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ABSTRACT 

Chicken feathers (CFs) are currently a biogenic solid waste generated on a large scale and around 

the world. Its valorization could provide a great opportunity to manufacture environmentally 

friendly materials and increase the profit of poultry processors. The aim of this study was to 

fabricate sound absorbing nonwoven materials using CFs wastes to evaluate both the 

environmental impact of their fabrication processes using Life Cycle Assessment (LCA) 

methodology and the acoustic performance and to compare the results with a conventional 

insulating material such as stone wool (SW). The study showed that it was possible to fabricate 

CFs-wool nonwovens incorporating up to 50 % w/w of CFs. The new material showed similar 

acoustic properties to those of SW, even behaving better for frequencies below 2200 Hz. LCA 

study showed that the environmental impacts decrease when the amount of CFs increases in 
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those nonwoven materials containing CFs-wool, except for abiotic depletion and eutrophication 

impact categories. However, despite the synthetic nature of the SW, SW only presented worse 

environmental performance than the CFs based nonwoven materials for few impact categories 

(depletion of abiotic resources, human toxicity and photo-oxidant formation) due to the 

negative contribution caused by the incorporation of wool (W) into the nonwoven materials. 

Keywords: Chicken feathers, keratin, stone wool, nonwoven, acoustic properties, Life Cycle 

Assessment. 

 

 

1. INTRODUCTION 

An estimated 100 million tons of chickens were raised in 2017 around the world (1), and the 

data from FAO states that chicken world production has almost doubled in the last twenty-five 

years (2). The intensive production and consumption results in huge amount of animal by-

products not suitable for human nutrition (3). Among these animal by-products, chicken 

feathers (CFs) represent around 5–7 % of the total chicken weight (4) (5). These CFs constitute 

a waste that are mainly buried in landfills and/or burned in incinerators. The conversion of CFs 

to animal food, the only possible way in which this residue is used nowadays, is strictly controlled 

due to the bovine spongiform encephalopathy outbreaks (6) (7). Moreover, the most common 

treatment, which is the incineration method, leads to the generation of greenhouse gases (8). 

Due to the increasing awareness of the environmental impact and health issues of chemical 

materials (9) , the trend to valorize natural raw materials is growing. A good example of this 

trend is the interest in valorising CFs, as well as other natural by-products. Following this 

tendency, some proposals directed to obtain value-added products as biocomposites (10), 

biosorbents (11), filter media (12), insulation materials (13) and tissue engineering scaffolds (14) 

have emerged.  
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Regarding the insulation materials option, it is important to note that the sound insulation 

products that are available nowadays are not necessarily recycled, and sometimes imply 

pollutant production processes or require high consumption of resources (15) (16). For example, 

building acoustic insulation is commonly realized using fibrous and porous materials obtained 

from petrochemicals (urethane foams) or from natural sources that requires the consumption 

of high energy for their manufacture (glass and SW). Consequently, the use of natural or recycled 

materials could reduce the environmental impact that those materials can cause, promoting the 

introduction of the sustainability concept in building design. Among the sound-absorbing 

materials made with natural resources or by-products that have been proposed during the last 

years (coir, kenaf, bamboo, W, etc.), CFs is currently under study and its development is at an 

early stage (17) (18) (19). This biogenic waste that could result in a route of obtaining 

environmental friendly acoustic insulation materials since a waste from poultry industry is 

valorised and the final acoustic product could perform well in terms of biodegradability or 

compostability. CFs are made of hydrophobic keratin, a protein with an environmental durability 

similar to nylon. The diameter of the CFs fibres (excluding the central part of the feather, the 

quill) is generally smaller than that of the W fibres. That physicochemical structure is responsible 

for the properties of CFs: light weight, moderate biodegradability, high specific modulus and 

tensile strength (20). In addition, keratin has also good acoustic performance (21) since the quill 

of the CFs is formed by a porous macrostructure that can promote sound absorption by trapping 

air in its inner part (22). Consequently, their application to the production of porous and non-

porous sound insulation materials is an alternative of valorisation worth to explore that could 

consume the huge amount of CFs produced annually. In fact, this route of valorisation has 

already been explored, demonstrating the viability of manufacturing nonwoven materials from 

CFs by using thermal bonding with binding materials (18), air laid (18) or compaction (17) 

methods. In all these three cases, the resulted materials demonstrate comparable, or in some 

cases better, sound absorbing properties than conventional acoustic insulation materials. 
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Besides, it is important to take into account that CFs are comparable to sheep W, in terms of 

light weight, recyclability and biodegradability, so the combination of both materials could be 

an alternative for developing new insulation products. These resulted products would also be a 

low cost alternative since in Europe sheep are raised fundamentally to obtain meat, and these 

breeds W is generally considered a by-product that has to be eliminated according to animal by-

products and derived products not intended for human consumption European regulation (23) 

by incineration, composting or disposal in a landfill, as well as CFs. 

Alternatively to nonwoven materials, others authors have demonstrated that CFs used in 

combination with thermoplastic matrices, such as high density polyethylene (24) (25), ethyl vinyl 

acetate (26) and polypropylene (27) (28) (29) (30) (26), result in biocomposites panels with good 

sound dampening properties, which perform better than cellulose based composites. However, 

when CFs were mixed with polymers to fabricate rigid biocomposite panels, in general, the 

obtained materials exhibit limited acoustic absorption properties (31) (32). On the contrary, 

when fibres are consolidated in the form of nonwoven, the sound absorption efficacy improves 

significantly as it was reported by Patnaik et al. (33) who prepare nonwovens using a keratin 

based fibre with properties similar to CFs, i.e. W, in combination with recycled polyester fibres.  

From author’s acknowledgment, the proposal of using CFs for the development of nonwoven 

insulation materials with acoustics properties comparable to commercial products, i.e. SW, 

represents an advance in the search of new routes of valorisation of biogenic CFs waste. So, the 

aim of this work was to fabricate a new nonwoven acoustic insulation material using 

conventional textile machinery, characterize their acoustic properties and evaluate the 

environmental impacts related with their manufacturing process at laboratory scale by means 

of Life Cycle Assessment (LCA) methodology.   

 

2. METHODOLOGY 
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2.1. Material preparation and acoustic characterization 

CFs were supplied by a slaughterhouse located in Catalonia (Spain). CFs as provided by the 

slaughterhouse are unstable, unsafe and biodegradable. A pre-treatment is mandatory to 

stabilize and sanitize the waste (34). CFs were first frozen at -20 °C and subsequently washed in 

a washing machine at 35 °C with a 3300 ppm H2O2 solution (hydrogen peroxide 35 % weight 

solution, Chem-Lab NV, Belgium), in a 5/1 (v/w) liquor ratio for 50 min. After that, CFs were dried 

in an air oven at 60 °C for 24 h. After such process, the appearance of CFs was significantly 

improved not only in terms of smelling and general look but also in the content of 

microorganisms. This methodology has been developed and published previously (35).  

CFs fibers previously pretreated as described above were separated from the quill using a Shirley 

opener (Platt Bros & Co Ltd, North West England, UK). In order to ensure the fibers orientation 

and their correct separation and cleaning, five passages were performed. After some 

experiments using a carding machine, the results show that CFs fibers were not long enough to 

directly obtain a nonwoven material. In order to improve the cohesion, W fibers were added. W 

is also a keratinaceous fiber with similar characteristics. The used W is categorized as type 2 (36) 

and it is already skirted and washed. CFs fibers were mixed with W in a carding machine (Platt 

Bros & Co Ltd, North West England, UK) in order to promote the fiber alignment and web 

formation. The obtained nonwoven was quite thick, without need of the cross-lapping step. The 

single layer of nonwoven was consolidated by means of a needle-punching machine (DILO OUG-

II-6, Germany) with two needle-boards separated 12 mm. The stitch depth was 8 mm, and the 

needle type used was SNF 15X18X36 RB30 (37). Nonwovens containing 0 % (CFs0W100), 10 % 

(CFs10W90), 25 % (CFs25W75) and 50 % (CFs50W50) of CFs and the corresponding amount of 

W fibers were manufactured (Figure 1A, see Appendix).  

Compositions including more than 50 % of CFs were not possible using this method because of 

the lack of cohesion of the web. 
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After preparation, the density, weight and thickness of nonwoven materials were determined 

following UNE-EN ISO 12127:1998 (38) methodology. 

The sound absorption coefficients (α) of the nonwoven materials were determined using the 

two-microphone impedance tube (Brüel & Kjaer 4206, Denmark) and following the ISO 10534-2 

standard (39). Cylindrical samples with diameters of 29 mm were prepared by cutting the 

material and then submitted to a plane sound wave. The sound pressures were measured at the 

same time in two microphone positions and the relationship between the acoustic energy that 

is absorbed by the material and the total incident energy resulted in the normal incidence sound 

absorption coefficient. The α coefficient was determined for frequencies in the range of 500 to 

6200 Hz. The influence of the thickness in the sound absorption was measured by preparing 

samples with a different number of nonwoven layers, located one above the other without any 

bonding within them. 

Measurements of two different specimens extracted from each prepared material were carried 

out and the average curve of α was reported. As the difference between the duplicates was 

minimal, this information was not reported since the error bars would overlap with the line of 

the curve. From the α average curve, the Noise Reduction Coefficient (NRC) was calculated as 

the arithmetic average of α determined at 500, 1000 and 2000 Hz (40) based on ASTM C 423 

(41). SW, a product commonly used as insulator in the market, was chosen as a reference, in 

order to compare the performance of the new materials (42). The thickness, weight and density 

of the chosen commercial SW (Arena Isover) were determined by measuring five specimens of 

the sample. 

2.2. Environmental analysis 

Environmental analysis was carried out following the four basic phases of the life cycle 

assessment (LCA) methodology according to ISO 14040 (43) and ISO 14044 (44): goal and scope 

definition, Life cycle inventory, Life cycle impact assessment and interpretation. SimaPro 8.03 
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software, developed by Pré Consultants, was used as a tool to the LCA, using the CML-IA 

(baseline) method (v3.4) midpoint approach. SimaPro is a software widely used by the scientific 

community for LCA studies. The CML-IA method is one of the most commonly used methodology 

to LCA studies and the baseline considers the most common impact categories used in LCA. Also, 

it aims to provide best practice for midpoint indicators, operationalizing the ISO 14040 series of 

Standards. 

 

2.2.1. Goal and scope definition, functional unit and system boundaries 

The main goal of the LCA study was to assess and compare the nonwoven materials prepared 

with CFs and W (CFs0W100, CFs10W90, CFs25W75 and CFs50W50) with a conventional SW 

insulation material in order to evaluate the environmental performance of the new developed 

materials.  

Due to the lack of data regarding to the installation, maintenance, and end-of-life stages, and 

being the materials a prototype, Cradle-to-Gate approach was considered the most appropriate, 

so the use and end of life product stages are out of the scope of the study. 

The functional unit (FU) is a central element of a LCA. It provides the reference for the 

normalization of the other data in the product. A meaningful and valid comparison of different 

products is not possible without a functional unit (45). The European Commission-Joint Research 

Centre states that the quantitative definition of a product functional unit should refer to 

technical standards whenever possible and appropriate (45). As pointed by Berardi et al., in case 

of thermal insulating materials, it is common to use as a functional unit the quantity of material 

necessary to obtain a given thermal resistance (46). In this case, the environmental impacts are 

indirectly determined according to the material performance. Conversely, no standard 

functional unit has been introduced so far in the field of acoustic studies (47) and there are only 

few studies concerning acoustic materials in which the acoustic properties are considered in the 

definition of the functional unit (48) (49). To conduct a comparative study of the performance 
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of acoustic insulation materials it seems more appropriate to include the effect of their sound 

absorption properties (50) by using the corresponding NRC values.  

Based on the aforementioned premises, for the sake of comparability, two functional units were 

defined and the corresponding LCA study has been carried out. In the former case, the surface 

(m2) of an acoustic panel with a sound absorption unit (uA) of 1 metric Sabin was selected as a 

functional unit (FU=1 uA). In the second case, a surface-based functional unit was selected, so 

the FU corresponds to 1 m2 of acoustic material surface (FU=1 m2) 

On the one hand, the first FU definition (FU=1 uA) takes into account the acoustic performance 

of the different materials in order to make a suitable comparison. So, FU has been calculated 

using the Equation 1, where S is the surface (m2); A is the sound absorption in metric Sabins (in 

this case equal to 1 unit), and NRC is the Noise Reduction Coefficient: 

𝑆𝑆 = 𝐴𝐴/𝑁𝑁𝑁𝑁𝑁𝑁                                                                Eq. 1 

The mass of each material needed to perform evenly can be calculated using Equation 2, where 

M is the mass (kg), δ is the density (kg/m3), d is the thickness (m) and S is the surface (m2) 

calculated by Equation 1:  

𝑀𝑀 = 𝛿𝛿 · 𝑆𝑆 · 𝑑𝑑                                                                Eq. 2 

 

Combining Equations 1 and 2 and considering A = 1 uA, it is possible to express the equivalent 

mass of each material with the equal sound absorption performance (Equation 3): 

𝑀𝑀 = 𝛿𝛿 · 𝑑𝑑 · � 1
𝑁𝑁𝑁𝑁𝑁𝑁

�                                                       Eq. 3 

On the second hand, the additional surface-based FU (FU=1 m2) does not consider the acoustic 

performance of the different materials and only provides information about the amount of 

material required to obtain a panel with a surface 1 m2 taken into account only the different 

density of each material. The mass of each material required to fabricate a 1 m2 panel has been 

calculated by using the Equation 2.  
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The system boundaries between the product system and the environment for acoustic insulating 

materials fabricated with a mixture of CFs and W and, alternatively, using 100 % of W, are shown 

in Figure 1. 

 

 

 

Figure 1. System boundaries between product system and environment for acoustic insulating 
materials made with CFs (above) and W (below). 

 

As it is shown in the Figure 1, CFs and W need to be cleaned and dried before opening process 

to obtain fibres and, consequently, the process will produce wastewater. Nevertheless, such 

wastewater was considered out of the boundaries of the system due to its low load of pollutants 

(51). 
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Regarding the issue of allocation rules, the environmental impacts attributed to animal rising 

were disregarded by the following reasons. On the one hand, according to the Ministry of 

Agriculture and Fisheries, Food and Environment of Spain, CFs wastes are animal by-products 

“with little or no commercial value or economic and without viable destination” (3). For this 

reason, the authors have considered that there is not any causal or economic relationship 

between the raising of poultry (non-functional flow) and the CFs (co-products). All the flows 

needed for the chickens fattening, as well as the chemicals used for the de-feathering step in 

the skinning process are only imputable to the chicken meat (51). Consequently, those 

environmental impacts were excluded since they are strictly attributed to chicken meat 

production. On the other hand, W market has shrunk in several European regions and, 

nowadays, it is often incinerated as a waste (46). Therefore, similarly to the case of CFs, it has 

been considered that there is not any causal or economic relationship between the raising of 

sheep (non-functional flow) and the W (co-products) and, again, those flows needed for 

fattening, as well as for shearing, are only imputable to meat production. Thus, environmental 

impacts strictly attributed to sheep meat production were also excluded. 

It was considered that, due to its high calorific value, all the solid wastes generated in opening 

and card processes go to incineration with electricity recovery, modelled based on the 

methodology documented by Doka. Accordingly, the calculation tool for waste disposal was 

based on Ecoinvent LCI database v2.1 (52), with October 2008 corrections (53). The upper and 

lower heating values are reported in Table 1 and were established using the Dulog’s formula 

according the elemental composition of CFs and W (54) (55) (56), also shown in Table 1. 

Table 1. Elemental composition and upper and lower heating values of CFs and W. 

 CFs W 
Upper heating value (MJ/kg) 31.3 23.1 
Lower heating value (MJ/kg) 29.3 21.6 

Chemical composition 
Oxygen (% wt without O from H2O) 13.5 22-25 
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Hydrogen (% wt without O from H2O) 8.6 6.5-7.5 
Carbon (% wt all biogenic) 61.5 50-52 
Sulfur (% wt) 4.9 3-4 
Nitrogen (% wt) 8.8 16-17 
Chlorine (% wt) 2.6 -- 

 

The background Life Cycle Inventory (LCI) data for the energy and material inputs come from 

Ecoinvent v3.3 data base (Ecoinvent. 2016) and these sources are shown in Table 2. 

Table 2. Primary and background data sources. 

Input/process Data source 
Tap water: Tap water (Europe without Switzerland)/tap water production, 
conventional treatment/Alloc Def, U (Ecoinvent. 2016) 

Hydrogen peroxide: Hydrogen peroxide, without water, in 50% solution 
state (GLO)/market for/Alloc Def, U (Ecoinvent. 2016) 

Electricity: Electricity, low voltage (ES) market for/Alloc Def, U (Treyer et al 2016) 
Borax anhydrous powder: Borax, anhydrous, powder (GLO) /market for/ 
Alloc Def, U (Ecoinvent. 2016) 

Fatty alcohol sulfonate: Fatty alcohol sulfate (RER)/ market for/Alloc Def, U (Ecoinvent. 2016) 
Heat: Natural gas, low pressure (CH)/ market for/ Alloc Def, U1 (Ecoinvent. 2016) 
SW (CH)/SW production/Alloc Def, U (Ecoinvent. 2016) 

1 9000 kCal/m3 of Low calorific value has been supposed 

 

The primary data used in this study was obtained from laboratory scale processes carried out 

following the protocol described in section 2.1.  

 

 

 

2.2.2. Selected impact assessment method 

SimaPro 8 software was used to perform the LCA, following the CML-IA baseline 3.04 midpoint 

approach, excluding infrastructure processes and long-term emissions. 

The selected impact categories to assess and compare the different new nonwoven materials 

made with CFs and W and the conventional SW acoustic panel belong to the CML-IA baseline 

indicators at “mid-point level” approach, developed at the Institute of Environmental Sciences 
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of Leiden University (57). A short explanation of each IC and the used indicator or 

characterization factor is presented to provide a basic knowledge of the terms: 

- “Abiotic depletion” is related to the extraction of minerals and fossil fuels due to inputs in 

the system. The Abiotic Depletion Factor is determined for each extracted mineral (kg Sb 

equivalents/kg extraction units) or fossil fuel used (MJ units) based on concentration 

reserves and rate of de-accumulation.  

- “Climate change” is related to emissions of greenhouse gases to air. The characterization 

model developed by the Intergovernmental Panel on Climate Change was selected and data 

are expressed as Global Warming Potential for time horizon 100 years (GWP100a), in kg 

carbon dioxide/kg emission units.  

- “Stratospheric Ozone depletion” causes that a larger fraction of UV-B radiation reaches the 

earth surface. This IC is output-related and at global scale. The characterization model 

developed by the World Meteorological Organization defines ozone depletion potential of 

different gases with the normalized unit kg CFC-11 equivalent/ kg emission.  

- “Human toxicity” concerns effects of toxic substances on the human environment, although 

Health risks of exposure in the working environment are not included. The characterization 

factor, Human Toxicity Potential, is calculated with USES-LCA, describing fate, exposure and 

effects of toxic substances for an infinite time horizon. For each toxic substance, Human 

Toxicity Potential is expressed as 1,4-dichlorobenzene equivalents/kg emission. 

- “Fresh-water aquatic ecotoxicity” refers to the impact on fresh water ecosystems, as a result 

of emissions of toxic substances to air, water and soil. Eco-toxicity Potential is calculated 

with USES-LCA, describing fate, exposure and effects of toxic substances and measures are 

expressed as 1,4-dichlorobenzene equivalents/kg emission. 

-  “Marine ecotoxicity” refers to impacts of toxic substances on marine ecosystems (see 

description of fresh water toxicity). 
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- “Terrestrial ecotoxicity”. This category refers to impacts of toxic substances on terrestrial 

ecosystems (see description of fresh water toxicity). 

-  “Photochemical oxidation” evaluates the formation of reactive substances (mainly ozone) 

which are injurious to human health and ecosystems and which may damage crops. This 

problem is also indicated as “summer smog” and should not be confused with “winter 

smog”, being the last outside the scope of this category. The indicator Photochemical Ozone 

Creation Potential for emission of substances to air is calculated with the UNECE Trajectory 

model and expressed in kg ethylene equivalents/kg emission.  

- “Acidification” considers acidifying substances that cause a wide range of impacts on soil, 

groundwater, surface water, organisms, ecosystems and materials (i.e. buildings). 

Acidification Potential for emissions to air is calculated with the adapted RAINS 10 model, 

describing the fate and deposition of acidifying substances. Acidification Potential is 

expressed as kg SO2 equivalents/kg emission. The method was extended for compounds 

such as HNO3, H2SO4, SO3, HCl, HF, H3PO4, H2S and NO.  

- “Eutrophication”, also known as nitrification, includes all those impacts due to excessive 

levels of macronutrients in the environment caused by emissions of nutrients to air, water 

and soil. The indicator Nutrification potential is based on the stoichiometric Heijungs 

procedure (58), and expressed as kg PO4
3- equivalents/kg emission.  

 

 

3. RESULTS AND DISCUSSION 

3.1. Characterization of the nonwoven materials based on chicken feathers 

Physical and acoustic properties of CFs-W nonwoven materials of different composition were 

compared with the properties of a commercial material used for sound absorption (42) such as 

SW. The density, weight and thickness of the resulted CFs-W nonwovens and SW are shown in 

Table 3, showing that the density of the CFs-W composites was always higher compared with 
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SW regardless the percentage of CFs used. Nevertheless, it is worthy to note that the density 

decreases when the amount of CFs increases resulting in lighter materials. 

Table 3. Density, weight and thickness of the fabricated CFs-W nonwovens and commercial 
SW. 

Sample code Density 
(kg/m3) 

Weight 
(g/cm2) 

Thickness of 1 layer 
(cm) 

CFs0W100 27 ± 4 0.018 ± 0.001 0.66 ± 0.05 
CFs10W90 23 ± 1.5 0.017 ± 0.002 0.57 ± 0.06 
CFs25W75 23 ± 4 0.017 ± 0.002 0.59 ± 0.02 
CFs50W50 20 ± 3 0.013 ± 0.001 0.64 ± 0.03 

SW 17 ± 0.7 0.076 ± 0.005 4.4 ± 0.2 
 

Sound absorption performance was determined by measuring α in the range of frequencies from 

500 to 6200 Hz either for 1 or several layers of the material (Figure 2) and for different 

composition of CFs (Figure 3). The results observed corroborated that all the materials behave 

as a porous insulating material where the sound energy penetrate the material hitting the 

surface and converting itself to heat energy. In addition, the frequency absorption profile is in 

agreement with typical porous materials (53), i.e. SW or fiberglass, where α increases 

proportionally to the frequency up to a maximum. Likewise, Figure 2 shows that sound 

absorption is highly dependent on sample thickness since, as expected, α increases with the 

thickness of the material. When thickness values are higher than 4.0 cm, α reached values above 

0.95 at 2000 Hz which is considered an adequate performance of the material in comparative 

terms with commercial acoustic insulators.  
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Figure 2. α values for different thicknesses (in cm) of the CFs50W50 sample. 

Figure 3 shows the acoustic characterization of four nonwoven samples containing CFs and/or 

W with comparable thickness (range of 4.20 - 4.48 cm) and compares these samples with 

commercially available SW (4.4 cm thick). Nonwoven materials performed better than SW below 

2200 Hz, worse in the 2200 – 5200 Hz range and similarly for frequencies higher than 5200 Hz. 

Moreover, comparing the performance of the CFs nonwoven materials with other recycled 

materials, such as textile recycled fibers or paper waste (49), it was observed that CFs based 

materials give higher α values. 
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Figure 3. α results for samples in a 4.20- 4.48 cm thickness range. 

Absorption profiles for samples with similar thickness were very similar. The NRC parameter was 

calculated in order to characterize the nonwoven materials and the reference materials (Table 

4), but also to compare their characteristics to the ones of other similar materials (59) (60) (61). 

A higher NRC value was systematically achieved by nonwoven materials despite their density 

was slightly higher than that of SW.  

Table 4. NRC and experimental density for nonwoven materials and reference material. 

Sample code NRC Density (kg/m3) 
CFs0W100 0.65 ± 0.021 27 ± 3.679 
CFs10W90 0.60 ± 0.021 22 ± 1.525 
CFs25W75 0.60 ± 0.021 23 ± 4.002 
CFs50W50 0.65 ± 0.022 20 ± 2.822 
SW 0.55 ± 0.037 17 ± 0.690 

 

Further evidence of the effective sound absorption of CFs/W nonwovens is given by comparing 

the NRC obtained for a number of different types of natural fibres. It is found that NRCs of ramie, 

jute and flax are as high as 0.6, 0.65 and 0.65 for samples of 40 mm of thickness (54), which are 

comparable to the obtained for CFs based samples.  
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3.2. Life Cycle Assessment results 

3.2.1. Functional Unit calculation 

As mentioned previously two functional units have been defined for the LCA study. For each of 

these units, i.e. FU = 1 Absorption Unit (1 uA) and FU = 1 m2, the equivalent mass (in kg) has 

been calculated by using Equation 3 and 2, respectively, for an acoustic panel of a thickness 

similar to that of commercial SW. The corresponding values are reported in Table 5.  

Table 5. Thickness and equivalent mass of tested materials for each FU considered 
compared to SW. 

Sample 
code 

Thickness 
(cm) 

FU=1uA FU=1 m2 

Surface (m2) Equivalent 
mass (kg) 

Surface 
(m2) 

Equivalent mass 
(kg) 

CFs0W100 4.2 1.6 1.8 1 1.2 
CFs10W90 4.0 1.7 1.5 1 0.9 
CFs25W75 4.3 1.6 1.6 1 1.0 
CFs50W50 4.0 1.6 1.3 1 0.8 
SW 4.4 1.9 1.4 1 0.8 

 

3.2.2. Life Cycle Inventory 

The Life Cycle Inventory (LCI) comprises the data collection and the adequate calculations to 

quantify the inputs and outputs of the studied systems, reported to the functional unit. Table 6 

shows the LCI flows for the analysed materials and for the two functional units considered.  
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Table 6. LCI for acoustic insulating nonwoven materials made with W and CFs (10, 25 or 50 %), and with 100 % of W. 

  CFs10W90 CFs25W75 CFs50W50 CFs0w100 

Input Unit 
Amount Amount Amount Amount Amount Amount Amount Amount 
(FU=1m2) (FU=1uA) (FU=1m2) (FU=1uA) (FU=1m2) (FU=1uA) (FU=1m2) (FU=1uA) 

CFs clean and dry 
Tap water (Cleaning) L 1.709 2.849 4.314 6.903 7.847 12.752     
Hydrogen peroxide (Cleaning) kg 0.006 0.010 0.015 0.024 0.027 0.044     
Electricity (Cleaning) kJ 8.795 14.659 22.201 35.522 40.380 65.618     
Electricity (Drying) kJ 186.188 310.313 469.989 751.982 854.818 1389.079     
CFs opening 
Electricity kWh 0.026 0.043 0.066 0.105 0.119 0.194     
Output waste (100% CFs) kg 0.046 0.077 0.177 0.1872 0.213 0.3458   
W clean and dry 
Tap water L 5.950 9.917 1.611 2.578 3.039 4.938 8.739 10.196 
Borax anhydrous powder kg 0.071 0.118 0.019 0.031 0.036 0.059 0.104 0.121 
Fatty alcohol sulfonate kg 0.008 0.014 0.002 0.004 0.004 0.007 0.012 0.014 
Heat kWh 0.767 1.278 0.208 0.332 0.392 0.636 1.126 1.314 
Electricity kWh 0.240 0.400 0.065 0.104 0.123 0.199 0.353 0.411 
W opening 
Electricity kWh 0.233 0.389 0.226 0.361 0.119 0.194 0.343 0.400 
Card 
Electricity kWh 0.675 1.125 0.600 0.960 0.426 0.692 0.612 0.714 
Output waste1 kg 0.027 0.045 0.040 0.064 0.048 0.078 0.024 0.028 
Punching 
Electricity kWh 0.927 1.545 0.830 1.328 0.808 1.313 0.852 0.994 

1 The composition of waste varying depending of the composition of the nonwoven materials.
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Regarding to the LCI data shown in Table 6 the following considerations apply: i) most of the 

data were obtained from the processes carried out in the laboratory with the exception of data 

related to W cleaning and drying processes, which was obtained from Murphy et al. (62); ii) the 

LCI background data for energy, heat and material inputs (i. e., tap water, hydrogen peroxide, 

borax anhydrous powder and fatty alcohol sulfonate) come from Ecoinvent v3.3 database (63); 

iii) data related to the manufacture of SW acoustic panel come from Ecoinvent v3.3 database 

(64). Melting, fiber forming and collecting, hardening and curing furnace, and internal processes 

were considered as well as transport of raw materials and energy carrier for furnace. 

Administration, packing and infrastructure were not included; iv) Related to the cleaning and 

drying CFs processes: the amount of tap water and hydrogen peroxide of the CFs pre-treatment 

process has been determined by experiments carry out in our laboratory in order to have 

completely sanitized feathers. The CFs cleaning process was carried out in a conventional 

washing machine with 5 kg capacity working 102 minutes at 35 °C. The electricity consumed was 

measured using a wattmeter (12Wh/kgin). The cleaning and drying process yield were 

determined obtaining values of 96 % and 71 % respectively. The energy requirements for drying 

the CFs at 60 °C after cleaning and before nonwoven manufacture have been deducted from the 

enthalpy balances.  

𝑄𝑄 = 𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑 𝑁𝑁𝐶𝐶 ∗ �ℎ𝑁𝑁𝐶𝐶,𝑜𝑜𝑜𝑜𝑜𝑜 − ℎ𝑁𝑁𝐶𝐶,𝑖𝑖𝑖𝑖� + 𝛴𝛴𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑖𝑖𝑑𝑑 ∗ �ℎ𝑎𝑎𝑖𝑖𝑑𝑑,𝑜𝑜𝑜𝑜𝑜𝑜 − ℎ𝑎𝑎𝑖𝑖𝑑𝑑,𝑖𝑖𝑖𝑖�                 Eq.4 

ℎ𝑁𝑁𝐶𝐶 = (𝑁𝑁𝑁𝑁𝐶𝐶 + 𝑋𝑋𝑁𝑁𝐻𝐻20)𝑇𝑇                                                   Eq.5 

ℎ𝑎𝑎𝑖𝑖𝑑𝑑 = (𝑁𝑁𝑎𝑎𝑖𝑖𝑑𝑑𝑎𝑎 + 𝑌𝑌𝑁𝑁𝑠𝑠𝑜𝑜𝑎𝑎𝑎𝑎𝑠𝑠)𝑇𝑇 + 𝑌𝑌𝛥𝛥𝐻𝐻𝑣𝑣                                         Eq.6 

Where: 

mdry CF : mass of dry CFs (kg) 
hCF,out : enthalpy of CFs at out conditions 
hCF,in : enthalpy of CFs at in conditions 
mdry air : mass of dry air  (kg) 
hair,out : enthalpy of air at out conditions 
hair,in : enthalpy of air at in conditions 
CCF: Specific heat of CFs (kJ/kg K) 
X: water content of CFs (kg water/kg dry CFs) 
CH20: Specific heat of water (kJ/kg K) 
T: Temperature (K) 
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Cair: Specific heat of air (kJ/kg ºC) 
Y: Humidity Ratio (kg water/kg dry air)  
Csteam: Specific heat of steam (kJ/kg K) 
ΔHv: latent heat of water (kJ/kg);  

v) the energy consumption related to opening CFs and W was calculated taking into account the 

machine power and the process time (5.04 KW and 0.04 h/kg in). The amount of output waste 

was estimated considering a 33 % mass losses for CFs and a 0 % for W; vi) the energy 

consumptions for card and needle-punching processes were calculated from machines power 

(12.52 kW and 17.3 kW, respectively) and the process time, which varies between 0.04 h/kgin 

for 100 % W nonwovens to 0.06 h/kgin for mixtures of CFs and W. The amount of output waste 

at card process was 2 % for W and 10% for CFs. Incineration of these wastes was considered to 

model the emissions and electricity recovery based on the methodology documented by Doka 

(47). 

 

3.2.3. Life Cycle Impact Assessment and interpretation 

Life Cycle Impact Assessment (LCIA) is the phase in an LCA where the inputs and outputs of 

elementary flows that have been collected and reported in the inventory are translated into 

impact indicator results. SimaPro 8 software was used to perform the LCIA, following the CML-

IA baseline 3.04 midpoint approach, excluding infrastructure processes and long-term 

emissions.  

In Figure 4 the environmental impacts are shown for all the investigated materials, connected 

to the application as a sound insulation material (FU = 1 uA) and to the production of 1 m2 of 

panel (FU = 1 m2). In the Figure 4, the 100 % of each impact category was allocated to the sample 

with the highest value while the percentages for the other samples were calculated in relation 

to the highest one. Likewise, the absolute values of each corresponding environmental impact 

are shown in the Appendix (Table 1A).  
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Figure 4. Environmental impacts (relative values) of the CFs based materials and SW for the 
two functional units. 

Taking as a reference the functional unit connected to the application of the materials as an 

absorber panel (FU = 1uA), it can be observed that all the impact categories are higher compared 

with the obtained for the production of 1 m2 of panel since the equivalent mass is higher in the 

former. Nevertheless, the trend described by both functional units is similar since the material 

and energy balances affecting the LCA analysis are almost proportional to the calculated 

equivalent mass which in the case of FU= 1 uA was significantly higher by the effect of the NRC 

parameter. 

It can be noticed that, regardless the functional unit, the SW material determines the lowest 

environmental impacts, except for the following three categories: Abiotic Depletion, Human 

Toxicity and Photochemical Oxidation. This result was at some extend expected, since many 

differences could be, at first, ascribed to the synthetic origin of SW. Conversely, environmental 

impacts related to Ecotoxicity (in fresh water, marine aquatic environments and terrestrial 

environments) were low or even negligible for SW but of high importance for the developed CFs 

based nonwovens. Similar values (understood as less than 20 % of difference between materials) 
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were found for some impact categories such as Global Warming, Acidification and 

Eutrophication. 

It is worth to mention that, differently to what one may expect before a deep analysis, synthetic 

SW exhibited lower values than nonwovens made of natural fibres for 7/11 of the environmental 

impacts of the CML. Moreover, it is important to note that the acidification impact category was 

about 100 % for both SW and CFs10W90 nonwoven material.  

The reasons behind the three aforementioned impact categories with high values for SW can be 

explained taking on account several considerations (65) (66) (67). Abiotic Depletion high values 

were mainly due to the formaldehyde used in the manufacture of the material and because of 

the necessary metals to produce formaldehyde from methanol. Human Toxicity noticeable 

values (5-folds higher than values for nonwoven materials) can be associated to toxic substances 

used in the SW manufacture (i.e. phenol), and the fuel used for the melting process, in this case, 

coke. Similarly, the formation of photo-oxidant substances (Photochemical oxidation) was also 

caused by the use of phenol, formaldehyde and coke in the production of SW. 

Focusing the analysis in the nonwovens and considering all the impact categories, it can be said 

that W is, at least, as polluting as CFs, since for those impact categories where CFs show higher 

values, differences with W values are very low (i.e. Eutrophication). On the contrary, there are 

some impact categories with high values for W (i.e. Fresh Water aquatic Ecotoxicity and 

Terrestrial Ecotoxitiy but also for Abiotic Depletion due to fossil fuel and Ozone Layer Depletion). 

These latter impacts are mainly associated with the chemicals used for cleaning W, and mostly, 

with the energy consumption related also with the card and needle-punching machines and with 

the drying process applied after washing, as it can be noticed in Figure 5. In addition, cleaning 

and drying W step process also determines the Ecotoxicity impact (fresh water and terrestrial). 

Note that, as the W content in the material decreases, the impacts are also reduced. For 
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instance, due to the reduced amount of W in the CFs50W50 nonwoven, its Global Warming 

Potential equals that of SW.  

 

Figure 5. Process steps affecting each environmental impact for CFs50W50 nonwoven 
materials. 

Taking as a reference the sound absorption unit (FU= 1uA) and the Global warming impact 

(GWP100a), CFs nonwovens are better acoustic absorption solution than rice husk, cork scraps, 

end-life granulated tires and waste paper pressed and glued based materials (68). In this sense, 

the average GWP100a of CFs based materials is 1,7 kg CO2eq while that of the alternative 

materials are approximately 3, 10, 11 and 15 kg CO2eq, respectively. These results highlight the 

potential for manufacturing environmental friendly acoustic products using CFs due to the 

advantages of processing this waste and to the good behaviour in sound absorption in 

comparison with other alternative recycled materials.  

3.2.4. Sensitivity analysis 

As it has been observed in the Figure 5, the card and punching processes present a great 

contribution in most of the environmental categories considered, mainly due to the energy 

consumption. For these reasons a sensitivity analysis was carried out varying the energy 

consumption of these processes, showing only the values for the acoustic panel of higher CFs 
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content. Taken into account the minimum and maximum energy consumption values for the 

processes mentioned, a triangular distribution was considered. 

Thus, the energy consumption related to the card and punching processes have been varied 

between 0.51 to 0.75 kWh/kgout and 0.71 to 1.03 kWh/kgout respectively, been this values the 

minimum and maximum energy values consumed for the different non-woven materials 

manufactured.  

A Monte Carlo simulation has been made in order to determine the distribution of each studied 

environmental impact category. The resulting distribution functions allow us to stablish an 

expected value and a Coefficient of variation (CV; 95 % confidence level) for all the impact 

categories considered. A 700 fixed number of runs was used according to the predefined 

probability distributions.  

Table 7 shows these statistical results for CFs50W50 and SW showing overlapping distributions. 

In order to determinate if there are a ‘real’ difference between both acoustic panels, Figure 6 

shows the distribution difference between CFs50W50 and SW for each impact category. If the 

difference is positive (red bars), CFs50W50 has a higher or equal impact than SW, if the outcome 

is negative (blue bar), the opposite is true. 
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Table 7. Sensitivity impact assessments: expecting values and coefficient of variation (CV) for 
CFs50W50 and SW acoustic panels. 

  
CFs50W50 
(FU = 1 uA) 

SW 
(FU = 1 uA) 

Impact Category Unit 
Expected 

results 
(95 %) 

CV (%) * 
Expected 

results 
(95 %) 

CV (%) * 

Abiotic depletion kg Sb eq 1.36E-07 14 2.12E-07 30 
Abiotic depletion (fossil fuels) MJ 2.03E+01 17 1.65E+01 12 
Global warming (GWP100a) kg CO2 eq 1.46E+00 8 1.50E+00 9 
Ozone layer depletion (ODP) kg CFC-11 eq 2.10E-07 18 1.10E-07 20 
Human toxicity kg 1,4-DB eq 3.00E-01 38 8.83E-01 65 
Fresh water aquatic ecotox. kg 1,4-DB eq 3.08E-01 34 2.89E-01 49 
Marine aquatic ecotoxicity kg 1,4-DB eq 1.82E+03 31 1.22E+03 61 
Terrestrial ecotoxicity kg 1,4-DB eq 1.88E-02 25 7.15E-04 17 
Photochemical oxidation kg C2H4 eq 3.85E-04 9 7.30E-04 13 
Acidification kg SO2 eq 1.00E-02 10 1.21E-02 7 
Eutrophication kg PO4

3- eq 2.28E-03 37 1.78E-03 34 
* 95 % confidence level 

 

Figure 6. Comparative Monte Carlo analysis for CFs50W50 and SW acoustic panels. 

It can be observed that CFs50W50 presents a better environmental performance for 

Acidification, Photochemical oxidation, Human toxicity and Abiotic depletion impact categories, 

and slightly better performance for Global Warming potential. 
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4. CONCLUSIONS 

CFs based nonwovens were fabricated and characterized to explore their ability to be used as 

new environmentally friendly acoustic materials. It was possible to fabricate CFs-W nonwoven 

materials with acoustic properties similar to SW, behaving even better for frequencies below 

2200 Hz. According to these results, nonwovens incorporating CFs waste and W up to 50 % were 

found to be an alternative to the current porous acoustic absorbents. 

Despite its synthetic nature, the SW reference material only presented worse environmental 

performance than the CFs based nonwovens for few impact categories: Depletion of abiotic 

resources, Human Toxicity and Photo-oxidant formation. The reason for this quite surprising 

result is that the energy consumptions of W processing, including drying, carding and needle-

punching, determines a high environmental impact for the CFs-W composites. Nonetheless, it is 

noteworthy to mention that the processing techniques used to implement the nonwoven 

materials are far from being optimal since there are based on data from laboratory scale. The 

same is valid for the energy consumption associated to such processes. Consequently, the found 

environmental impacts can be understood as the worst-case scenario and they are expected to 

reach lower levels than those reflected in our study at an industrial production scale. 
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6. APPENDIX 

 

 

Figure 1A. Appearance of needle punched samples. From left to right: CFs0W100, CFs10W90, 
CFs25W75 and CFs50W50. 

Table 1A. Absolute values of the environmental impacts for different samples and two 
FU (continued on next page). 

Impact 
Category Unit SW 

(FU=1 uA) 
SW 

(FU=1 m2) 
CFs0W100 
(FU=1 uA) 

CFs0W100 
(FU=1 m2) 

CFs10W90 
(FU=1 uA) 

CFs10W90 
(FU=1 m2) 

Abiotic 
depletion kg Sb eq 2.13E-07 1.22E-07 1.17E-07 7.82E-08 1.29E-07 7.77E-08 

Abiotic 
depletion 
(fossil fuels) MJ 

1.66E+01 9.49E+00 2.89E+01 1.93E+01 2.80E+01 1.68E+01 

Global 
warming 
(GWP100a) 

kg CO2 
eq 

1.50E+00 8.59E-01 1.77E+00 1.18E+00 1.84E+00 1.11E+00 

Ozone layer 
depletion 
(ODP) 

kg CFC-
11 eq 

1.10E-07 6.30E-08 2.68E-07 1.79E-07 2.70E-07 1.62E-07 

Human toxicity 
kg 1,4-
DB eq 7.71E-01 4.41E-01 1.98E-01 1.32E-01 2.06E-01 1.23E-01 

Fresh water 
aquatic ecotox. 

kg 1,4-
DB eq 1.17E-02 6.66E-03 1.15E-01 7.67E-02 8.99E-02 5.40E-02 

Marine aquatic 
ecotoxicity 

kg 1,4-
DB eq 2.72E+02 1.55E+02 1.29E+03 8.59E+02 1.38E+03 8.26E+02 

Terrestrial 
ecotoxicity 

kg 1,4-
DB eq 6.25E-04 3.57E-04 4.76E-02 3.17E-02 3.65E-02 2.19E-02 

Photochemical 
oxidation 

kg C2H4 
eq 7.37E-04 4.21E-04 4.91E-04 3.27E-04 5.03E-04 3.02E-04 

Acidification 
kg SO2 
eq 1.21E-02 6.91E-03 1.17E-02 7.79E-03 1.23E-02 7.39E-03 

Eutrophication 
kg PO43- 
eq 8.47E-04 4.84E-04 8.86E-04 5.91E-04 9.56E-04 5.74E-04 
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Table 1A. Absolute values of the environmental impacts for different samples and two 
FU (continuation). 

Impact 
Category Unit CFs25W75 

(FU=1 uA) 
CFs25W75 
(FU=1 m2) 

CFs50W50 
(FU=1 uA) 

CFs50W50 
(FU=1 m2) 

Abiotic 
depletion 

kg Sb 
eq 1.34E-07 8.37E-08 1.41E-07 8.66E-08 

Abiotic 
depletion 
(fossil fuels) 

MJ 2.58E+01 1.61E+01 2.14E+01 1.32E+01 

Global 
warming 
(GWP100a) 

kg CO2 
eq 1.71E+00 1.07E+00 1.55E+00 9.53E-01 

Ozone layer 
depletion 
(ODP) 

kg CFC-
11 eq 2.51E-07 1.57E-07 2.20E-07 1.36E-07 

Human toxicity 
kg 1,4-
DB eq 1.89E-01 1.18E-01 1.71E-01 1.05E-01 

Fresh water 
aquatic ecotox. 

kg 1,4-
DB eq 8.35E-02 5.22E-02 4.83E-02 2.97E-02 

Marine aquatic 
ecotoxicity 

kg 1,4-
DB eq 1.25E+03 7.81E+02 1.15E+03 7.06E+02 

Terrestrial 
ecotoxicity 

kg 1,4-
DB eq 3.39E-02 2.12E-02 1.88E-02 1.16E-02 

Photochemical 
oxidation 

kg C2H4 
eq 4.62E-04 2.89E-04 4.09E-04 2.52E-04 

Acidification 
kg SO2 
eq 1.15E-02 7.18E-03 1.06E-02 6.54E-03 

Eutrophication 
kg 
PO4

3- 
eq 9.63E-04 6.02E-04 9.70E-04 5.97E-04 
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