
Systematic Formulation of Non-Functional
Characteristics of Software1

Xavier Franch
franch@lsi.upc.es

Dept. Llenguatges i Sistemes Informàtics (LSI)
Universitat Politècnica de Catalunya (UPC)

c/Jordi Girona 1-3 (Campus Nord, C6), 08034 Barcelona, Catalonia (Spain)
FAX: 34-3-4017014. Phone: 34-3-4016965

Abstract
This paper presents NoFun, a notation aimed at dealing

with non-functional aspects of software systems at the
product level in the component programming framework.
NoFun can be used to define hierarchies of non-functional
attributes, which can be bound to individual software
components, libraries of components or (sets of) software
systems. Non-functional attributes can be defined in
several ways, being possible to choose a particular
definition in a concrete context. Also, NoFun allows to
state the values of the attributes in component
implementations, and to formulate non-functional
requirements over component implementations. The
notation is complemented with an algorithm able to select
the best implementation of components (with respect to
their non-functional characteristics) in their context of use.

Key words: component programming, non-functional
requirements.

1. Introduction

1.1. Motivation

Software systems can be characterised both by their
functionality (what the system does) and by their
non-functionality or quality1 (how the system behaves
with respect to some observable attributes like perfor-
mance, reusability, reliability, etc.). Both aspects are
relevant to software development; in this paper, we are
going to focus on the study of non-functionality.

1 This work is partially supported by the spanish project TIC97-1158
(from the CICYT program).
2 We have rejected the word "quality" because there are some non-
functional characteristics of software which are not related with the
quality itself; for instance, the kind of user-interface of a system.

Approaches to non-functionality can be classified as
process-oriented or product-oriented. Process-oriented ones
use non-functional information to guide the development
of software systems. There are some widespread
approaches in the information systems area [3, 14] as well
as in knowledge-based systems [13]. On the other hand,
product-oriented approaches deal with non-functional
issues from the evaluation point of view: software
products may be examined to check if they fall within
their constraints of non-functionality. As stated in [14], it
is important to remark that product-oriented and process-
oriented techniques should be seen not as alternative but as
complementary, both contributing to a comprehensive
framework for dealing with non-functionality.

A natural way to facilitate the product-oriented approach
is to define a notation aimed at stating non-functional
requirements of software in the software itself. Although
many researchers have pointed out the convenience of this
notation [2, 11, 16, 18, 21], there seem only to be semi
formal (even informal) or limited (with respect to the kind
of non-functional information managed) proposals in the
software community. The lack of such a comprehensive
and formally defined language has some negative effects on
many software development tasks:

• Specification. Non-functional characteristics of
software remain hidden to the user and they only
appear in software documentation. Their absence leads
to unbalanced specifications, where functional aspects
are well covered with usual specification languages
while non-functional ones do not exist.

• Implementation. The selection and/or development of
the most appropriate (with respect to non-functional
requirements) implementation for software modules
cannot be automated at all because of lack of precise
information. As a result, the decisions to be taken
during this process may be difficult and even incorrect.

• Maintenance. Changes in the system environment,
modifications of existing software module implemen-
tations and creation of new implementations require a
new (by-hand) review of previously taken implemen-
tation decisions, without having available the
non-functional information of the system, which is
affected by these changes.

• Reusability. Software reuse cannot take non-
functional issues into account. Thus, modules selected
by any functional-oriented reuse strategy may not fit
into the non-functional requirements of the
environment, hindering or even preventing their actual
integration into the system.

1.2. The framework

In this paper, we focus on the component programming
field as defined in [11, 19], which is characterised by the
existence of software components with: 1) a specification
introducing the public symbols of the component together
with the statement of their behaviour; and 2) many
implementations, each of them designed to fit a particular
context of use, depending on its non-functional
characteristics (efficiency of operations, reliability, etc.).
We consider that every component implementation is kept
in a separated module, as well as its specification.

Beside software components, we consider also other
kinds of units that will be of interest for stating non-
functionality:

• Libraries of reusable software components. Grouping
some subject-related components.

• Software systems. Combination of software
components, using also some libraries.

• Clusters. Sets of software systems which are related
by some criteria (subject, software team, etc.).

The physical implementation of these units (i.e., their
mapping to concepts like files, directories, and user
working space) is not of interest for our work, although it
should be considered when adopting our proposal to a
particular environment.

1.3. The proposal

We present a notation called NoFun aimed at binding non-
functional information to software modules in the
component programming field. This information is
classified into three kinds:

• Non-functional attribute (short, NF-attribute): any
attribute of software which serves as a way to describe
it and possibly to evaluate it. Among the most widely
accepted [9, 10] we can mention: time and space
efficiency, reusability, maintainability, reliability and

usability. In our approach, we allow arbitrary
identification and definition of NF-attributes.

• Non-functional behaviour of a component imple-
mentation (short, NF-behaviour): any assignment of
values to the NF-attributes that are in use in the
implemented component.

• Non-functional requirement on a software component
(short, NF-requirement): any constraint referred to a
subset of the NF-attributes that are in use in the
component.

In the rest of the paper, we are going to present the
constructs of NoFun for stating these three kinds of
information, and their organisation in modules.

2. Non-Functional Attributes

In addition to their name, NF-attributes have the following
characteristics in NoFun:

• They belong to a domain, which fixes the set of valid
values and operations.

• Their are classified of one of two kinds, basic or
derived.

• They have a scope, which determines the components
in which they are in use.

• They can be bound either to whole components or to
individual operations.

• They can have multiple definitions.

Except for the scope, these characteristics appear when
the NF-attribute is defined inside a NF-attribute module; a
single module may define more than one NF-attribute. In
case of multiple definitions, each of them will appear at
different modules, see 2.5.

NF-attribute modules may import others; as a particular
case, libraries of NF-attributes may be simulated by a
NF-attribute module importing those ones of interest.

2.1. Domains

We have identified the following standard domains:

• Boolean. To represent software attributes which just
hold or fail, such as error recovery. Usual boolean
operations may be used.

• Integer, real. To introduce software attributes which
can be measured, such as the degree of usability of a
component (with an integer number), or the
maximum response time of an operation (with a real
number). Lower and upper limits of these attributes
may be declared. Usual arithmetic operations may be
used.

• Enumeration. To deal with software attributes which
can be classified into various categories, such as kind

of user interface (icons, command language, etc.). The
set of valid values should be declared. The values may
be declared as ordered (from left to right), and so some
operators (<, >, <=, >=, max and min) become
available. In any case, comparison of values is
possible.

• String. To declare software attributes which can be
labelled, such as the name of the programming
language used to implement the component. Strings
can be compared.

• Mapping. To define software attributes which value
depend on others. For instance, we can declare a
attribute for full portability of implementations as a
mapping from an enumeration attribute (the platform:
UNIX, Windows-95, etc.) to booleans. The basic
operation on mappings is application to some value.

Also, we have added a specific domain, the domain of
efficiency, to measure the cost of individual operations and
type representations. The NF-attributes concerning
efficiency need not be explicitly declared; their existence is
inferred from the corresponding software component
definition. More precisely, there are two implicit
NF-attributes, time(op) and space(op), for every public
operation op, and an implicit NF-attribute space(t) for
every public type t. Values of this kind of NF-attributes
are given in terms of some measurement units, which
represent problem domain sizes. The reason for keeping
apart this domain from the arithmetic ones is that the
behaviour of operations is different. So, the efficiency
expression power(n, 2) + 5*n equals to power(n, 2), and
also the equality 5*n = 12*n + log(n) holds; in both cases,
n is a measurement unit.

2.2. Kinds

NF-attributes may be classified as basic or derived,
depending on whether their value can be computed from
others or not. For instance, in 3.1 we will define the
reliability of a component as a derived NF-attribute, its
value depending (among others) on a basic NF-attribute
stating if the component has error recovery or not. In the
case of basic NF-attributes, implementation of compo-
nents will assign values to them; in the case of derived
ones, values will be computed automatically.

A derived NF-attribute P includes the following parts:

• The list L of other NF-attributes (which may also be
derived) that determine P's value.

• A list of guarded formulae of the form Ci => P = Ei,
1 ≤ i ≤ n, Ci being a boolean expression and Ei an
expression yielding a value in P's domain; if n = 1,
then Ci is optional. The meaning of a formula is: P
equals Ei if the condition Ci holds. As a correctness

condition, the union of the Ci must cover all possible
cases and their pairwise conjunction must yield false.

2.3. Scope

Concerning its scope, NF-attributes may be in use in
those kind of units identified in 1.2:

• Individual components. For instance, the NF-attribute
"kind of user interface" should be defined just for those
components interacting with the environment.

• Libraries of reusable components. For instance,
(floating point) accuracy is a NF-attribute of interest
in mathematical libraries.

• Software systems. For instance, a project involving
heavy network communication or access to remote,
large databases may define a NF-attribute for
reliability of physical media.

• Clusters. This is the way that can be used by a
company or by a software team to define the set of
NF-attributes that they consider relevant in all their
projects.

The scope is fixed by writing the name of the
NF-attribute module in the corresponding software unit
(component, library, system or cluster); in other words,
we need to annotate these units. Note that the scope of all
the NF-attributes introduced in this module is the same.
All the NF-attributes imported in a NF-attribute module
M must be known in the scopes which M is bound to; if
not, they are implicitly added to the scopes that miss
them.

2.4. Bindings

Although we usually think of NF-attributes as bound to
whole components, it may be the case of having others
referring to individual operations; this is the case of the
efficiency NF-attributes as defined in 2.1. This is why
NF-attributes should be bound to components or (subsets
of) operations, being the first case the default (except for
the efficiency case).

As a special case, a NF-attribute could be bound both to
a component and to some operations; then, the
component-bound NF-attribute should be defined as
derived, in terms of the operation-bound ones. For
instance, reliability of a component could be defined in
terms of the reliability of its operations.

Some remarks must be made concerning bindings and
derived NF-attributes. Let P be a derived NF-attribute and
let Q 1, ..., Q n be the NF-attributes upon which P
depends:

• If P is bound to a component C, then all of Q1, ...,
Qn must also be bound to C.

• If P is bound to an operation op, then all of Q1, ...,
Qn must be bound to either op or the component
defining op. In other words, a NF-attribute bound to a
component may be used as bound to an operation if
the context requires it.

2.5. Multiple definitions

It is a fact that there does not currently exist a universal
repository of NF-attributes recognised as such in the
requirements engineering community. Furthermore, for
those ones that could be admitted as such, we can find
different definitions in different papers, standards or
projects. This is why we have decided to allow multiple
definitions of NF-attributes. When using a multiple-
defined NF-attribute, a particular definition should be
chosen in every scope where the NF-attribute is in use.

Multiple definitions yield the following modular
structure:

• There must be a common NF-attribute module
containing the name, domain and binding of the
multiple defined NF-attribute(s). Also, if there are
more NF-attributes to be put in the module with a
single definition, they can be included in this module.

• There must be a different NF-attribute module for
every different combination of definitions of the
multiple-defined NF-attributes3.

It follows from this description that, regardless of the
particular definition, the domain and binding of multiple-
defined NF-attributes must be the same. This seems
natural to assume because we think that users of a
NF-attribute should be able to reason about it
independently of the chosen definition; this independence
would not be possible if, say, reliability were defined with
different domains at different modules (e.g., as an integer
and by enumeration with values {high, medium, low}).

3. Examples

We give here an example of definition of two particular
NF-attributes: reliability and reusability. We are going to
develop in detail the first case, while the second one will
be just outlined.

3.1. Reliability

We present here a simple and naïve (for the sake of
brevity) definition of reliability of implementations. In
despite of this simplicity, it should remain clear that
NoFun is able to handle more complicated and precise

3 This is why it seems natural to include just one multiple-defined NF-
attribute in a module.

definitions with its constructs, close to the ones presented
in the example.

We structure the definition in various modules. First of
all, we introduce a NF-attribute to state if an
implementation presents some kind of error recovery or
not. We define this component-bound attribute in terms of
another NF-attribute with the same name, bound to all the
operations of the component: we state that a component
implementation has an error recovery mechanism if and
only if all its operations have error recovery. Note the use
of some built-in symbols (all_ops) and predicates (for all),
with an obvious meaning.

attribute module ERROR_RECOVERY
attr ibutes

boolean error_recovery bound to all_ops
boolean error_recovery

bound to components derived
depends on error_recovery(all_ops)
defined a s
 error_recovery =

for all op in all_ops it holds
error_recovery(op)

end ERROR_RECOVERY

Fig. 1: A definition of a NF-attribute for error recovery.

Next, we introduce another NF-attribute for test. We
decide to measure testing of individual operations with an
integer from zero to five. Then, we introduce a derived,
component-bound NF-attribute for testing of imple-
mentations. We provide two different definitions of this
attribute, each one defined in a different module; both
modules are linked to the one introducing the NF-attribute
with a "refines" construct. The definitions use some built-
in functions, which have been included in NoFun due to
their usefulness in defining various NF-attributes. The
first module, the pessimistic one, defines the testing value
of the implementations as the minimum of the testing
values of its operations; the second definition computes as
result the arithmetic mean of the testing values of the
operations.

Note that, in any case, it is not obvious how do we get
the value for the testing NF-attributes bound to
operations. In spite of its importance, this is not a subject
covered by our work; our goal is providing a mean to
represent these values whatever the way of getting them
is.

Finally, we introduce the NF-attribute of interest,
reliability, defined in terms of error recovery, test and a
new NF-attribute, fully_portable, which will be true when
an implementation uses just standard constructions of the
corresponding programming language. The last four lines
are an abbreviation: the condition in line (*) must be
and'ed with the conditions in the last three lines.

attribute module TEST
attr ibutes

integer test [0..5] bound to all_ops
(* 0 to 5: increasing degree of testing *)

integer test [0..5] bound to components
derived

end TEST

attribute module TEST_BY_MIN
refines TEST
attr ibutes

integer test [0..5]
depends on test(all_ops)
defined as test = min(test, all_ops)

end TEST_BY_MIN

attribute module TEST_BY_MEAN
refines TEST
attr ibutes

integer test [0..5]
depends on test(all_ops)
defined as

test = sum(test, all_ops) div #all_ops
end TEST_BY_MEAN

Fig. 2: Multiple definitions for testing.

attribute module RELIABILITY
imports ERROR_RECOVERY, TEST
attr ibutes

boolean fully_portable
enumerated ordered

reliability [none, low, medium, high] derived
depends on error_recovery, fully_portable, test
defined a s

not error_recovery and not fully_portable =>
reliability = none

error_recovery and not fully_portable =>
reliability = low

not error_recovery and fully_portable =>
reliability = low

(*) error_recovery and fully_portable =>
test in [0..1] => reliability = low
test in [2..3] => reliability = medium
test in [4..5] => reliability = high

end RELIABILITY

Fig. 3: A definition for reliability.

3.2. Reusability

The purpose of this example is to study the suitability of
our approach for a more realistic and detailed proposal of
NF-attribute, reusability, as done by Caldiera and Basili in
[1].

Caldiera and Basili identify four factors that have
influence on reusability: volume, cyclomatic complexity,
regularity and reuse frequency, and then they provide a
formula for each of them. We could encapsulate each of
the four factors, together with the atoms that appear in its
formula, in an individual NF-attribute module (each atom

yielding a basic NF-attribute); as far as volume and
regularity share some common atoms (values coming
from the Halstead Software Science Indicators), we can
encapsulate them in another module. Finally, we need a
sixth module for the NF-attribute of interest, reusability.
In fact, we could decide to give multiple definitions for
reusability combining the four factors in different ways,
depending in the context; the number of NF-attribute
modules will then increase accordingly, as it happened
with the test attribute in 3.1.

cyclomatic
complexity

basic
NF-attributes

reusability

volume regularity reuse
frequence

Fig. 4: Hierarchy of NF-attribute modules for reusability.

We show here the definition of the first two factors:

• Volume = (N1 + N2) * log(η1 + η2), being N1 and
N2 the total count of all usage of operators and
operands in the implementation, and η1 and η2 the
total number of different operators and operands used
in the implementation.

• Cyclomatic complexity = e - n + 2, being e and n the
number of edges and nodes of the control-flow graph
of an operation. In fact, this formula refer to the
cyclomatic complexity of just one operation, and then
we should compute the value for the component with
the expression sum(cyclomatic_complexity, all_ops),
to be assigned to a component-bound NF-attribute (the
one of interest).

We remark that, except for the use of Greek letters and
subindexes, the formulae are valid expressions in NoFun.
Also, it is important to note that the basic NF-attributes
that appear in the formula can be computed in an
automatic manner from code.

4. Non-Functional Behaviour

Once a component specification has been built, imple-
mentations for it may be written. Each implementation V
for a given software component D should state its
NF-behaviour with respect to the basic NF-attributes that
are in use in D ; values of derived NF-attributes are
automatically computed. To keep non-functional informa-

tion apart from code, this assignment of values is
encapsulated in what we call a NF-behaviour module.

In the general case, a component will be used in
different software systems. In these systems, the attributes
that are in use in the component could be different, and all
of them should appear in the NF-behaviour module.

For instance, the behaviour for an implementation
IMP_LIBRARY_1 for a LIBRARY component in a
LIBRARY_MANAGEMENT software system may look
like the module in fig. 5. We are assuming that, in this
system, LIBRARY is in the scope of the RELIABILITY
NF-attribute module; so, it is necessary to give values to
the basic NF-attributes introduced in this module, as well
as to the implicit efficiency NF-attributes (as explained in
2.1). Concerning the first ones, we state that: all the
operations of the component have error recovery; the
implementation does not use non-standard language
features; and its operations have a testing value of 4 except
for the check_out operation. Concerning efficiency, we
remark the use of arithmetic-like operators and
measurement units (for instance, n_members, to represent
the number of members of the library). With this
assignment, and assuming that we have chosen the
TEST_BY_MIN definition for TEST, the value of the
(component-bound) derived properties are: error_recovery =
true, test = 2 and reliability = medium.

behaviour module for IMP_LIBRARY_1
behaviour

error_recovery(ops(LIBRARY)); fully_portable
test(ops(LIBRARY)) = 4

except for test(check_out) = 2
time(list_all_members) = n_members
time(check_out) = log(n_books)

. . .
end IMP_LIBRARY_1

Fig. 5: Non-functional behaviour of an implementation
for a LIBRARY component.

5. Non-Functional Requirements

Implementations of software components will usually
import other components (to represent some types and/or
to code the operations). To consider an implementation M
complete, it is necessary to choose particular imple-
mentations for these imported components. We advocate
here that the selection of the implementation for a
component C imported in M should be done by comparing
the NF-behaviour of C implementations with the
NF-requirements stated over C; these NF-requirements
modelise the context of use of C and will be expressed
using NoFun too.

NF-requirements will be in fact organised as a list such
that they are considered in order of appearance (which
corresponds to the usual case of having requirements with
different degrees of importance). As an alternative to the
list, an implementation for a particular software
component may be fixed directly by its name.

For instance, let us suppose that LIBRARY uses two
components LIST and SET to compose lists and sets of
books, members, etc. Then, the implementation
IMP_LIBRARY_1 could state as NF-requirement over
SET the following one: first, implementation must be as
reliable as possible; next, the cost of insertions and
removals must be constant; last, set intersection should be
as fast as possible. Concerning LIST , the particular
implementation ORDERED_LIST is directly selected.

behaviour module for IMP_LIBRARY_1
behaviour

... as before
requirements on SET: max(reliability)

 time(put, remove) = 1
 min(time(intersect))

on LIST: implemented with
ORDERED_LIST

end IMP_LIBRARY_1

Fig. 6: Non-functional requirements over imported
components appearing in a LIBRARY implementation.

In this example, the NF-requirements have been stated
locally in a component implementation. Also, it is
possible to state NF-requirements bound to libraries,
software systems or clusters. So, a company may
represent its preferences in cluster-bound NF-requirements
(for instance, requiring maximum reliability and full
portability to UNIX platforms), which can be further
constrained in systems and libraries, and being
NF-behaviour modules the place to state local constraints,
as in the example. We consider that NF-requirements in
clusters have precedence over the ones in individual
software systems, and these ones are also more prioritary
than the other two.

As an alternative to the statement of NF-requirements
for particular components, global NF-requirements can be
formulated, affecting all the components in a cluster,
library or system, or all the imported components in a
component implementation. An example could be
requiring a certain degree of reliability to all the
components in a software system. Global NF-requirements
take precedence over particular ones.

Note that using the full capabilities of NoFun, a single
software component may be required in different ways at
different places in the system due to the existence of
different NF-requirements for it. Eventually, this will

cause different implementations of the same component to
coexist; this situation is supported by many programming
languages (for instance, the O.-O. family using inheritance
to represent the implementation relationship), although
free interaction is usually restricted (see [7, 17] for
different proposals to avoid such restrictions).

6. Conclusions

We have presented NoFun, a language to state non-
functional issues of software systems at the product level
in the component programming framework. The language
allows to declare non-functional attributes of software, to
give values to these attributes in component implemen-
tations, and to formulate non-functional requirements in
terms of these attributes. Non-functional information may
be bound to various kinds of software units (components,
libraries, systems and clusters) by means of annotations
and special modules. In this paper, our goal has been to
give an exhaustive presentation of the language
capabilities, relegating the formal aspects, in order to
convince the reader of the usefulness of the proposal.

We consider that the salient features of our approach
are:

• The language provides a mean to formulate non-
functionality in a precise way, different from the usual
case (natural language). There is a lot of work done in
studying non-functional attributes, defining metrics,
and so on, but we think there is a lack of notations to
express the concepts arising in the field. A notation
such as NoFun provides then a common framework in
which people can formulate, analyse and compare their
proposals about non-functionality. We have
represented in this paper a measure for reusability as
formulated in [1], and we have developed also other
proposals [5, 12].

• As far as NoFun has a well-defined syntax and
semantics (not detailed here), we have been able to use
it as a basis for building an algorithm to select
component implementations in an automatic way, by
evaluating them with respect to some non-functional
requirements that modelise their context of use. We
think that this particular point distinguishes our
approach from others.

• The combination of both NoFun and the
implementation selection algorithm can be an aid to
software specification, design, reusability and
maintenance. Concerning specification, we can
complement usual functional specifications with non-
functional aspects. Design is enhanced by having
more detailed information available, and by using the
algorithm to choose implementations. Reusability
methods can be refined using non-functional

characteristics to choose between functional-equivalent
components obtained by retrieval in libraries of
reusable components. Last, maintenance due to
changes on non-functional aspects of systems can also
benefit by automating the change of implementations
as others become more appropriate [6].

• Concerning the power of the language, we would like
to remark that it presents many features which are
necessary to modelise non-functionality in a proper
way: 1) non-functional attributes may be defined in
more than one way; 2) they can be bound either to
components or to operations4 (or both); 3) they can
have different scopes; 4) non-functional requirements
may be ordered with respect to their relative
importance.

• Our proposal can be adapted to classical modular
programming languages [8]. We just require them to
encapsulate components in modules. Also, we require
every software component to have a single
specification (at least, declaration of its public
symbols: type or class name, procedures, attributes,
methods of functions with their interface, etc.) and
possibly many implementations, each in a separate
module. These requirements are satisfied by a huge
class of languages.

As future work, we are currently addressing to
automatic synthesis of values of NF-attributes in
implementations. This is to say, we have provided no
means in our proposal to compute the value of a specific
basic NF-attribute from the code of the implementation;
we are only able to calculate the value of derived NF-
attributes from the corresponding formula. Note that if full
automatic synthesis were carried out, NF-behaviour
modules could disappear. However, it must remain clear
that there are many NF-attributes whose values do not
seem to be easily computable from code; an example is
the test property used in this paper.

There are many approaches for defining a language to
state non-functionality, but as far as we know they are
limited in scope. They mainly address to many facets of
efficiency: asymptotic efficiency [20], efficiency of queries
in relational structures [2], tight efficiency [18] and real-
time efficiency [15]. The last two approaches resemble
ours in the sense that they define a grammar to formulate
efficiency. Also, [18] introduces modules to encapsulate
some kind of non-functional information.

Concerning automatic selection of implementations, we
mention [4] as an approach close to ours, providing a
framework to evaluate the design of software systems, the
measurement criterion being the adequacy of

4 We are currently considering the possibility to allow bindings to
libraries, systems and clusters.

implementations with respect to some non-functional
requirements stated over a set of attributes. The
requirements are stated as an array of weights over the
properties and every attribute has a weight too; then, the
evaluation of implementations results in a number and
comparison is possible. Again, the notation proposed in
this work is very restricted compared to ours; also, the
proposal is not integrated into the software itself losing
some of the advantages we have mentioned.

References

[1] G. Caldiera, V.R. Basili. "Identifying and Qualifying
Reusable Software Components". IEEE Computer, 24(2),
1991.

[2] D. Cohen, N. Goldman, K. Narayanaswamy. "Adding
Performance Information to ADT Interfaces". In Proceedings
of the Interface Definition Languages Workshop, ACM
SIGPLAN Notices 29(8), 1994.

[3] L. Chung, B.A. Nixon, E. Yu. "Using Non-Functional
Requirements to Systematically Support Change". In
Proceedings of Second International Symposium on
Requirements Engineering (ISRE), York (England), 1995.

[4] S. Cárdenas, M.V. Zelkowitz. "Evaluation Criteria for
Functional Specifications". In Proceedings of Twelfth
International Conference on Software Engineering (ICSE),
Nice (France), 1990.

[5] R.G. Dromey. "A Model for Software Product Quality.
IEEE Transactions on Software Engineering, 21(2), 1995.

[6] X. Franch, P. Botella. "Supporting Software
Maintenance with Non-Functional Information". In
Proceedings First EUROMICRO Conference on Software
Maintenance and Reengineering (CSMR), Berlin (Germany),
1997.

[7] X. Franch. "Combining Different Implementations of
Types in a Program". In Proceedings Joint of Modular
Languages Conference, Ulm (Germany), 1994.

[8] X. Franch. "Including Non-Functional Issues in
Anna/Ada Programs for Automatic Implementation
Selection". Proceedings of Ada-Europe'97. International
Conference on Reliable Software Technologies, London
(U.K.), LNCS 1251, 1997.

[9] IEEE Computer Society. IEEE Standard for a Software
Quality Metrics Methodology. IEEE Std. 1061-1992, Institute
of Electrical and Electronical Engineers, New York, 1992.

[10] International Standards Organization. Sof tware
Product Evaluation - Quality Characteristics and Guidelines for
their Use. ISO/IEC Standard ISO-9126, 1991.

[11] M. Jazayeri. "Component Programming - a Fresh
Look at Software Components". In Proceedings of Fifth
European Software Engineering Conference (ESEC),
Barcelona (Catalunya, Spain), LNCS 989, Springer-Verlag,
1995.

[12] S.E. Keller, L.G. Kahn, R.B. Panara. "Specifying
Software Quality Requirements with Metrics". IEEE Computer,
1990.

[13] D. Landes, R. Studer. "The Treatment of Non-
Functional Requirements in MIKE". In Proceedings of Fifth
European Software Engineering Conference (ESEC),
Barcelona (Catalunya, Spain), LNCS 989, Springer-Verlag,
1995.

[14] J. Mylopoulos, L. Chung, B.A. Nixon.
"Representing and Using Nonfunctional Requirements: A
Process-Oriented Approach". IEEE Trans. on Software
Engineering, 18(6), 1992.

[15] R.H. Pierce et al. "Capturing and verifying
performance requirements for hard real-time systems". In
Proceedings International Conference on Software Reliable
Technologies, London (England), LNCS 1251, Springer-
Verlag, 1997.

[16] M. Shaw. "Abstraction Techniques in Modern
Programming Languages". IEEE Software, 1(10), 1984.

[17] M. Sitaraman. "A class of programming language
mechanisms to facilitate multiple implementations of the
same specification". In Proceedings Fourth International
Conference on Computer Languages, IEEE Computer Society
Press, 1992.

[18] M. Sitaraman. "On Tight Performance Specification of
Object-Oriented Components". In Proceedings Third
International Conference on Software Reuse (ICSR), IEEE
Computer Society Press, 1994.

[19] M. Sitaraman (coordinator) et al. "Special Feature:
Component-Based Software Using RESOLVE". ACM Software
Engineering Notes, 19(4), Oct. 1994.

[20] P.C-Y. Sheu, S. Yoo. "A Knowledge-Based Program
Transformation System". In Proceedings Sixth CAiSE,
Utrecht (Holland), LNCS 811, 1994.

[21] J.M. Wing. "A Specifier's Introduction to Formal
Methods". IEEE Computer 23(9), 1990.

