SLAP: Programa para modelado numérico de procesos de estereolitografía utilizando el método de los elementos finitos

G. Lombera
G. Bugeda
M. Cervera
E. Oñate

Publicación CIMNE Nº 47, Marzo 1994
SLAP: Programa para modelado numérico de procesos de estereolitografía utilizando el método de los elementos finitos

G. Lombera
G. Bugeda
M. Cervera
E. Oñate

Publication CIMNE Nº 47, March 1994

Centro Internacional de Métodos Numéricos en Ingeniería
Gran Capitán s/n, 08034 Barcelona, España
ÍNDICE

<table>
<thead>
<tr>
<th>ÍNDICE</th>
<th>pag.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resumen</td>
<td>1</td>
</tr>
<tr>
<td>1 INTRODUCCIÓN</td>
<td>1</td>
</tr>
<tr>
<td>2 IMPLEMENTACIÓN DEL PROGRAMA “SLAP”</td>
<td>7</td>
</tr>
<tr>
<td>2.1 Introducción</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Implementación computacional</td>
<td>7</td>
</tr>
<tr>
<td>3 DESCRIPCIÓN DEL PROGRAMA SLAP</td>
<td>13</td>
</tr>
<tr>
<td>3.1 Características del programa “SLAP”</td>
<td>13</td>
</tr>
<tr>
<td>3.2 Organización general de “SLAP”</td>
<td>13</td>
</tr>
<tr>
<td>3.3 Instrucciones para la entrada de datos</td>
<td>16</td>
</tr>
<tr>
<td>4 EJEMPLOS DE APLICACIÓN</td>
<td>21</td>
</tr>
<tr>
<td>4.1 Viga en voladizo - Análisis bidimensional</td>
<td>21</td>
</tr>
<tr>
<td>4.1.2 Análisis del ejemplo</td>
<td>24</td>
</tr>
<tr>
<td>4.1.2.1 Solución analítica para dos capas</td>
<td>24</td>
</tr>
<tr>
<td>4.1.2.2 Influencia de la deformación volumétrica en la distorsión por flexión</td>
<td>26</td>
</tr>
</tbody>
</table>
4.1.2.3 Influencia del Módulo de Young en la distorsión por flexión 27
4.1.2.4 Influencia del coeficiente de Poisson en la distorsión por flexión 29
4.1.2.5 Influencia del tamaño de capa en la distorsión por flexión 29
4.1.2.6 Análisis bidimensional con elementos sólidos de cuatro nodos 35
4.1.2.7 Elementos de ocho nodos y de cuatro nodos con integración selectiva 37
4.1.2.8 Análisis tridimensional 38
4.1.2.9 Influencia del poscurado 38
4.1.3 Entrada de datos 43
4.2 Pieza de test 54
REFERENCIAS 67
RESUMEN

Dentro de todos los procesos denominados "Rapid Prototyping", se presenta en esta publicación el denominado estereolitografía. Estos procesos cuyo origen se remonta a fines de la década de los ochenta, poseen un gran interés por parte de las industrias, dado que posibilitan la fabricación de piezas en tiempos muy inferiores a los obtenidos por los métodos tradicionales y una gran versatilidad en cuanto a materiales y formas utilizadas.

Las máquinas actualmente existentes en el mercado generan de forma automática la pieza apartir de su representación geométrica en un ordenador. El modelado numérico del proceso se justifica por la necesidad de poder predecir la geometría final de la pieza con el objeto de realimentar el proceso variando los parámetros de control, con el fin de obtener la pieza deseada con la mayor precisión posible.

En esta publicación se presenta un resumen de las posibilidades del programa "SLAP" desarrollado en el CIMNE (Centro Internacional de Métodos Numéricos en Ingeniería) para simular mediante el método de los Elementos Finitos procesos de fabricación de prototipos por estereolitografía. Asimismo se presentan las instrucciones para la utilización práctica del programa y algunos ejemplos de aplicación.
1. INTRODUCCIÓN

El reducir el “tiempo de creación” de un nuevo producto es cada vez un factor más “estratégico” para cualquier empresa. El mercado es cada vez más dinámico y exige mayor rapidez y seguridad para la generación de nuevos modelos.

Continuamente aparecen en el mercado nuevas tecnologías para mejorar el proceso de creación. Es normal para nosotros utilizar herramientas de CAD o digitalizar superficies; dentro de pocos años será normal obtener “piezas físicas” a partir de un modelo gráfico en 3D. Estas técnicas existen hoy en día, y ya es posible disponer de ellas; los procesos que las utilizan son denominados “Rapid Prototyping”.

Estos procesos se basan en la fabricación de un objeto a partir de su representación tridimensional en un ordenador. Los datos geométricos de la pieza se utilizan para controlar un rayo láser que incide sobre una resina líquida fotosensible, produciendo el curado de la misma. De acuerdo con el proceso utilizado puede variar el material y la potencia del laser entre otros parámetros.

Las ventajas de estos procesos se fundamentan en que no requieren demasiado utillaje, los tiempos de fabricación son inferiores a los de los métodos tradicionales, y poseen una gran versatilidad en cuanto a formas.

El sistema 3D-SYSTEM, desarrollado en California, fue el primero disponible en el mercado. Actualmente ha distribuido unas 300 máquinas alrededor del Mundo.

El proceso que utiliza se denomina estereolitografía y la máquina está esquematizada en la figura 1.1. La resina líquida se coloca en un recipiente dentro del cual se encuentra un soporte móvil sobre el que se va construyendo la pieza. El extremo del soporte se debe mantener a una determinada distancia por debajo de la superficie libre de la resina. Mediante un sistema de galvanómetros con espejos (parte del tubo láser) se hace incidir el rayo láser sobre la resina produciendo el curado de la misma (solidificación). La trayectoria del rayo láser está controlada por el ordenador al cual se le introduce mediante un determinado formato CAD la geometría a construir. Existen varios formatos, dentro de los cuales el mas utilizado es el SLA, que representa superficies exteriores mediante mallas triangulares. El volumen total se secciona según diversos planos horizontales que determinan las capas que debe seguir el láser en la formación de la pieza final. Una vez producida una capa (superficie plana) el soporte desciende y la capa realizada es cubierta de resina líquida. El proceso continúa hasta lograr la pieza final.
Figura 1.1 Esquema de funcionamiento de una máquina de "Estereolitografía".

Entre los distintos procesos de "Rapid prototyping" existentes en la actualidad podemos mencionar:

- 3D - SYSTEM - (California).
- STEREOS - EOS - (Alemania).
- SOUP - Solid Object UV-Laser Ploter - (Japón).
- SCS - Solid Creation System - (Japón).
- Laser Modelling - QUADRA - (Rhode Island).
- Selective Laser Sintering - DTM Corp. - (Texas).
INTRODUCCION

- Solider - Cubital - (Israel).
- Laminated Object Manufacturing - (California).
- Fused Deposition Modelling - STRATASYS - (Minneapolis).

Las diferencias entre ellos son el material utilizado, que no necesariamente es un polímero. Bajo la misma metodología anterior se pueden utilizar materiales cerámicos, materiales compuestos e incluso materiales metálicos, debiendo variar la fuente de energía necesaria, ya sea aumentando la potencia del láser o utilizando otras fuentes de energía, y el esquema de funcionamiento. No describiremos en este trabajo los distintos procesos, solo esquematizamos dos de ellos, que difieran apreciablemente del proceso de estereolitografía explicado anteriormente. Hemos seleccionado el SÓLIDER, esquematizado en la figura 1.2, y el FDM (Fused deposition modeling), esquematizado en la figura 1.3.

La selección del proceso se realiza teniendo en cuenta alguna de las siguientes características tecnológicas:

- Volumen del depósito de resina, en función del tamaño de la pieza a fabricar.
- Sistema de control del enfoque del láser. Cuando el punto a ser curado se desplaza del centro del recipiente, se cambia la distancia entre el espejo y la resina, produciendo un desenfoque. Esto causa un cambio de forma de circular a elíptica en la incidencia del rayo produciendo una pérdida de energía en el punto a ser curado.
- Velocidad de desplazamiento del láser. Esto controla la energía entregada a la resina.
- Estrategias constructivas. Cuando la resina solidifica se produce una deformación volumétrica de contracción. La causa física que origina este comportamiento será descrita en detalle más adelante, pero los diversos procesos tienen en cuenta éste fenómeno.

Una de las principales causas de discrepancia entre el modelo gráfico por ordenador y el modelo físico obtenido, es el fenómeno conocido como “curl distortion” (distorsión por flexión). Este es un tipo de distorsión que ocurre en todos los procesos de “rapid prototyping” y se debe a la contracción que experimenta una capa al solidificar. Dicha contracción produce un efecto de flexión en las capas producidas anteriormente, tal como puede verse en la figura 1.4.

En la figura 1.5 se muestra una máquina de estereolitografía de la empresa alemana EOS.
Figura 1.2 Sistema "SOLIDER".

Figura 1.3 Sistema "FDM".
Figura 1.4 Distorsión por flexión.
Figura 1.3 Máquina de estereolitografía.
2. IMPLEMENTACIÓN DEL PROGRAMA “SLAP”

2.1 Introducción

El Programa “SLAP” (Stereolithography analysis program) fue implementado para simular el proceso de estereolitografía utilizando el método de los elementos finitos. En el mismo se modela el proceso constructivo por capas, el poscurado y las deformaciones finales producidas al sacar la fijación del piso luego del poscurado.

Se pueden resolver problemas bidimensionales utilizando elementos cuadrangulares de cuatro y ocho nodos en 2-D y de ocho y veinte nodos en problemas 3-D.

A partir del archivo CAD y teniendo en cuenta el espesor de capa, es posible generar la malla de elementos finitos. El proceso de modelado se realiza capa a capa, teniendo en cuenta el coeficiente de contracción volumétrica. Un mayor detalle de la estructura del programa y de la entrada de datos se dan en el capítulo 3.

2.2 Implementación Computacional

Como se mencionó en la introducción, la distorsión por flexión (“Curl distortion”) se debe a la contracción volumétrica que experimenta cada capa de resina al solidificar. Esta contracción produce deformaciones en el material que solidificó anteriormente. Para modelar este efecto, como los que mencionaremos en este apartado, se implementaron deformaciones iniciales en los elementos de la última capa como fuerzas debidas a deformaciones iniciales a través del cálculo de las fuerzas nodales equivalentes, calculadas (para comportamiento elástico-lineal) de la forma:

\[f^{(e)}_e = \int \int_{A(e)} B^T D \varepsilon^0 t dA \]

donde \(\varepsilon^0 \) es la deformación volumétrica de la resina, \(B \) es la matriz de deformación del elemento, \(D \) es la matriz constitutiva y \(t \) el espesor del elemento (en problemas bidimensionales).
El vector de fuerzas debidas a deformaciones iniciales del nodo i en sólidos tridimensionales es:

\[f_{\varepsilon_i}^{(e)} = \int \int_{V(e)} B_i^T D \varepsilon^o dV \]

siendo:

\[\varepsilon^o = (\varepsilon_x^o, \varepsilon_y^o, 0) \quad (en \ problemas \ 2D) \]

\[\varepsilon^o = (\varepsilon_x^o, \varepsilon_y^o, \varepsilon_z^o, 0, 0, 0) \quad (en \ problemas \ 3D) \]

Al programa se le introduce como dato inicial la geometría total del objeto a modelar discretizado por capas y el problema se resuelve capa a capa, de manera que se reproduzca el proceso real de fabricación, actualizando en cada resolución la geometría del conjunto. Esto se implementó guardando en un archivo temporal los valores de los desplazamientos nodales de cada resolución, de manera que al resolver la capa “i+1”, las coordenadas de los nodos que forman las “i” capas anteriores son las actuales más los desplazamientos obtenidos en la resolución de la capa “i”. En la figura 2.1 puede verse la geometría inicial de un proceso constructivo de un rectángulo obtenido con seis capas y en la figura 2.2 el paso en que se construye la tercera capa con la actualización de la primera y segunda capa. Es de notar que la superficie superior de la última capa es siempre horizontal, coincidente con el nivel de resina líquida.

Figura 2.1 Geometría inicial de un proceso de seis capas.
De acuerdo al valor de deformación volumétrica de la resina en cuestión, es probable que las deformaciones sean tales que el objeto sobrepase el nivel de resina líquida, por lo que la última capa a ser curada esté por debajo de los extremos de la pieza deformada, como puede verse en la figura 2.3. Esto requiere una actualización de la geometría de la última capa que se está resolviendo. Este efecto se implementó analizando los dos casos posibles mostrados en la figura 2.4, de forma que no reproduzcan áreas negativas al introducir la geometría de la nueva capa. Puede verse en dicha figura que la cantidad de elementos y nodos iniciales se respeta, implementando elementos muy esbeltos en las zonas donde la flexión ha sido mayor.

El programa contempla distintos elementos: cuadriláteros de 4 y 8 nodos
Figura 2.4 Análisis en que la deformación es tal que la pieza sobrepasa el nivel de líquido.

para análisis bidimensional y hexahédricos de 8 y 20 nodos para análisis tridimensional. Los elementos de cuatro nodos en 2D y los de 8 nodos en 3D, no proporcionan buenos resultados a flexión, por lo que se ha implementado una integración selectiva que mejora notablemente los resultados [2]. La técnica utilizada para eliminar el exceso de deformación tangencial intrínseco del elemento es evaluar los términos correspondientes a dichas deformaciones con una cuadratura de Gauss-Legendre de un solo punto. Para ello se divide la matriz de rigidez en la suma de una matriz que contiene los términos volumétricos K_v y otra que contiene los términos de deformación tangencial K_t. Así, para el caso bidimensional:

$$K^{(e)} = K_v^{(e)} + K_t^{(e)}$$

con:

$$K_v^{(e)} = \int \int_{A(e)} B_v^T D_v B_v \, tdA ; \quad K_t^{(e)} = \int \int_{A(e)} B_t^T D_t B_t \, tdA$$
siendo

\[B_{v_i} = \begin{pmatrix} \frac{\partial N_{i}}{\partial x} & 0 \\ 0 & \frac{\partial N_{i}}{\partial y} \end{pmatrix} \quad ; \quad B_{t_i} = \begin{pmatrix} \frac{\partial N_{i}}{\partial x} & \frac{\partial N_{i}}{\partial y} \end{pmatrix} \]

\[D_{v} = \begin{pmatrix} d_{11} & d_{12} \\ d_{12} & d_{22} \end{pmatrix} \quad ; \quad D_{t} = (d_{33}) \]

La matriz \(K_v\) se calcula con una cuadratura de 2X2 puntos, mientras que \(K_t\) se obtiene utilizando una cuadratura reducida de un solo punto, lo que implica simplemente evaluar el integrando en el centroide del elemento. En el caso de sólidos tridimensionales se realiza el mismo esquema de descomposición de la matriz de rigidez, con las matrices \(B\) y \(D\) para tres dimensiones.
3. DESCRIPCIÓN DEL PROGRAMA “SLAP”

3.1 Características del programa *SLAP*

En los apartados siguientes se presenta la descripción del programa *SLAP* para modelado de piezas obtenidas por el proceso de estereolitografía por el Método de Elementos Finitos. La versión de *SLAP* que se presenta en este trabajo está escrita en FORTRAN V y tiene las siguientes características generales:

Tipologías de estructuras abordables

- Estructuras en tensión plana
- Estructuras en deformación plana
- Sólidos tridimensionales

Características del material

- Material elástico lineal isótropo.

Elementos utilizables

Para el análisis de cada tipología estructural pueden utilizarse los elementos isoparamétricos siguientes:

<table>
<thead>
<tr>
<th>Tipología</th>
<th>Elemento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensión y deformación plana</td>
<td>- Elementos cuadriláteros lagrangianos de 4 y 9 nodos</td>
</tr>
<tr>
<td></td>
<td>- Elemento cuadrilátero serendípito de 8 nodos</td>
</tr>
<tr>
<td>Sólidos tridimensionales</td>
<td>- Elementos hexagonales de 8 y 20 nodos</td>
</tr>
</tbody>
</table>

3.2 Organización general de *SLAP*

En la Figura 3.1 se muestra el diagrama de flujo principal del programa *SLAP*. Para centrar conceptos definiremos seguidamente las etapas
fundamentales asociadas al análisis de una estructura por un programa de elementos finitos, así como la relación de cada etapa con las subrutinas del diagrama de la Figura 3.1.

Figura 3.1 Diagrama de flujo del programa *SLAP*.

Etapa 1: Selección del elemento

La elección del elemento es función de la tipología de la estructura y de la precisión buscada. Una vez escogido el elemento quedan definidas sus funciones de forma. Cabe recordar que cuando el problema es fuertemente
de flexión se cuenta con la posibilidad de la integración selectiva, que se describió anteriormente.

Etapa 2: Discretización de la estructura en elementos finitos

Esta etapa puede representar un porcentaje alto del esfuerzo total de cálculo si la geometría de la estructura es compleja. En ella hay que definir perfectamente la topología de la malla (que de nuevo depende de la geometría de la estructura y la precisión buscada), las coordenadas de los nodos, las propiedades del material de cada elemento y las condiciones de contorno. Esta etapa se denomina generalmente preproceso y puede automatizarse en gran manera si se dispone de los programas de generación de malla adecuados. En nuestro caso se parte de la geometría del CAD y por medio de una interface construida para tal efecto se construye la malla de elementos finitos necesaria.

Es importante destacar que el coste de la solución del sistema de ecuaciones global depende en gran manera de: a) la numeración de los nodos de la malla (ejemplo: si se utiliza el método de eliminación de Gauss), o b) la numeración de los elementos (ejemplo: si se utiliza el método frontal). Conviene, por tanto, cuidar la topología de la malla y adecuarla en lo posible al método de solución de ecuaciones utilizado. Para ello dentro del programa SLAP, puede hacerse uso de técnicas especiales de optimización de la numeración de nodos.

Etapa 3: Entrada de datos (Subrutina DATOS)

Esta etapa consiste en la lectura por el ordenador de los datos generados en la etapa de discretización. Dicha lectura se efectúa en dos partes; En la primera, al comienzo del programa, se leen los datos de la malla total, y luego, en la subrutina DATOS, los datos correspondientes a las capas a resolver. En esta subrutina, se realiza la actualización de la geometría total, en función de los desplazamientos obtenidos al resolver la capa anterior, como fue explicado anteriormente.

Etapa 4: Cálculo de la matriz de rigidez de los elementos (Subrutina RIGIMAT)

En la etapa siguiente se calculan las matrices de rigidez \(K^{(e)} \) de cada uno de los elementos de la malla. Dicho cálculo se efectúa en la subrutina RIGIMAT y su mayor o menor complejidad depende del tipo de elemento utilizado. En esta rutina está implementado la integración selectiva en los elementos de cuatro nodos en 2-D y de 8 nodos en 3-D.

Etapa 5: Cálculo del vector de fuerzas nodales (Subrutina FUERZAS)

La siguiente etapa es el cálculo del vector de fuerzas nodales equivalentes \(f^{(e)} \) para cada elemento y se efectúa en la subrutina FUERZAS. Las fuerzas nodales equivalentes durante el proceso constructivo están aplicadas en los
elementos correspondientes a la última capa. Las mismas son producidas por la contracción volumétrica del material. En el proceso del poscurado, toda la estructura se encuentra sometida a una contracción uniforme, lo que hace que las fuerzas nodales equivalentes se apliquen a todos los elementos.

Etapa 6: Solución del sistema de ecuaciones global (Subrutina SOLUCION)

Conocidas las matrices de rigidez y los vectores de fuerzas nodales de cada elemento la etapa siguiente es el ensamblaje de dichas matrices y vectores en la ecuación de equilibrio global Ka = f, y su solución para obtener los movimientos nodales a. Este proceso se efectúa en la subrutina SOLUCION y para el mismo puede utilizarse toda una variedad de técnicas de cálculo numérico perfectamente desarrolladas.

Etapa 7: Cálculo de deformaciones y tensiones (Subrutina TENSIONES)

La etapa final consiste en calcular las deformaciones y tensiones en los diferentes elementos a partir de los valores de los movimientos nodales. Dicho cálculo se lleva a cabo en la subrutina TENSIONES. Esta etapa de postproceso va también asociada en la práctica a la representación gráfica de los resultados del cálculo (desplazamientos, deformaciones y tensiones). La programación del postproceso no es un problema trivial, fundamentalmente en problemas tridimensionales, siendo necesario un conocimiento profundo de técnicas de dibujo por ordenador. No obstante, generalmente puede hacerse uso de programas comerciales “ad hoc” y el problema se reduce a compatibilizar los formatos de resultados del cálculo con los necesarios para su representación gráfica. La versión 1/93 de SLAP para ordenador PC compatible incluye software para representación gráfica de datos y resultados compatibles con las subrutinas gráficas de MICROSOFT 5.0.

3.3 Instrucciones para la entrada de datos del programa “SLAP”

Las instrucciones se han agrupado en ”tarjetas” formateadas. Cada ”grupo de tarjetas” incluye un conjunto de datos similares; ejemplo: coordenadas nodales, cargas puntuales, etc.

GRUPO DE TARJETAS 1. NUMERO DE PROBLEMAS Y TITULO DE CADA PROBLEMA

| Tarjeta 1.1 | 15 | NPROB | Número de problemas a analizar |
| Tarjeta 1.2 | 80 | TITULO | Título de cada problema |

NOTA: Tantas tarjetas 1.2 como número de problemas a analizar.
GRUPO DE TARJETAS 2.

<table>
<thead>
<tr>
<th>Tarjeta 2.1</th>
<th>15</th>
<th>NCAPA</th>
<th>Número total de capas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NCAPA</td>
<td>Número de capas a resolver</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NGRAF</td>
<td>Frecuencia de capas a graficar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IREDU</td>
<td>Integración reducida</td>
</tr>
<tr>
<td></td>
<td>=1</td>
<td></td>
<td>Utiliza integración reducida</td>
</tr>
<tr>
<td></td>
<td>=1</td>
<td>IRENU</td>
<td>Utiliza renumerador</td>
</tr>
</tbody>
</table>

GRUPO DE TARJETAS 3.

<table>
<thead>
<tr>
<th>Tarjeta 3.1</th>
<th>1515</th>
<th>NPGOD</th>
<th>Número de puntos nodales totales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NELEM</td>
<td>Número de elementos totales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NPRES</td>
<td>Número de nodos totales con movimiento prescrito</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NCLAG</td>
<td>Número de casos de carga</td>
</tr>
<tr>
<td></td>
<td>=1</td>
<td>NTIPO</td>
<td>Tipo de problema</td>
</tr>
<tr>
<td></td>
<td>=2</td>
<td></td>
<td>Tensión plana</td>
</tr>
<tr>
<td></td>
<td>=4</td>
<td></td>
<td>Deformación plana</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WPROP</td>
<td>Número de propiedades</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WGAUS</td>
<td>Número de puntos de Gauss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WDI ME</td>
<td>Número de dimensiones</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NTE NS</td>
<td>Número de tensiones</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INDSO</td>
<td>Tipo de solver</td>
</tr>
<tr>
<td></td>
<td>=1</td>
<td></td>
<td>Método de Gauss</td>
</tr>
<tr>
<td></td>
<td>=2</td>
<td></td>
<td>Método de frontal</td>
</tr>
<tr>
<td></td>
<td>=3</td>
<td></td>
<td>Skayland</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Iterativos</td>
</tr>
<tr>
<td></td>
<td>=4</td>
<td></td>
<td>Jacobi</td>
</tr>
<tr>
<td></td>
<td>=5</td>
<td></td>
<td>Gauss Seidel</td>
</tr>
<tr>
<td></td>
<td>=6</td>
<td></td>
<td>Gradientes conjugados</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Iterativos para Skayland</td>
</tr>
<tr>
<td></td>
<td>=7</td>
<td></td>
<td>Jacobi</td>
</tr>
<tr>
<td></td>
<td>=8</td>
<td></td>
<td>Gauss Seidel</td>
</tr>
<tr>
<td></td>
<td>=9</td>
<td></td>
<td>Gradientes conjugados</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IWRIT</td>
<td>Indicador para escritura de datos</td>
</tr>
<tr>
<td></td>
<td>=1</td>
<td></td>
<td>Escribe datos en fichero de resultados</td>
</tr>
</tbody>
</table>

GRUPO DE TARJETAS 4.

<table>
<thead>
<tr>
<th>Def01</th>
<th>Coeficiente de contracción del proceso constructivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Def02</td>
<td>Coeficiente de contracción del poscurado</td>
</tr>
</tbody>
</table>

PARÁMETROS DE CONTROL

CONECTIVIDADES NODALES DE CADA ELEMENTO
Tarjeta 4.1 1315
NUMEL Número de elementos totales
MATNU(NUMEL) Tipo de material en cada elemento
LNODS(NUMEL,INODE) Conectividades (bucle sobre NNODE)

Tarjeta 4.2 1315
Continuan conectividades (en elementos 3D)

NOTAS:
- Tantas tarjetas 4.1 como número de elementos (NELEM)
- La tarjeta 4.2 se utilizará solamente para NNODE=20

GRUPO DE TARJETAS 5. COORDENADAS NODALES

Tarjeta 5.1 I5,3F10.0
IPNOD Número de nodo
COORD(IPNOD,1) Coordenada X del nodo
COORD(IPNOD,2) Coordenada Y del nodo (en 2D)
COORD(IPNOD,3) Coordenada Z del nodo (en 3D)

NOTA: Tantas tarjetas 5.1 como número de nodos totales (NPNODE).

GRUPO DE TARJETAS 6. PARAMETROS DE CONTROL POR CAPA

Tarjeta 6.1 I5 NPRESC Nodos restringidos en la capa
Tarjeta 6.2 F10.5 DELTAZ Espesor de capa

GRUPO DE TARJETAS 7. MOVIMIENTOS PRESCRITOS

Tarjeta 7.1 I5 NTCOND Cantidad de tipos de condiciones
Tarjeta 7.2 I5 ITICON Número de la coordenada a fijar
=1 Coordenada x
=2 Coordenada y
=3 Coordenada z
F10.5 IVCOR Valor fijado para ITICON
Tarjeta 7.3 3I1 INPRE Código de movimiento prescrito
=0 Movimiento libre
=1 Movimiento prescrito
3F10.5 PRESC Valor del movimiento prescrito

NOTAS:
- Tantas tarjetas 7.2 y 7.3 como cantidad de tipos de condiciones (NTCOND)
- Dentro del lazo anterior, tantas tarjetas 7.3 como grados de libertad.
GRUPO DE TARJETAS 8. PROPIEDADES DE LOS MATERIALES

Tarjeta 8.1 I5,4E15.5

<table>
<thead>
<tr>
<th>NUMAT</th>
<th>NUMERO DE MATERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROPS(NUMAT, IPROP)</td>
<td>Propiedades del material</td>
</tr>
<tr>
<td>PROPS(NUMAT, 1)</td>
<td>=1 Módulo de Young</td>
</tr>
<tr>
<td>PROPS(NUMAT, 2)</td>
<td>=2 Coeficiente de Poisson</td>
</tr>
<tr>
<td>PROPS(NUMAT, 3)</td>
<td>=3 Espesor</td>
</tr>
<tr>
<td>PROPS(NUMAT, 4)</td>
<td>=4 Peso específico</td>
</tr>
</tbody>
</table>

NOTA: Tantas tarjetas 8.1 como número de materiales diferentes (NUMAT).

GRUPO DE TARJETAS 9. PARAMETROS DEL ESTADO DE CARGAS

Tarjeta 9.1 A20

<table>
<thead>
<tr>
<th>TITULO</th>
<th>Título del estado de carga</th>
</tr>
</thead>
</table>

Tarjeta 9.2 4I5

<table>
<thead>
<tr>
<th>ISFIJ</th>
<th>Indicador de carga puntual</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICONT</td>
<td>Indicador de contracción volumétrica</td>
</tr>
</tbody>
</table>

NOTAS:

- Tantas tarjetas 9.1 y 9.2 como número de estados de carga (NCAVG).
- ISFIJ = 1 significa que no tengo fijación al suelo.
- ICONT = 1 significa que estoy en el proceso constructivo.

GRUPO DE TARJETAS 10. FICHERO DEL POSPROCESO

Tarjeta 10.1 A20

<table>
<thead>
<tr>
<th>NOMBRE</th>
<th>Nombre del fichero de posproceso</th>
</tr>
</thead>
</table>

NOTA : Esta tarjeta va en las capas correspondientes según NGRAF.

NOTA GENERAL.

Tantas tarjetas 7,8,9 y 10 como capas a resolver.
4. EJEMPLOS DE APLICACIÓN

4.1 Viga en voladizo - Análisis bidimensional

Se analizó el test extraído de la referencia [3] que se esquematiza en la figura 4.1.1. El mismo consiste en unos voladizos gemelos ("twin Cantilever")

![Diagrama de la geometría utilizada para el test](image)

Figura 4.1.1 Geometría utilizada para el test.

fabricados con el proceso de estereolitografía en 24 capas de 0.25 mm de espesor. Se mide con este test el factor de distorsión por flexión ("Curl Factor") cuya expresión es:

\[C'_{f6} = \frac{(M_6 - M_0)}{6\text{mm}} \times 100 \]

donde \(M_0\) es la elevación en milímetros del origen de la base del voladizo y \(M_6\) es la elevación en milímetros de la parte inferior de la viga medida a 6
milímetros del origen de la base. La figura 4.1.2 muestra los resultados dados en la bibliografía para este test cuando se utiliza una resina comercial XB 5139.

![Diagram](image)

Figura 4.1.2 Valores de Delta Z ($M_b - M_o$) dados en la referencia [3]

![Malla](image)

Figura 4.1.3 Malla utilizada.

Los resultados que se muestran corresponden a un análisis realizado con elementos cuadrangulares de cuatro nodos con integración selectiva. En el apartado 4.1.3 se da la entrada de datos correspondientes, y en los
subapartados 4.1.2.1 a 4.1.2.9, se ha realizado un análisis de la influencia de diversos parámetros geométricos y mecánicos en el "Curl Distortions".

En la figura 4.1.3 se muestra la malla utilizada, y la figura 4.1.4 las pieza final. En la figura 4.1.5 se compara la curva de variación de los Delta Z de la referencia con la obtenida en nuestro análisis.
4.1.2 Análisis del ejemplo

Se detalla a continuación un estudio de la influencia en el factor de distorsión por flexión de distintos parámetros. Estos son:

- Parámetros del Material: Deformación volumétrica, Módulo de Young y Coeficiente de Poisson.
- Parámetros constructivos: Espesor de capa.
- Parámetros del modelado numérico: Análisis bidimensional con elementos de cuatro y ocho nodos y tridimensional con elementos hexahédricos de 8 y 20 nodos. Comparación de elementos sólidos de cuatro nodos con y sin integración selectiva, de ocho nodos.

4.1.2.1 Solución analítica para dos capas

Utilizando la teoría de Resistencia de Materiales, es posible encontrar una solución analítica para dos capas, asumiendo una contracción inicial en la capa superior de valor \(\varepsilon_0 \). De esta manera, las deformaciones iniciales de las capas serán:

\[
\varepsilon_0^1 = \varepsilon_0 \quad y \quad \varepsilon_0^2 = 0
\]

De esta forma se pretende encontrar los valores de deformaciones y tensiones que este estado de solicitud produce en la pieza. Ver figura 4.6.

Bajo la hipótesis de Bernoulli-Navier de deformación plana de la sección de la pieza, la distribución final de deformaciones está dada por la ley lineal:

\[
\epsilon = \epsilon_f - \frac{y}{\rho}
\]

siendo la curvatura

\[
\frac{1}{\rho} = \frac{d\varphi}{ds}
\]

Las distribuciones de las tensiones en cada una de las capas serán también lineales y de valor:

\[
\sigma_1 = E(\epsilon - \varepsilon_0^1) = E(-\epsilon_f - \frac{y}{\rho} + \varepsilon_0) = E(\epsilon_0 - \epsilon_f - \frac{y}{\rho})
\]
Figura 4.6 Esquema de la deformación inicial y final

\[
\sigma_2 = E(\varepsilon - \varepsilon_o^2) = E(-\varepsilon_f - \frac{y}{\rho}) = E(-\varepsilon_f - \frac{y}{\rho})
\]

Las ecuaciones de equilibrio interno de las secciones son:

\[N = 0 = \int_A \sigma dA \quad (1) \quad M = 0 = \int_A \sigma y dA \quad (2)\]

De la ecuación (1):

\[
\int_A \sigma dA = \int_{y=o}^{y=h} E(\varepsilon_o - \varepsilon_f - \frac{y}{\rho})b dy + \int_{y=-h}^{y=0} E(-\varepsilon_f - \frac{y}{\rho})b dy
\]

\[= Eb(\varepsilon_o h - \varepsilon_f 2h) = 0 \implies \varepsilon_f = \frac{\varepsilon_o}{2}\]

donde b es el ancho de la pieza

De la ecuación (2):

\[
\int_A \sigma y dA = \int_{y=o}^{y=h} E(\varepsilon_o - \varepsilon_f - \frac{y}{\rho})by dy + \int_{y=-h}^{y=0} E(-\varepsilon_f - \frac{y}{\rho})by dy
\]

\[= Eb(\varepsilon_o \frac{h^2}{2} - \frac{2h^3}{3\rho}) = 0 \implies \frac{1}{2}\varepsilon_o = \frac{2h}{3\rho} \implies \frac{1}{\rho} = \frac{3}{4} \frac{\varepsilon_o}{h}\]

Por lo tanto, las deformaciones de las fibras superior e inferior son:

\[
\varepsilon^s = -\varepsilon_f - \frac{h}{\rho} = -\frac{\varepsilon_o}{2} - \frac{3}{4} \varepsilon_o = -\frac{5}{4} \varepsilon_o
\]

\[
\varepsilon^i = -\varepsilon_f + \frac{h}{\rho} = -\frac{\varepsilon_o}{2} + \frac{3}{4} \varepsilon_o = \frac{1}{4} \varepsilon_o
\]
4.1.2.2 Influencia de la deformación volumétrica en la distorsión por flexión

En la figura 4.7 se muestra la reproducción del test obtenido de la referencia [3] y que fue descrito anteriormente. Se utilizó para el modelado elementos cuadrangulares de 8 nodos con cuatro puntos de Gauss por elemento. En la gráfica se presentan los estados correspondientes a la construcción de las capas 3, 9, 18 y 24.

Figura 4.7 Proceso constructivo de las capas 3, 9, 18 y 24
En la figura 4.8 se muestran curvas de Delta $Z (M_b - M_0)$ en función de la longitud del voladizo, para distintos valores de la deformación volumétrica. Para la determinación del factor de distorsión por flexión, como se mencionó anteriormente, se utiliza la medida correspondiente a la elevación en milímetros de la base del voladizo, medida a 6 mm del origen. A esta distancia, se puede obtener una variación lineal de dicho factor con la deformación impuesta, tal como puede verse en la figura 4.9. La figura 4.10 muestra la variación del factor por distorsión por flexión con la deformación volumétrica impuesta midiendo a distintas distancias al origen de la base.

Figura 4.8 Variación del "Factor de distorsión por flexión" con las deformaciones volumétricas

Puede verse en dicha figura como deja de ser lineal esta relación, a mediada que nos alejamos de los 6 mm. Es de notar, además, que para valores inferiores a 6 mm la relación es lineal, pero las pendientes son demasiado pequeñas como para brindar mediciones fiables.

4.1.2.3 Influencia del módulo de Young en la distorsión por flexión

La figura 4.11 muestra una curva Delta Z en función de la longitud del voladizo para una deformación volumétrica impuesta del 0.8%. La misma fué obtenida para valores del módulo de Young de 120, 140, y 180 Kg/cm²,
Figura 4.9 Variación del “Factor de distorsión por flexión” con las deformaciones volumétricas a 6 mm del voladizo.

Figura 4.10 Variación del “Factor de distorsión por flexión” con las deformaciones volumétricas a distintas distancias del voladizo.

sin encontrar ninguna variación entre ellas. Como puede verse en la solución
analítica para dos capas obtenida anteriormente, los valores de deformaciones obtenidos son independientes del valor del módulo de Young.

Figura 4.11 Variación del Delta Z con la longitud del voladizo obtenidas para distintos valores del módulo de Young

4.1.2.4 Influencia del coeficiente de Poisson en la distorsión por flexión

La figura 4.12 muestra una curva Delta Z en función de la longitud del voladizo para una deformación volumétrica impuesta del 0.8%. La misma fue obtenida para valores del coeficiente de Poisson de 0.2, 0.3, 0.4 y 0.5, sin encontrar ninguna variación entre ellas. De la misma manera que con el módulo de Young, los valores de deformaciones obtenidos son independientes del valor del coeficiente de Poisson.

4.1.2.5 Influencia del tamaño de capa en la distorsión por flexión

El voladizo de la figura 4.1 ha sido modelado por elementos finitos cuadrangulares de cuatro nodos, suponiendo un proceso constructivo en 6, 12, 15, 20, 24 y 30 capas. En todos los casos se utilizaron las mismas
Figura 4.12 Variación del Delta Z con la longitud del voladizo obtenidas para distintos valores del coeficiente de Poisson

propiedades del material y en las figuras 4.13 a 4.17 pueden verse la geometría esperada y la deformada para 6, 12, 15 y 30 capas. La figura 4.18 muestra comparativamente los valores de Delta Z en función de la longitud del voladizo para cada uno de los casos analizados, y la figura 4.19, la variación del factor de distorsión por flexión, es decir cuando Delta Z es la diferencia entre las elevaciones en milímetros de la base del voladizo a 6 mm. del origen y en el origen de la base. En todos los casos el valor de ϵ_0 fue del 0.8%. Como era de esperar, a medida que aumentamos el espesor de capa, disminuye la distorsión por flexión, como puede verse en la figura 4.19. Esto concuerda con los análisis dados en la referencia [3] y se debe al aumento de rigidez de las capas.
Figura 4.13 Geometría esperada para seis capas

Figura 4.14 Geometría obtenida para seis capas
Figura 4.15 Geometría obtenida para doce capas

Figura 4.16 Geometría obtenida para quince capas
Figura 4.17 Geometría obtenida para treinta capas

Figura 4.18 Variación del Delta Z con el tamaño de capa
Figura 4.19 Variación del Factor de distorsión por flexión con el tamaño de capa
4.1.2.6 Análisis bidimensional con elementos sólidos de cuatro nodos

Se presenta un análisis del test extraído de la referencia [3] en el que se ha discretizado el voladizo con elementos sólidos de cuatro nodos con cuatro puntos de integración por elemento. En la dirección longitudinal se han colocado 7, 10, 14, 28, 40 y 56 elementos obteniéndose mejor aproximación a medida que aumentamos el número de elementos. En la figura 4.20 se muestran las primeras tres capas de proceso, obtenidas con 7, 14, 28 y 56 elementos en la dirección longitudinal.

Figura 4.20 Geometrías deformadas para distintos números de elementos en la dirección longitudinal

En la tabla I puede verse la mejor aproximación obtenida con respecto a la solución analítica a medida que se aumenta el número de elementos.
<table>
<thead>
<tr>
<th></th>
<th>7 ELEM.</th>
<th>28 ELEM.</th>
<th>40 ELEM.</th>
<th>ANALIT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NODO A</td>
<td>-0.0492</td>
<td>0.00397</td>
<td>0.01381</td>
<td>0.03100</td>
</tr>
<tr>
<td>NODO B</td>
<td>-0.0629</td>
<td>-0.0625</td>
<td>-0.0623</td>
<td>-0.0630</td>
</tr>
<tr>
<td>NODO C</td>
<td>-0.0772</td>
<td>-0.1300</td>
<td>-0.1400</td>
<td>-0.1575</td>
</tr>
</tbody>
</table>

Tabla I. Desplazamientos verticales en cm con elementos cuadriláteros de 4 nodos en A, B, y C respectivamente para distintas discretizaciones y la solución analítica.

Figura 4.21 Variación del factor de distorsión por flexión para distinto número de elementos en la dirección longitudinal.

En la figura 4.21 se muestran las variaciones del factor por distorsión por flexión para 7, 10, 14 y 28 elementos en la dirección longitudinal del voladizo.
4.1.2.7 Elementos de cuatro nodos y de ocho nodos con integración selectiva

Por lo visto anteriormente, los elementos de cuatro nodos tienen un mal comportamiento a la flexión, lo que los hace poco fiables en el modelado de procesos como el que nos atañe. Esto no ocurre con los elementos de ocho nodos, que reproducen los valores analíticos con una baja densidad de elementos. Dado que el costo computacional de los elementos de cuatro nodos es inferior al de los de ocho, y considerar este efecto es importante en el caso del modelado de procesos de “Rapid Prototyping”, donde las piezas reales pueden tener del orden de 1000 capas, se implementaron los elementos de cuatro nodos con integración selectiva. En la tabla II se muestran comparativamente los valores de desplazamientos de los nodos extremos del voladizo para elementos de ocho nodos, de cuatro nodos con integración selectiva y analítico. Se utilizaron siete elementos en la dirección longitudinal. Es importante comparar los resultados de los elementos de cuatro nodos con integración selectiva, con los dados sin integración selectiva en la tabla I.

<table>
<thead>
<tr>
<th></th>
<th>4 NOD. I.S.</th>
<th>8 NODOS</th>
<th>ANALIT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NODO A</td>
<td>0.02650</td>
<td>0.03060</td>
<td>0.03100</td>
</tr>
<tr>
<td>NODO B</td>
<td>-0.0622</td>
<td>-0.0622</td>
<td>-0.0630</td>
</tr>
<tr>
<td>NODO C</td>
<td>-0.1530</td>
<td>-0.1560</td>
<td>-0.1575</td>
</tr>
</tbody>
</table>

Tabla II. Desplazamientos en cm obtenidos con elementos cuadriláteros de 4 nodos con integración selectiva y 8 nodos, en A, B y C respectivamente.
4.1.2.8 Análisis tridimensional

Para el modelado tridimensional del proceso se pueden utilizar elementos hexahédricos de 8 y 20 nodos. Si bien los elementos de 20 nodos proporcionan mejores resultados a la flexión, poseen un costo computacional muy grande por lo que se ha implementado la integración selectiva en los elementos de ocho nodos bajo la misma metodología que para los elementos de cuatro nodos en dos dimensiones.

El ejemplo en cuestión, fue modelado con elementos sólidos de ocho nodos, con integración selectiva, y 20 nodos con integración plena. Los resultados obtenidos con ambos tipos de elementos guardan una muy buena correlación, por lo que se puede inferir que en este ejemplo en que la flexión es muy importante, los elementos sólidos de ocho nodos con integración selectiva se comportan muy bien. No ocurre lo mismo al utilizar integración plena, de la misma forma que ocurriría en el caso bidimensional con los elementos de cuatro nodos con o sin integración selectiva versus los elementos bidimensionales de ocho nodos. La figura 4.22 muestra las geometrías deformadas para 6, 12, 18 y 24 capas con elementos de ocho nodos.

4.1.2.9 Influencia del poscurado

El siguiente análisis es para medir la influencia del poscurado en las distorsiones verticales de la pieza del test de la referencia [3]. En un análisis tridimensional con elementos de ocho nodos se utilizaron tres valores distintos del coeficiente de contracción volumétrica en el poscurado. En las figuras 4.23, se muestran los resultados obtenidos. En la misma, se muestran los valores obtenidos en un proceso constructivo de 10 capas y el pos-curado. Se puede apreciar en la figura que los resultados entre la última capa constructiva y el curado no varían apreciablemente.
Figura 4.22 Geometrías deformadas para 6, 12, 18 y 24 capas - Elementos de codo nodos
Figura 4.23. Efecto del poscurado en las distorsiones
4.1.3 Entrada de datos

<table>
<thead>
<tr>
<th></th>
<th>24</th>
<th>24</th>
<th>24</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAPID PROTOTYPING - VIGA EN VOLADIZO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>275</td>
<td>240</td>
<td>25</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>13</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>14</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>15</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>16</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>17</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>7</td>
<td>18</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>8</td>
<td>19</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>9</td>
<td>20</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>10</td>
<td>21</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>11</td>
<td>22</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>24</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>14</td>
<td>25</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>26</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>16</td>
<td>27</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>28</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>29</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>19</td>
<td>30</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>20</td>
<td>31</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>32</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>22</td>
<td>33</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>23</td>
<td>24</td>
<td>35</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>24</td>
<td>25</td>
<td>36</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>25</td>
<td>26</td>
<td>37</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>26</td>
<td>27</td>
<td>38</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>27</td>
<td>28</td>
<td>39</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>28</td>
<td>29</td>
<td>40</td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>29</td>
<td>30</td>
<td>41</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>30</td>
<td>31</td>
<td>42</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>31</td>
<td>32</td>
<td>43</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>32</td>
<td>33</td>
<td>44</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>34</td>
<td>35</td>
<td>46</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>35</td>
<td>36</td>
<td>47</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>36</td>
<td>37</td>
<td>48</td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>37</td>
<td>38</td>
<td>49</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>38</td>
<td>39</td>
<td>50</td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>39</td>
<td>40</td>
<td>51</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>40</td>
<td>41</td>
<td>52</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>41</td>
<td>42</td>
<td>53</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>42</td>
<td>43</td>
<td>54</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>43</td>
<td>44</td>
<td>55</td>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>45</td>
<td>46</td>
<td>57</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>46</td>
<td>47</td>
<td>58</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>47</td>
<td>48</td>
<td>59</td>
<td>58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>48</td>
<td>49</td>
<td>60</td>
<td>59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>49</td>
<td>50</td>
<td>61</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>50</td>
<td>51</td>
<td>62</td>
<td>61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>51</td>
<td>52</td>
<td>63</td>
<td>62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>52</td>
<td>53</td>
<td>64</td>
<td>63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>53</td>
<td>54</td>
<td>65</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>54</td>
<td>55</td>
<td>66</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>56</td>
<td>57</td>
<td>68</td>
<td>67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>57</td>
<td>58</td>
<td>69</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>58</td>
<td>59</td>
<td>70</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>59</td>
<td>60</td>
<td>71</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>60</td>
<td>61</td>
<td>72</td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>61</td>
<td>62</td>
<td>73</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>62</td>
<td>63</td>
<td>74</td>
<td>73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>63</td>
<td>64</td>
<td>75</td>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>64</td>
<td>65</td>
<td>76</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>65</td>
<td>66</td>
<td>77</td>
<td>76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>67</td>
<td>68</td>
<td>79</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>68</td>
<td>69</td>
<td>80</td>
<td>79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>69</td>
<td>70</td>
<td>81</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>70</td>
<td>71</td>
<td>82</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>71</td>
<td>72</td>
<td>83</td>
<td>82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>72</td>
<td>73</td>
<td>84</td>
<td>83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>73</td>
<td>74</td>
<td>85</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>74</td>
<td>75</td>
<td>86</td>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>75</td>
<td>76</td>
<td>87</td>
<td>86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>76</td>
<td>77</td>
<td>88</td>
<td>87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>77</td>
<td>78</td>
<td>89</td>
<td>89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>78</td>
<td>79</td>
<td>90</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>80</td>
<td>81</td>
<td>92</td>
<td>91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>81</td>
<td>82</td>
<td>93</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>82</td>
<td>83</td>
<td>94</td>
<td>93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>83</td>
<td>84</td>
<td>95</td>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>84</td>
<td>85</td>
<td>96</td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>85</td>
<td>86</td>
<td>97</td>
<td>96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>86</td>
<td>87</td>
<td>98</td>
<td>97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>87</td>
<td>88</td>
<td>99</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>89</td>
<td>90</td>
<td>101</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>90</td>
<td>91</td>
<td>102</td>
<td>101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>91</td>
<td>92</td>
<td>103</td>
<td>102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>92</td>
<td>93</td>
<td>104</td>
<td>103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>93</td>
<td>94</td>
<td>105</td>
<td>104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>94</td>
<td>95</td>
<td>106</td>
<td>105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>95</td>
<td>96</td>
<td>107</td>
<td>106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>96</td>
<td>97</td>
<td>108</td>
<td>107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>97</td>
<td>98</td>
<td>109</td>
<td>108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>98</td>
<td>99</td>
<td>110</td>
<td>109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>100</td>
<td>101</td>
<td>112</td>
<td>111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>101</td>
<td>102</td>
<td>113</td>
<td>112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>102</td>
<td>103</td>
<td>114</td>
<td>113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>103</td>
<td>104</td>
<td>115</td>
<td>114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>104</td>
<td>105</td>
<td>116</td>
<td>115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>105</td>
<td>106</td>
<td>117</td>
<td>116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>106</td>
<td>107</td>
<td>118</td>
<td>117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>107</td>
<td>108</td>
<td>119</td>
<td>118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>108</td>
<td>109</td>
<td>120</td>
<td>119</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>109</td>
<td>110</td>
<td>121</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>111</td>
<td>112</td>
<td>123</td>
<td>122</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>112</td>
<td>113</td>
<td>124</td>
<td>123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>113</td>
<td>114</td>
<td>125</td>
<td>124</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>114</td>
<td>115</td>
<td>126</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>115</td>
<td>116</td>
<td>127</td>
<td>126</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>116</td>
<td>117</td>
<td>128</td>
<td>127</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>117</td>
<td>118</td>
<td>129</td>
<td>128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>118</td>
<td>119</td>
<td>130</td>
<td>129</td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>119</td>
<td>120</td>
<td>131</td>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>120</td>
<td>121</td>
<td>132</td>
<td>131</td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>122</td>
<td>123</td>
<td>134</td>
<td>133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>123</td>
<td>124</td>
<td>135</td>
<td>134</td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>124</td>
<td>125</td>
<td>136</td>
<td>135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>125</td>
<td>126</td>
<td>137</td>
<td>136</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>126</td>
<td>127</td>
<td>138</td>
<td>137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>127</td>
<td>128</td>
<td>139</td>
<td>138</td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>128</td>
<td>129</td>
<td>140</td>
<td>139</td>
<td></td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>129</td>
<td>130</td>
<td>141</td>
<td>140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>130</td>
<td>131</td>
<td>142</td>
<td>141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>131</td>
<td>132</td>
<td>143</td>
<td>142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>133</td>
<td>134</td>
<td>145</td>
<td>144</td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>134</td>
<td>135</td>
<td>146</td>
<td>145</td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>135</td>
<td>136</td>
<td>147</td>
<td>146</td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>136</td>
<td>137</td>
<td>148</td>
<td>147</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>137</td>
<td>138</td>
<td>149</td>
<td>148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>138</td>
<td>139</td>
<td>150</td>
<td>149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>139</td>
<td>140</td>
<td>151</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>140</td>
<td>141</td>
<td>152</td>
<td>151</td>
<td></td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>214</td>
<td>215</td>
<td>226</td>
<td>225</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>196</td>
<td>215</td>
<td>216</td>
<td>227</td>
<td>226</td>
<td></td>
<td></td>
</tr>
<tr>
<td>197</td>
<td>216</td>
<td>217</td>
<td>228</td>
<td>227</td>
<td></td>
<td></td>
</tr>
<tr>
<td>198</td>
<td>217</td>
<td>218</td>
<td>229</td>
<td>228</td>
<td></td>
<td></td>
</tr>
<tr>
<td>199</td>
<td>218</td>
<td>219</td>
<td>230</td>
<td>229</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>219</td>
<td>220</td>
<td>231</td>
<td>230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>221</td>
<td>222</td>
<td>233</td>
<td>232</td>
<td></td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>222</td>
<td>223</td>
<td>234</td>
<td>233</td>
<td></td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>223</td>
<td>224</td>
<td>235</td>
<td>234</td>
<td></td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>224</td>
<td>225</td>
<td>236</td>
<td>235</td>
<td></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>225</td>
<td>226</td>
<td>237</td>
<td>236</td>
<td></td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>226</td>
<td>227</td>
<td>238</td>
<td>237</td>
<td></td>
<td></td>
</tr>
<tr>
<td>207</td>
<td>227</td>
<td>228</td>
<td>239</td>
<td>238</td>
<td></td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>228</td>
<td>229</td>
<td>240</td>
<td>239</td>
<td></td>
<td></td>
</tr>
<tr>
<td>209</td>
<td>229</td>
<td>230</td>
<td>241</td>
<td>240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>230</td>
<td>231</td>
<td>242</td>
<td>241</td>
<td></td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>232</td>
<td>233</td>
<td>244</td>
<td>243</td>
<td></td>
<td></td>
</tr>
<tr>
<td>212</td>
<td>233</td>
<td>234</td>
<td>245</td>
<td>244</td>
<td></td>
<td></td>
</tr>
<tr>
<td>213</td>
<td>234</td>
<td>235</td>
<td>246</td>
<td>245</td>
<td></td>
<td></td>
</tr>
<tr>
<td>214</td>
<td>235</td>
<td>236</td>
<td>247</td>
<td>246</td>
<td></td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>236</td>
<td>237</td>
<td>248</td>
<td>247</td>
<td></td>
<td></td>
</tr>
<tr>
<td>216</td>
<td>237</td>
<td>238</td>
<td>249</td>
<td>248</td>
<td></td>
<td></td>
</tr>
<tr>
<td>217</td>
<td>238</td>
<td>239</td>
<td>250</td>
<td>249</td>
<td></td>
<td></td>
</tr>
<tr>
<td>218</td>
<td>239</td>
<td>240</td>
<td>251</td>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>219</td>
<td>240</td>
<td>241</td>
<td>252</td>
<td>251</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>241</td>
<td>242</td>
<td>253</td>
<td>252</td>
<td></td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>243</td>
<td>244</td>
<td>255</td>
<td>254</td>
<td></td>
<td></td>
</tr>
<tr>
<td>222</td>
<td>244</td>
<td>245</td>
<td>256</td>
<td>255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>223</td>
<td>245</td>
<td>246</td>
<td>257</td>
<td>256</td>
<td></td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>246</td>
<td>247</td>
<td>258</td>
<td>257</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>247</td>
<td>248</td>
<td>259</td>
<td>258</td>
<td></td>
<td></td>
</tr>
<tr>
<td>226</td>
<td>248</td>
<td>249</td>
<td>260</td>
<td>259</td>
<td></td>
<td></td>
</tr>
<tr>
<td>227</td>
<td>249</td>
<td>250</td>
<td>261</td>
<td>260</td>
<td></td>
<td></td>
</tr>
<tr>
<td>228</td>
<td>250</td>
<td>251</td>
<td>262</td>
<td>261</td>
<td></td>
<td></td>
</tr>
<tr>
<td>229</td>
<td>251</td>
<td>252</td>
<td>263</td>
<td>262</td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>252</td>
<td>253</td>
<td>264</td>
<td>263</td>
<td></td>
<td></td>
</tr>
<tr>
<td>231</td>
<td>254</td>
<td>255</td>
<td>266</td>
<td>265</td>
<td></td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>255</td>
<td>256</td>
<td>267</td>
<td>266</td>
<td></td>
<td></td>
</tr>
<tr>
<td>233</td>
<td>256</td>
<td>257</td>
<td>268</td>
<td>267</td>
<td></td>
<td></td>
</tr>
<tr>
<td>234</td>
<td>257</td>
<td>258</td>
<td>269</td>
<td>268</td>
<td></td>
<td></td>
</tr>
<tr>
<td>235</td>
<td>258</td>
<td>259</td>
<td>270</td>
<td>269</td>
<td></td>
<td></td>
</tr>
<tr>
<td>236</td>
<td>259</td>
<td>260</td>
<td>271</td>
<td>270</td>
<td></td>
<td></td>
</tr>
<tr>
<td>237</td>
<td>260</td>
<td>261</td>
<td>272</td>
<td>271</td>
<td></td>
<td></td>
</tr>
<tr>
<td>238</td>
<td>261</td>
<td>262</td>
<td>273</td>
<td>272</td>
<td></td>
<td></td>
</tr>
<tr>
<td>239</td>
<td>262</td>
<td>263</td>
<td>274</td>
<td>273</td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>263</td>
<td>264</td>
<td>275</td>
<td>274</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| 1 | 0.00000 | 0.00000 |
| 2 | 1.40000 | 0.00000 |
| 3 | 2.80000 | 0.00000 |
| 4 | 4.20000 | 0.00000 |
| 5 | 5.60000 | 0.00000 |
| 6 | 7.00000 | 0.00000 |
| 7 | 8.40000 | 0.00000 |
| 8 | 9.80000 | 0.00000 |
| 9 | 11.20000 | 0.00000 |
| 10 | 12.60000 | 0.00000 |
| 11 | 14.00000 | 0.00000 |
| 12 | 0.00000 | 0.25000 |
| 13 | 1.40000 | 0.25000 |
| 14 | 2.80000 | 0.25000 |
| 15 | 4.20000 | 0.25000 |
| 16 | 5.60000 | 0.25000 |
| 17 | 7.00000 | 0.25000 |
| 18 | 8.40000 | 0.25000 |
| 19 | 9.80000 | 0.25000 |
| 20 | 11.20000 | 0.25000 |</p>
<table>
<thead>
<tr>
<th></th>
<th>12.60000</th>
<th>0.25000</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>14.00000</td>
<td>0.25000</td>
</tr>
<tr>
<td>23</td>
<td>0.00000</td>
<td>0.50000</td>
</tr>
<tr>
<td>24</td>
<td>1.40000</td>
<td>0.50000</td>
</tr>
<tr>
<td>25</td>
<td>2.80000</td>
<td>0.50000</td>
</tr>
<tr>
<td>26</td>
<td>4.20000</td>
<td>0.50000</td>
</tr>
<tr>
<td>27</td>
<td>5.60000</td>
<td>0.50000</td>
</tr>
<tr>
<td>28</td>
<td>7.00000</td>
<td>0.50000</td>
</tr>
<tr>
<td>29</td>
<td>8.40000</td>
<td>0.50000</td>
</tr>
<tr>
<td>30</td>
<td>9.80000</td>
<td>0.50000</td>
</tr>
<tr>
<td>31</td>
<td>11.20000</td>
<td>0.50000</td>
</tr>
<tr>
<td>32</td>
<td>12.60000</td>
<td>0.50000</td>
</tr>
<tr>
<td>33</td>
<td>14.00000</td>
<td>0.50000</td>
</tr>
<tr>
<td>34</td>
<td>0.00000</td>
<td>0.75000</td>
</tr>
<tr>
<td>35</td>
<td>1.40000</td>
<td>0.75000</td>
</tr>
<tr>
<td>36</td>
<td>2.80000</td>
<td>0.75000</td>
</tr>
<tr>
<td>37</td>
<td>4.20000</td>
<td>0.75000</td>
</tr>
<tr>
<td>38</td>
<td>5.60000</td>
<td>0.75000</td>
</tr>
<tr>
<td>39</td>
<td>7.00000</td>
<td>0.75000</td>
</tr>
<tr>
<td>40</td>
<td>8.40000</td>
<td>0.75000</td>
</tr>
<tr>
<td>41</td>
<td>9.80000</td>
<td>0.75000</td>
</tr>
<tr>
<td>42</td>
<td>11.20000</td>
<td>0.75000</td>
</tr>
<tr>
<td>43</td>
<td>12.60000</td>
<td>0.75000</td>
</tr>
<tr>
<td>44</td>
<td>14.00000</td>
<td>0.75000</td>
</tr>
<tr>
<td>45</td>
<td>0.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>46</td>
<td>1.40000</td>
<td>1.00000</td>
</tr>
<tr>
<td>47</td>
<td>2.80000</td>
<td>1.00000</td>
</tr>
<tr>
<td>48</td>
<td>4.20000</td>
<td>1.00000</td>
</tr>
<tr>
<td>49</td>
<td>5.60000</td>
<td>1.00000</td>
</tr>
<tr>
<td>50</td>
<td>7.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>51</td>
<td>8.40000</td>
<td>1.00000</td>
</tr>
<tr>
<td>52</td>
<td>9.80000</td>
<td>1.00000</td>
</tr>
<tr>
<td>53</td>
<td>11.20000</td>
<td>1.00000</td>
</tr>
<tr>
<td>54</td>
<td>12.60000</td>
<td>1.00000</td>
</tr>
<tr>
<td>55</td>
<td>14.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>56</td>
<td>0.00000</td>
<td>1.25000</td>
</tr>
<tr>
<td>57</td>
<td>1.40000</td>
<td>1.25000</td>
</tr>
<tr>
<td>58</td>
<td>2.80000</td>
<td>1.25000</td>
</tr>
<tr>
<td>59</td>
<td>4.20000</td>
<td>1.25000</td>
</tr>
<tr>
<td>60</td>
<td>5.60000</td>
<td>1.25000</td>
</tr>
<tr>
<td>61</td>
<td>7.00000</td>
<td>1.25000</td>
</tr>
<tr>
<td>62</td>
<td>8.40000</td>
<td>1.25000</td>
</tr>
<tr>
<td>63</td>
<td>9.80000</td>
<td>1.25000</td>
</tr>
<tr>
<td>64</td>
<td>11.20000</td>
<td>1.25000</td>
</tr>
<tr>
<td>65</td>
<td>12.60000</td>
<td>1.25000</td>
</tr>
<tr>
<td>66</td>
<td>14.00000</td>
<td>1.25000</td>
</tr>
<tr>
<td>67</td>
<td>0.00000</td>
<td>1.50000</td>
</tr>
<tr>
<td>68</td>
<td>1.40000</td>
<td>1.50000</td>
</tr>
<tr>
<td>69</td>
<td>2.80000</td>
<td>1.50000</td>
</tr>
<tr>
<td>70</td>
<td>4.20000</td>
<td>1.50000</td>
</tr>
<tr>
<td>71</td>
<td>5.60000</td>
<td>1.50000</td>
</tr>
<tr>
<td>72</td>
<td>7.00000</td>
<td>1.50000</td>
</tr>
<tr>
<td>73</td>
<td>8.40000</td>
<td>1.50000</td>
</tr>
<tr>
<td>74</td>
<td>9.80000</td>
<td>1.50000</td>
</tr>
<tr>
<td>75</td>
<td>11.20000</td>
<td>1.50000</td>
</tr>
<tr>
<td>76</td>
<td>12.60000</td>
<td>1.50000</td>
</tr>
<tr>
<td>77</td>
<td>14.00000</td>
<td>1.50000</td>
</tr>
<tr>
<td>78</td>
<td>0.00000</td>
<td>1.75000</td>
</tr>
<tr>
<td>79</td>
<td>1.40000</td>
<td>1.75000</td>
</tr>
<tr>
<td>80</td>
<td>2.80000</td>
<td>1.75000</td>
</tr>
<tr>
<td>81</td>
<td>4.20000</td>
<td>1.75000</td>
</tr>
<tr>
<td>82</td>
<td>5.60000</td>
<td>1.75000</td>
</tr>
<tr>
<td>83</td>
<td>7.00000</td>
<td>1.75000</td>
</tr>
<tr>
<td>84</td>
<td>8.40000</td>
<td>1.75000</td>
</tr>
<tr>
<td>85</td>
<td>9.80000</td>
<td>1.75000</td>
</tr>
<tr>
<td>86</td>
<td>11.20000</td>
<td>1.75000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>87</td>
<td>12.6000</td>
<td>1.75000</td>
</tr>
<tr>
<td>88</td>
<td>14.0000</td>
<td>1.75000</td>
</tr>
<tr>
<td>89</td>
<td>0.0000</td>
<td>2.00000</td>
</tr>
<tr>
<td>90</td>
<td>1.4000</td>
<td>2.00000</td>
</tr>
<tr>
<td>91</td>
<td>2.8000</td>
<td>2.00000</td>
</tr>
<tr>
<td>92</td>
<td>4.2000</td>
<td>2.00000</td>
</tr>
<tr>
<td>93</td>
<td>5.6000</td>
<td>2.00000</td>
</tr>
<tr>
<td>94</td>
<td>7.0000</td>
<td>2.00000</td>
</tr>
<tr>
<td>95</td>
<td>8.4000</td>
<td>2.00000</td>
</tr>
<tr>
<td>96</td>
<td>9.8000</td>
<td>2.00000</td>
</tr>
<tr>
<td>97</td>
<td>11.2000</td>
<td>2.00000</td>
</tr>
<tr>
<td>98</td>
<td>12.6000</td>
<td>2.00000</td>
</tr>
<tr>
<td>99</td>
<td>14.0000</td>
<td>2.00000</td>
</tr>
<tr>
<td>100</td>
<td>0.0000</td>
<td>2.25000</td>
</tr>
<tr>
<td>101</td>
<td>1.4000</td>
<td>2.25000</td>
</tr>
<tr>
<td>102</td>
<td>2.8000</td>
<td>2.25000</td>
</tr>
<tr>
<td>103</td>
<td>4.2000</td>
<td>2.25000</td>
</tr>
<tr>
<td>104</td>
<td>5.6000</td>
<td>2.25000</td>
</tr>
<tr>
<td>105</td>
<td>7.0000</td>
<td>2.25000</td>
</tr>
<tr>
<td>106</td>
<td>8.4000</td>
<td>2.25000</td>
</tr>
<tr>
<td>107</td>
<td>9.8000</td>
<td>2.25000</td>
</tr>
<tr>
<td>108</td>
<td>11.2000</td>
<td>2.25000</td>
</tr>
<tr>
<td>109</td>
<td>12.6000</td>
<td>2.25000</td>
</tr>
<tr>
<td>110</td>
<td>14.0000</td>
<td>2.25000</td>
</tr>
<tr>
<td>111</td>
<td>0.0000</td>
<td>2.50000</td>
</tr>
<tr>
<td>112</td>
<td>1.4000</td>
<td>2.50000</td>
</tr>
<tr>
<td>113</td>
<td>2.8000</td>
<td>2.50000</td>
</tr>
<tr>
<td>114</td>
<td>4.2000</td>
<td>2.50000</td>
</tr>
<tr>
<td>115</td>
<td>5.6000</td>
<td>2.50000</td>
</tr>
<tr>
<td>116</td>
<td>7.0000</td>
<td>2.50000</td>
</tr>
<tr>
<td>117</td>
<td>8.4000</td>
<td>2.50000</td>
</tr>
<tr>
<td>118</td>
<td>9.8000</td>
<td>2.50000</td>
</tr>
<tr>
<td>119</td>
<td>11.2000</td>
<td>2.50000</td>
</tr>
<tr>
<td>120</td>
<td>12.6000</td>
<td>2.50000</td>
</tr>
<tr>
<td>121</td>
<td>14.0000</td>
<td>2.50000</td>
</tr>
<tr>
<td>122</td>
<td>0.0000</td>
<td>2.75000</td>
</tr>
<tr>
<td>123</td>
<td>1.4000</td>
<td>2.75000</td>
</tr>
<tr>
<td>124</td>
<td>2.8000</td>
<td>2.75000</td>
</tr>
<tr>
<td>125</td>
<td>4.2000</td>
<td>2.75000</td>
</tr>
<tr>
<td>126</td>
<td>5.6000</td>
<td>2.75000</td>
</tr>
<tr>
<td>127</td>
<td>7.0000</td>
<td>2.75000</td>
</tr>
<tr>
<td>128</td>
<td>8.4000</td>
<td>2.75000</td>
</tr>
<tr>
<td>129</td>
<td>9.8000</td>
<td>2.75000</td>
</tr>
<tr>
<td>130</td>
<td>11.2000</td>
<td>2.75000</td>
</tr>
<tr>
<td>131</td>
<td>12.6000</td>
<td>2.75000</td>
</tr>
<tr>
<td>132</td>
<td>14.0000</td>
<td>2.75000</td>
</tr>
<tr>
<td>133</td>
<td>0.0000</td>
<td>3.00000</td>
</tr>
<tr>
<td>134</td>
<td>1.4000</td>
<td>3.00000</td>
</tr>
<tr>
<td>135</td>
<td>2.8000</td>
<td>3.00000</td>
</tr>
<tr>
<td>136</td>
<td>4.2000</td>
<td>3.00000</td>
</tr>
<tr>
<td>137</td>
<td>5.6000</td>
<td>3.00000</td>
</tr>
<tr>
<td>138</td>
<td>7.0000</td>
<td>3.00000</td>
</tr>
<tr>
<td>139</td>
<td>8.4000</td>
<td>3.00000</td>
</tr>
<tr>
<td>140</td>
<td>9.8000</td>
<td>3.00000</td>
</tr>
<tr>
<td>141</td>
<td>11.2000</td>
<td>3.00000</td>
</tr>
<tr>
<td>142</td>
<td>12.6000</td>
<td>3.00000</td>
</tr>
<tr>
<td>143</td>
<td>14.0000</td>
<td>3.00000</td>
</tr>
<tr>
<td>144</td>
<td>0.0000</td>
<td>3.25000</td>
</tr>
<tr>
<td>145</td>
<td>1.4000</td>
<td>3.25000</td>
</tr>
<tr>
<td>146</td>
<td>2.8000</td>
<td>3.25000</td>
</tr>
<tr>
<td>147</td>
<td>4.2000</td>
<td>3.25000</td>
</tr>
<tr>
<td>148</td>
<td>5.6000</td>
<td>3.25000</td>
</tr>
<tr>
<td>149</td>
<td>7.0000</td>
<td>3.25000</td>
</tr>
<tr>
<td>150</td>
<td>8.4000</td>
<td>3.25000</td>
</tr>
<tr>
<td>151</td>
<td>9.8000</td>
<td>3.25000</td>
</tr>
<tr>
<td>152</td>
<td>11.2000</td>
<td>3.25000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>153</td>
<td>12.60000</td>
<td>3.25000</td>
</tr>
<tr>
<td>154</td>
<td>14.00000</td>
<td>3.25000</td>
</tr>
<tr>
<td>155</td>
<td>0.00000</td>
<td>3.50000</td>
</tr>
<tr>
<td>156</td>
<td>1.40000</td>
<td>3.50000</td>
</tr>
<tr>
<td>157</td>
<td>2.80000</td>
<td>3.50000</td>
</tr>
<tr>
<td>158</td>
<td>4.20000</td>
<td>3.50000</td>
</tr>
<tr>
<td>159</td>
<td>5.60000</td>
<td>3.50000</td>
</tr>
<tr>
<td>160</td>
<td>7.00000</td>
<td>3.50000</td>
</tr>
<tr>
<td>161</td>
<td>8.40000</td>
<td>3.50000</td>
</tr>
<tr>
<td>162</td>
<td>9.80000</td>
<td>3.50000</td>
</tr>
<tr>
<td>163</td>
<td>11.20000</td>
<td>3.50000</td>
</tr>
<tr>
<td>164</td>
<td>12.60000</td>
<td>3.50000</td>
</tr>
<tr>
<td>165</td>
<td>14.00000</td>
<td>3.50000</td>
</tr>
<tr>
<td>166</td>
<td>0.00000</td>
<td>3.75000</td>
</tr>
<tr>
<td>167</td>
<td>1.40000</td>
<td>3.75000</td>
</tr>
<tr>
<td>168</td>
<td>2.80000</td>
<td>3.75000</td>
</tr>
<tr>
<td>169</td>
<td>4.20000</td>
<td>3.75000</td>
</tr>
<tr>
<td>170</td>
<td>5.60000</td>
<td>3.75000</td>
</tr>
<tr>
<td>171</td>
<td>7.00000</td>
<td>3.75000</td>
</tr>
<tr>
<td>172</td>
<td>8.40000</td>
<td>3.75000</td>
</tr>
<tr>
<td>173</td>
<td>9.80000</td>
<td>3.75000</td>
</tr>
<tr>
<td>174</td>
<td>11.20000</td>
<td>3.75000</td>
</tr>
<tr>
<td>175</td>
<td>12.60000</td>
<td>3.75000</td>
</tr>
<tr>
<td>176</td>
<td>14.00000</td>
<td>3.75000</td>
</tr>
<tr>
<td>177</td>
<td>0.00000</td>
<td>4.00000</td>
</tr>
<tr>
<td>178</td>
<td>1.40000</td>
<td>4.00000</td>
</tr>
<tr>
<td>179</td>
<td>2.80000</td>
<td>4.00000</td>
</tr>
<tr>
<td>180</td>
<td>4.20000</td>
<td>4.00000</td>
</tr>
<tr>
<td>181</td>
<td>5.60000</td>
<td>4.00000</td>
</tr>
<tr>
<td>182</td>
<td>7.00000</td>
<td>4.00000</td>
</tr>
<tr>
<td>183</td>
<td>8.40000</td>
<td>4.00000</td>
</tr>
<tr>
<td>184</td>
<td>9.80000</td>
<td>4.00000</td>
</tr>
<tr>
<td>185</td>
<td>11.20000</td>
<td>4.00000</td>
</tr>
<tr>
<td>186</td>
<td>12.60000</td>
<td>4.00000</td>
</tr>
<tr>
<td>187</td>
<td>14.00000</td>
<td>4.00000</td>
</tr>
<tr>
<td>188</td>
<td>0.00000</td>
<td>4.25000</td>
</tr>
<tr>
<td>189</td>
<td>1.40000</td>
<td>4.25000</td>
</tr>
<tr>
<td>190</td>
<td>2.80000</td>
<td>4.25000</td>
</tr>
<tr>
<td>191</td>
<td>4.20000</td>
<td>4.25000</td>
</tr>
<tr>
<td>192</td>
<td>5.60000</td>
<td>4.25000</td>
</tr>
<tr>
<td>193</td>
<td>7.00000</td>
<td>4.25000</td>
</tr>
<tr>
<td>194</td>
<td>8.40000</td>
<td>4.25000</td>
</tr>
<tr>
<td>195</td>
<td>9.80000</td>
<td>4.25000</td>
</tr>
<tr>
<td>196</td>
<td>11.20000</td>
<td>4.25000</td>
</tr>
<tr>
<td>197</td>
<td>12.60000</td>
<td>4.25000</td>
</tr>
<tr>
<td>198</td>
<td>14.00000</td>
<td>4.25000</td>
</tr>
<tr>
<td>199</td>
<td>0.00000</td>
<td>4.50000</td>
</tr>
<tr>
<td>200</td>
<td>1.40000</td>
<td>4.50000</td>
</tr>
<tr>
<td>201</td>
<td>2.80000</td>
<td>4.50000</td>
</tr>
<tr>
<td>202</td>
<td>4.20000</td>
<td>4.50000</td>
</tr>
<tr>
<td>203</td>
<td>5.60000</td>
<td>4.50000</td>
</tr>
<tr>
<td>204</td>
<td>7.00000</td>
<td>4.50000</td>
</tr>
<tr>
<td>205</td>
<td>8.40000</td>
<td>4.50000</td>
</tr>
<tr>
<td>206</td>
<td>9.80000</td>
<td>4.50000</td>
</tr>
<tr>
<td>207</td>
<td>11.20000</td>
<td>4.50000</td>
</tr>
<tr>
<td>208</td>
<td>12.60000</td>
<td>4.50000</td>
</tr>
<tr>
<td>209</td>
<td>14.00000</td>
<td>4.50000</td>
</tr>
<tr>
<td>210</td>
<td>0.00000</td>
<td>4.75000</td>
</tr>
<tr>
<td>211</td>
<td>1.40000</td>
<td>4.75000</td>
</tr>
<tr>
<td>212</td>
<td>2.80000</td>
<td>4.75000</td>
</tr>
<tr>
<td>213</td>
<td>4.20000</td>
<td>4.75000</td>
</tr>
<tr>
<td>214</td>
<td>5.60000</td>
<td>4.75000</td>
</tr>
<tr>
<td>215</td>
<td>7.00000</td>
<td>4.75000</td>
</tr>
<tr>
<td>216</td>
<td>8.40000</td>
<td>4.75000</td>
</tr>
<tr>
<td>217</td>
<td>9.80000</td>
<td>4.75000</td>
</tr>
<tr>
<td>218</td>
<td>11.20000</td>
<td>4.75000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>12.60000</th>
<th>4.75000</th>
</tr>
</thead>
<tbody>
<tr>
<td>219</td>
<td>14.00000</td>
<td>4.75000</td>
</tr>
<tr>
<td>220</td>
<td>0.00000</td>
<td>5.00000</td>
</tr>
<tr>
<td>221</td>
<td>1.40000</td>
<td>5.00000</td>
</tr>
<tr>
<td>222</td>
<td>2.80000</td>
<td>5.00000</td>
</tr>
<tr>
<td>223</td>
<td>4.20000</td>
<td>5.00000</td>
</tr>
<tr>
<td>224</td>
<td>5.60000</td>
<td>5.00000</td>
</tr>
<tr>
<td>225</td>
<td>7.00000</td>
<td>5.00000</td>
</tr>
<tr>
<td>226</td>
<td>8.40000</td>
<td>5.00000</td>
</tr>
<tr>
<td>227</td>
<td>9.80000</td>
<td>5.00000</td>
</tr>
<tr>
<td>228</td>
<td>11.20000</td>
<td>5.00000</td>
</tr>
<tr>
<td>229</td>
<td>12.60000</td>
<td>5.00000</td>
</tr>
<tr>
<td>230</td>
<td>14.00000</td>
<td>5.00000</td>
</tr>
<tr>
<td>231</td>
<td>0.00000</td>
<td>5.25000</td>
</tr>
<tr>
<td>232</td>
<td>1.40000</td>
<td>5.25000</td>
</tr>
<tr>
<td>233</td>
<td>2.80000</td>
<td>5.25000</td>
</tr>
<tr>
<td>234</td>
<td>4.20000</td>
<td>5.25000</td>
</tr>
<tr>
<td>235</td>
<td>5.60000</td>
<td>5.25000</td>
</tr>
<tr>
<td>236</td>
<td>7.00000</td>
<td>5.25000</td>
</tr>
<tr>
<td>237</td>
<td>8.40000</td>
<td>5.25000</td>
</tr>
<tr>
<td>238</td>
<td>9.80000</td>
<td>5.25000</td>
</tr>
<tr>
<td>239</td>
<td>11.20000</td>
<td>5.25000</td>
</tr>
<tr>
<td>240</td>
<td>12.60000</td>
<td>5.25000</td>
</tr>
<tr>
<td>241</td>
<td>14.00000</td>
<td>5.25000</td>
</tr>
<tr>
<td>242</td>
<td>0.00000</td>
<td>5.50000</td>
</tr>
<tr>
<td>243</td>
<td>1.40000</td>
<td>5.50000</td>
</tr>
<tr>
<td>244</td>
<td>2.80000</td>
<td>5.50000</td>
</tr>
<tr>
<td>245</td>
<td>4.20000</td>
<td>5.50000</td>
</tr>
<tr>
<td>246</td>
<td>5.60000</td>
<td>5.50000</td>
</tr>
<tr>
<td>247</td>
<td>7.00000</td>
<td>5.50000</td>
</tr>
<tr>
<td>248</td>
<td>8.40000</td>
<td>5.50000</td>
</tr>
<tr>
<td>249</td>
<td>9.80000</td>
<td>5.50000</td>
</tr>
<tr>
<td>250</td>
<td>11.20000</td>
<td>5.50000</td>
</tr>
<tr>
<td>251</td>
<td>12.60000</td>
<td>5.50000</td>
</tr>
<tr>
<td>252</td>
<td>14.00000</td>
<td>5.50000</td>
</tr>
<tr>
<td>253</td>
<td>0.00000</td>
<td>5.75000</td>
</tr>
<tr>
<td>254</td>
<td>1.40000</td>
<td>5.75000</td>
</tr>
<tr>
<td>255</td>
<td>2.80000</td>
<td>5.75000</td>
</tr>
<tr>
<td>256</td>
<td>4.20000</td>
<td>5.75000</td>
</tr>
<tr>
<td>257</td>
<td>5.60000</td>
<td>5.75000</td>
</tr>
<tr>
<td>258</td>
<td>7.00000</td>
<td>5.75000</td>
</tr>
<tr>
<td>259</td>
<td>8.40000</td>
<td>5.75000</td>
</tr>
<tr>
<td>260</td>
<td>9.80000</td>
<td>5.75000</td>
</tr>
<tr>
<td>261</td>
<td>11.20000</td>
<td>5.75000</td>
</tr>
<tr>
<td>262</td>
<td>12.60000</td>
<td>5.75000</td>
</tr>
<tr>
<td>263</td>
<td>14.00000</td>
<td>5.75000</td>
</tr>
<tr>
<td>264</td>
<td>0.00000</td>
<td>6.00000</td>
</tr>
<tr>
<td>265</td>
<td>1.40000</td>
<td>6.00000</td>
</tr>
<tr>
<td>266</td>
<td>2.80000</td>
<td>6.00000</td>
</tr>
<tr>
<td>267</td>
<td>4.20000</td>
<td>6.00000</td>
</tr>
<tr>
<td>268</td>
<td>5.60000</td>
<td>6.00000</td>
</tr>
<tr>
<td>269</td>
<td>7.00000</td>
<td>6.00000</td>
</tr>
<tr>
<td>270</td>
<td>8.40000</td>
<td>6.00000</td>
</tr>
<tr>
<td>271</td>
<td>9.80000</td>
<td>6.00000</td>
</tr>
<tr>
<td>272</td>
<td>11.20000</td>
<td>6.00000</td>
</tr>
<tr>
<td>273</td>
<td>12.60000</td>
<td>6.00000</td>
</tr>
<tr>
<td>274</td>
<td>14.00000</td>
<td>6.00000</td>
</tr>
<tr>
<td>1</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>1</td>
<td>1.4E2</td>
<td>0.30000</td>
</tr>
</tbody>
</table>

CAPA NRO. 1
0 1 0 0
2 0.25
1
<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>1.4E2</td>
<td>0.30</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAPA NRO. 2

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>1.4E2</td>
<td>0.30</td>
<td>3.0</td>
</tr>
</tbody>
</table>

CAPA NRO. 3

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>1.4E2</td>
<td>0.30</td>
<td>3.0</td>
</tr>
</tbody>
</table>

CAPA NRO. 4

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>1.4E2</td>
<td>0.30</td>
<td>3.0</td>
</tr>
</tbody>
</table>

CAPA NRO. 5

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>1.4E2</td>
<td>0.30</td>
<td>3.0</td>
</tr>
</tbody>
</table>

CAPA NRO. 6

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>1.4E2</td>
<td>0.30</td>
<td>3.0</td>
</tr>
</tbody>
</table>

CAPA NRO. 7

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>1.4E2</td>
<td>0.30</td>
<td>3.0</td>
</tr>
</tbody>
</table>

CAPA NRO. 8

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>1.4E2</td>
<td>0.30</td>
<td>3.0</td>
</tr>
</tbody>
</table>

CAPA NRO. 9

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>1.4E2</td>
<td>0.30</td>
<td>3.0</td>
</tr>
</tbody>
</table>

CAPA NRO. 10

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>1.4E2</td>
<td>0.30</td>
<td>3.0</td>
</tr>
<tr>
<td>CAPA NRO. 11</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4E2</td>
<td>0.30</td>
</tr>
<tr>
<td>CAPA NRO. 12</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4E2</td>
<td>0.30</td>
</tr>
<tr>
<td>CAPA NRO. 13</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4E2</td>
<td>0.30</td>
</tr>
<tr>
<td>CAPA NRO. 14</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4E2</td>
<td>0.30</td>
</tr>
<tr>
<td>CAPA NRO. 15</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4E2</td>
<td>0.30</td>
</tr>
<tr>
<td>CAPA NRO. 16</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4E2</td>
<td>0.30</td>
</tr>
<tr>
<td>CAPA NRO. 17</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4E2</td>
<td>0.30</td>
</tr>
<tr>
<td>CAPA NRO. 18</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4E2</td>
<td>0.30</td>
</tr>
<tr>
<td>CAPA NRO. 19</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4E2</td>
<td>0.30</td>
</tr>
<tr>
<td>CAPA NRO. 20</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Capa NRO. 21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1.4E2</td>
<td>0.30</td>
</tr>
<tr>
<td>Capa NRO. 22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1.4E2</td>
<td>0.30</td>
</tr>
<tr>
<td>Capa NRO. 23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1.4E2</td>
<td>0.30</td>
</tr>
<tr>
<td>Capa NRO. 24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

CA24.P

$--------------------------------------STOP ANALYSIS

STOP
4.2 PIEZA DE TEST

El siguiente ejemplo constituye una pieza de test utilizada por empresas que construyen y comercializan máquinas de estereolitografía. Su finalidad es la puesta a punto de las máquinas, ya que en función de la estandarización de su geometría y de los parámetros constructivos se conocen las dimensiones finales de la misma.

En la figura 4.24, se esquematiza la geometría y dimensiones de la pieza. A partir del archivo CAD, de la misma se puede construir la malla de elementos finitos utilizada. En nuestro caso se ha modelado la cuarta parte de la pieza con las condiciones de contorno correspondientes.

Se utilizó en un principio para su modelado, elementos sólidos de ocho nodos con integración selectiva, pero surgieron problemas de hourglass como se puede apreciar en la figura 4.25. Utilizar elementos de veinte nodos multiplica por cinco la memoria requerida y por diez el tiempo necesitado, no obstante se observó que en este ejemplo, en que la flexión no es dominante dado que durante todo el proceso constructivo y el poscurado la pieza se encuentra rígida al soporte de la máquina, los elementos de ocho nodos con integración plena proporcionan muy buenos resultados. En las figuras 4.26 y 4.27 se muestran el fichero CAD y la malla utilizada respectivamente.

La pieza, durante el proceso constructivo se encuentra fija al soporte móvil de la máquina, lo cual en el modelado se han tenido en cuenta tres procesos: El proceso constructivo propiamente dicho, el poscurado y posteriormente el quitar la pieza del soporte, en donde las reacciones que se han producido actuan como fuerzas localizadas, deformándola.

La figura 4.28 muestra la pieza final y en la figura 4.29 los desplazamientos en la dirección Z.

En la figura 4.30 se grafica la pieza final respecto a la geometría inicial, con el fin de mostrar el levantamiento que sufre la cara inferior de la pieza al desrigidizarla del soporte.
Figura 4.24 Pieza de Test - Geometría y dimensiones
Figura 4.25 Efecto producido por el Hourglass
Figura 4.26 Fichero CAD - (Formato SLA)
Figura 4.27: Malla de elementos finitos
Figura 4.29 Pieza final - Desplazamientos
Figura 4.30 Pieza final respecto a la geometría inicial.
REFERENCIAS

