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Abstract

We define a new balance index for rooted phylogenetic trees based on the symmetry of the evo-
lutive history of every set of 4 leaves. This index makes sense for multifurcating trees and it can
be computed in time linear in the number of leaves. We determine its maximum and minimum
values for arbitrary and bifurcating trees, and we provide exact formulas for its expected value
and variance on bifurcating trees under Ford’s α-model and Aldous’ β-model and on arbitrary
trees under the α-γ-model.

1. Introduction

One of the most broadly studied properties of the topology of rooted phylogenetic trees is
their balance, that is, the tendency of the subtrees rooted at all children of any given node to
have a similar shape. The main reason for this interest is that the balance of a rooted tree
embodies the symmetry of the evolutive history it describes, and hence it reflects, at least to
some extent, a feature of the forces that drove the evolution of the set of species represented in
the tree; see Chapter 33 of [12].

The balance of a tree is usually quantified by means of balance indices. The two most popular
such indices are Colless’ index [8] for bifurcating trees, which is defined as the sum, over all
internal nodes v, of the absolute value of the difference between the number of descendant leaves
of the pair of children of v, and Sackin’s index [25, 26], which is defined, for arbitrary trees, as the
sum of the depths of all leaves in the tree. But many other balance indices have been proposed
in the literature, like for instance, for bifurcating trees, the variance of the depths of the leaves
[16, 25], the sum of the reciprocals of the orders of the rooted subtrees [26], and the number of
cherries [19], and, for arbitrary trees, the total cophenetic index [20] and a generalization of the
Colless index [21]. For more indices, see again Chapter 33 in the book by Felsenstein [12]. All
these balance indices depend only on the topology of the trees, not on the branch lengths or the
actual labels on their leaves, although the balance of time-stamped trees has also been considered
by Dearlove and Frost [11]. This abundance of balance indices is partly motivated by the advice
given by Shao and Sokal [26] to use more than one such index to quantify the balance of a tree,
as well as by their use as tools to test stochastic models of evolution [4, 15, 16, 22, 26]; other
properties of the shapes of phylogenetic trees used in this connection include the distribution
of clades’ sizes [30, 31] and the joint distribution of the numbers of rooted subtrees of different
types [28].

In this paper we propose a new balance index, the rooted quartet index. To define it, we
associate to each 4-tuple of different leaves of the tree T a value that quantifies the symmetry
of the joint evolution of the species they represent, in the sense that it grows with the number
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of isomorphisms of the restriction of T to them (the rooted quartet they define), and then we
add up these values over all 4-tuples of different leaves of T . The idea behind the definition of
this balance index is that a highly symmetrical evolutive process should give rise to symmetrical
evolutive histories of many small subsets of taxa. In terms of phylogenetic trees, this leads
us to expect that, the most symmetrical a phylogenetic tree is, the most symmetrical will be
its restrictions to subsets of leaves of a fixed cardinality. Since the smallest number of leaves
yielding enough different tree topologies to allow a meaningful comparison of their symmetry
is 4, we assess the balance of a tree by measuring the symmetry of all its rooted quartets and
adding up the results. And indeed, in Section 4 below we shall find the trees with maximum
and minimum values of our rooted quartet index in both the arbitrary and the bifurcating cases,
and it will turn out that the minimum value is reached exactly at the combs (see Fig. 1.(a)),
which are usually considered the least balanced trees, and the maximum value is reached, in the
arbitrary case, exactly at the rooted stars (see Fig. 1.(b)) and, in the bifurcating case, exactly
at the maximally balanced trees (cf. Fig. 3 ), which in both cases are considered the most
balanced trees.

Besides taking its maximum and minimum values at the expected trees, other important
features of our index are that it can be easily computed in linear time and that its mean value and
variance can be explicitly computed on any probabilistic model of phylogenetic trees satisfying
two natural conditions: independence under relabelings and sampling consistency. This allows
us to provide these values for two well-known probabilistic models of bifurcating phylogenetic
trees, Ford’s α-model [13] and Aldous’ β-model [2], which include as specific instances the
Yule [14, 29] and the uniform [6, 24, 19] models, as well as for Chen-Ford-Winkel’s α-γ-model of
multifurcating trees [7]. To our knowledge, this is the first shape index for which closed formulas
for the expected value and the variance under the α-γ-model have been provided.

The rest of this paper is organized as follows. In the next section we introduce the basic
notations and facts on phylogenetic trees that will be used in the rest of the paper, and we recall
several preliminary results on probabilistic models of phylogenetic trees, proving those results
for which we have not been able to find a suitable reference in the literature. Then, in Section
3, we define our rooted quartet index rQI and we establish its basic properties. In Section
4 we compute its maximum and minimum values, and finally, in Section 5, we compute its
expected value and variance under different probabilistic models. This paper is accompanied by
the GitHub page https://github.com/biocom-uib/Quartet_Index containing a set of Python
scripts that perform several computations related to this index.

2. Preliminaries

2.1. Notations and conventions
In this paper, by an (unlabeled) tree we mean a rooted tree without out-degree 1 nodes. As

it is usual, we understand such a tree as a directed graph, with its arcs pointing away from
the root. A tree is bifurcating when all its internal nodes have out-degree 2; when we want to
emphasize that a tree need not be bifurcating, we shall call it multifurcating. We shall denote
by L(T ) the set of leaves of a tree T , by Vint(T ) its set of internal nodes, and by child(u) the set
of children of an internal node u, that is, those nodes v such that (u, v) is an arc in T . We shall
always consider two isomorphic trees as equal, and we shall denote by T ∗n and BT∗n the sets of
(isomorphism classes of) multifurcating trees and of bifurcating trees with n leaves, respectively.

A phylogenetic tree on a set Σ is a tree with its leaves bijectively labeled in Σ. An isomorphism
of phylogenetic trees is an isomorphism of trees that preserves the leaves’ labels. To simplify the
language, we shall always identify a leaf of a phylogenetic tree with its label and we shall say that
two isomorphic phylogenetic trees “are the same”. We shall denote by T (Σ) and BT(Σ) the sets of
(isomorphism classes of) multifurcating phylogenetic trees and of bifurcating phylogenetic trees
on Σ, respectively. If Σ and Σ′ are any two sets of labels of the same cardinality, say n, then any
bijection Σ ↔ Σ′ extends in a natural way to bijections T (Σ) ↔ T (Σ′) and BT(Σ) ↔ BT(Σ′).
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When the specific set of labels Σ is irrelevant and only its cardinality matters, we shall write
Tn and BTn (with n = |Σ|) instead of T (Σ) and BT(Σ), and we shall identify Σ with the set
[n] = {1, 2, . . . , n}. If |Σ| = n, there exists a forgetful mapping π : T (Σ)→ T ∗n that sends every
phylogenetic tree T on Σ to its underlying unlabeled tree: we shall call π(T ) the shape of T .
We shall write T1 ≡ T2 to denote that two phylogenetic trees T1, T2 (possibly on different sets
of labels of the same cardinality) have the same shape.

We shall represent trees and phylogenetic trees by means of their usual Newick format,1
although we shall omit the ending mark “;” in order not to confuse it in the text with a semicolon
punctuation mark. In the case of (unlabeled) trees, we shall denote the leaves with ∗ symbols.

Given two nodes u, v in a tree T , we say that v is a descendant of u, and also that u is an
ancestor of v, when there exists a path from u to v in T ; this, of course, includes the case of the
stationary path from a node u to itself, and hence, in this context, we shall use the adjective
proper to mean that u 6= v. Given a node v of a tree T , the subtree Tv of T rooted at v is the
subgraph of T induced by the descendants of v. We shall denote by κT (v), or simply by κ(v) if
T is implicitly understood, the number of leaves of Tv.

Given a tree T and a subset X ⊆ L(T ), the restriction T (X) of T to X is the tree obtained by
first taking the subgraph of T induced by all the ancestors of leaves in X and then suppressing
its out-degree 1 nodes. By suppressing a node u with out-degree 1 we mean that if u is the
root, we remove it together with the arc incident to it, and, if u is not the root and if u′ and u′′
are, respectively, its parent and its child, then we remove the node u and the arcs (u′, u), (u, u′′)
and we replace them by a new arc (u′, u′′). For every Y ⊆ L(T ), the tree T (−Y ) obtained by
removing Y from T is nothing but the restriction T (L(T ) \ Y ). If T is a phylogenetic tree on
a set Σ and X ⊆ Σ, the restrictions T (X) and T (−X) are phylogenetic trees on X and Σ \X,
respectively.

A comb is a bifurcating phylogenetic tree such that all its internal nodes have a leaf child:
see Fig. 1.(a). All combs with the same number n of leaves have the same shape, and we shall
generically denote them (as well as their shape in T ∗n ) by Kn. A rooted star is a phylogenetic
tree all of whose leaves are children of the root: see Fig. 1.(b). For every set Σ, there is only
one rooted star on Σ, and if |Σ| = n, we shall generically denote it (as well as its shape) by Sn.

1 2 3 . . . n

...

(a)

1 2 3 . . . n

(b)

Figure 1: (a) A comb Kn. (b) A rooted star Sn.

Given k > 2 phylogenetic trees T1, . . . , Tk, with every Ti ∈ T (Σi) and the sets of labels Σi
pairwise disjoint, their root join is the phylogenetic tree T1 ? T2 ? · · · ? Tk on

⋃k
i=1 Σi obtained

by connecting the roots of (disjoint copies of) T1, . . . , Tk to a new common root r; see Fig. 2. If
T1, . . . , Tk are unlabeled trees, a similar construction yields a tree T1 ? · · · ? Tk.

Let T be a bifurcating tree. For every v ∈ Vint(T ), say with children v1, v2, the balance value
of v is balT (v) = |κ(v1) − κ(v2)|. An internal node v of T is balanced when balT (v) 6 1. So, a
node v with children v1 and v2 is balanced if, and only if, {κ(v1), κ(v2)} = {bκ(v)/2c, dκ(v)/2e}.
We shall say that a bifurcating tree T is maximally balanced when all its internal nodes are
balanced. Recursively, a bifurcating tree is maximally balanced when its root is balanced and

1See http://evolution.genetics.washington.edu/phylip/newicktree.html
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T1 T2 ... Tk

r

Figure 2: The root join T1 ? · · · ? Tk.

the subtrees rooted at the children of the root are both maximally balanced. This implies that,
for any fixed number n of nodes, there is only one maximally balanced tree in BT∗n; see Section
2.1 in [20]. Fig. 3 depicts the maximally balanced trees with n = 6, 7, 8 leaves. When n is a power
of 2, the maximally balanced bifurcating tree with n leaves is the fully symmetric bifurcating
tree, where, for each internal node, the pair of subtrees rooted at its children are isomorphic;
see again Fig. 3 for n = 8.

Figure 3: The shapes of the maximally balanced trees with 6, 7, and 8
leaves. The tree with 8 leaves is fully symmetric.

2.2. Probabilistic models
A probabilistic model of phylogenetic trees Pn, n > 1, is a family of probability mappings

Pn : Tn → [0, 1], each one sending each phylogenetic tree in Tn to its probability under this
model. Every such a probabilistic model of phylogenetic trees Pn induces a probabilistic model
of trees, that is, a family of probability mappings P ∗n : T ∗n → [0, 1], by defining the probability
of a tree as the sum of the probabilities of all phylogenetic trees in Tn with that shape:

P ∗n(T ∗) =
∑
T∈Tn

π(T )=T∗

Pn(T ).

If |Σ| = n, then Pn : Tn → [0, 1] induces also a probability mapping PΣ on T (Σ) through the
bijection TΣ ↔ Tn induced by a given bijection Σ↔ [n].

A probabilistic model of bifurcating phylogenetic trees is a probabilistic model of phylogenetic
trees Pn such that Pn(T ) = 0 for every T ∈ Tn \ BTn.

A probabilistic model of phylogenetic trees Pn is shape invariant (or exchangeable, according
to Aldous [2]) when, for every T, T ′ ∈ Tn, if T ≡ T ′, then Pn(T ) = Pn(T ′). In this case, for
every T ∗ ∈ T ∗n and for every T ∈ π−1(T ∗),

P ∗n(T ∗) =
∣∣{T ′ ∈ Tn : π(T ′) = T ∗}

∣∣ · Pn(T ).

Conversely, every probabilistic model of trees P ∗n defines a shape invariant probabilistic model
of phylogenetic trees Pn by means of

Pn(T ) =
P ∗n(π(T ))∣∣{T ′ ∈ Tn : T ′ ≡ T}

∣∣ . (1)

Notice that if Pn is shape invariant, then, for every set of labels Σ, say, with |Σ| = n, the
probability mapping PΣ : T (Σ) → [0, 1] induced by the mapping Pn does not depend on the
specific bijection Σ↔ [n] used to define it.
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A probabilistic model of phylogenetic trees Pn is sampling consistent [2] (or also deletion
stable, according to Ford [13]) when, for every n > 2, if we choose a tree T ∈ Tn with proba-
bility distribution Pn and we remove its leaf n, the resulting tree is obtained with probability
distribution Pn−1; formally, when, for every n > 2 and for every T0 ∈ Tn−1,

Pn−1(T0) =
∑
T∈Tn

T (−n)=T0

Pn(T ).

It is straightforward to prove, by induction on n − m and using that, for every T ∈ Tn and
for every 1 6 m < n, the restriction of T (−n) to [m] is simply T ([m]), that this condition is
equivalent to the following: Pn is sampling consistent when, for every n > 2, for every 1 6 m < n,
and for every T0 ∈ Tm,

Pm(T0) =
∑
T∈Tn

T ([m])=T0

Pn(T ). (2)

It is also easy to prove that if Pn is sampling consistent and shape invariant, so that the
probability of a phylogenetic tree is not affected by permutations of its leaves, then, for every
n > 2, for every ∅ 6= X ( [n], say, with |X| = m, and for every T0 ∈ T (X),

PX(T0) =
∑
T∈Tn

T (X)=T0

Pn(T ).

(where PX stands for the probability mapping on T (X) induced by Pm through any bijection
X ↔

[
m
]
).

A probabilistic model of trees P ∗n is sampling consistent when, for every n > 2, if we choose
a tree T ∈ T ∗n with probability distribution P ∗n and a leaf x ∈ L(T ) equiprobably and if we
remove x from T , the resulting tree is obtained with probability distribution P ∗n−1: formally,
when, for every n > 2 and for every T0 ∈ T ∗n−1,

P ∗n−1(T0) =
∑
T∈T ∗n

∣∣{x ∈ L(T ) : T (−x) = T0}
∣∣

n
· P ∗n(T ).

We prove now several lemmas on probabilistic models that will be used in Section 5. The first
lemma provides an extension of equation (2) to trees; we include it because we have not been
able to find a suitable reference for it in the literature. In it, and henceforth, Pk(X) denotes the
set of all subsets of cardinality k of X.

Lemma 1. A probabilistic model of trees P ∗n is sampling consistent if, and only if, for every
n > 2, for every 1 6 m < n, and for every T0 ∈ T ∗m,

P ∗m(T0) =
∑
T∈T ∗n

∣∣{X ∈ Pm(L(T )) : T (X) = T0}
∣∣(

n
m

) · P ∗n(T ).

Proof. The “if” implication is obvious. As far as the “only if” implication goes, we prove by
induction on n−m that if P ∗n is sampling consistent, then, for every T0 ∈ T ∗m,

P ∗m(T0) =
∑

Tn∈T ∗n

∣∣{X ∈ Pn−m(L(Tn)) : Tn(−X) = T0}
∣∣(

n
m

) · P ∗n(Tn).

The starting casem = n−1 is the sampling consistency property. Assume now that this equality
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holds for m and let T0 ∈ T ∗m−1. Then

P ∗m−1(T0) =
∑

Tm∈T ∗m

∣∣{x ∈ L(Tm) : Tm(−x) = T0}
∣∣

m
· P ∗m(Tm)

(by the sampling consistency)

=
∑

Tm∈T ∗m

(∣∣{x ∈ L(Tm) : Tm(−x) = T0}
∣∣

m

·
∑

Tn∈T ∗n

∣∣{X ∈ Pn−m(L(Tn)) : Tn(−X) = Tm}
∣∣(

n
m

) · P ∗n(Tn)

)
(by the induction hypothesis)

=
∑

Tm∈T ∗m

∑
Tn∈T ∗n

(∣∣{x ∈ L(Tm) : Tm(−x) = T0}
∣∣

m

·
∣∣{X ∈ Pn−m(L(Tn)) : Tn(−X) = Tm}

∣∣(
n
m

) )
· P ∗n(Tn)

=
∑

Tn∈T ∗n

∣∣{(X,x) ∈ Pn−m(L(Tn))× (L(Tn) \X) : (Tn(−X))(−x) = T0}
∣∣

m ·
(
n
m

) · P ∗n(Tn)

=
∑

Tn∈T ∗n

∣∣{(X,x) ∈ Pn−m(L(Tn))× (L(Tn) \X) : (Tn(−(X ∪ {x})) = T0}
∣∣

m ·
(
n
m

) · P ∗n(Tn)

=
∑

Tn∈T ∗n

(n−m+ 1)
∣∣{Y ∈ Pn−m+1(L(Tn)) : Tn(−Y ) = T0}

∣∣
m ·

(
n
m

) · P ∗n(Tn)

=
∑

Tn∈T ∗n

∣∣{Y ∈ Pn−m+1(L(Tn)) : Tn(−Y ) = T0}
∣∣(

n
m−1

) · P ∗n(Tn)

which proves the inductive step.

Lemma 2. Let Pn be a shape invariant probabilistic model of phylogenetic trees. For every
Tn−1, T

′
n−1 ∈ Tn−1, if Tn−1 ≡ T ′n−1, then∑

Tn∈Tn
Tn(−n)=Tn−1

Pn(Tn) =
∑
T ′n∈Tn

T ′n(−n)=T ′
n−1

Pn(T ′n).

Proof. Let T ∗n−1 = π(Tn−1) = π(T ′n−1) and let f : Tn−1 → T ′n−1 be an isomorphism of unlabeled
trees, which exists because Tn−1 and T ′n−1 are both isomorphic as unlabeled trees to their shape
T ∗n−1. For every T ∈ Tn−1, let

En(T ) = {Tn ∈ Tn : Tn(−n) = T}.

Each Tn in En(Tn−1) is obtained by adding a leaf n to Tn−1 as a new child either to an internal
node, or to a new node obtained by splitting an arc into two consecutive arcs, or to a new
bifurcating root (whose other child would be the old root). This entails the existence of a shape
preserving bijection

Φ : En(Tn−1)→ En(T ′n−1)

that sends each Tn ∈ En(Tn−1) to the phylogenetic tree Φ(Tn) obtained by adding the leaf n
to T ′n−1 at the place corresponding through the isomorphism f to the place where it has been
added to Tn−1. Then, since Pn is shape invariant,∑

Tn∈E(Tn−1)

Pn(Tn) =
∑

Tn∈E(Tn−1)

Pn(Φ(Tn)) =
∑

T ′n∈E(T ′n−1)

Pn(T ′n)
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as we claimed.

Next lemma generalizes Cor. 40 of [13]. For the sake of completeness, we provide a direct
complete proof of it.

Lemma 3. Let Pn be a shape invariant probabilistic model of phylogenetic trees and let P ∗n be
the corresponding probabilistic model of trees. Then, Pn is sampling consistent if, and only if,
P ∗n is sampling consistent.

Proof. Let us prove first the “only if” implication. Let Pn be sampling consistent. Then, for
every T ∗n−1 ∈ T ∗n−1 and for every T̂n−1 ∈ π−1(T ∗n−1),

P ∗n−1(T ∗n−1) =
∣∣{Tn−1 ∈ Tn−1 : π(Tn−1) = T ∗n−1}

∣∣ · Pn−1(T̂n−1)
(by the shape invariance of Pn)

=
∣∣{Tn−1 ∈ Tn−1 : π(Tn−1) = T ∗n−1}

∣∣ · ∑
Tn∈Tn

Tn(−n)=T̂n−1

Pn(Tn)

(by the sampling consistency of Pn)
=

∑
Tn−1∈π−1(T∗n−1)

∑
Tn∈Tn

Tn(−n)=Tn−1

Pn(Tn)

(by Lemma 2)
=

∑
Tn∈Tn

π(Tn(−n))=T∗
n−1

Pn(Tn) =
∑
Tn∈Tn

π(Tn(−i))=T∗
n−1

Pn(Tn) for every i = 1, . . . , n

(by the shape invariance of Pn).

Therefore

n · P ∗n−1(T ∗n−1) =

n∑
i=1

∑
Tn∈Tn

π(Tn(−i))=T∗
n−1

Pn(Tn)

=
∑
Tn∈Tn

∣∣{i ∈ [n] : π(Tn(−i)) = T ∗n−1}
∣∣ · Pn(Tn)

=
∑

T∗n∈T ∗n

∑
Tn∈π−1(T∗n)

∣∣{i ∈ [n] : π(Tn(−i)) = T ∗n−1}
∣∣ · Pn(Tn)

=
∑

T∗n∈T ∗n

(∣∣{x ∈ L(T ∗n) : T ∗n(−x) = T ∗n−1}
∣∣ · ∑
Tn∈π−1(T∗n)

Pn(Tn)

)
=

∑
T∗n∈T ∗n

∣∣{x ∈ L(T ∗n) : T ∗n(−x) = T ∗n−1}
∣∣ · P ∗n(T ∗n)

and hence

P ∗n−1(T ∗n−1) =
∑

T∗n∈T ∗n

∣∣{x ∈ L(T ∗n) : T ∗n(−x) = T ∗n−1}
∣∣

n
· P ∗n(T ∗n)

as we wanted to prove.
The proof on the “if” implication consists in carefully running backwards the sequence of

equalities in the proof of the “only if” implication. Indeed, assume that P ∗n is sampling consistent
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and let Tn−1 ∈ Tn−1 and T ∗n−1 = π(Tn−1) ∈ T ∗n−1. Then

P ∗n−1(T ∗n−1) =
∑

T∗n∈T ∗n

∣∣{x ∈ L(T ∗n) : T ∗n(−x) = T ∗n−1}
∣∣

n
· P ∗n(T ∗n)

(by the sampling consistency of P ∗n)

=
1

n

∑
T∗n∈T ∗n

(∣∣{x ∈ L(T ∗n) : T ∗n(−x) = T ∗n−1}
∣∣ · ∑
Tn∈π−1(T∗n)

Pn(Tn)

)
=

1

n

∑
T∗n∈T ∗n

∑
Tn∈π−1(T∗n)

∣∣{i ∈ [n] : π(Tn(−i)) = T ∗n−1}
∣∣ · Pn(Tn)

=
1

n

∑
Tn∈Tn

∣∣{i ∈ [n] : π(Tn(−i)) = T ∗n−1}
∣∣ · Pn(Tn)

=
1

n

n∑
i=1

∑
Tn∈Tn

π(Tn(−i))=T∗
n−1

Pn(Tn) =
∑
Tn∈Tn

π(Tn(−n))=T∗
n−1

Pn(Tn)

(by the shape invariance of Pn)
=

∑
T ′n−1∈π−1(T∗n−1)

∑
Tn∈Tn

Tn(−n)=T ′
n−1

Pn(Tn)

=
∣∣{T ′n−1 ∈ Tn−1 : π(T ′n−1) = T ∗n−1}

∣∣ · ∑
Tn∈Tn

Tn(−n)=Tn−1

Pn(Tn)

(by Lemma 2)

and thus, dividing both sides of this equality by
∣∣{T ′n−1 ∈ Tn−1 : π(T ′n−1) = T ∗n−1}

∣∣ and using
the shape invariance of Pn, we obtain∑

Tn∈Tn
Tn(−n)=Tn−1

Pn(Tn) =
P ∗n−1(T ∗n−1)∣∣{T ′n−1 ∈ Tn−1 : π(T ′n−1) = T ∗n−1}

∣∣ = Pn−1(Tn−1)

as we wanted to prove.

In Section 5 we shall be concerned with three specific parametric probabilistic models of
phylogenetic trees: the β-model, the α-model, and the α-γ-model. To close this section, we
provide detailed descriptions of these models and the explicit computation of the probabilities
of all trees with 4 leaves under them.

2.2.1. Aldous’ β-model.
The β-splitting model PAβ,n [2, 3] is a probabilistic model of bifurcating phylogenetic trees

that depends on one parameter β ∈ (−2,∞). Let us recall its definition. For every m > 2 and
a = 1, . . . ,m− 1, let

qm,β(a) =
1

am(β)
· Γ(β + a+ 1)Γ(β +m− a+ 1)

Γ(a+ 1)Γ(m− a+ 1)
,

where Γ stands for the usual Gamma function defined on R+,

Γ(x) =

∫ ∞
0

tx−1e−t dt,

and am(β) is a suitable normalizing constant so that
m−1∑
a=1

qm,β(a) = 1. Recall (see, for instance,

Chapter 6 in [1]) that Γ satisfies that Γ(x+1) = xΓ(x) and that, for every n ∈ N, Γ(n+1) = n!.
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For every m > 2 and a = 1, . . . , bm/2c, let

q̂m,β(a) =

{
qm,β(a) + qm,β(m− a) = 2qm,β(a) if a 6= m/2
qm,β(a) if a = m/2

With these notations, the probabilities under this model are computed as follows. Let n > 1 be
a given desired number of leaves:

1. Start with a tree T ′1 consisting of a single node labeled n. Set P ′β,1(T ′1) = 1.

2. At each step j = 1, . . . , n − 1, the current tree T ′j contains leaves with labels greater
than 1. Then, choose equiprobably a leaf in T ′j with a label m greater than 1, choose a
number a = 1, . . . , bm/2c with probability distribution q̂m,β(a), and split this leaf into a
cherry with a child labeled a and a child labeled m− a. The resulting tree T ′j+1 has then
probability

P ′β,j+1(T ′j+1) =
q̂m,β(a)

|{leaves in T ′j labeled > 1}|
· P ′β,j(T ′j).

3. When the desired number n of leaves is reached, all leaves are labeled 1 and T ′n can be
understood as a tree. Then, the probability of a given tree is defined as the sum of the
probabilities of all ways of obtaining it by means of the previous procedure; that is, for
every T ∗n ∈ BT

∗
n, its probability under the β-model is

PA,∗β,n (T ∗n) =
∑

T ′n=T∗n

P ′β,n(T ′n).

4. Finally, the probability PAβ,n(T ) of any phylogenetic tree T ∈ BTn is obtained from the
probability under PA,∗β,n of its shape by means of equation (1):

PAβ,n(T ) =
PA,∗β,n (π(T ))∣∣{T ′ ∈ BTn : T ′ ≡ T}

∣∣ .
The last step in the definition of PAβ,n makes it shape invariant by construction, and Aldous

[2] proves that it is sampling consistent. Hence, by Lemma 3, the β-model of trees PA,∗β,n is
also sampling consistent. This β-model includes as specific cases the Yule model [14, 29] (when
β = 0) and the uniform model [6, 23] (when β = −3/2).

In Section 5 we shall need to know the probability PA,∗β,4 of the maximally balanced tree with
4 leaves ((∗, ∗), (∗, ∗)), which we denote in this paper by Q∗3 (see Figure 6 below). We compute
this probability in the following lemma, taking the opportunity to provide a detailed example
of how this model associates probabilities to trees through their construction.

Lemma 4. For every β ∈ (−2,∞),

PA,∗β,4 (Q∗3) =
3β + 6

7β + 18
.

Proof. We start with a single node labeled 4. In order to obtain a maximally balanced tree
((1, 1), (1, 1)) using the previous procedure, in the first step we must split this node into a
cherry with both leaves labeled 2. The probability of choosing this split is

q̂4,β(2) = q4,β(2) =
1

a4(β)
· Γ(β + 3)Γ(β + 3)

Γ(3)Γ(3)
.
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Let us compute the normalizing constant a4(β): since

q4,β(1) = q4,β(3) =
1

a4(β)
· Γ(β + 2)Γ(β + 4)

Γ(2)Γ(4)

q4,β(2) =
1

a4(β)
· Γ(β + 3)Γ(β + 3)

Γ(3)Γ(3)

imposing that q4,β(1) + q4,β(2) + q4,β(3) = 1 we obtain

a4(β) =
2Γ(β + 2)Γ(β + 4)

6
+

Γ(β + 3)2

4
=

4Γ(β + 2)Γ(β + 4) + 3Γ(β + 3)2

12
.

Therefore,

q4,β(2) =
3Γ(β + 3)2

4Γ(β + 2)Γ(β + 4) + 3Γ(β + 3)2
.

In the second step, we choose one of the leaves with probability 1/2 and we split it into
a cherry (1, 1). Since there is only one way of splitting a leaf labeled 2, q2,β(1) = 1. So, the
probability of the tree obtained in this step is

1

2
q4,β(2).

Then, in the third step, we are forced to choose the other leaf labeled 2 and to split it into a
cherry (1, 1). We obtain a maximally balanced tree with all its leaves labeled 1 and its probability
is still q4,β(2)/2.

Now, there are two ways of obtaining the tree ((1, 1), (1, 1)) with this construction, depending
on which leaf of the cherry (2, 2) we choose to split first. So, the probability of the tree Q∗3 is

PA,∗β,4 (Q∗3) = 2 · 1

2
q4,β(2) =

3Γ(β + 3)2

4Γ(β + 2)Γ(β + 4) + 3Γ(β + 3)2
.

Finally, using that Γ(x+ 1) = xΓ(x), we have that

3Γ(β + 3)2

4Γ(β + 2)Γ(β + 4) + 3Γ(β + 3)2

=
3(β + 2)2Γ(β + 2)2

4(β + 3)(β + 2)Γ(β + 2)2 + 3(β + 2)2Γ(β + 2)2
=

3β + 6

7β + 18

as we claimed.

2.2.2. Ford’s α-model.
The α-model PFα,n introduced by Ford [13] is another probabilistic model of bifurcating

phylogenetic trees that depends on one parameter α ∈ [0, 1]. It is defined as follows. Let n > 1
be any desired number of leaves:

1. Start with the tree T1 consisting of a single node labeled 1. Set P ′α,1(T1) = 1.

2. For every m = 1, . . . , n− 1, let Tm+1 ∈ BTm+1 be obtained by adding a new leaf labeled
m+ 1 to Tm. Then:

• If the new leaf is added to an arc ending in a leaf,

P ′α,m+1(Tm+1) =
1− α
m− α

· P ′α,m(Tm).
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• If the new leaf is added to an arc ending in an internal node,

P ′α,m+1(Tm+1) =
α

m− α
· P ′α,m(Tm).

• If the new leaf is added to a new root,

P ′α,m+1(Tm+1) =
α

m− α
· P ′α,m(Tm).

3. When the desired number n of leaves is reached, the probability of a given tree is defined
as the sum of the probabilities of all phylogenetic trees with that shape; that is, for every
T ∗n ∈ BT

∗
n, its probability under the α-model is

PF,∗α,n(T ∗n) =
∑

π(T ′n)=T∗n

P ′α,n(T ′n).

4. Finally, the probability PFα,n(T ) of any phylogenetic tree T ∈ BTn is obtained from the
probability under PF,∗α,n of its shape by means of equation (1):

PFα,n(T ) =
PF,∗α,n(π(T ))∣∣{T ′ ∈ BTn : T ′ ≡ T}

∣∣ .
The α-model is again shape invariant by construction and sampling consistent by Prop. 42 of
[13], and it also includes as specific cases the Yule model (when α = 0) and the uniform model
(when α = 1/2).

In Section 5, we shall also need to know PF,∗α,4 (Q∗3), where we recall that Q∗3 stands for the
fully symmetric tree with 4 leaves. This value was provided by Ford [13] in Section 7, Fig. 20, as
well as by Coronado et al [10]. In the following lemma we compute it directly from the model’s
definition to illustrate also in this case how the probability of a tree is obtained through its
construction.

Lemma 5. For every α ∈ [0, 1],

PF,∗α,4 (Q∗3) =
1− α
3− α

.

Proof. To compute this probability, we shall already start with the cherry T2 = (1, 2) in BT2,
which has probability P ′α,2(T2) = 1. Every tree in BT3 is obtained by adding a leaf labeled 3 to
T2. These trees are described in Figure 4. Their probabilities are:

• K(1) and K(2) are obtained by adding the leaf 3 to an arc in T2 ending in a leaf. Their
probability is then

P ′α,3(K(1)) = P ′α,3(K(2)) =
1− α
2− α

.

• K(3) is obtained by adding the leaf 3 to a new root. Its probability is then

P ′α,3(K(3)) =
α

2− α
.

Now, there are three phylogenetic trees in BT4 of shape Q∗3, depicted in Figure 5. Each one
of them is obtained from the corresponding phylogenetic tree K(i) by adding the leaf 4 to the
arc from the root to its only leaf child. Their probability is, then,

P ′α,4(Q
(i)
3 ) =

1− α
3− α

· P ′α,3(K(i))

11



1 2 3

K(1)

2 3 1

K(2)

3 1 2

K(3)

Figure 4: The phylogenetic trees in BT3.

and hence, since
∑3
i=1 P

′
α,3(K(i)) = 1,

P ∗α,4(Q∗3) =

3∑
i=1

P ′α,4(Q
(i)
3 ) =

1− α
3− α

as we claimed.

1 4 2 3

Q
(1)
3

2 4 1 3

Q
(2)
3

3 4 1 2

Q
(3)
3

Figure 5: The fully symmetric phylogenetic trees in BT4.

2.2.3. Chen-Ford-Winkel’s α-γ-model.
The α-γ-model Pα,γ,n, defined by Chen et al [7], is a probabilistic model of multifurcating

phylogenetic trees that depends on two parameters α, γ with 0 6 γ 6 α 6 1. It generalizes
Ford’s α-model by allowing in the recursive construction of trees to add new leaves not only to
arcs or to a new root, but also to internal nodes. More specifically, the probability P ∗α,γ,n(T ∗)
of a tree T ∗ ∈ T ∗n under this model is defined as follows. Let n > 1 be any desired number of
leaves:

1. Start with the tree T1 ∈ T1 consisting of a single node labeled 1. Set Pα,γ,1(T1) = 1.

2. For every m = 1, . . . , n − 1, let Tm+1 ∈ Tm+1 be obtained by adding a new leaf labeled
m+ 1 to Tm. Then:

• If the new leaf is added to an arc e ending in a leaf,

Pα,γ,m+1(Tm+1) =
1− α
m− α

· Pα,γ,m(Tm).

• If the new leaf is added to an arc e ending in an internal node,

Pα,γ,m+1(Tm+1) =
γ

m− α
· Pα,γ,m(Tm).

• If the new leaf is added to a new root,

Pα,γ,m+1(Tm+1) =
γ

m− α
· Pα,γ,m(Tm).
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• If the new leaf is added as a child of an internal node u,

Pα,γ,m+1(Tm+1) =
(degout(u)− 1)α− γ

m− α
· Pα,γ,m(Tm).

3. When the desired number n of leaves is reached, the probability Pα,γ,n(Tn) of the resulting
tree Tn is the one obtained in this way. Then, the probability P ∗α,γ,n(T ∗) of a given tree
T ∗ ∈ T ∗n is defined as the sum of the probabilities of all phylogenetic trees with that shape:

P ∗α,γ,n(T ∗) =
∑

π(Tn)=T∗

Pα,γ,n(Tn).

Notice that if α = γ, this process only produces bifurcating trees and then, for every Tn ∈ BTn,
Pα,α,n(Tn) = P ′α,n(Tn) —the provisional probability of Tn defined by the recursive application
of step 2 in the definition of the α-model— and, for every T ∗n ∈ BT

∗
n, P ∗α,α,n(T ∗n) = PF,∗α,n(T ∗n).

It turns out that Pα,γ,n is not shape invariant in general (see Prop. 1.(b) of [7]), but the
corresponding model for trees P ∗α,γ,n is sampling consistent by Thm. 2 of loc. cit.

Q∗0 Q∗1 Q∗2 Q∗3 Q∗4

Figure 6: The 5 trees in T ∗4 .

Later in this paper we shall need to know the probabilities under P ∗α,γ,4 of the five different
trees in T ∗4 , described in Figure 6 together with the notations used in this paper to denote them
(motivated by Table 1 in the next section). We compute these probabilities in the following
lemma, thus providing an example of explicit computation of probabilities also for this model.

Lemma 6. With the notations of Figure 6:

P ∗α,γ,4(Q∗0) =
2(1− α+ γ)(2(1− α) + γ)

(3− α)(2− α)

P ∗α,γ,4(Q∗1) =
(5(1− α) + γ)(α− γ)

(3− α)(2− α)

P ∗α,γ,4(Q∗2) =
2(1− α+ γ)(α− γ)

(3− α)(2− α)

P ∗α,γ,4(Q∗3) =
(1− α)(2(1− α) + γ)

(3− α)(2− α)

P ∗α,γ,4(Q∗4) =
(2α− γ)(α− γ)

(3− α)(2− α)

Proof. To compute these probabilities, we shall already start with the cherry T2 = (1, 2) in T2,
which has probability Pα,γ,2(T2) = 1. Every phylogenetic tree in T3 is obtained by adding a
leaf labeled 3 to T2. There are 4 trees in T3: the bifurcating trees K(i), i = 1, 2, 3, described in
Figure 4, and the rooted star S3.

• S3 is obtained by adding the leaf 3 to the root of T2. Its probability is then

Pα,γ,3(S3) =
α− γ
2− α

.
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• K(1) and K(2) are obtained by adding the leaf 3 to an arc in T2 ending in a leaf. Their
probability is then

Pα,γ,3(K(1)) = Pα,γ,3(K(2)) =
1− α
2− α

.

• K(3) is obtained by adding the leaf 3 to a new root. Its probability is then

Pα,γ,3(K(3)) =
γ

2− α
.

Let us move finally to T ∗4 :

• A tree of shape Q∗4 can only be obtained by adding the leaf 4 to the root of the tree S3.
Its probability is, then,

P ∗α,γ,4(Q∗4) =
2α− γ
3− α

· Pα,γ,3(S3) =
(2α− γ)(α− γ)

(3− α)(2− α)
.

• A tree of shape Q∗0 can be obtained by adding the leaf 4 in some tree K(i)
3 either to a new

root, to the arc from the root to the other internal node, or to one of the arcs in its cherry.
Its probability is, then,

P ∗α,γ,4(Q∗0) =
(

2 · γ

3− α
+ 2 · 1− α

3− α

) 3∑
i=1

Pα,γ,3(K(i))

=
2(1− α+ γ)(2(1− α) + γ)

(3− α)(2− α)
.

• A tree of shape Q∗1 can be obtained by adding the leaf 4 either to one of the three arcs in
the tree S3 or to the root of some tree K(i)

3 . Its probability is, then,

P ∗α,γ,4(Q∗1) = 3 · 1− α
3− α

· Pα,γ,3(S3) +
α− γ
3− α

3∑
i=1

Pα,γ,3(K(i))

=
(5(1− α) + γ)(α− γ)

(3− α)(2− α)
.

• A tree of shape Q∗2 can be obtained by adding the leaf 4 either to a new root in the tree
S3 or to the non-root internal node in some tree K(i)

3 . Its probability is, then,

P ∗α,γ,4(Q∗2) =
γ

3− α
· Pα,γ,3(S3) +

α− γ
3− α

3∑
i=1

Pα,γ,3(K(i))

=
2(1− α+ γ)(α− γ)

(3− α)(2− α)
.

• A tree of shape Q∗3 can only be obtained by adding the leaf 4 to the arc from the root to
its only leaf child in some tree K(i)

3 . Its probability is, then,

P ∗α,γ,4(Q∗3) =
1− α
3− α

3∑
i=1

Pα,γ,3(K(i)) =
(1− α)(2(1− α) + γ)

(3− α)(2− α)
.

Notice that, when α = γ,

P ∗α,α,4(Q∗3) =
1− α
3− α

= PF,∗α,4 (Q∗3)

as it should have been expected.
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3. Rooted quartet indices

Let T be a phylogenetic tree on a set Σ. For every Q ∈ P4(Σ), the rooted quartet on Q
displayed by T is the restriction T (Q) of T to Q. A phylogenetic tree T ∈ Tn can contain rooted
quartets of five different shapes, namely, those listed in Figure 6. Notice that a bifurcating
phylogenetic tree T ∈ BTn can only contain rooted quartets of two shapes: those denoted by
Q∗0 and Q∗3 in the aforementioned figure.

We associate to each rooted quartet an rQI -value qi that increases with the symmetry of
the rooted quartet’s shape, as measured by means of its number of automorphisms, going from
a value q0 = 0 for the least symmetric tree, the comb Q∗0, to a largest value of q4 for the most
symmetric one, the rooted star Q∗4; see Table 1. The specific numerical values can be chosen in
order to magnify the differences in symmetry between specific pairs of trees. For instance, one
could take qi = i, or qi = 2i.

Rooted quartet Q∗0 Q∗1 Q∗2 Q∗3 Q∗4

# Automorphisms 2 4 6 8 24

rQI 0 q1 q2 q3 q4

Table 1: The rooted quartets’ rQI -values, with 0 < q1 < q2 < q3 < q4.

Now, for every T ∈ T (Σ), we define its rooted quartet index rQI (T ) as the sum of the
rQI -values of its rooted quartets:

rQI (T ) =
∑

Q∈P4(Σ)

rQI (T (Q))

=

4∑
i=1

∣∣{Q ∈ P4(Σ) : π(T (Q)) = Q∗i }
∣∣ · qi

In particular, if |Σ| 6 3, then rQI (T ) = 0 for every T ∈ T (Σ). So, we shall assume henceforth
that |Σ| > 4.

It is clear that rQI is a shape index, in the sense that two phylogenetic trees with the same
shape have the same rooted quartet index. It makes sense then to define the rooted quartet
index rQI (T ∗) of a tree T ∗ ∈ T ∗n as the rooted quartet index of any phylogenetic tree of shape
T ∗.

Example 7. Consider the tree T = ((1, 2, 3), 4, (5, (6, 7))) depicted in Figure 7. It has: 4 rooted
quartets of shape Q∗0; 18 rooted quartets of shape Q∗1; 4 rooted quartets of shape Q∗2; 9 rooted
quartets of shape Q∗3; and no rooted quartet of shape Q∗4. Therefore

rQI (T ) = 18q1 + 4q2 + 9q3.

1 2 3 4 5 6 7

Figure 7: The tree ((1, 2, 3), 4, (5, (6, 7))).
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Remark 8. If we did not take q0 = 0, then the resulting index would be

4∑
i=0

qi ·
∣∣{Q ∈ P4(Σ) : π(T (Q)) = Q∗i }

∣∣
= q0

(
n

4

)
+

4∑
i=1

(qi − q0)
∣∣{Q ∈ P4(Σ) : π(T (Q)) = Q∗i }

∣∣)
which is equivalent (up to the constant addend q0

(
n
4

)
) to rQI taking as rQI -values q′i = qi − q0.

Remark 9. One could also associate other values to the rooted quartet shapes; for instance
their Sackin index [25, 26] or their total cophenetic index [20], which measure the imbalance of
the rooted quartet’s shape, from a smallest value at Q∗4 to a largest value at Q∗0. All results
obtained in this paper are easily translated to any other sets of values.

Since a bifurcating tree can only contain rooted quartets of shape Q∗0 and Q∗3, its rQI index
is simply q3 times its number of rooted quartets of shape Q∗3. Therefore, in order to avoid this
spurious factor, when dealing only with bifurcating trees we shall use the following alternative
rooted quartet index for bifurcating trees rQIB : for every T ∈ BT(Σ),

rQIB(T ) =
1

q3
rQI (T ) =

∣∣∣{Q ∈ P4(Σ) : π(T (Q)) = Q∗3
}∣∣∣.

The rooted quartet index for bifurcating trees satisfies the following recurrence.

Lemma 10. Let T = T1 ? T2 ∈ BTn, where each Ti has ni leaves. Then,

rQIB(T ) = rQIB(T1) + rQIB(T2) +

(
n1

2

)
·
(
n2

2

)
.

Proof. For every Q ∈ P4([n]), there are the following possibilities:

(1) If Q ⊆ L(Ti), for some i = 1, 2, then T (Q) = Ti(Q). Therefore, each Q ⊆ L(Ti) contributes
rQIB(Ti) to rQIB(T ).

(2) If three leaves in Q belong to one of the subtrees Ti and the fourth to the other subtree Tj ,
then T (Q) has shape Q∗0 and thus it does not contribute anything to rQIB(T ).

(3) If two leaves in Q belong to T1 and the other two to T2, then T (Q) has shape Q∗3 and thus
it contributes 1 to rQIB(T ). There are

(
n1

2

)
·
(
n2

2

)
such quartets of leaves Q.

Adding up all these contributions, we obtain the formula in the statement.

Thus, rQIB is a recursive tree shape statistic in the sense of Matsen [18]. The recurrence
in the last lemma implies directly the following explicit formula for rQIB , which in particular
entails that it can be easily computed in time O(n), with n the number of leaves of the tree, by
traversing the tree in post-order (cf. the first paragraph in the proof of Proposition 13 below):

Corollary 11. If, for every T ∈ BTn and for every v ∈ Vint(T ), we set child(v) = {v1, v2},
then

rQIB(T ) =
∑

v∈Vint(T )

(
κ(v1)

2

)
·
(
κ(v2)

2

)
.

Unfortunately, rQI is not recursive in this sense: there does not exist any family of mappings
qm : Nm → R, m > 2, such that, for every T ∈ Tn, if T = T1 ? · · · ? Tm, with each Ti having ni
leaves, then

rQI (T ) =

m∑
i=1

rQI (Ti) + qm(n1, . . . , nm).
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However, next lemma shows that there exists a slightly more involved linear recurrence for rQI ,
with its independent term depending on more indices of the trees Ti than only their numbers of
leaves, which still allows its computation in linear time.

For every T ∈ Tn, let Υ(T ) be the number of non-bifurcating triples in T (that is, of restric-
tions of T to sets of 3 leaves that have the shape of a rooted star S3; cf. Fig. 1). Notice that if
T = T1 ? · · · ? Tm and |L(Ti)| = ni, for each i = 1, . . . ,m, then

Υ(T ) =

m∑
i=1

Υ(Ti) +
∑

16i1<i2<i36m

ni1ni2ni3

and hence
Υ(T ) =

∑
v∈Vint(T )

∑
{v1,v2,v3}⊆child(v)

κ(v1)κ(v2)κ(v3).

Lemma 12. Let T = T1 ? · · · ? Tm ∈ Tn, where each Ti has ni leaves. Then

rQI (T ) =

m∑
i=1

rQI (Ti) + q4 ·
∑

16i1<i2<i3<i46m

ni1ni2ni3ni4

+q3 ·
∑

16i1<i26m

(
ni1
2

)(
ni2
2

)
+ q2 ·

∑
16i1<i26m

(
ni1Υ(Ti2) + ni2Υ(Ti1)

)
+q1 ·

∑
16i1<i2<i36m

((ni1
2

)
ni2ni3 +

(
ni2
2

)
ni1ni3 +

(
ni3
2

)
ni1ni2

)
.

Proof. For every Q ∈ P4([n]), there are the following possibilities:

(1) If Q ⊆ L(Ti), for some i, then T (Q) = Ti(Q). Therefore, each Q ⊆ L(Ti) contributes
rQI (Ti) to rQI (T ).

(2) If 3 leaves, say a, b, c, in Q belong to a subtree Ti and the fourth to another subtree Tj , then
T (Q):

• Has shape Q∗2 if Ti({a, b, c}) has shape S3. For every pair of subtrees Ti, Tj , there are
njΥ(Ti) + niΥ(Tj) quartets of leaves Q of this type, and each one of them contributes
q2 to rQI (T )

• Has shape Q∗0 if Ti({a, b, c}) is a comb K3. These rooted quartets do not contribute
anything to rQI (T ).

(3) If 2 leaves in Q belong to a subtree Ti and the other 2 to another subtree Tj , then T (Q) has
shape Q∗3. For every pair of subtrees Ti, Tj , there are

(
ni
2

)(
nj
2

)
quartets of leaves Q of this

type, and each one of them contributes q3 to rQI (T ).

(4) If 2 leaves in Q belong to a subtree Ti, a third leaf to another subtree Tj and the fourth to
a third subtree Tk, then T (Q) has shape Q∗1. For every triple of subtrees Ti, Tj , Tk, there
are

(
ni
2

)
njnk +

(
nj
2

)
nkni +

(
nk
2

)
ninj quartets of leaves Q of this type, and each one of them

contributes q1 to rQI (T ).

(5) If each leaf in Q belongs to a different subtree Ti, then T (Q) has shape Q∗4. For every four
subtrees Ti, Tj , Tk, Tl, there are ninjnknl such quartets of leaves Q, and each one of them
contributes q4 to rQI (T ).

Adding up all these contributions, we obtain the formula in the statement.

Proposition 13. If T ∈ Tn, rQI (T ) can be computed in time O(n).
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Proof. Let T be a phylogenetic tree in Tn. Recall that if a certain mapping φ : V (T ) → R can
be computed in constant time at each leaf of T and in O(deg(v)) time at each internal node
v from its value at the children of v, then the whole vector (φ(v))v∈V (T ), and hence also its
sum

∑
v∈V (T )

φ(v), can be computed in O(n) time by traversing T in post-order. Indeed, if we

denote by mk the number of internal nodes of T with out-degree k, then the cost of computing
(φ(v))v∈V (T ) through a post-order traversal of T is O

(
n +

∑
kmk · k

)
, and

∑
kmk · k is the

number of arcs in T , which is at most 2n − 2. We shall use this remark several times in this
proof, and, to begin with, we refer to it to recall that the vector

(
κ(v)

)
v∈V (T )

can be computed
in O(n) time.

Now, in order to simplify the notations, let, for every v ∈ Vint(T ):

El(v) =
∑

{v1,...,vl}⊆child(v)

κ(v1) · · ·κ(vl), l = 2, . . . ,deg(v)

F1(v) =
∑

{v1,v2,v3}⊆child(v)

((κ(v1)

2

)
κ(v2)κ(v3) +

(
κ(v2)

2

)
κ(v1)κ(v3)

+

(
κ(v3)

2

)
κ(v1)κ(v2)

)
F2(v) =

∑
{v1,v2}⊆child(v)

(
κ(v1)Υ(Tv2) + κ(v2)Υ(Tv1)

)
F3(v) =

∑
{v1,v2}⊆child(v)

(
κ(v1)

2

)(
κ(v2)

2

)
so that

Υ(T ) =
∑

v∈Vint(T )

E3(v)

rQI (T ) =
∑

v∈Vint(T )

(
q1F1(v) + q2F2(v) + q3F3(v) + q4E4(v))

We want to prove now that each one of the vectors(
F1(v)

)
v∈Vint(T )

,
(
F2(v)

)
v∈Vint(T )

,
(
F3(v)

)
v∈Vint(T )

,
(
E4(v)

)
v∈Vint(T )

can be computed in O(n) time, which will clearly entail that rQI (T ) can be computed in O(n)
time.

One of the key ingredients in the proof are the Newton-Girard formulas (see, for instance,
Section I.2 in [17]): given a (multi)set of numbers X = {x1, . . . , xk}, if we let, for every l > 1,

Pl(X) =

k∑
i=1

xli, El(X) =
∑

16i1<···<il6k

xi1 · · ·xil

then

El(X) =
1

l!

∣∣∣∣∣∣∣∣∣∣∣∣∣

P1(X) 1 0 . . . 0 0
P2(X) P1(X) 2 . . . 0 0
P3(X) P2(X) P1(X) . . . 0 0

...
...

...
. . .

...
...

Pl−1(X) Pl−2(X) Pl−3(X) . . . P1(X) l − 1
Pl(X) Pl−1(X) Pl−2(X) . . . P2(X) P1(X)

∣∣∣∣∣∣∣∣∣∣∣∣∣
If we consider l as a fixed parameter, every Pl(X) can be computed in time O(k) and then this
expression for El(X) as an l × l determinant allows us also to compute it in time O(k).

In particular, if, for every v ∈ Vint(V ), we consider the multiset Xv = {κ(u) : u ∈
child(v)}, then every El(v) = El(Xv) can be computed in time O(deg(v)) and hence the whole
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vector
(
El(v)

)
v∈Vint(T )

can be computed in time O(n). In particular,
(
E3(v)

)
v∈Vint(T )

and(
E4(v)

)
v∈Vint(T )

can be computed in linear time.
Then, using the recursion

Υ(Tv) =
∑

vi∈child(v)

Υ(Tvi) + E3(v)

we deduce that the whole vector
(
Υ(Tv)

)
v∈Vint(T )

can also be computed in time O(n). Now,

F2(v) =
∑

{v1,v2}⊆child(v)

(
κ(v1)Υ(Tv2) + κ(v2)Υ(Tv1)

)
=
( ∑
vi∈child(v)

κ(vi)
)( ∑

vj∈child(v)

Υ(Tvj )
)
−

∑
vi∈child(v)

κ(vi)Υ(Tvi)

= κ(v)
(
Υ(Tv)− E3(v))−

∑
vi∈child(v)

κ(vi)Υ(Tvi),

This implies that each F2(v) can be computed in time O(deg(v)) and hence that the whole
vector

(
F2(v)

)
v∈Vint(T )

can be computed in time O(n).
Let us focus now on

F3(v) =
∑

{v1,v2}⊆child(v)

(
κ(v1)

2

)(
κ(v2)

2

)
=

1

4

∑
{v1,v2}⊆child(v)

κ(v1)2κ(v2)2 +
1

4

∑
{v1,v2}⊆child(v)

κ(v1)κ(v2)

−1

4

∑
{v1,v2}⊆child(v)

(
κ(v1)2κ(v2) + κ(v2)2κ(v1)

)
In this expression,∑

{v1,v2}⊆child(v)

κ(v1)κ(v2) = E2(v),
∑

{v1,v2}⊆child(v)

κ(v1)2κ(v2)2 = E2(X2
v ),

where X2
v = {κ(u)2 : u ∈ child(v)}, and hence they are computed in time O(deg(v)). As far as

the subtrahend goes,∑
{v1,v2}⊆child(v)

(
κ(v1)2κ(v2) + κ(v2)2κ(v1)

)
=
( ∑
vi∈child(v)

κ(vi)
2
)( ∑

vj∈child(v)

κ(vj)
)
−
( ∑
vi∈child(v)

κ(vi)
3
)

and hence it can also be computed in timeO(deg(v)). Therefore, the whole vector
(
F3(v)

)
v∈Vint(T )

can be computed in time O(n).

19



Let us consider finally F1(v). We have that

F1(v) =
∑

{v1,v2,v3}⊆child(v)

((κ(v1)

2

)
κ(v2)κ(v3)

+

(
κ(v2)

2

)
κ(v1)κ(v3) +

(
κ(v3)

2

)
κ(v1)κ(v2)

)
=

1

2

∑
{v1,v2,v3}⊆child(v)

κ(v1)κ(v2)κ(v3)(κ(v1) + κ(v2) + κ(v3)− 3)

=
1

2

∑
{v1,v2,v3}⊆child(v)

(
κ(v1)2κ(v2)κ(v3)

+κ(v2)2κ(v1)κ(v3) + κ(v3)2κ(v1)κ(v2)
)
− 3

2
E3(v)

=
1

2

( ∑
{v1,v2,v3}⊆child(v)

κ(v1)κ(v2)κ(v3)
)( ∑

vi∈child(v)

κ(vi)
)

−2
( ∑
{v1,v2,v3.v4}⊆child(v)

κ(v1)κ(v2)κ(v3)κ(v4)
)
− 3

2
E3(v)

=
1

2
E3(v)E1(v)− 2E4(v)− 3

2
E3(v)

This expression shows that F1(v) can be computed in time O(deg(v)) and therefore the whole
vector

(
F1(v)

)
v∈Vint(T )

can be computed in time O(n).

4. Trees with maximum and minimum rQI

Let n > 4. In this section we determine which trees in Tn and BTn have the largest and
smallest corresponding rooted quartet indices. The multifurcating case is easy:

Theorem 14. The minimum value of rQI in Tn is reached exactly at the combs Kn, and it is
0. The maximum value value of rQI in Tn is reached exactly at the rooted star Sn, and it is
q4

(
n
4

)
.

Proof. Since the rQI -value of a rooted quartet goes from 0 to q4, we have that 0 6 rQI (T ) 6
q4

(
n
4

)
, for every T ∈ Tn. Now, all rooted quartets displayed by a comb Kn have shape Q∗0, and

therefore rQI (Kn) = 0, while all rooted quartets displayed by Sn have shape Q∗4, and therefore
rQI (Sn) = q4

(
n
4

)
.

As far as the uniqueness of the trees yielding the maximum and minimum values of rQI
goes, notice that, on the one hand, if T is not a comb, then it displays some rooted quartet of
shape other than Q∗0, because it contains either some internal node of out-degree greater than 2,
which becomes the root of some multifurcating rooted quartet, or two cherries that determine a
rooted quartet of shape Q∗3. This implies that if T 6= Kn, then rQI (T ) > 0. On the other hand,
if T 6= Sn, then its root has some child that is not a leaf and therefore T displays some rooted
quartet of shape other than Q∗4, which implies that rQI (T ) < q4

(
n
4

)
.

Therefore, the range of rQI on Tn goes from 0 to q4

(
n
4

)
. This is one order of magnitude

wider than the range of the total cophenetic index [20], which, going from 0 to
(
n
3

)
, was so far

the balance index in the literature with the widest range.
We shall now characterize those bifurcating phylogenetic trees with largest rQI , or, equiva-

lently, with largest rQIB . They turn out to be exactly the maximally balanced trees, as defined
at the end of Subsection 2.1. The proof is similar to that of the characterization of the bifurcating
phylogenetic trees with minimum total cophenetic index provided in Section 4 of [20].
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Lemma 15. Let T ∈ BTn be the bifurcating phylogenetic tree depicted in Fig 8.(a). For every
i = 1, 2, 3, 4, let ni = |L(Ti)|, and assume that n1 > n3 and n2 > n4. Then, rQIB(T ) is not
maximum in BTn.

a b

z
T0

T1 T2 T3 T4

(a) T

a b

z
T0

T1 T4 T3 T2

(b) T ′

Figure 8: (a) The tree T in the statement of Lemma 15. (b) The tree T ′

in the proof of Lemma 15.

Proof. Let T ′ be the tree obtained from T by interchanging T2 and T4; see Fig 8.(b). We shall
prove that rQIB(T ′) > rQIB(T ).

Let Σz be the set of labels of Tz, which is also the set of labels of T ′z. To simplify the
language, we shall understand the common subtree T0 of T and T ′ as a phylogenetic tree on
([n] \ Σz) ∪ {z}. Then, for every Q = {a, b, c, d} ∈ P4([n]):

• If Q ∩ Σz = ∅, then T (Q) = T ′(Q) = T0(Q).

• If Q ∩ Σz is a single label, say d, then T (Q) = T ′(Q) = T0({a, b, c, z}).

• If Q ∩ Σz consists of two labels, say c, d, then T (Q) = T ′(Q). More specifically: T (Q) =
T ′(Q) = ((a, b), (c, d)) when T0({a, b, z}) = ((a, b), z); T (Q) = T ′(Q) = (a, (b, (c, d)))
when T0({a, b, z}) = (a, (b, z)); and T (Q) = T ′(Q) = (b, (a, (c, d))) when T0({a, b, z}) =
(b, (a, z)).

• If Q ∩ Σz consists of three labels, then T (Q) and T ′(Q) are both combs.

Therefore, T (Q) and T ′(Q) can only be different when Q ⊆ Σz, in which case T (Q) = Tz(Q)
and T ′(Q) = T ′z(Q). This implies that

rQIB(T ′)− rQIB(T ) = rQIB(T ′z)− rQIB(Tz).

Now, to compute the difference in the right hand side of this equality, we apply Lemma 10:

rQIB(Tz) = rQIB(T1) + rQIB(T2) + rQIB(T3) + rQIB(T4)

+

(
n1

2

)(
n2

2

)
+

(
n3

2

)(
n4

2

)
+

(
n1 + n2

2

)(
n3 + n4

2

)
rQIB(T ′z) = rQIB(T1) + rQIB(T4) + rQIB(T2) + rQIB(T3)

+

(
n1

2

)(
n4

2

)
+

(
n2

2

)(
n3

2

)
+

(
n1 + n4

2

)(
n2 + n3

2

)
and hence

rQIB(T ′z)− rQIB(Tz) =
1

2
(n1 − n3)(n2 − n4)(n1n3 + n2n4) > 0

because n1 > n3 and n2 > n4 by assumption.

Lemma 16. Let T ∈ BTn be a bifurcating phylogenetic tree containing a leaf whose sibling has
at least 3 descendant leaves. Then, rQIB(T ) is not maximum in BTn.
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(a) T
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`

(b) T ′

Figure 9: (a) The tree T in the statement of Lemma 16. (b) The tree T ′

in the proof of Lemma 16.

Proof. Assume that the tree T ∈ BTn in the statement is the one depicted in Fig 9.(a), with `
a leaf such that the subtree Ta rooted at its sibling a has |L(Ta)| > 3. Let n1 = |L(T1)| and
n2 = |L(T2)| and assume n1 > n2: then, since n1 + n2 > 3, n1 > 2. Let then T ′ be the tree
depicted in Fig 9.(b): we shall prove that rQIB(T ′) > rQIB(T ). Reasoning as in the proof of
the last lemma, we deduce that

rQIB(T ′)− rQIB(T ) = rQIB(T ′z)− rQIB(Tz).

Now, using Lemma 10, we have that

rQIB(Tz) = rQIB(Ta) = rQIB(T1) + rQIB(T2) +

(
n1

2

)
·
(
n2

2

)
rQIB(T ′z) = rQIB(T1) + rQIB(Tb) +

(
n1

2

)
·
(
n2 + 1

2

)
= rQIB(T1) + rQIB(T2) +

(
n1

2

)
·
(
n2 + 1

2

)
and therefore

rQIB(T ′z)− rQIB(Tz) = n2

(
n1

2

)
> 0

as we wanted to prove.

Theorem 17. For every T ∈ BTn, rQIB(T ) is maximum in BTn if, and only if, T is maximally
balanced.

Proof. Assume that rQIB(T ) is maximum in BTn but that T ∈ BTn is not maximally balanced,
and let us reach a contradiction. Let z be a non-balanced internal node in T such that all its
proper descendant internal nodes are balanced, and let a and b be its children, with κ(a) >
κ(b) + 2.

If b is a leaf, then, by Lemma 16, rQIB(T ) cannot be maximum in BTn. Therefore, a and
b are internal, and hence balanced. Let v1, v2 be the children of a, v3, v4 the children of b, and
ni = κ(vi), for i = 1, 2, 3, 4. Without any loss of generality, we shall assume that n1 > n2 and
n3 > n4. Then, since a and b are balanced, n1 = n2 or n2 + 1 and n3 = n4 or n4 + 1. Then,
n1 + n2 = κ(a) > κ(b) + 2 = n3 + n4 + 2 implies that n1 > n3.

Now, by Lemma 15, since by assumption rQIB(T ) is maximum on BTn, it must happen that
n1 > n3 > n4 > n2. This forbids the equality n1 = n2, and hence n1 − 1 = n2 = n3 = n4. But
this contradicts that n1 + n2 > n3 + n4 + 2.

This implies that a non maximally balanced tree in BTn cannot have maximum rQIB , and
therefore the maximum rQIB in BTn is reached at the maximally balanced trees, which have
all the same shape and hence the same rQIB index.
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So, the only bifurcating trees with maximum rQIB (and hence with maximum rQI ) are the
maximally balanced. This maximum value of rQIB on BTn is given by the following recurrence.

Lemma 18. For every n, let bn be the maximum of rQIB on BTn. Then, b1 = b2 = b3 = 0 and

bn = bdn/2e + bbn/2c +

(
dn/2e

2

)
·
(
bn/2c

2

)
, for n > 4.

Proof. This recurrence for bn is a direct consequence of Lemma 10 and the fact that the root
of a maximally balanced tree in BTn is balanced and the subtrees rooted at their children are
maximally balanced.

The sequence bn seems to be new, in the sense that it has no relation with any sequence
previously contained in Sloane’s On-Line Encyclopedia of Integer Sequences [27]. Its values for
n = 4, . . . , 20 are

1, 3, 9, 19, 38, 64, 106, 162, 243, 343, 479, 645, 860, 1110, 1424, 1790, 2237.

It is easy to prove, using the Master theorem for solving recurrences [9, Thm. 4.1], that bn grows
asymptotically in O(n4). Moreover, it is easy to compute b2n from this recurrence, yielding

b2n =
( 4

7(2n − 3)
+

3

7

)(2n

4

)
.

In particular, b2n/
(

2n

4

) n→∞−→ 3/7, which is in agreement with the probability of the fully sym-
metric rooted quartet Q∗3 under the β-model when β →∞; cf. Section 4.1 in [2].

Remark 19. When the range of values of a shape index I grows with the number of leaves n
of the phylogenetic trees, as it is the case with rQI and rQIB , it makes no sense to compare
directly its value on two trees with different numbers of leaves. To overcome this drawback, one
usually normalizes the index, so that its range becomes independent on n. A suitable way to
do that is to use the generic affine transformation

Ĩ(T ) =
I(T )−min I(Tn)

max I(Tn)−min I(Tn)

where n stands for the number of leaves of the tree T and I(Tn) denotes the set of values of I
on Tn. In this way, for every number of leaves, the minimum value of the normalized index is
always 0 and the maximum value is always 1.

As to our rQI , its minimum value is always 0, but its maximum depends on whether we are
considering multifurcating or bifurcating trees. Therefore, we propose two normalized versions
of this index:

• On Tn, r̃QI (T ) = rQI (T )/(q4

(
n
4

)
).

• On BTn, r̃QIB(T ) = rQIB(T )/bn, with bn computed by means of the recurrence given in
Lemma 18.

5. The expected value and the variance of rQI

Let Pn be a probabilistic model of phylogenetic trees and rQI n the random variable that
chooses a phylogenetic tree T ∈ Tn with probability distribution Pn and computes rQI (T ). In
this section we are interested in obtaining expressions for the expected value EP (rQI n) and the
variance V arP (rQI n) of rQI n under suitable models Pn.

Next lemma shows that, to compute these values, we can restrict ourselves to work with
unlabeled trees. Let P ∗n the probabilistic model of trees induced by Pn and rQI ∗n the random
variable that chooses a tree T ∗ ∈ T ∗n with probability distribution P ∗n and computes rQI (T ∗),
defined as rQI (T ) for some phylogenetic tree T of shape T ∗.
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Lemma 20. For every n > 1, the distributions of rQI n and rQI ∗n are the same. In particular,
their expected values and their variances are the same.

Proof. Let frQIn and frQI∗n
be the probability density functions of the discrete random variables

rQI n and rQI ∗n, respectively. Then, for every x0 ∈ R,

frQIn(x0) =
∑
T∈Tn

rQI(T )=x0

Pn(T ) =
∑
T∗∈T ∗n

rQI(T∗)=x0

∑
T∈Tn

π(T )=T∗

Pn(T )

=
∑
T∗∈T ∗n

rQI(T∗)=x0

P ∗n(T ∗) = frQI∗n
(x0)

Proposition 21. If P ∗n is sampling consistent, then

EP (rQI n) =

(
n

4

) 4∑
i=1

qiP
∗
4 (Q∗i ).

Proof. By Lemma 20, EP (rQI n) is equal to the expected value EP∗(rQI ∗n) of rQI ∗n under P ∗n ,
which can be computed as follows:

EP∗(rQI ∗n) =
∑

T∗∈T ∗n

rQI (T ∗)P ∗n(T ∗)

=
∑

T∗∈T ∗n

( 4∑
i=1

qi
∣∣{Q ∈ P4(L(T ∗)) : T ∗(Q) = Q∗i }

∣∣)P ∗n(T ∗)

=

(
n

4

) 4∑
i=1

qi
∑

T∗∈T ∗n

∣∣{Q ∈ P4(L(T ∗)) : T ∗(Q) = Q∗i }
∣∣(

n
4

) P ∗n(T ∗)

=

(
n

4

) 4∑
i=1

qiP
∗
4 (Q∗i )

because, for every i = 1, . . . , 4,

∑
T∗∈T ∗n

∣∣{Q ∈ P4(L(T ∗)) : T ∗(Q) = Q∗i }
∣∣(

n
4

) P ∗n(T ∗) = P ∗4 (Q∗i )

by the sampling consistency of P ∗n .

This expression for EP (rQI n) should not be surprising: by the sampling consistency property,
for each i = 1, . . . 4, the expected number of rooted quartets of shape Q∗i in a tree of n leaves is(
n
4

)
P ∗4 (Q∗i ) and their weight in rQI value is qi.
The α-γ-model for unlabeled trees P ∗α,γ,n is sampling consistent [7, Prop. 12]. Therefore,

applying the last proposition using the distribution P ∗α,γ,4 on T ∗4 given in Lemma 6, we have the
following result.

Corollary 22. Let Pα,γ,n be the α-γ-model of phylogenetic trees, with 0 6 γ 6 α 6 1. Then

EPα,γ (rQI n) =

(
n

4

)(
(2α− γ)(α− γ)

(3− α)(2− α)
· q4 +

(1− α)(2(1− α) + γ)

(3− α)(2− α)
· q3

+
2(1− α+ γ)(α− γ)

(3− α)(2− α)
· q2 +

(5(1− α) + γ)(α− γ)

(3− α)(2− α)
· q1

)
.

24



If Pn is a probabilistic model of bifurcating phylogenetic trees, so that P ∗4 (Q∗1) = P ∗4 (Q∗2) =
P ∗4 (Q∗4) = 0, then the expression in Prop. 21 becomes

EP (rQI n) =

(
n

4

)
q3P

∗
4 (Q∗3).

Taking q3 = 1, we obtain the following results.

Corollary 23. If Pn is a probabilistic model of bifurcating phylogenetic trees such that P ∗n is
sampling consistent, then

EP (rQIBn) =

(
n

4

)
P ∗4 (Q∗3).

Since the β and α-models of bifurcating (unlabeled) trees are sampling consistent, this corol-
lary together with the probabilities of Q∗3 ∈ BT

∗
4 under these models given in Lemmas 4 and 5,

respectively, entail the following result.

Corollary 24. Let PAβ,n be Aldous’ β-model for bifurcating phylogenetic trees, with β ∈ (−2,∞),
and let PFα,n be Ford’s α-model for bifurcating phylogenetic trees, with α ∈ [0, 1]. Then:

EPAβ (rQIBn) =
3β + 6

7β + 18

(
n

4

)
, EPFα (rQIBn) =

1− α
3− α

(
n

4

)
.

It is easy to check that EPFα (rQIBn) agrees with EPα,γ (rQI n) (up to the factor q3) when
α = γ.

In particular, under the Yule model, which corresponds to α = 0 or β = 0, and the uni-
form model, which corresponds to α = 1/2 or β = −3/2, the expected values of rQIBn are,
respectively,

EY (rQIBn) =
1

3

(
n

4

)
, EU (rQIBn) =

1

5

(
n

4

)
.

Let us deal now with the variance of rQI n. To simplify the notations, for every k = 5, 6, 7, 8,
for every T ∗ ∈ T ∗k and for every i, j ∈ {1, 2, 3, 4}, let

Θi,j(T
∗) =

∣∣{(Q,Q′) ∈ P4(L(T ∗))2 :
Q ∪Q′ = L(T ∗), T ∗(Q) = Q∗i , T

∗(Q′) = Q∗j}
∣∣

=
∣∣{(Q,Q′) ∈ P4(L(T ∗))2 :
|Q ∩Q′| = 8− k, T ∗(Q) = Q∗i , T

∗(Q′) = Q∗j}
∣∣.

Notice that Θi,j(T
∗) = Θj,i(T

∗).

Proposition 25. If P ∗n is sampling consistent, then

V arP (rQI n) =

(
n

4

) 4∑
i=1

q2
i P
∗
4 (Q∗i )−

(
n

4

)2
(

4∑
i=1

qiP
∗
4 (Q∗i )

)2

+

4∑
i=1

4∑
j=1

qiqj

(
8∑
k=5

(
n

k

) ∑
T∗∈T ∗k

Θi,j(T
∗)P ∗k (T ∗)

)
.

Proof. Since, by Lemma 20, V arP (rQI n) = V arP∗(rQI ∗n), we shall compute the latter using
the formula V arP∗(rQI ∗n) = EP∗(rQI ∗n

2
) − EP∗(rQI ∗n)2, and therefore we need to compute

EP∗(rQI ∗n
2
).

For every T ∗ ∈ T ∗n , for every Q∗i ∈ T ∗4 and for every Q ∈ P4(L(T ∗)), set

δ(Q;Q∗i ;T
∗) =

{
1 if T ∗(Q) = Q∗i
0 if T ∗(Q) 6= Q∗i
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Then:

EP∗(rQI ∗n
2
) =

∑
T∗∈T ∗n

rQI ∗(T ∗)2P ∗n(T ∗)

=
∑

T∗∈T ∗n

( ∑
Q∈P4(L(T∗))

4∑
i=1

qiδ(Q;Q∗i ;T
∗)
)2

P ∗n(T ∗)

=
∑

T∗∈T ∗n

( ∑
Q∈P4(L(T∗))

4∑
i=1

q2
i δ(Q;Q∗i ;T

∗)2
)
P ∗n(T ∗)

+
∑

T∗∈T ∗n

[ ∑
(Q,Q′)∈P4(L(T∗))2

Q 6=Q′

∑
(i,j)∈[4]2

qiqjδ(Q;Q∗i ;T
∗)δ(Q′;Q∗j ;T

∗)

]
P ∗n(T ∗)

Now, since δ(Q;Q∗i ;T
∗)2 = δ(Q;Q∗i ;T

∗),

S1 :=
∑

T∗∈T ∗n

( ∑
Q∈P4(L(T∗))

4∑
i=1

q2
i δ(Q;Q∗i ;T

∗)2
)
P ∗n(T ∗)

=
∑

T∗∈T ∗n

( ∑
Q∈P4(L(T∗))

4∑
i=1

q2
i δ(Q;Q∗i ;T

∗)
)
P ∗n(T ∗)

=

4∑
i=1

(
q2
i

∑
T∗∈T ∗n

∣∣{Q ∈ P4(L(T ∗)) : T ∗(Q) = Q∗i }
∣∣ · P ∗n(T ∗)

)
=

(
n

4

) 4∑
i=1

(
q2
i

∑
T∗∈T ∗n

∣∣{Q ∈ P4(L(T ∗)) : T ∗(Q) = Q∗i }
∣∣(

n
4

) P ∗n(T ∗)
)

=

(
n

4

) 4∑
i=1

q2
i P
∗
4 (Q∗i )

by the sampling consistency of P ∗n .
As far as the second addend in the previous expression for EP∗(rQI ∗n

2
) goes, we have

S2 :=
∑

T∗∈T ∗n

∑
(Q,Q′)∈P4(L(T∗))2

Q 6=Q′

( ∑
(i,j)∈[4]2

qiqjδ(Q;Q∗i ;T
∗)δ(Q′;Q∗j ;T

∗)
)
P ∗n(T ∗)

=
∑

(i,j)∈[4]2

qiqj

[ ∑
T∗∈T ∗n

( 3∑
k=0

∑
(Q,Q′)∈P4(L(T∗))2

|Q∩Q′|=k

δ(Q;Q∗i ;T
∗)δ(Q′;Q∗j ;T

∗)
)
P ∗n(T ∗)

]

=
∑

(i,j)∈[4]2

qiqj

[
3∑
k=0

∑
T∗∈T ∗n

∣∣{(Q,Q′) ∈ P4(L(T ∗))2 : |Q ∩Q′| = k,

T ∗(Q) = Q∗i , T
∗(Q′) = Q∗j}

∣∣ · P ∗n(T ∗)

]
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Now notice that, for every k = 0, . . . , 3,∑
T∗∈T ∗n

∣∣{(Q,Q′) ∈ P4(L(T ∗))2 : |Q ∩Q′| = k, T ∗(Q) = Q∗i , T
∗(Q′) = Q∗j}

∣∣P ∗n(T ∗)

=
∑

T∗∈T ∗n

( ∑
T∗8−k∈T

∗
8−k

∣∣{X ∈ P8−k(L(T ∗)) : T ∗(X) = T ∗8−k}
∣∣

·
∣∣{(Q,Q′) ∈ P4(L(T ∗8−k))2 : |Q ∩Q′| = k, T ∗8−k(Q) = Q∗i , T

∗
8−k(Q′) = Q∗j}

∣∣)P ∗n(T ∗)

=
∑

T∗8−k∈T
∗
8−k

∣∣{(Q,Q′) ∈ P4(L(T ∗8−k))2 : |Q ∩Q′| = k, T ∗8−k(Q) = Q∗i , T
∗
8−k(Q′) = Q∗j}

∣∣
·
(

n

8− k

) ∑
T∗∈T ∗n

(∣∣{X ∈ P8−k(L(T ∗)) : T ∗(X) = T ∗8−k}
∣∣(

n
8−k
) P ∗n(T ∗)

=

(
n

8− k

) ∑
T∗8−k∈T

∗
8−k

∣∣{(Q,Q′) ∈ P4(L(T ∗8−k))2 : |Q ∩Q′| = k,

T ∗8−k(Q) = Q∗i , T
∗
8−k(Q′) = Q∗j}

∣∣P ∗8−k(T ∗8−k)

=

(
n

8− k

) ∑
T∗8−k∈T

∗
8−k

∣∣{(Q,Q′) ∈ P4(L(T ∗8−k))2 : Q ∪Q′ = L(T ∗8−k),

T ∗8−k(Q) = Q∗i , T
∗
8−k(Q′) = Q∗j}

∣∣P ∗8−k(T ∗8−k)

=

(
n

8− k

) ∑
T∗8−k∈T

∗
8−k

Θi,j(T
∗
8−k)P ∗8−k(T ∗8−k)

again by the sampling consistency of P ∗n . Therefore,

S2 =
∑

(i,j)∈[4]2

qiqj

( 3∑
k=0

(
n

8− k

) ∑
T∗8−k∈T

∗
8−k

Θi,j(T
∗
8−k)P ∗8−k(T ∗8−k)

)
=

∑
(i,j)∈[4]2

qiqj

( 8∑
k=5

(
n

k

) ∑
T∗∈T ∗k

Θi,j(T
∗)P ∗k (T ∗)

)
The formula in the statement is then obtained by writing V arP∗(IQ∗n) as S1+S2−EP∗(IQ∗n)2

and using the expression for EP∗(IQ∗n) = EP (IQn) given in Proposition 21.

Again, if Pn is a probabilistic model of bifurcating phylogenetic trees, so that P ∗4 (Q∗1) =
P ∗4 (Q∗2) = P ∗4 (Q∗4) = 0, then, taking q3 = 1, this proposition implies that

V arP (rQIBn) =

(
n

4

)
P ∗4 (Q∗3)−

(
n

4

)2

P ∗4 (Q∗3)2

+

8∑
k=5

(
n

k

)( ∑
T∗∈BT∗k

Θ3,3(T ∗)P ∗k (T ∗)
)

In this bifurcating case, the figures Θ3,3(T ∗) appearing in this expression can be easily computed
by hand: they are provided in Table 3 in the Appendix A.2. We obtain then the following result.

Corollary 26. If Pn is a probabilistic model of bifurcating phylogenetic trees such that P ∗n is
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sampling consistent, then, with the notations for trees given in Table 3 in the Appendix A.2,

V arP (rQIBn) =

(
n

4

)
P ∗4 (Q∗3)−

(
n

4

)2

P ∗4 (Q∗3)2

+6

(
n

5

)
P ∗5 (B∗5,3) +

(
n

6

)(
18P ∗6 (B∗6,4) + 6P ∗6 (B∗6,5) + 36P ∗6 (B∗6,6)

)
+

(
n

7

)(
8P ∗7 (B∗7,8) + 24P ∗7 (B∗7,9) + 36P ∗7 (B∗7,10) + 36P ∗7 (B∗7,11)

)
+

(
n

8

)(
2P ∗8 (B∗8,13) + 6P ∗8 (B∗8,14) + 12P ∗8 (B∗8,15) + 14P ∗8 (B∗8,16)

+18P ∗8 (B∗8,17) + 36P ∗8 (B∗8,21) + 36P ∗8 (B∗8,22) + 38P ∗8 (B∗8,23)
)

Proposition 25 and Corollary 26 reduce the computation of V arP (rQI n) or V arP (rQIBn)
to the explicit knowledge of P ∗l for l = 4, 5, 6, 7, 8. In particular, they allow to obtain explicit
formulas for the variance of rQIBn under the α and the β-models, and for the variance of rQI n
under the α-γ-model.

As far as the bifurcating case goes, on the one hand, the probabilities under the α-model
of the trees appearing explicitly in the formula for the variance of rQIBn in Corollary 26 are
those given in Table 4 in the Appendix A.2 (they are explicitly computed in the Supplementary
Material of [10]). Plugging them in the formula given in Corollary 26 above, we obtain the
following result.

Corollary 27. Under the α-model,

V arPFα (rQIBn) =

(
n

4

)
1− α
3− α

−
(
n

4

)2
(1− α)2

(3− α)2
+ 12

(
n

5

)
1− α
4− α

+

(
n

6

)
6(1− α)(112− 89α+ 15α2)

(5− α)(4− α)(3− α)

+

(
n

7

)
20(1− α)(74− 63α+ 7α2)

(6− α)(5− α)(3− α)

+

(
n

8

)
10(1− α)(506− 539α+ 112α2 − 7α3)

(7− α)(6− α)(5− α)(3− α)

The leading term in n of V arPFα (rQIBn) is then

(1− α)(2α+ 1)

84(7− α)(6− α)(5− α)(3− α)2
· n8.

On the other hand, the probabilities under the β-model of the same trees are given in Table
5 in the Appendix A.2, yielding the following result.

Corollary 28. Under the β-model,

V arPAβ (rQIBn) =

(
n

4

)
3(β + 2)

7β + 18
−
(
n

4

)2
9(β + 2)2

(7β + 18)2
+ 12

(
n

5

)
β + 2

3β + 8

+90

(
n

6

)
(β + 2)(41β2 + 238β + 336)

(31β2 + 194β + 300)(7β + 18)

+60

(
n

7

)
(β + 2)(9β2 + 53β + 74)

(β + 3)(3β + 10)(7β + 18)

+630

(
n

8

)
(β + 2)(127β4 + 1637β3 + 7788β2 + 16084β + 12144)

(127β3 + 1383β2 + 4958β + 5880)(7β + 18)2

So, the leading term in n of V arPAβ (rQIBn) is

(β + 2)(2β2 + 9β + 12)

2(7β + 18)2(127β3 + 1383β2 + 4958β + 5880)
· n8.
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When α = 0 or β = 0, which correspond to the Yule model, both formulas for the variance
of rQIBn reduce to

V arY (rQIBn) =

(
n

4

)
5n4 + 30n3 + 118n2 + 408n+ 630

33075
.

In the Appendix A.1 we give an independent derivation of this formula, which provides extra
evidence of the correctness of all these computations.

As far as the uniform model goes, when α = 1/2 or β = 0, both formulas yield

V arU (rQIBn) =

(
n

4

)
4(2n− 1)(2n+ 1)(2n+ 3)(2n+ 5)

225225
.

Finally, as far as the α-γ-model goes, we have written a set of Python scripts that compute
all Θi,j(T

∗), i, j = 1, 2, 3, 4, as well as P ∗α,γ,k(T ∗) for every T ∗ ∈ T ∗k , k = 5, 6, 7, 8, and combine
all these data into an explicit formula for V arPα,γ (rQI n). The Python scripts and the resulting
formula (in text format and as a Python script that can be applied to any values of n, α, and
γ) can be found in the GitHub page https://github.com/biocom-uib/Quartet_Index com-
panion to this paper. In particular, the plain text formula (which is too long and uninformative
to be reproduced here) is given in the document variance_table.txt therein. It can be easily
checked using a symbolic computation program that when α = γ it agrees with the variance
under the α-model given in Corollary 27.

6. Conclusions

In this paper we have introduced a new balance index for phylogenetic trees, the rooted
quartet index rQI . This index makes sense for multifurcating trees, it can be computed in
time linear in the number of leaves, and it has a larger range of values than any other shape
index defined so far. We have computed its maximum and minimum values for bifurcating
and arbitrary trees, and we have shown how to compute its expected value and variance under
any probabilistic model of phylogenetic trees that is sampling consistent and invariant under
relabelings. This includes the popular uniform, Yule, α, β and α-γ-models. This paper is
accompanied by the GitHub page https://github.com/biocom-uib/Quartet_Index where
the interested reader can find a set of Python scripts that perform several computations related
to this index.

We want to call the reader’s attention on a further property of the rooted quartet index:
it can be used in a sensible way to measure the balance of taxonomic trees, defined as those
rooted trees of fixed depth (but with possibly out-degree 1 internal nodes) with their leaves
bijectively labeled in a set of taxa. The usual taxonomies with fixed ranks are the paradigm
of such taxonomic trees. It turns out that the classical balance indices cannot be used in a
sound way to quantify the balance of such trees. For instance, Colless’ index cannot be applied
to multifurcating trees, and Sackin’s index, being the sum of the depths of the leaves in the
tree, is constant on all taxonomic trees of fixed depth and number of leaves. As far as the total
cophenetic index goes, it is straightforward to check from its very definition that the taxonomic
trees with maximum and minimum total cophenetic values among all taxonomic trees of a given
depth and a given number of leaves are those depicted in Fig 10. In our opinion, these two
trees should be considered as equally balanced. We believe that rQI can be used to capture the
symmetry of a taxonomic tree in a natural way, and we hope to report on it elsewhere.

In a future paper we also plan to study some further properties of rQI , like for instance
its correlation with other balance indices under different probabilistic models. To illustrate the
relation between rQI and other balance indices, in Fig. 12 we provide scatterplots of the values
of rQI (taking qi = i) versus the Sackin index S, the Colless index C, the total cophenetic index
Φ and the number of cherries on BT20 (which contains more than (2 · 20 − 3)!! > 8.2 × 1021
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. . .

...

(a)

. . .

... ...
. . .

(b)

Figure 10: The shapes of the taxonomic trees with maximum (a) and
minimum (b) total cophenetic values among all taxonomic trees of given
depth and number of leaves.

members) and versus the Sackin index S and the total cophenetic index Φ on T15 (which contains
more than 6.3×1015 members). The values of the Spearman correlations between these pairs of
indices on these classes of trees are given in Table 2. We want to point out the small correlation
between rQI and the number of cherries: although at first sight it could seem that counting the
number of fully symmetric rooted quartets in a tree is equivalent to counting pairs of cherries,
it is not the case, as the cherries in a rooted quartet may correspond to distant leaves in the
tree. For instance, the bifurcating phylogenetic trees in Fig. 11 have both 2 cherries, but their
rQI value is quite different. Notice also that the correlations between rQI and S, C and Φ are
negative, because rQI grows while S, C and Φ decrease with the balance of the trees.

. . .
1 2 3

. . .
n−2 n−1 n

...

rQI =
(
n−2

2

) . . .
1 2 3 4 5 n−1 n

...

rQI = 1

Figure 11: Two trees with 2 cherries and very different rQI .

Correlation Value
rQI vs S on BT20 −0.889
rQI vs C on BT20 −0.893
rQI vs Φ on BT20 −0.935
rQI vs Ch on BT20 0.165
rQI vs S on T15 −0.787
rQI vs Φ on T15 −0.827

Table 2: Spearman’s correlations corresponding to the scatterplots in Fig.
12.
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Appendices

A.1: An alternative derivation of the variance of rQIBn under the Yule model
In this section we give an alternative proof of the following result.

Proposition 29. Under the Yule model,

V arY (rQIBn) =

(
n

4

)
5n4 + 30n3 + 118n2 + 408n+ 630

33075
.

Proof. By Lemma 10, rQIB on BTn is a bifurcating recursive tree shape statistic satisfying the
recurrence

rQIB(T ? T ′) = rQIB(T ) + rQIB(T ′) + frQIB (|L(T )|, |L(T ′)|)

with frQIB (a, b) =
(
a
2

)(
b
2

)
. Then, it satisfies the hypothesis in Cor. 1 of [5] with

ε(a, b− 1) = frQIB (a, b)− frQIB (a, b− 1)

=

(
a

2

)(
b

2

)
−
(
a

2

)(
b− 1

2

)
= (b− 1)

(
a

2

)
R(n− 1) = EY (rQIBn)− EY (rQIBn−1)

=
1

3

(
n

4

)
− 1

3

(
n− 1

4

)
=

1

3

(
n− 1

3

)
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Since EY (rQIB1) = 0 and frQIB (n − 1, 1) = 0, applying the aforementioned result from [5] we
have that

EY (rQIB2
n) =

n

n− 1
EY (rQIB2

n−1) +
4

n− 1

n−2∑
k=1

ε(k, n− k − 1)EY (rQIBk)

+
2

n− 1

n−2∑
k=1

R(n− k − 1)EY (rQIBk)

+
1

n− 1

n−2∑
k=1

(frQIB (k, n− k)2 − frQIB (k, n− k − 1)2)

=
n

n− 1
EY (rQIB2

n−1) +
4

3(n− 1)

n−2∑
k=1

(n− k − 1)

(
k

2

)(
k

4

)
+

2

9(n− 1)

n−2∑
k=1

(
n− k − 1

3

)(
k

4

)
+

1

n− 1

n−2∑
k=1

(
k

2

)2
((

n− k
2

)2

−
(
n− k − 1

2

)2
)

=
n

n− 1
EY (rQIB2

n−1) +
n

3

(
n− 2

4

)
15n2 − 35n+ 6

420

+
n

9

(
n− 2

4

)
n2 − 13n+ 42

840

+n

(
n− 2

2

)
3n4 − 18n3 + 41n2 − 42n+ 36

1680

=
n

n− 1
EY (rQIB2

n−1)

+
n(n− 2)(n− 3)(253n4 − 2014n3 + 6119n2 − 7430n+ 3504)

181440

Dividing by n both sides of this expression for EY (rQIB2
n) and setting yn = EY (rQIB2

n)/n, we
obtain the recurrence

yn = yn−1 +
(n− 2)(n− 3)(253n4 − 2014n3 + 6119n2 − 7430n+ 3504)

181440
.

Since y0 = y1 = 0, its solution is

yn =

n∑
k=2

(k − 2)(k − 3)(253k4 − 2014k3 + 6119k2 − 7430k + 3504)

181440

=
(n− 3)(n− 2)(n− 1)(1265n4 − 7110n3 + 14419n2 − 4086n+ 5040)

6350400

from where we obtain

EY (rQIB2
n) = nyn

=

(
n

4

)
1265n4 − 7110n3 + 14419n2 − 4086n+ 5040

264600
.

Finally

V arY (rQIBn) = EY (rQIB2
n)− EY (rQIBn)2

=

(
n

4

)
1265n4 − 7110n3 + 14419n2 − 4086n+ 5040

264600
− 1

9

(
n

4

)2

=

(
n

4

)
5n4 + 30n3 + 118n2 + 408n+ 630

33075
,

as we claimed.
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A.2: Some tables used in Section 5
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(a) (b)

(c) (d)

(e) (f)

Figure 12: Scatterplot of rQI versus: (a) the Sackin index on BT20;
(b) the Colless index on BT20; (c) the total cophenetic index on BT20; (d)
the number of cherries on BT20; (e) the Sackin index on T15; (f) the total
cophenetic index on T15.
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Name Shape Θ3,3(T ∗)

B∗5,1 (∗, (∗, (∗, (∗, ∗)))) 0
B∗5,2 (∗, ((∗, ∗), (∗, ∗))) 0
B∗5,3 ((∗, ∗), (∗, (∗, ∗))) 6
B∗6,1 (∗, (∗, (∗, (∗, (∗, ∗))))) 0
B∗6,2 (∗, (∗, ((∗, ∗), (∗, ∗)))) 0
B∗6,3 (∗, ((∗, ∗), (∗, (∗, ∗)))) 0
B∗6,4 ((∗, ∗), ((∗, ∗), (∗, ∗))) 18
B∗6,5 ((∗, ∗), (∗, (∗, (∗, ∗)))) 6
B∗6,6 ((∗, (∗, ∗)), (∗, (∗, ∗))) 36
B∗7,1 (∗, (∗, (∗, (∗, (∗, (∗, ∗)))))) 0
B∗7,2 (∗, (∗, (∗, ((∗, ∗), (∗, ∗))))) 0
B∗7,3 (∗, (∗, ((∗, ∗), (∗, (∗, ∗))))) 0
B∗7,4 (∗, ((∗, ∗), ((∗, ∗), (∗, ∗)))) 0
B∗7,5 (∗, ((∗, ∗), (∗, (∗, (∗, ∗))))) 0
B∗7,6 (∗, ((∗, (∗, ∗)), (∗, (∗, ∗)))) 0
B∗7,7 ((∗, ∗), (∗, (∗, (∗, (∗, ∗))))) 0
B∗7,8 ((∗, ∗), (∗, ((∗, ∗), (∗, ∗)))) 8
B∗7,9 ((∗, ∗), ((∗, ∗), (∗, (∗, ∗)))) 24
B∗7,10 ((∗, (∗, ∗)), (∗, (∗, (∗, ∗)))) 36
B∗7,11 ((∗, (∗, ∗)), ((∗, ∗), (∗, ∗))) 36
B∗8,1 (∗, (∗, (∗, (∗, (∗, (∗, (∗, ∗))))))) 0
B∗8,2 (∗, (∗, (∗, (∗, ((∗, ∗), (∗, ∗)))))) 0
B∗8,3 (∗, (∗, (∗, ((∗, ∗), (∗, (∗, ∗)))))) 0
B∗8,4 (∗, (∗, ((∗, ∗), ((∗, ∗), (∗, ∗))))) 0
B∗8,5 (∗, (∗, ((∗, ∗), (∗, (∗, (∗, ∗)))))) 0
B∗8,6 (∗, (∗, ((∗, (∗, ∗)), (∗, (∗, ∗))))) 0
B∗8,7 (∗, ((∗, ∗), (∗, (∗, (∗, (∗, ∗)))))) 0
B∗8,8 (∗, ((∗, ∗), (∗, ∗), (∗, (∗, ∗))))) 0
B∗8,9 (∗, ((∗, ∗), (∗, ((∗, ∗), (∗, ∗))))) 0
B∗8,10 (∗, ((∗, (∗, ∗)), (∗, (∗, (∗, ∗))))) 0
B∗8,11 (∗, ((∗, (∗, ∗)), ((∗, ∗), (∗, ∗)))) 0
B∗8,12 ((∗, ∗), (∗, (∗, (∗, (∗, (∗, ∗)))))) 0
B∗8,13 ((∗, ∗), (∗, (∗, (∗, ∗), (∗, ∗)))) 2
B∗8,14 ((∗, ∗), (∗, ((∗, ∗), (∗, (∗, ∗))))) 6
B∗8,15 ((∗, ∗), ((∗, ∗), (∗, (∗, (∗, ∗)))))) 12
B∗8,16 ((∗, ∗), ((∗, ∗), ((∗, ∗), (∗, ∗)))) 14
B∗8,17 ((∗, ∗), ((∗, (∗, ∗)), (∗, (∗, ∗)))) 18
B∗8,18 ((∗, (∗, ∗)), (∗, (∗, (∗, (∗, ∗))))) 0
B∗8,19 ((∗, (∗, ∗)), (∗, ((∗, ∗), (∗, ∗))))) 0
B∗8,20 ((∗, (∗, ∗)), ((∗, ∗), (∗, (∗, ∗)))) 0
B∗8,21 ((∗, (∗, (∗, ∗))), (∗, (∗, (∗, ∗)))) 36
B∗8,22 ((∗, (∗, (∗, ∗))), ((∗, ∗), (∗, ∗))) 36
B∗8,23 (((∗, ∗), (∗, ∗)), ((∗, ∗), (∗, ∗))) 38

Table 3: Coefficients of the probabilities of the trees in BT∗k, for k =
5, 6, 7, 8, in the formula for the variance of rQIBn.
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Tree PA,∗α,n

Q∗3
1−α
3−α

B∗5,3
2(1−α)
4−α

B∗6,4
(1−α)2(8−α)

(5−α)(4−α)(3−α)

B∗6,5
2(1−α)(8−α)

(5−α)(4−α)(3−α)

B∗6,6
2(1−α)(2−α)
(5−α)(4−α)

B∗7,8
(1−α)2(2+α)(10+α)

(6−α)(5−α)(4−α)(3−α)

B∗7,9
2(1−α)2(10+α)

(6−α)(5−α)(4−α)

B∗7,10
10(1−α)(2−α)

(6−α)(5−α)(3−α)

B∗7,11
5(1−α)2(2−α)

(6−α)(5−α)(3−α)

B∗8,13
8(1−α)2(1+α)(2+α)(3+α)

(7−α)(6−α)(5−α)(4−α)(3−α)

B∗8,14
16(1−α)2(1+α)(3+α)

(7−α)(6−α)(5−α)(4−α)

B∗8,15
8(1−α)2(3+α)(8−α)

(7−α)(6−α)(5−α)(4−α)(3−α)

B∗8,16
4(1−α)3(3+α)(8−α)

(7−α)(6−α)(5−α)(4−α)(3−α)

B∗8,17
8(1−α)2(2−α)(3+α)

(7−α)(6−α)(5−α)(4−α)

B∗8,21
20(1−α)(2−α)

(7−α)(6−α)(5−α)(3−α)

B∗8,22
20(1−α)2(2−α)

(7−α)(6−α)(5−α)(3−α)

B∗8,23
5(1−α)3(2−α)

(7−α)(6−α)(5−α)(3−α)

Table 4: Probabilities under the α-model of the trees involved in the
formula for the variance of rQIBn

37



Tree PB,∗β,n

Q∗3
3(β+2)
7β+18

B∗5,3
2(β+2)
3β+8

B∗6,4
45(β+2)2(β+4)

(31β2+194β+300)(7β+18)

B∗6,5
60(β+2)(β+3)(β+4)

(31β2+194β+300)(7β+18)

B∗6,6
10(β+2)(β+3)

31β2+194β+300

B∗7,8
3(β+2)2(β+4)(β+5)

(β+3)(3β+8)(3β+10)(7β+18)

B∗7,9
2(β+2)2(β+5)

(β+3)(3β+8)(3β+10)

B∗7,10
20(β+2)(β+3)

3(3β+10)(7β+18)

B∗7,11
5(β+2)2

(3β+10)(7β+18)

B∗8,13
504(β+2)2(β+4)2(β+5)2(β+6)

(127β3+1383β2+4958β+5880)(31β2+194β+300)(3β+8)(7β+18)

B∗8,14
336(β+2)2(β+4)(β+5)2(β+6)

(127β3+1383β2+4958β+5880)(31β2+194β+300)(3β+8)

B∗8,15
1680(β+2)2(β+3)(β+4)(β+5)(β+6)

(127β3+1383β2+4958β+5880)(31β2+194β+300)(7β+18)

B∗8,16
1260(β+2)3(β+4)(β+5)(β+6)

(127β3+1383β2+4958β+5880)(31β2+194β+300)(7β+18)

B∗8,17
280(β+2)2(β+3)(β+5)(β+6)

(127β3+1383β2+4958β+5880)(31β2+194β+300)

B∗8,21
560(β+2)(β+3)3(β+4)

(127β3+1383β2+4958β+5880)(7β+18)2

B∗8,22
840(β+2)2(β+3)2(β+4)

(127β3+1383β2+4958β+5880)(7β+18)2

B∗8,23
315(β+2)3(β+3)(β+4)

(127β3+1383β2+4958β+5880)(7β+18)2

Table 5: Probabilities under the β-model of the trees involved in the
formula for the variance of rQIBn
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