how
to display the content passed as a Django Table to the template.

Next, diverse areas can be distinguished. All of them are integrated inside a form block as their
content is changed or evaluated after each user interaction.

Development of a WebApp for testing and tuning a Formula Student Page 37

1. Block which displays information about the current testing session. In all cases it
contains, the testing session’s id, location, driver and date.

<form method="post">
 {% csrf_token %}
 <div>
 {# Info about the testing session#} – PART 1
 <div class="container col-sm-3" style="padding-left: 20px; font-
size:15px">

 <div class="row">
 <h3 class="col-sm-10" style="font-weight: bold">
 Testing session #{{ data.id }}</h3>
 </div>

 <div class="row">
 <p class="col-sm-4" id="info1">Location:</p>
 <p id="info2">{{ data.location }}</p>
 </div>

 <div class="row">
 <p class="col-sm-4" id="info1">Driver:</p>
 <p id="info2">{{ data.driver.name }}
 {{ data.driver.surname }}</p>
 </div>

 <div class="row">
 <p class="col-sm-4" id="info1">Date:</p>
 <p id="info2">{{ data.date }}</p>
 </div>

 {# Request information about the time and lap length
(depending on the event) #} – PART 2
 {% include req %}

 </div>

2. Block which registers information about the performance of the car. The information
requested is different for each event, reason why the content of this area is passed to
the template as a variable. The block is included thanks to the include function.

{% include req %}

3. Block which registers the information regarding the impact of the run on the different
systems of the vehicle. The main area is divided into two different blocks depending
on the studied system. Both blocks can be hidden by pressing its corresponding title.
This possibility has been incorporated to have a sparser vision, especially when it is
being executed from a small device such as a phone.

Page 38 Report

{# Request information about the impact on the vehicle #}
<div id=Results class="container col-sm-6" style="padding: 10px">
 {% include 'blocks/results.html' %}
</div>

4. Statistics block. The information displayed is different in the case of Skid Pad as each
run is composed of 4 turns and therefore, 4 different times are registered to evaluate
the performance of the car.
Again, as the information is variable for each event, the content to be displayed is
passed as a variable to the template.

{# Display information about the statistics of the event #}
<div class="container col-sm-3" style="font-size: 15px">
 {% include stat_view %}

</div>

5

3

Figure 5.6 View for run registration of an Autocross. The form to register the impact
on the vehicle is hidden while the information about the setup being used is displayed.

Development of a WebApp for testing and tuning a Formula Student Page 39

5. Block which displays information about the current setup being used. It also
incorporates the possibility to hide the different categories of information as it will not
be necessary to display it during the whole run but just on special occasions. This block
is also a variable of the template.

{# Display information about the setup being used for the current
run #}
<div id=Setup class="container col-sm-12" style="padding: 20px">
 {% include 'blocks/setup.html' %}
</div>

6. Finally, the submit button allows the user to save the information registered and refresh
the statistics. Once the button is pressed, the information provided by the user is
registered and the page is cleared, displaying again the fields of the form empties to
be filled again.

{# Button to submit information #}
<div class="form-group">
 <div class="col-sm-4">
 <p></p>
 </div>
 <div class="col-sm-8" style="padding-right: 10px">
 <button name="SUBMIT" type="submit" class="btn btn-default
preview-add-button">

 SUBMIT </button>
 </div>
</div>

</form>

</body>
</html>

Finally, the tags to close the form, the body and the html file itself are included.

• Old Testing:

Template for the view of the information of old testing sessions. It is shared across all events
(included Endurance). The information displayed consist of a Django Table with all the
instances of the model corresponding to the requested event. At the end of the table, there is
a button to download the information as .csv file. Finally, except in the case of the Endurance,
there is another button to obtain the setup corresponding to the best result obtained in the
consulted event. As this button is displayed based on the event consulted, it is given to the
template as a variable which content is an HTML block.

Page 40 Report

Figure 5.7 View of the results from the different testing sessions from the Autocross event.

• Best Results:

The template for the display of the setup corresponding to the best result obtained on a
particular event. As in the case of the view for registering runs of an event, the different
categories of the setup can be shown or hidden as for the user preferences. This option eases
the localization of the desired information, as displaying all the information at the same time
could be harder to read, especially with small devices.

Figure 5.8 View of the Best Results page with all fields hidden

Development of a WebApp for testing and tuning a Formula Student Page 41

Figure 5.9 View of the Best Results page with all fields displayed

5.3.2. Blocks

Apart from the templates, the interface shares some common blocks along the pages the user
can visit. The purpose of using blocks is to simplify some templates and reuse code in order
to decrease the possibility of errors and simplify the process of correction when needed.

The current implemented blocks are:

• Navigation Bar: block shared across all the pages. It aids the user to access the
different pages of the web.

• Acceleration Request; Skid Pad Request; Autocross Request: these three blocks
display the corresponding fields to be filled to register the performance of the car on a
run. They can only be used one at a time as they are displayed in the same area of the
Event view.

• New Testing Form: contains the structure of the form to register a new testing session.
It is included as a separated block, although not being a variable content due to its size
and to ease error detections or future changes in the form.

• Setup: block controlling the display of the information related to the current setup using
on a run.

• Results: block containing the form referring to the impact of a run on the vehicle’
systems.

Page 42 Report

• Statistics and Statistics Skid Pad: block that contains the information to be displayed
in the statistics area. For Acceleration, Autocross and Endurance, “Statistics” is the
block used; in the case of Skid Pad the alternative block is the one being called.

• Best Configuration (button): contains the information related to the button Best
Configuration that is shared across the different Old Testing views.

5.4. Registration of data

As explained in 3.4.1 one of the main actions to be performed by a user in the registration of
testing sessions. This action requires the registration of different types of data. To cope with
this, each type of data is associated with a Django Model.

5.4.1. Django Models

A model is the single, definitive source of information about the data. It contains the essential
fields and behaviours of the data to be stored. Each model is linked to a table in the database,
but instances of the models can be related through some of their fields. Detailed explanation
of Django models can be found in section 4.2.2

Each model is presented as a subclass of Django.Model [5] class where each attribute
represents a database field and is mapped to a database column. Additionally, they can
contain methods as normal python classes.

Each attribute of the model is an instance of the appropriate Field class of Django. The field
class types allow to determine the kind of data related to the field (text, integer, float, etc.), the
way it would be rendered and some minimal validation requirements (e.g. do not accept letters
for an integer field).

Some fields of the models relate to other models’ instances. This kind of relations is called
One-to-Many relations. The One-to-Many relation is explained later with an example.

The models implemented in the developed app are:

• Driver:
Contains information related to the driver that can be interesting for the team.

Development of a WebApp for testing and tuning a Formula Student Page 43

• Testing:
Contains information about the setup of the car. As different types of parameters
conform the final setup of the car, they have been divided into three different categories
to ease the handle of possible future changes in the model fields. The three models
from which Testing inherits all the parameters are:

o Dynamic Parameters
o Aerodynamic Parameters
o Powertrain Parameters

These three models cannot be reached individually by the user, but only through the
Testing model. Moreover, it contains additional information such as the date, location
and the driver performing the testing session (field related to Driver’s model instance).

Figure 5.10 Testing and Driver Models. The figure shows the different fields and tables
composing each model and the relations between them

Page 44 Report

• Results:
Contains information about the impact of a run in some systems of the car. Although
including data of different nature, it has not been divided into sub-models as Testing
as the quantity of parameters was not as big as in the previous case.

• Acceleration:
Contains information about the time performed in each run. Other information
associated is the date of the run, the setup used (related to a Testing’s model instance)
and the impact on the vehicle (related to a Results’ model instance).

• Skid Pad:
Contains information about the time performed in each run. For each run the time
required for each lap (two clockwise and two counters clockwise) is independently
stored as well as the final computed time. Other information associated is the date of
the run, the setup used (related to a Testing’s model instance) and the impact on the
vehicle (related to a Results’ model instance).

Figure 5.11 Results, Acceleration, Autocross and Skid Pad Models. The figure shows the
different fields and tables composing each model and the relations between them.

Development of a WebApp for testing and tuning a Formula Student Page 45

• Autocross:
Contains information about the time performed in each run and the length of the lap.
Other information associated is the date of the run, the setup used (related to a
Testing’s model instance) and the impact on the vehicle (related to a Results’ model
instance).

• Endurance:
Endurance event is a special case as it implies the participation of two drivers, possible
changes in the setup of the vehicle in the middle of the event and a fixed number of
laps depending on the lap length.
To ensure the correct registration of the data according with the event schedule, it is
registered following the next procedure:

1. Registration of an Endurance event creating an instance with the initial setup
of the vehicle and the first driver who will take part in the event.

2. Registration of lap length. This allows to compute the number of laps to be
performed by each driver.

3. Registration of lap time and impact as instances of Lap Model.
4. Registration of changes in the setup and new driver. This step is forced by the

system whenever the number of laps to be performed by the first driver is
reached.

5. Registration of lap time and impact for the second part of the event.

Once the number of required laps is reached by the second driver, the Endurance
event is closed and no more data concerning it can be registered, it can only be
consulted.

Figure 5.12 Lap Time and Endurance Models. The figure shws the different fields and tables
composing each model and the relations between them

Page 46 Report

Whenever an instance of a model is created, a new row in the related table of the database is
created. In that way, data is stored sequentially and can be easily consulted when the user
requires.

Example code of a Model class:

class Skid_Pad(Results):
 id = models.AutoField(primary_key=True)
 l1_time = models.DecimalField(decimal_places=3, max_digits=5,
default='')
 l2_time = models.DecimalField(decimal_places=3, max_digits=5,
default='')
 r1_time = models.DecimalField(decimal_places=3, max_digits=5,
default='')
 r2_time = models.DecimalField(decimal_places=3, max_digits=5,
default='')
 date = models.DateTimeField(auto_now=True)
 params = models.ForeignKey(Testing, on_delete=models.CASCADE,
null=True, blank=True)

 def __str__(self):
 return str(self.id)

 @property
 def time(self):
 return float("{0:.3f}".format(float(self.l2_time) +
float(self.r2_time)))

From the Skid_Pad model we can analyse the structure of a model class in the developed app.

First, we can see Skid_Pad is a subclass of the class Results which contains many fields of
the type “models.DecimalField()”. As a consequence, it contains all the fields specified in the
parent class.

From the fields not inherited from Results, we can distinguish different types:

• ‘id’ field. It is a models.AutoField() generated automatically for every instance. It also
represents the access key to the instance.

• ‘xx_time’ field. We have 4 models.DecimalField() that register the time per each lap
(right or left, first or second) in the skid pad event. These fields are defined to expect
as input a 5-digit number with a maximum of 3 decimals.

• ‘date’ field. It is a models.DateTimeField() generated automatically when an instance
is created.

Development of a WebApp for testing and tuning a Formula Student Page 47

• ‘params’ field. It is a models.ForeignKey() field. It means it expect as an input an
instance of another model, in that case, an instance of the Testing model. This relation
is called One-to-Many relation. It acts in the following way: the field ‘params’ can only
be related to one instance of the Testing model. On the other hand, each instance of
the Testing model can be requested by many other models and instances of them.

Apart from the fields, a model can also contain properties. In this case, ‘time’ is defined as a
property and it represents the final computed time for the Skid Pad event.

5.5. Consultation of data.

5.5.1. Onsite. Data Tables.

Each model of the previous ones is linked to a Django Table [6]. Each table is created from a
model and populated with the existing instances of it whenever it is required. Nevertheless, not
all the models have an associated table model, but only the ones that can be consulted by the
user.

In the case of the developed app, the following table models have been created:

• Driver Table
• Testing Table

• Acceleration Table

• Skid Pad Table
• Autocross Table

• Endurance Table

Some of the table models, especially the ones concerning data from events, have fields related
to other models as a OneToMany fields. This information is not initially incorporated in the table
as in not specified as a field of the main model. To cope with this limitation, some extra columns
have been added to the table model using the class Column of the Django Table library.

Example code of a Table class:

class SkidPadTable(tables.Table):
 # add custom columns to table (concerning Foreignkey parameters)
 setup = Column(accessor='params.id', verbose_name='Setup')
 driver = Column(accessor='params.driver')
 driver_ = Column(accessor='params.driver.surname')
 date = Column(accessor='date')
 place = Column(accessor='params.location')
 time = Column(accessor='time', verbose_name='Total time')

Page 48 Report

 class Meta:
 #define the Model related to the table
 model = Skid_Pad
 # template associated for the display of the table
 template_name = 'django_tables2/bootstrap-responsive.html'
 # define fields to be displayed
 fields = ('id', 'l1_time', 'l2_time', 'r1_time', 'r2_time',
 'time', 'date', 'setup', 'driver', 'driver_', 'place')

The fields ‘id’ and ‘xx_time’ are actual fields of the Skid Pad. The table fields defined as
Columns() are special cases. In that case, they need to be added as they require deeper
information of a related model instance (e.g. driver_ is a field that contains the surname of the
driver. The surname of the driver is registered in a Driver model instance and related to the
Skid Pad model through a Testing model Instance that contains a Driver instance among its
parameters.)

Figure 5.13 Relation between different fields along different models. Params is a Field of the
model Skid Pad that contains an instance of the model Testing. One of the fields of the
Testing model is Driver that contains an instance of the model Driver. Finally, the Driver

model contains the Field called Surname that was instantiated in Skid Pad Table as Column.

5.5.2. Downloading data.

In many cases, the data recorded needs to be downloaded to perform further analysis together
with data recorded from the vehicle’s sensors.

The data available to be downloaded concern the following models:

Driver ModelTesting
Model

Skid Pad
Model

Params
Driver

Surname

Others
Other Setup
parameters

Development of a WebApp for testing and tuning a Formula Student Page 49

• Driver

• Testing

• Acceleration
• Skid Pad

• Autocross
• Endurance

The data is downloaded as .csv file. In each case, each row of the file concerns an instance of
the model while each column represents a field of the model or related models.

For the generation of .csv fields, two approaches have been taken:

5.5.2.1. Import_Export Library Approach.

The import_export library [7] provides an easy way to generate a .csv file from a Django Model.
Its main advantage is that it is not necessary to specify the columns or fields to be included in
the file what reduces the need of code to generate a .csv from a model. On the contrary, it
does not provide the flexibility to include extra fields what can become a great disadvantage.

The models to be exported using this approach are:

• Drivers

• Testing

To generate a .csv file associated to a model, it is necessary to create a class who inherits
from ModelResources class from the import_export library.

An example is stated below:

class DriverResource(resources.ModelResource):
 class Meta:
 model = Driver

As it can be seen, it is really simple as it only requires specifying the associated model.
Later, to generate the .csv file when the user request for it, the code is specified below:

def export(self):
 #specify the Resources model associated
 person_resource = DriverResource()
 #generate dataset instance
 dataset = person_resource.export()
 #generate the csv file
 response = HttpResponse(dataset.csv,
content_type='application/vnd.ms-excel')

Page 50 Report

 #populate the csv file
 response['Content-Disposition'] = 'attachment;
filename="drivers.csv"'
 return response

The great advantage is the easy implementation when the information required can be all
found as fields of the related Django Model.

5.5.2.2. Django Utils Approach.

Despite the great advantages of the earlier approach, its rigidness does not allow to add
custom fields as columns in the dataset, what can result in a loss of information for the user.

To cope with this limitation, another approach is implemented that requires specifying all the
desired fields and therefore, larger amount of code, but yield self-designed structure files.

The function implemented to generate a .csv file containing the Acceleration instances is
presented below:

def export_CSV_acc(queryset, event):

 response = HttpResponse(content_type='text/csv')

 response['Content-Disposition'] = 'attachment;
filename={}.csv'.format(event)

 writer = csv.writer(response, csv.excel)

 response.write(u'\ufeff'.encode('utf8'))

 # define first row -- Headers of columns

 writer.writerow([
 smart_str(u"ID"),
 smart_str(u"Time"),
 smart_str(u"Lap Length"),
 smart_str(u"Date"),
 smart_str(u"Driver"),
 smart_str(u"Location"),
 smart_str(u"Params"),

… all the missing fields are specified in the original code that can be
found in the annex of this report. …
])

Development of a WebApp for testing and tuning a Formula Student Page 51

 # write each acceleration/autocross run in a new row following the
column order set before

 for obj in queryset:

 writer.writerow([

 smart_str(obj.id),
 smart_str(obj.time),
 smart_str(obj.length_lap),
 smart_str(obj.date),
 smart_str(obj.params.driver),
 smart_str(obj.params.location),
 smart_str(obj.params),

 … all the missing fields are specified in the original
code that can be found in the annex of this report. …

])
 return response

5.6. Data manipulation.

As previously mentioned, deeper analysis of the recorded data is not performed within the
application frame, but later with other software tools designed for that aim. Nevertheless, a few
analyses can be made to extract quick conclusions about the performance of the car.

5.6.1. Lap time analysis.

An interesting analysis to be performed after each run is the comparison of the result with the
best result obtained up to the moment. This allows to determine whether it has been a good
run or not (this allows to take further conclusions to the team).

With the purpose to provide a reference data to the team when performing the runs, a function
that provides some statistics has been implemented.

Statistics provides the number of runs performed up to the moment, the minimum time and the
average time for the run.

In the case of the Skid Pad event, it is slightly modified to cope with the structure of different
laps per run and provide further information, about the full performance on the run but also
about the performance in each turning sense.

The code of the ‘statistics’ function is shown below:

Page 52 Report

def statistics(obj):
 if not obj:
 avg = '-'
 min = '-'
 runs = 0
 return list((avg, min, runs))

 min = float(obj.aggregate(Min('time'))['time__min'])
 avg = float(obj.aggregate(Avg('time'))['time__avg'])

 min = float("{0:.3f}".format(min))
 avg = float("{0:.3f}".format(avg))
 runs = obj.count()
 return list((avg, min, runs))

5.6.2. Parameters of best result.

This functionality provides easy access to the setup of the car related with its best result in a
concrete event up to the moment. This is useful for the team if they want to reproduce the tests
performed with better results as it does not require consulting big amounts of data to look for
the best performance, but it can be obtained by just a click. The best performance is known as
the run with the lowest time.

For the Endurance event, not only the time required to complete the event matters, but other
factors may be more important to consider too. Therefore, the “Best Parameters” option is not
available as the selection of a proper configuration requires further analysis from the team.

The code of the function that provides the configuration for the best results can be found below:

def best_results(request, event):

 if event == "skidpad":
 stats = statistics_sk(Skid_Pad.objects.all())
 runs = stats[2]

 if runs == 0:
 # Redirects to New Testing Session as there are no results
about it.
 return redirect('../{}'.format(event))

 else:
 min_l = stats[4]
 min_r = stats[6]
 min_time1 = Skid_Pad.objects.filter(l2_time=min_l)[0]
 min_time2 = Skid_Pad.objects.filter(r2_time=min_r)[0]

Development of a WebApp for testing and tuning a Formula Student Page 53

 if min_time1.time < min_time2.time:
 data = min_time1

 else:
 data = min_time2

 return render(request, 'testing/best_results.html', {'data':
data, })

 else:
 if event == "acceleration":
 objs = Acceleration.objects

 elif event == "autocross":
 objs = AutoX.objects

 else:
 objs = Lap_time.objects
 stats = statistics(objs.all())

 if stats[2] == 0:
 # Redirects to New Testing Session as there are no results
about it.
 return redirect('../{}'.format(event))
 else:
 min_time = stats[1]
 data = objs.filter(time=min_time)[0]

 return render(request, 'testing/best_results.html', {'data':
data, })

Page 54 Report

6. Test and validation.

The tool developed as a result of this project will be tested by the Formula Student team
ETSEIB Motorsport, during the months of July and August. Before its test on track, different
validation tests have been performed in order to detect possible failures of the system and
develop a friendlier environment for the user.

Some of the tested features are:

• Correct saving of all data introduced. Once the user presses the “Submit” button, if the
data is valid, it is always correctly saved, creating an instance of the corresponding
model. This has been checked every time a new model was created.

• Introducing wrong data type. In case the user introduces the data in a correct format
or with a value out of the predefined range, the form raises an error thanks to the data
validation function that Django incorporates. In this case, it has been decided to redirect
the user to the same form indicating that some of the values introduced were not
correct.

• Correct pre-population of forms when an event is accessed directly from its URL
instead of by creating a new event instance. That is interesting when on the same
testing session/day, different events are carried on. For example: morning session –
acceleration; afternoon session – autocross. After performing some autocrosses, the
team decides to go back to perform accelerations at the end of the afternoon to test
the same configuration used during the morning session but with the battery almost
discharged. In this case, it is interesting to access directly to the last acceleration
configuration instead of creating a new testing session with the same parameters. For
that, the user can access through the URL corresponding to the acceleration event and
the setup for the next runs will be pre-populated with the one used in the last
acceleration run, it means, the one used at the end of the morning session.

• Correct generation of output files. The files generated (.xls or .csv) are available to read
with third party software and they contain the correct data with all specified fields and
all the corresponding entries of the model.

6.1. Detected errors and correction

Some of the errors detected during the validation test were:

Development of a WebApp for testing and tuning a Formula Student Page 55

• Usage of the last overall setup registered for an event when it is accessed through its
URL. This error has been corrected to set as corresponding setup the last one used
for that event instead of the last overall.

• Accessing to the “New testing session” without preregistered drivers. In this case, it will
be impossible to create a new testing session as there will be no drivers to be assigned
to it. It has been corrected so that the user is redirected to the “Register new driver”
page.

• Accessing an event through its URL without any preregistered setup for it. In this case,
there will not be an available setup to assign to the corresponding runs of the event,
therefore, the user is redirected to the “New testing session” to first create a session
for the corresponding event.

• Accessing the “Best results” page for an event when no runs have been performed. As
there is no available data to compare, the user will be redirected to the “New testing
session” page to create a new session for this event.

Page 56 Report

7. Economic study.

In this section, the costs related to the development of the project will be exposed. The main
costs taken into account are the human resources (hours invested in the project) and both
software and hardware resources.

7.1. Human Resources

The hourly cost of an engineer working on the project can vary depending of the performed
tasks. Based on the data extracted from the INE (National Institute of Statistics) [10] and from
a jobs internet site [11], the average annual salary of a web developer in Spain is about
60.000€, varying on the experience, type of contract, sex and size of the company, among
other factors.

For the analysis and documentation tasks, the hourly rate will be considered the same as the
tasks have been performed by the same person and it can be considered as an autonomous
worker developing the whole project.

For a salary of 60.000€/year, the corresponding hourly rate is of 30€/h.

Finally, concerning the amount of time dedicated to each task, further details can be reach at
section 9.

Concept Unitary Price
[€/h]

Quantity Amortization Final Price
[€]

Analysis 30,00 82 NA 2.460,00

Tool
development

30,00 198 NA 5.940,00

Documentation
of the final

project

30,00 50 NA 1.500,00

TOTAL 330 NA 9.990,00

Table 7.1 Detailed Human Resources cost of the project

Development of a WebApp for testing and tuning a Formula Student Page 57

7.2. Hardware and Software

The cost of the hardware and software tools employed for the development of the project are
detailed in the following table:

Concept Unitary Price
[€]

Quantity Amortization
[%]

Final Price
[€]

Laptop
(MacBook Pro

Mid 2012)

1450,00 1 8 120,83

Pycharm
Licence

130,00 1 50 65,00

Microsoft Office
Licence

149,00 1 8 12,42

Python and
Libraries
Licences

0 1 NA 0,00

TOTAL - - - 198,25

Table 7.2 Detailed Hardware and Software costs

7.3. Final Cost

Other costs such as electricity, internet connection of working space have not been considered
as the project has been developed in a public space (EPF Lausanne library) that provides all
these factors without cost and that can be used by anybody without the need of being a former
student from the university.

Finally, the total cost of the project is 10.098,25€

Page 58 Report

8. Environmental impact.

The environmental impact of this project comes essentially as a result of the energy
consumption of the tools used for its development.

The impact calculations are shown in the following table:

Concept Power
Consumption

Time Energy
Consumption

CO2
emission

Analysis, development
and documentation

270 W 330h 89,1kWh 34,93kg

Table 8.1 CO2 emissions calculation. Data retrieved from: Power consumption of the
laptop: Apple [12]; Emission factor: Generalitat de Catalunya [13]

The impact generated in terms of CO2 emissions is equivalent to driving 310km with a vehicle
of medium size (data extracted from the IDEA [14]).

The impact caused by energy consumption of light and internet is not integrated in the final
amount of CO2 emissions as the project itself has been developed without generating an extra
demand of those two. It means, the energy used to illuminate the space or provide it with
internet connection will have remained the same with or without the development of this
project.

Development of a WebApp for testing and tuning a Formula Student Page 59

9. Planification.

This project has taken place between February 2018 and June 2018. During this time, different
phases have been carried out: from the study of the problem to the implementation of the final
solution, the time has been divided between the different tasks taking into account the
complexity of each one and its impact on the final result.

First, and analysis of the problem and study of possible solutions has been carried out. Once
the solution of developing a WebApp was chosen, it was necessary a learning period of the
required tools to implement this solution.

For the implementation, the tasks have been divided in groups taking into account its similarity
and the relation between the different fields. Registration of drivers has been the first feature
implemented due to its relationship with all the other features -it is necessary to have drivers
already registered to be able to register a testing session-. Next task has been implementing
the registration of the setup and therefore, the creation of testing sessions. Once finished, the
registration of Acceleration, Skid Pad and Autocross has been handled simultaneously due to
the similarity of the structure of the data required by each of those events. Endurance has been
the last event to be implemented due to its complexity and requirements in terms of model
relations.

After the implementation of the data collection tools, the implementation of the data output has
been addressed. Finally, once the project was operative and ready to be used, it has been
deployed on Heroku.

After the deployment, a phase of testing and correction of errors has followed. This phase has
concluded with the testing of the WebApp in real conditions by the team ETSEIB Motorsport
during a testing session.

The writing of the final report has been carried out at the same time of the development of the
solution, making special emphasis on periods when one of the previously mentioned phases
was completed.

Page 60 Report

Figure 9.1 Temporal planning of the projec

TASK 5 12 19 26 5 12 19 26 2 9 16 23 30 7 14 21 28 4 11 18 25
Preliminary study

Preliminary study of the problem and possible
solutions

Learning HTML, CSS, Django
Definition of the solution
Solution Implementation

Drivers registration
Setup Registration

Data Query
Acceleration, Skid Pad and Autocross

Registration
Endurance Registration

Basic Statistics
Generation of .csv files

Heroku Deploy
Test and Improvements

Test and Corrections
Correct code and optimize solutions

Test by ETSEIB Motorsport
Documentation

Memory

FEBRUARY MARCH APRIL MAY JUNE

Development of a WebApp for testing and tuning a Formula Student Page 61

Conclusions

The main objectives of this project were to develop a tool for collecting data during the testing
sessions of a Formula Student prototype. This tool should provide a standardize procedure for
the collection of the data and guarantee the access to it along the time. Finally, the
requirements set for the tool itself were: the possibility to save data, independently of the device
and location, in a common database and the availability to consult it and export it.

After the conclusion of the project, it can be stated that all objectives have been achieved. After
an initial analysis of the requirements and the previous procedure, it has been decided to
develop a solution in the form of web application. The developed application guarantees a
standardized procedure to ensure the correct registration of data for further analysis and
comparisons along time. Moreover, it can be accessed from different devices and locations to
avoid depending on one device which contains all the data. In this way, every team member
is able to perform the registration of testing information with its own mobile or laptop. Finally,
the data is available to be downloaded for further analysis with third party software.

The development of this project has also had an educational approach. It has allowed the
author to learn new programming languages as well as work with new frameworks such as
Django, which is widely used in the industry nowadays. This all has meant the firsts steps of
the author in the development of web applications.

Finally, the project has been developed in constant contact with ETSEIB Motorsport as it being
the final user of the tool. This has led to proceed in a flexible way, adapting to their
requirements and evolving from a simpler solution to a more complete and complex one.

Regarding the points to be improved or continue developing, some analysis tools could be
implemented in the same application to integrate the analysis of the registered data and
generate informs of each session directly. Also, improvements to the interface or display of the
content could lead to a more modern and attractive interface. Finally, after sharing the results
of this project with other teams and them showing their interest in this tool, it will be interesting
to implement a user manager so that the application could be used by different teams and
each one had its own user profile with its data.

Page 62 Report

Acknowledgements

First, I would like to thank the board of the Escola Tècnica Superior d’Enginyeria Industrial de
Barcelona for the support given to the Formula Student team ETSEIB Motorsport. Year after
year, this project allows a great number of students to get involved in an amazing experience
enrich both professional and personally. Especial thanks to Lluís Solano, for its support
showed to the team and for its support during the development of this project acting as director.

This project would not have been possible either without all the students that have taken part
in the Formula Student team, especially the ones taking part in the development of the CAT10e
which set the origins of the project.

Thanks to Pau Argelaguet for the given advice during the project and for always being up to
solve my doubts.

Finally, thanks to my family for all the support given during my studies.

Development of a WebApp for testing and tuning a Formula Student Page 63

Bibliography

Bibliographic references

[1] FORMULA STUDENT GERMANY (March 10th, 2018) Disciplines. Retrieved from:
[https://www.formulastudent.de/about/disciplines/]

[2] WIKIPEDIA (April 8th, 2018) HTML5. Retrieved from:
[https://en.wikipedia.org/wiki/HTML5]

[3] CODEMENTOR (April 8th, 2018) Python Framework comparison: Django vs. Pyramid.
Retrieved from: [https://www.codementor.io/sheena/django-vs-pyramid-python-
framework-comparison-du107yb1c]

[4] BOOTSTRAP (March 22th, 2018) About Bootstrap. Retrieved from:
[https://getbootstrap.com]

[5] DJANGO MODELS (May 5th, 2018) Documentation. Django Models. Retrieved from:
[https://docs.djangoproject.com/en/2.0/topics/db/models/]

[6] DJANGO TABLES (May 5th, 2018) Documentation. Django Tables. Retrieved from:
[https://django-tables2.readthedocs.io/en/latest/]

[7] DJANGO IMPORT-EXPORT (May 5th, 2018) Documentation, Django Import-Export.
Retrived from: [http://django-import-export.readthedocs.io/en/latest/]

[8] Sun Xu, Wan Li. Espais ETSEIB. Desenvolupament d’una pàgina web amb un
framework de Python. Barcelona s.n., 2015

[9] DEVOPEDIA. 2017. (May 19th, 2018) "Django." Version 17, November 1. Retrieved
from: [https://devopedia.org/Django]

[10] INE 2018 (June 5th, 2018) “Wages and labour costs”. Retrieved from:
[http://www.ine.es/dyngs/INEbase/es/categoria.htm?c=Estadistica_P&cid=1254735976
596]

[11] INDEED (June 5th, 2018) Web developer salaries. Retrieved from:
[https://www.indeed.es/salaries/Programador-Salaries]

[12] Apple Support (June 5th, 2018) Information about power consumption of different
devices.
Retrieved from: [https://support.apple.com/es-es/HT201796]

Page 64 Report

[13] GENERALITAT DE CATALUNYA (June 6th, 2018) Emission factor related to electrical
energy: he electrical mix.
Retrieved from: [http://canviclimatic.gencat.cat/en/redueix_emissions/com-calcular-
emissions-de-geh/factors_demissio_associats_a_lenergia/index.html]

[14] IDEA (Instituto para la Diversificación y Ahorro de la Energía) (June 7th, 2018) SEAT
vehicles CO2 emissions. Retrieved from: [http://coches.idae.es]

Complementary bibliography

DJANGO (February, 2018). Documentation referent to the Django framework. Retrieved from:
[https://www.djangoproject.com]

FLASK (February, 2018). Documentation referent to the Flask framework.
Retrieved from: [http://flask.pocoo.org]

PYRAMID (February, 2018). Documentation referent to the Pyramid framework. Retrieved
from: [https://trypyramid.com]

HTML, CSS, JS and BOOTSTRAP tutorials. (February – June, 2018)
Retrieved from: [https://www.w3schools.com]

