
Application Acceleration on FPGAs with OmpSs@FPGA

Jaume Bosch∗†, Xubin Tan∗†, Antonio Filgueras∗, Miquel Vidal∗, Marc Mateu∗†,
Daniel Jiménez-González∗†, Carlos Álvarez∗†, Xavier Martorell∗†, Eduard Ayguadé∗†, and Jesus Labarta∗†

∗Computer Science Dept.
Barcelona Supercomputing Center

Barcelona, Spain
Email: name.surname@bsc.es

†Computer Architecture Dept.
Universitat Politècnica de Catalunya

Barcelona, Spain
Email: djimenez,calvarez,xavim@ac.upc.edu

Abstract—OmpSs@FPGA is the flavor of OmpSs that
allows offloading application functionality to FPGAs. Sim-
ilarly to OpenMP, it is based on compiler directives. While
the OpenMP specification also includes support for hetero-
geneous execution, we use OmpSs and OmpSs@FPGA as
prototype implementation to develop new ideas for OpenMP.
OmpSs@FPGA implements the tasking model with runtime
support to automatically exploit all SMP and FPGA re-
sources available in the execution platform.

In this paper, we present the OmpSs@FPGA ecosystem,
based on the Mercurium compiler and the Nanos++ runtime
system. We show how the applications are transformed to run
on the SMP cores and the FPGA. The application kernels
defined as tasks to be accelerated, using the OmpSs directives
are: 1) transformed by the compiler into kernels connected
with the proper synchronization and communication ports,
2) extracted to intermediate files, 3) compiled through the
FPGA vendor HLS tool, and 4) used to configure the FPGA.
Our Nanos++ runtime system schedules the application tasks
on the platform, being able to use the SMP cores and the
FPGA accelerators at the same time.

We present the evaluation of the OmpSs@FPGA environ-
ment with the Matrix Multiplication, Cholesky and N-Body
benchmarks, showing the internal details of the execution,
and the performance obtained on a Zynq Ultrascale+ MPSoC
(up to 128x). The source code uses OmpSs@FPGA annota-
tions and different Vivado HLS optimization directives are
applied for acceleration.

Keywords-Heterogeneous Parallelism; OmpSs; FPGAs;

I. INTRODUCTION

Current trends in computer architecture are focused on
providing heterogeneous execution environments. Hetero-
geneity comes in many different flavors. One important
flavor is an environment that incorporates accelerators
within an FPGA (Field-Programmable Gate Array), pro-
viding specialized hardware to better execute specific
algorithms. FPGA devices are programmed by means
of bitstreams, usually generated by vendor-proprietary
tools, following an specification provided in the VHDL or
Verilog hardware description languages. In addition, there
is an additional characteristic to be taken into account:
Vendor compilation tools to generate the place and route
to configure the FPGA usually take from minutes to hours.
This causes that the porting of new code onto these
platforms is usually a slow process. Vendors also provide
FPGAs integrated with a few cores, that can be used as
the host cores. In this case, the FPGA shares the physical
memory with the cores.

FPGA modules (accelerators from now on) may have
additional but limited amount of local memory. This
accelerator local memory may be needed in order to
achieve high performance accelerators and, in this case,
data movements are a must for them to work. On the
other hand, the limited amount of memory forces the use
of blocking techniques when the workload does not fit on
the FPGA resources. Therefore, memory transfers from/to
host memory to/from accelerator local memory should be
optimized enough to reduce the communication overhead
or be overlapped, with or without blocking execution, with
the accelerator computation in order to hide it. Related
to those memory transfers, the FPGA device incorporates
the implementation of the bus protocol as part of its
programming to perform FPGA external accesses. Thus,
the programmer needs to be aware of it and should
incorporate it in the bitstream generation process. In order
to reduce the programmer effort, models have to provide
the means to perform/indicate data transfers between host
and accelerators in an easy way, allowing to reduce the
impact of those communications.

In our work, OmpSs@FPGA ecosystem addresses pre-
vious challenges achieving high productivity by providing
higher-level abstractions that could help the programmer
to generate high performance code on them. For example:

• Making the memory allocation and data copies auto-
matic, based on directives.

• Providing the programmer facilities to perform block-
ing from inside the accelerators.

• Automating the code generation of the CPU and
FPGA binaries, provided the C/C++ implementation,
by transparently running open or vendor tools.

• Allowing the use of parallelism based on tasking
(instead of kernel invocations).

• Providing support for data dependent tasks, and man-
aging the execution based on such data dependences.

• Providing FPGA execution trace generation support.

This makes the programming environment to (hope-
fully) completely hide the target architectures, providing
a clean, high-level, abstract interface to the programmers,
and incorporating all the intelligence on management and
scheduling onto the runtime system.

II. RELATED WORK

There are efforts similar to OmpSs@FPGA. The Vine-
yard project [1] aims at facilitating heterogeneous pro-
gramming, based on OpenSPL [2], OpenCL [3] and SD-
SoC [4]. The Ecoscale project [5] targets applications writ-
ten in MPI and OpenCL, to synthesize the OpenCL kernels
for the FPGAs, and support distributed and heterogeneous
computing. For both projects, the goal is to efficiently
execute functionality in the FPGAs. In addition to this, we
also provide heterogeneous execution on both the FPGAs
and the available host cores.

There are a large number of frameworks targeting the
High-Level Synthesis from C/C++. Vivado HLS [6] is the
Xilinx tool that we use from OmpSs@FPGA to generate
the FPGA IP blocks. Xilinx SDSoC [4] runs on top of
Vivado HLS, and better integrates the execution environ-
ment for the Xilinx Zynq platform (7000 and Ultrascale+),
with the automatic generation of the complete Linux
system for the target platform. LegUp [7], [8] synthetizes
C code with Pthreads and limited OpenMP annotations.
Each thread (code) is synthesized as an accelerator at
compile time. The remaining (sequential) portions are
executed in the processor, invoke accelerators and use
synchronization functions to retrieve their return values.
In OmpSs, the accelerators are also generated at compile
time but they correspond to tasks with target device FPGA.
Indeed, it is also possible to specify tasks that run in
the SMP, that can run in both SMP or FPGA, or that
can substitute other tasks. OmpSs runtime takes care of
issuing data transfers and task executions among the cores
and the IP accelerators based on the readiness of the task
dependencies, if defined. To the best of our knowledge,
OmpSs@FPGA is the first attempt to this kind of dynamic
work distribution across SMP cores and the FPGA that
integrate previous programmability features.

III. OMPSS@FPGA ECOSYSTEM

The OmpSs [9], [10] programming model allows to ex-
press parallelism that will be executed in the available re-
sources among the host SMP cores, or integrated/discrete
GPUs and/or FPGAs. OmpSs is based on task parallelism,
and very similar to OpenMP tasking. It is being used as
a forerunner prototyping environment for future OpenMP
features. On GPUs, both CUDA and OpenCL kernels
are supported. For FPGAs, OmpSs uses the vendor IP
generation tools (Xilinx Vivado and Vivado HLS [6],
[11], or Altera Quartus [12]), to generate the hardware
configuration from high-level code. OmpSs@FPGA can
also leverage existing IP cores, provided they adhere to
the same interface with our software platform.

OmpSs@FPGA [13] is a significant upgrade of the
OmpSs infrastructure (Mercurium source-to-source com-
piler and Nanos++ runtime) to incorporate FPGA support.
Figure 1 shows an example of an OmpSs application.
In particular, function matrix multiply is defined as a
task with input dependencies a and b and input/output
dependency c. Each call to this function will generate a
task that will be run when its dependencies are ready. This

#pragma omp target device(fpga,smp) copy_deps num_instances(3)
#pragma omp task in([BS]a,[BS]b) inout([BS]c)
void matrix_multiply(float a[BS][BS],

float b[BS][BS],float c[BS][BS]) {
#pragma HLS inline
#pragma HLS array_partition variable=a block factor=BS/2 dim=2
#pragma HLS array_partition variable=b block factor=BS/2 dim=1
for (int ia = 0; ia < BS; ++ia)
for (int ib = 0; ib < BS; ++ib) {

#pragma HLS PIPELINE II=1
float sum = 0;
for (int id = 0; id < BS; ++id)
sum += a[ia][id] * b[id][ib];

c[ia][ib] += sum;
} }
...
for (i=0; i<NBI; i++)
for (j=0; j<NBJ; j++)
for (k=0; k<NBK; k++)

matrix_multiply(AA[i][k], BB[k][j], CC[i][j]);
#pragma omp taskwait
...
}

Figure 1. First version of FPGA Matrix Multiply code

Figure 2. OmpSs compilation env. with FPGA support

task has also been defined to be potentially executed in two
target devices: any of the cores of the smp running the
application and three instances of an accelerator that will
be built to do this task in the FPGA. The accelerator has
been tuned by the programmer to exploit the parallelism of
the FPGA by using some additional directives (#pragma
HLS) not related to OmpSs programming model. In the
following sections, we will describe how the OmpSs com-
pilation and runtime ecosystem helps programmability,
heterogeneity, memory transfers and tracing support, and
finally, mechanisms to develop blocking techniques from
inside the FPGA.

A. Programming Productivity

Figure 2 shows the toolchain flow. In particular, it
currently supports Xilinx FPGAs using the Vivado HLS
and Vivado tools through our autoVivado tool.

At compilation level, the OmpSs application is split
in two parts according to OmpSs directives. The part to
be run in the SMP is transformed with all the runtime
calls introduced by the source-to-source compiler. This
part includes all the tasks code to be run in the SMP and
is compiled with gcc. All functions annotated with the
target device(fpga) directive are defined as tasks that will
be transferred to the Vivado HLS tool for compilation to
IP cores. Additionally, the Mercurium compiler generates
a stub/wrapper function for each task, used to invoke
the corresponding IP core from our Nanos++ runtime

Figure 3. High-level representation of the Nanos++ environment

system, adapting the parameter passing. autoVivado tool
invokes Vivado HLS to transform wrapper functions and
FPGA-annotated functions into IP cores. Then, autoVi-
vado connects them to the Task Manager, local memory
(BRAM) and AXI ports, using Vivado and generates
the bitstream with the accelerators. Also, a configuration
file (xtasks.config) with accelerator metadata is generated.
This is necessary for the Nanos++ runtime in order to
know the type and number of accelerators in the FPGA.
This compilation process is automatically done by the
compiler avoiding user errors and speeding up all the
process of hardware generation for the supported platforms
(Zynq 7000 and Ultrascale+ families). Programmers can
deactivate the accelerators generation to reduce the overall
compilation time, if they have been previously generated.

On the other hand, Nanos++ is the OmpSs runtime
system. It takes care of executing tasks annotated by
the programmer in the available resources. The high-level
view of the execution environment is presented in Figure 3.

Nanos++ environment has a thread team created by
default, the dependence graph used to organize tasks that
still have pending data dependences to be resolved, and
the task pool representing all the ready tasks. Running
threads create tasks and insert them into the dependence
graph. When data dependences have been fulfilled, the
thread detecting this situation moves the dependence-free
tasks to the task pool. When a thread finishes the execution
of a task, it becomes idle and it looks for work in the
task pool. The Nanos++ runtime will also take care of the
possible heterogeneity expressed by the programmer and
the necessary memory transfers (copies).

On the FPGA side, an special IP, called Task Manager,
is in charge of the management of accelerator tasks
execution and finalization. It will provide the accelerator
with the information of a task, written by the Nanos++
runtime in shared memory. Then, once the accelerator
finalizes, the Task Manager will be signaled by the output
stream of the accelerator to indicate the end of the task.
Finally, the Task Manager will notify the Nanos++ runtime
of the finalization of the task.

B. Heterogeneity Support

Figure 1 example code includes a target device directive
that indicates two target devices for the defined task: smp
and fpga. This means that any invocation to this task
can be run either in the smp or the fpga, transparently
to the programmer. The code to be run is the same, one

#pragma omp target device(smp) copy_inout([BS]c) \
implements(matrix_multiply)

#pragma omp task in([BS]a, [BS]b) inout([BS]c)
void matmulBlockSmp(float a[BS][BS],

float b[BS][BS], float c[BS][BS]) {
const float alpha = 1.0;
const float beta = 1.0;
cblas_gemm(CblasRM, CblasNT, CblasNT, \

BS, BS, BS, alpha, a, BS, b, BS, beta, c, BS);
}

Figure 4. Implements version of SMP Matmul code (no castings done)

accelerated in the FPGA, and the another executed in the
SMP. In the case of the fpga device, the num instances
clause is used to express how many instances of the
given IP core (fpga task) the programmer decides to
generate; in this case three instances. Those tasks, of
the same type, may potentially run in parallel at runtime
in both smp and fpga. The runtime system will know
through the configuration file (xtasks.config) the number
of instances available of each accelerator type defined by
the programmer.

On heterogeneous environments, Nanos++ has a specific
subset of threads that represent each of the heterogeneous
devices. We call these threads helper threads. Figure 3
shows, on the left side, the code invoking the hetero-
geneous task matrix multiply and, on the right side, the
overview of threads and task pool in the runtime. The
orange thread (thread number 4, on the right hand side of
the Global thread team) in the figure is one of those helper
threads. In this particular example, it may represent one
FPGA accelerator.

Tasks can be also annotated with the imple-
ments(funcname) clause, indicating that such task is a
different implementation of the same algorithm that func-
name implements. This allows the runtime system to select
the best version to run at any given point in time. This
is done by applying a scheduling policy that takes these
alternative implementations into account.

Tasks annotated with the implements clause implement
the same functionality as other tasks but with a different
code. At compile time, two (or more) versions of the task
are built targeting different computing units. At runtime,
those tasks can be executed on an SMP core or on one or
more devices. This means that when the runtime system
finds one of these tasks in the ready queue, it can be
grabbed by a regular worker thread, that will execute the
SMP version of the task in a SMP core. Or the task can
be grabbed by one of the helper threads, and then the
device version of that task will be executed in the device
represented by the thread, transparently to the programmer
(as shown in Figure 3 for the Matrix Multiply). Figure 4
shows the code that implements the function listed in
Figure 1 in SMP by using OpenBLAS gemm.

C. Memory Transfers Support

Tasks executing in devices, with their own local mem-
ory, may need copy data from/to the device. In par-
ticular, the device memory space is main memory in
the SMP, accessible from the accelerators and the SMP
cores, physically contiguous, pinned and non-cacheable.
With copy deps clause the programmer indicates that all

the dependences will require, at runtime, device memory
space for copies between host memory and accelera-
tors local memory. Alternatively, copy in/out/inout(list-
of-variables-with-size) clauses indicate the list of param-
eters of the task that needs to be copied to/from the ac-
celerator and deactivate the, by default, copy deps clause.
In both cases, the runtime takes care of allocating device
memory and copies between user and device memory for
the list of parameters labeled as copies. Task parameters
that are not indicated to be copied by the programmer
should have been previously allocated in device memory
(using our Nanos++ runtime API) so that the accelerator
can access them. If any of the task parameters is a scalar,
it is directly passed to the accelerator.

As aforementioned, a wrapper is generated for each task
so that accelerators and runtime can communicate with
each other. The work to be done by the wrapper is to
get information of the task (address of each parameter)
and output final signal, and optionally (based on some
compilation flags), get/write tracing information, reserve
local memory for some of the parameters, copy the data
from/to device memory to/from local memory, and do
timing instrumentation. In detail, the wrapper reads the
address of each parameter of the accelerator using an input
stream port of the wrapper IP, which is connected to our
Task Manager IP (see Figure 2). Then, it maps the parame-
ter address to an IP port connected to the external memory,
using the AXI protocol, and copies the parameter data
from/to device memory to/from local memory, if required.
In case that copies are not requested, the programmer
kernel code can access the device memory without any
change. This makes programming easy and useful to apply
blocking techniques from inside the accelerator, as shown
in Figure 8 for the N-body.

D. Tracing Support

OmpSs@FPGA ecosystem allows tracing the execution
of Nanos++ threads (running in cores) and accelerators.
For the threads, it provides information at application and
runtime levels so that the programmer can analyze both the
application and runtime internals such as the creation of
tasks, task executions, taskwaits, etc. For the accelerators,
current support provides the user with information of
execution time of the data movements done by the wrapper
and computational time of the kernel. Figure 10 shows an
execution trace where this information is shown for three
accelerators of the Matrix Multiply application.

This tracing feature implies hardware support for timing
within the bitstream and is transparently done to the
programmer, which only has to activate the corresponding
compilation flag. The execution trace generated is done
using an internal tracing library and can be visualized with
Paraver [14].

IV. EXPERIMENTAL SETUP

Communication logic and hardware accelerators are
coded in C with Vivado HLS directives. The final system
designs are synthesized with Vivado Design Suite 2016.3.

Application Description Parameters
Matrix
Multiply

Blocked matrix multiply
in square blocks

Matrix size, Block size

Cholesky Blocked Cholesky decom-
position of a matrix

Matrix size, Block size

N-Body Blocked N-body simula-
tion

Number of particles, parti-
cles in a block, time-steps

Table I
SUMMARY OF APPLICATIONS’ CHARACTERISTICS

The hardware platform contains a Zynq Ultrascale+
MPSoC Chip XCZU9EG-FFVC900 [15]. It includes an
Application Processing Unit (APU) with 4 ARM Cortex-
A53 cores (operating at 1.1GHz) and an FPGA. It has
a 4GB DDR4 as main memory. Nowadays, bitstream
download is done before executing the application.

The Zynq Ultrascale+ runs an Ubuntu Linux 16.04,
where we perform the timing of sequential and parallel
code. We also use performance tools Extrae and Paraver
[14] to analyze the application behavior.

V. APPLICATIONS

Three applications have been analyzed with our current
workflow: Matrix Multiply, Cholesky and N-Body. Table I
summarizes the characteristics of each application. Vivado
HLS pragmas are not shown for Cholesky neither N-Body
for simplicity and space constraints. Those are basically
array_partition and pipeline II HLS pragmas.
These pragmas allow to exploit operational and memory
access parallelism, essential to obtain good performance.

Following subsections explain how each application
has been implemented in the heterogeneous system
through successive High Level Optimizations using the
OmpSs@FPGA workflow.

A. Matrix Multiplication

The first application ported to the OmpSs@FPGA
framework was the Matrix Multiplication. It is a key
application because it includes several of the properties
that are found in common HPC problems: regular depen-
dence pattern and a blocked implementation that involves
moving several times the same data to and from the
accelerators. Figure 1 presents the initial code of a matrix
multiply algorithm for a block of BS ×BS size that can
be used to implement a blocked matrix multiply.

In order to port this code to FPGA and use a good
part of its resources, some directives should be added to
take advantage of the parallelism in the innermost loop.
A better performance would be achieved when all the
multiplications and additions of this loop are performed
in parallel. Figure 1 shows the code with the High Level
Synthesis (HLS) pragmas used to obtain the parallel ver-
sion of the loop. The key pragma in the code is PIPELINE
II=1 that says that an iteration of the second loop should
start each cycle (II = 1). To obtain this performance,
the innermost loop should be completely unrolled. To
accomplish this goal, all the elements in a row of matrix a
and all the elements in a column of matrix b should be read
each cycle. Pragmas array partition make the compiler to
distribute a by columns (second dimension dim = 2) or

#pragma omp target device (smp,fpga) copy_deps num_instances(1)
#pragma omp task inout(A[BS*BS])
void spotrf(float *A);
... // Other kernels with OmpSs task definition
void Cholesky(float **A) {
int i,j,k;
for (k=0; k<NB;k++){

spotrf(A[k*NB+k]);
for (i=k+1;i<NB;i++)

strsm(A[k*NB+k], A[k*NB+i]);
for (i=k+1;i<NB;i++) {

for (j=k+1;j<i;j++)
sgemm(A[k*NB+i], A[k*NB+j], A[j*NB+i]);

ssyrk(A[k*NB+i], A[i*NB+i]);
} } }

Figure 5. Cholesky application with its four composing kernels

b by rows (first dimension dim = 1) in different block
RAM (BRAM) memories by a factor that is half the side
size of such matrices (as each BRAM has 2 read ports).

The first option to create a good accelerator for the
matrix multiplication in the FPGA was to try to create
an accelerator that fully fits in the FPGA. We found that
an accelerator with BS = 128 fits really well (even three
of them) in the used FPGA but with BS = 256 it was
also possible to obtain a successful compilation.

B. Cholesky decomposition

Cholesky Factorization is a decomposition of a Hermi-
tian, positive-definite matrix into the product of a lower
triangular matrix and its conjugate transpose. It computes
A = LL′, with A an n×n matrix and L lower-triangular.
The decomposition is made by blocks of BS size which
results in four different kernels. Figure 5 shows the code
of the Cholesky decomposition as it is decomposed in its
four kernels: spotrf, strsm, sgemm and ssyrk. The SMP
version is computed using the OpenBLAS version of the
kernels while the FPGA version implements the kernels
in C and compiles them through the HLS tool.

C. N-Body simulation

The N-Body simulation computes the problem of pre-
dicting the individual motions of a group of objects
interacting with each other. Figure 6 shows the main loop
(nbody) of the application. Data is split in blocks, and all
the forces are computed, for each particle against all the
other particles. Then, the particles velocity and positions
are updated with the forces previously computed. This is
done for as many time steps as desired.

In order to decompose the problem in simpler tasks, a
routine that computes the interaction of BS objects against
a set of other BS objects is used. The computation of the
forces for a block of particles is done considering all other
blocks of particles (no tree algorithm is used). Each call
to calc_forces_BLOCK function is defined as a task,
which allows the OmpSs programming model to execute
them in parallel when possible.

VI. SUPPORT TO PERFORMANCE IMPROVEMENT

With the help of OmpSs@FPGA, different techniques
can be used to improve the performance obtained with
the different applications analyzed. In this section, some
of these techniques will be reviewed.

#pragma omp target device(fpga)\
copy_in([PARTICLE_SIZE*BS]block1, [PARTICLE_SIZE*BS]block2)\
copy_inout([FORCE_SIZE*BS]forces)

#pragma omp task
void calculate_forces_BLOCK (for_ptr_t forces, \
part_ptr_t block1,part_ptr_t block2,char safe);

void calc_forces(force_t *forces,
part_t *bl, int n_blocks) {

for (int i = 0; i < n_blocks; i++) {
for (int j = 0; j < n_blocks; j++) {
for_ptr_t f0 = (for_ptr_t)(forces+i);
part_ptr_t b1 = (part_ptr_t)(bl+i);
part_ptr_t b2 = (part_ptr_t)(bl+j);
char safe = (b1 == b2);
calculate_forces_BLOCK(f0, b1, b2, safe);

} } }
...
void nbody(part_t *part,force_t *forces,

int n_blocks, int timesteps) {
for(int t = 0; t < timesteps; t++) {
calc_forces(forces, part, n_blocks);
update_part(n_blocks, part, forces);

}
}

Figure 6. N-body main loop and blocking version of the calculate forces

Name B 18Kb DSP48E FFs LUTs
2 BLOCK 88 (9.7%) 1k (40.2%) 236k (43.2%) 171k (62.5%)
ALL FPGA 44 (4.9%) 0.5k (20.1%) 123k (22.5%) 88k (32.3%)
2 SUBBLOCK 107 (11.7%) 1k (40.2%) 242k (44.3%) 177k (64.6%)

Table II
RESOURCES USED BY N-BODY KERNELS IN XCZU9EG

A. Blocking Performance impact

There may be applications with a significant amount of
work to be done that may not require any SMP computa-
tion, and then, could be completely executed in the accel-
erators. However, the limitation of the local memory inside
the accelerators (due to the available FPGA resources)
and also, the communication overhead associated, usually
reduce the possibility of performing all the computation
in the FPGA or the performance that can be achieved. A
common approach in task-based programming models is to
define tasks that can operate with a limited block size and
then, perform the overall computation by blocks. In the
case of FPGA accelerators, applying blocking in the code
running in the SMP and using the accelerators to perform
the block processing may imply several synchronizations
and communications, in addition to several copies of task
parameters between user and device memory. However,
applying blocking from the accelerator can help to de-
couple SMP and accelerator task executions and reduce
the total number of synchronizations between Nanos++
runtime and accelerators.

N-Body simulation is the selected application to demon-
strate how to use blocking to improve the performance
when using OmpSs@FPGA. The first implemented ver-
sion simply puts the kernel calc_forces_BLOCK into
the FPGA trying to make the computation as fast as
possible. It was possible to fit 2 instances of the function
that computes the problem for 128 particles in the FPGA.
Table II, row 2 BLOCK shows the resources used by this
and all the other implementations presented in this section.
The working frequency for all of them is 200MHz.

With the OmpSs@FPGA ecosystem it is easy to com-
pare the performance obtained by the version that executes

Figure 7. Time of N-Body execution with different blocking.

the tasks in the FPGA against the parallel version that uses
the SMP cores to compute the tasks. Simply by changing
the target device in the first line in Figure 6 from smp to
fpga and back, the same code can be executed using the
different resources in the system (using Nanos arguments
to adjust the number of resources used in each execution).
Figure 7 shows the time in logarithmic scale used by these
OmpSs implementations when using a different number
of resources to compute a 16384 particles problem with 8
time steps. As it can be seen in the figure, the runtime is
able to obtain a near perfect parallelism when executing in
the 4 cores available in the system. However, it can also
be seen that the FPGA implementation is several times
(15x) faster than the SMP implementation, making this
problem a good fit for FPGA execution in the analyzed
system. On the other hand, it can easily be observed
that the 2 accelerators version (2 FPGA) has almost the
same performance as the 1 accelerator version (1 FPGA).
Nanos helps testing all the versions by simply changing
the execution command line, allowing the programmer to
see that there is a problem with this accelerator. In this
case, the accelerators are so fast that the capacity of the
threads to create tasks is the performance limiting factor.

To further improve the performance, a new accelerator
was programmed that took care of executing the whole
calc_forces function inside the FPGA (ALL FPGA
column in Figure 7 and ALL FPGA row in Table II). Fig-
ure 8 shows this calculate forces blocking version from
inside the FPGA. In this case the calculate forces BLOCK
is not defined as a task. The parameters forces, block1,
block2 are specified to be copied. However, we have
specified, at compile time, that the wrapper does not
reserve local memory for the parameters (neither perform
copies) but, connects the parameter variables of the task
to external memory ports of the IP. That means that each
access to the data of the parameters is actually accessing
the external device memory transparently to the user.
Programmers can perform copies to local memory (local
variables in the code) and process the local copy (in
BRAM) to avoid continuously accessing external memory.
In the code of the figure the programmer uses memcpy
(actually this memcpy is interpreted and optimized by
Vivado HLS) to perform copies to local variables. These
local variables are usually mapped to BRAM of the FPGA.
As it can be seen this accelerator is several times faster
than the previous one, although it doesn’t use even half
the resources available in the FPGA fabric, it doesn’t make
sense to fit two of them in it because there is no parallelism

#pragma omp target device(fpga) \
copy_in([PART_BSIZE*n_blocks]block1) \
copy_in([PART_BSIZE*n_blocks]block2) \
copy_inout([FORCE_BSIZE*n_blocks]forces)

#pragma omp task
static void calculate_forces(for_ptr_t forces,

part_ptr_t block1, part_ptr_t block2, int n_blocks) {
const int pbs = sizeof(float)*PART_BSIZE;
const int fbs = sizeof(float)*FORCE_BSIZE;
for (int i = 0; i < n_blocks; i++) {

for_ptr_t lforces[FORCE_BSIZE];
part_ptr_t lblock1[PART_BSIZE];
memcpy(lforces, forces + i*FORCE_BSIZE, fbs);
memcpy(lblock1, block1 + i*PART_BSIZE , pbs);
for (int j = 0; j < n_blocks; j++) {

float lblock2[PART_BSIZE];
memcpy(lblock2, block2 + j*PART_BSIZE, pbs);
calculate_forces_BLOCK(lforces,

lblock1, lblock2, (i == j));
}
memcpy(forces + i*FORCE_BSIZE, lforces, fbs);

}}

Figure 8. FPGA Blocking version of the calculate forces function

Name B 18Kb DSP48E FFs LUTs
1 128 Acc 287 (15.7%) 642 (25.5%) 76147 (13.9%) 54462 (19.9%)
1 256 Acc 648 (35.5%) 1280 (50.8%) 183646 (33.5%) 107207 (39.1%)
3 128 Acc 537 (58.9%) 1920 (76.2%) 311271 (56.8%) 169670 (61.9%)
3 256 DF 644 (70.6%) 1925 (76.4%) 341902 (62.4%) 208906 (76.2%)

Table III
RESOURCES USED BY MATRIX MULTIPLY KERNELS

available. To obtain some parallelism over this last version,
a new FPGA accelerator was developed. This new version
receives the list of blocks to compute and iterates over
them. With this approach (FPGA SB columns in Figure 7
and SUBBLOCK row in Table II) two instances of the
accelerator fit in the FPGA and were able to obtain a 1.87x
over the previous version and a 128x over 1 SMP core.

B. Implements and Dataflow Performance impact

In order to obtain the best possible performance out
of heterogeneous systems it is essential to use all the
available resources whenever it is possible. In addition
to making easy the programmability of FPGA acceler-
ators and taking care of the necessary data transfers,
OmpSs@FPGA also presents a implements clause that is
really useful for heterogeneous systems.

Along with the implements and the Matrix Multiply pre-
sented above, different matrix multiply accelerator sizes
were tested in the FPGA fabric available in the system.
Table III shows in rows 1 128 Acc, 3 128 Acc and 1
256 Acc how many resources took to synthesize one or
three accelerators of BS size 128 × 128 (128), or one
accelerator of BS size 256×256 (256). All the accelerators
listed worked at 300MHz and as it can be deduced from
the reported sizes it is not possible to fit four 128 size
accelerators or two 256 size accelerators in the FPGA.

Figure 9 displays the performance obtained by the three
different approaches. Columns labeled 0 SMP show the
performance obtained by executing the application in the
FPGA accelerators alone, while columns 1 SMP to 4 SMP
display the result of using, in parallel with the accelerators,
from 1 to 4 threads running tasks with the OpenBLAS
code in Figure 4. As it can be seen, the best approach in
terms of performance is not to fit a single large accelerator

Figure 9. GFLOPs for Matrix Multiply with different FPGA accelerators

Figure 10. FPGA exec. trace with 3 128 Matrix Multiply accelerators

(1 256 Acc) but to use three smaller accelerators in
parallel. Also, note that for any possible solution, the use
of the SMP to compute matrix multiplication blocks in
parallel always improves the resulting performance. When
using four threads with 1 accelerator or three or more
threads with 3 accelerators the performance drops from
the maximum. This is due to the fact that there is over-
subscription. Effectively, with 1 accelerator, 1 thread is
used to send tasks to the FPGA. With three accelerators,
2 threads should be used in order to feed the accelerators
properly. However, the runtime is intelligent enough to
always use the best approach in the default configuration
given the maximum performance for every configuration.
Also, it is important to note that the exploration of all these
possibilities is done with the same code, changing only the
BS size and the number of instances of the accelerators,
so reducing the programmability effort to a minimum.

In order to further improve the performance results, the
trace of the execution with 3 128 Matrix Multiply accel-
erators was extracted. Figure 10 shows the trace of this
execution. The four top lines in blue represent the threads
and do not show any information. The three bottom lines
show in blue when the corresponding FPGA accelerator
is not working and in yellow when it is reading data. In
brown it can be seen the computation time and in green
the writing of the output matrix back to the memory. As it
can be seen from the trace, the computation time is around
4 times shorter than the data movement time. Furthermore,
the data copies are not overlapped with the computation.
From this observation a way to improve the accelerators
was devised. The idea is that doubling the accelerator size
increases the data size by four times but the computation
size by eight times. Therefore, if the number of cycles
per operation is not significantly increased this will result
in a better balance in the accelerator design while not
increasing the DSP usage.

Following this idea to design better balanced accelera-
tors, the number of computations were limited by setting
the initiation interval of the innermost loop to 2 cycles

Name B 18Kb DSP48E FFs LUTs
fgemm32 68 (3.7%) 160 (6.4%) 19771 (3.6%) 15559 (5.7%)
fsyrk32 36 (2.0%) 160 (6.4%) 19822 (3.6%) 16149 (5.9%)
ftrsm32 36 (2.0%) 104 (4.1%) 11482 (2.1%) 10875 (4.0%)
fpotrf32 10 (0.6%) 22 (0.9%) 3487 (0.6%) 3302 (1.2%)
fgemm64 74 (4.1%) 160 (6.4%) 23887 (4.4%) 30032 (11.0%)
fsyrk64 42 (2.3%) 160 (6.4%) 23849 (4.4%) 30727 (11.2%)
ftrsm64 42 (2.3%) 250 (9.9%) 28734 (5.2%) 25753 (9.4%)
fpotrf64 28 (1.5%) 22 (0.9%) 3514 (0.6%) 3350 (1.2%)

Table IV
RESOURCES USED BY CHOLESKY KERNELS IN XCZU9EG-FFVC900

(so making the same effective computations in the 256
DF accelerator as in the 128 one). Also the DATAFLOW
pragma was used in order to overlap the data copies
with the computation. The result of these changes can be
observed in Table III row 3 256 DF and Figure 9 column 3
256 DF. These new accelerators fit in the FPGA available
in the system while nearly doubling the performance of the
previous 3 128 accelerators. They take the same time to
compute the results but transfer half the blocks and overlap
part of these transfers with the computation. In addition
the implements clause still adds some performance to the
FPGA by using the SMP achieving 76 GFLOPs with little
more that 5 Watts consumption.

C. Heterogeneity and Programmability impact

Another common problem when dealing with complex
applications applications composed by different kernels in
heterogeneous environments is how to distribute such ker-
nels over all the different resources. The OmpSs@FPGA
environment can help with this distribution by allowing
different possible mappings to be tested easily and without
burden to the programmer.

Cholesky decomposition application is composed of
four different kernel tasks that present a complex de-
pendence pattern that grows exponentially with the size
of the problem. Table IV shows the FPGA resources
used by each kernel of the Cholesky application when
implemented in the FPGA when different blocking sizes
were used in the application. As it can be extrapolated
from the results, it is impossible to fit all the 4 kernels
with a blocking size of 128 in the FPGA due to the limited
resources available. However, from previous results it
is known that the bigger the accelerator, the better the
obtained performance.

One of the first implications of using one accelerator for
each kernel is that the execution in the FPGA would be
a sequential one. However, using the implements clause
explained in the previous section would help us to im-
prove the performance significantly by allowing threads to
also execute kernel functions. Figure 11 shows the time
used when executing 8 different versions of the same
Cholesky problem to solve a 2k equation matrix. Two
implementations with different block sizes (32 and 64)
were tested using the SMP cores to solve the problem
(using OpenBLAS implementations of the kernels), using
the FPGA accelerators to solve the same problem and also
using both (through the implements clause).

As it can be seen in Figure 11 the initial FPGA

Figure 11. Time of Cholesky execution with different task mappings

alternative (column FPGA) of the code do not lead to
good performance results compared against the SMP only
alternative. Even the version that uses both SMP and
FPGA (SMP+FPGA) to compute the result is slower than
the SMP only version. On one hand, the reason behind this
behavior is that including four different accelerators in the
FPGA limits the performance of each accelerator. On the
other hand, the Cholesky algorithm is not well-balance
among all its kernels. As an example, when using tasks
that operate over blocks of 32 by 32 elements, there are
41664 gemm tasks and only 4096 tasks of the other types.
Even when the implements clause is used and the tasks can
be executed in both SMP cores and FPGA (SMP+FPGA),
mainly all the tasks executed in SMP cores in parallel with
the accelerators are gemm tasks.

To solve the aforementioned unbalance, a second FPGA
accelerated version of Cholesky (SMP+GEMM) is im-
plemented with 4 gemm accelerators on the FPGA. The
remaining kernels were implemented using the SMP cores.
From the point of view of the programmer, this new
version only implies increasing the number of instances
of the gemm FPGA accelerator and not including the
instances of the other accelerators, a change that can easily
done in the source code. The rest of the whole program
remains exactly the same. As it can be seen in Figure 11
columns SMP+GEMM, the performance is significantly
better with this approach. This last version outperforms
the initial SMP only version and illustrates how using
the OmpSs@FPGA framework simplifies the accelerator
space exploration keeping the necessary changes made by
the programmer to a minimum.

VII. CONCLUSIONS

This paper presents the OmpSs@FPGA ecosystem
that greatly improves programmability when dealing with
heterogeneous systems that involve SMPs and FPGAs.
OmpSs@FPGA not only offloads application functionality
to FPGAs, it also takes care of data movements, replica-
tion of accelerators, implementation of the same task in
different computing units and parallel execution in all the
available resources decided at runtime.

This paper demonstrates how the framework can be
used to accelerate different applications through different
techniques. The results show that OmpSs@FPGA facil-
itates high-level language programming on systems that
integrate FPGAs, being key to obtain performance out of
them with a reasonable amount of effort.

ACKNOWLEDGMENTS

This work is partially supported by the European Union
H2020 program through the EuroEXA project (grant
754337), and HiPEAC (GA 687698), by the Spanish
Government through Programa Severo Ochoa (SEV-2015-
0493), by the Spanish Ministry of Science and Technology
(TIN2015-65316-P) and the Departament d’Innovació,
Universitats i Empresa de la Generalitat de Catalunya, un-
der project MPEXPAR: Models de Programació i Entorns
d’Execució Paral·lels (2014-SGR-1051).

REFERENCES

[1] Vineyard, “Objectives and rationales of the project,” 2018,
vineyard-h2020.eu/en/project/objectives-and-rationale-of-
the-project.html.

[2] Maxeler, Inc., “The open spatial programming language,”
2014, openspl.org.

[3] Khronos Group, Inc. (2018) Opencl. [Online]. Available:
www.khronos.org/opencl/

[4] Xilinx, Inc. (2018, July) Sdsoc development environment.
[Online]. Available: www.xilinx.com/sdsoc

[5] Ecoscale Consortium. (2018) Project description. [Online].
Available: ecoscale.eu/project-description.html

[6] Xilinx, Inc. (2017, September) Vivado High-Level
Synthesis. [Online]. Available: www.xilinx.com/hls

[7] A. Canis et al., “LegUp: An open-source high-level syn-
thesis tool for FPGA-based processor/accelerator systems,”
ACM Transactions on Embedded Computing Systems,
vol. 13, no. 2, pp. 24:1–24:27, September 2013.

[8] B. Fort et al., “Automating the Design of Proces-
sor/Accelerator Embedded Systems with LegUp High-
Level Synthesis,” in 2014 12th IEEE International Confer-
ence on Embedded and Ubiquitous Computing, Aug 2014,
pp. 120–129.

[9] F. Sainz et al., “Leveraging ompss to exploit hardware
accelerators,” in 26th IEEE International Symposium on
Computer Architecture and High Performance Computing,
SBAC-PAD 2014, Paris, France, 2014, pp. 112–119.

[10] A. Duran et al., “Ompss: a Proposal for Programming Het-
erogeneous Multi-Core Architectures,” Parallel Processing
Letters, vol. 21, no. 2, pp. 173–193, 2011.

[11] S. Neuendorffer and F. Martinez-Vallina, “Building
Zynq®Accelerators with Vivado®High Level Synthesis,” in
Proceedings of the ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, ser. FPGA ’13. New
York, NY, USA: ACM, 2013, pp. 1–2.

[12] Intel Corp. (2017, September) Quartus Prime. [Online].
Available: www.altera.com/products/design-software/fpga-
design/quartus-prime/what-s-new.html

[13] PM - BSC. (2018, September) OmpSs@FPGA. [Online].
Available: pm.bsc.es/ompss-at-fpga

[14] BSC-CNS. (2016) Performance Tools. [online].
www.bsc.es/computer-sciences/performance-tools.

[15] Xilinx, Inc. (2017) ZYNQ UltraScale+
MPSoC Overview. [Online]. Available:
www.xilinx.com/support/documentation/data sheets/ds891-
zynq-ultrascale-plus-overview.pdf

