Future Generation Computer Systems 94 (2019) 148-159

Contents lists available at ScienceDirect . =
FIGICIS!

Future Generation Computer Systems
journal homepage: www.elsevier.com/locate/fgcs s

Considerations in using OpenCL on GPUs and FPGAs for N
throughput-oriented genomics workloads e
Nicola Cadenelli ***, Zoran Jaksi¢?, Jorda Polo?, David Carrera *”

2 Barcelona Supercomputing Center (BSC), C. Jordi Girona 1-3, 08034, Barcelona, Spain
b Universitat Politécnica de Catalunya (UPC) - BarcelonaTECH, Spain

HIGHLIGHTS

e Refactoring of OpenCL GPU code to efficiently run on multiple FPGAs.
o Multi-kernel FPGA design for k-mer generation that saturates on-board DRAM bandwidth.

e Time, energy, and power evaluation of GPU and FPGAs offloading.

o Analysis of how accelerators parts (i.e., off-chip memory and PCle) can hinder performance.

o Estimation of how next FPGA boards constitute a real asset for more energy-efficient genomics workloads.

ARTICLE INFO ABSTRACT

Article history:

Received 11 June 2018

Received in revised form 4 October 2018
Accepted 17 November 2018

Available online 22 November 2018

The recent upsurge in the available amount of health data and the advances in next-generation sequencing
are setting the ground for the long-awaited precision medicine. To process this deluge of data, bioinfor-
matics workloads are becoming more complex and more computationally demanding. For this reasons
they have been extended to support different computing architectures, such as GPUs and FPGAs, to
leverage the form of parallelism typical of each of such architectures.

Keywords: The paper describes how a genomic workload such as k-mer frequency counting that takes advantage
FPGAs of a GPU can be offloaded to one or even more FPGAs. Moreover, it performs a comprehensive analysis
GPUs of the FPGA acceleration comparing its performance to a non-accelerated configuration and when using

OpenCL a GPU. Lastly, the paper focuses on how, when using accelerators with a throughput-oriented workload,
Ee:](gncs one should also take into consideration both kernel execution time and how well each accelerator board

overlaps kernels and PCle transferred.

Results show that acceleration with two FPGAs can improve both time- and energy-to-solution for the
entire accelerated part by a factor of 1.32x. Per contra, acceleration with one GPU delivers an improvement
of 1.77x in time-to-solution but of a lower 1.49x in energy-to-solution due to persistently higher power
consumption. The paper also evaluates how future FPGA boards with components (i.e., off-chip memory
and PCle) on par with those of the GPU board could provide an energy-efficient alternative to GPUs.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CCBY license
(http://creativecommons.org/licenses/by/4.0/).

Energy-to-solution

1. Introduction

The recent upsurge in the available amount of health data and
the advances in next-generation sequencing are setting the ground
for the long-awaited precision medicine. However, even if publicly
accessible genomics and biomedical datasets are becoming more
and more popular and sequencing a human genome has become
much faster and cheaper than a few years ago, the workloads that
process this deluge of data are becoming more and more complex

* Corresponding author at: Barcelona Supercomputing Center (BSC), C. Jordi
Girona 1-3, 08034, Barcelona, Spain.
E-mail addresses: nicola.cadenelli@bsc.es (N. Cadenelli), zoran.jaksic@bsc.es
(Z.]Jaksic), jorda.polo@bsc.es (J. Polo), david.carrera@bsc.es (D. Carrera).

https://doi.org/10.1016/j.future.2018.11.028

and more computationally demanding. In order to make precision
medicine possible at scale within reasonable computer and power
envelops, different players from academia, industry, healthcare,
and government agencies are working together in the attempt to
improve the performance and energy efficiency of such workloads.

Owing to this reason, bioinformatics workloads have been
ported to different computing architectures, such as GPUs and
FPGAs, to leverage the form of parallelism typical of each of such
architectures. GPUs are popular due to their embarrassingly paral-
lel architecture that offers multithreaded SIMD (Single Instruction
Multiple Data) with thousands of cores. On their hand, FPGAs are
known for their lower performance per watt than GPUs and CPUs.
Despite this, they have traditionally used RTL-based (Register-
Transfer Level) languages, such as Verilog and VHDL, leading to

0167-739X/© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.future.2018.11.028
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2018.11.028&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:nicola.cadenelli@bsc.es
mailto:zoran.jaksic@bsc.es
mailto:jorda.polo@bsc.es
mailto:david.carrera@bsc.es
https://doi.org/10.1016/j.future.2018.11.028
http://creativecommons.org/licenses/by/4.0/

N. Cadenelli, Z. Jaksic, J. Polo et al. / Future Generation Computer Systems 94 (2019) 148-159 149

longer development cycles and poor code maintainability. How-
ever, FPGAs have recently become more accessible thanks to high-
level languages like OpenCL, a portable programming language
that allows executing the same code across a variety of platforms.
Even though OpenCL offers code portability, performance porta-
bility between hardware platforms is not guaranteed and rare to
achieve due to the fundamental differences among architectures.
Consequently, the porting of an application from one architecture
to another requires a consistent refactoring of the offloaded code
to adopt device-specific optimizations. Additionally, being a more
mature product, discrete GPU boards are usually equipped with
high-performance on-board memory (i.e., GDDR5X or HBM2) and
a high-speed full-duplex interconnection (i.e., PCle Gen3 x16 with
adual copy engine). Whereas, discrete FPGA boards are, as of today,
a still younger product that is catching up and that usually offers
much less performing memory (e.g., DDR4) and a slower half-
duplex connection with the host system (e.g., PCle Gen3 x8 with a
single copy engine). As a result, when evaluating the usage of these
kinds of boards for throughput-oriented workloads, one cannot
look only at the execution time of kernels completely disregarding
transfers between the host and the device.

To evaluate the efficiency of GPUs and FPGAs for throughput-
oriented genomics workloads, we test them with SMUFIN [1],
a state-of-the-art variant calling method that performs a direct
comparison of normal and tumor genomic samples from the same
patient without the need of a reference genome, leading to more
comprehensive results. Software implementations of this method
are meant to run at scale to process repositories with thousands
of human DNA samples to set the ground for precision medicine.
For these reasons, the SMUFIN method is an important real-world
use case to analyze. In its latest implementation [2], the initial
part of this workload, that consists of a k-mer frequency counting
algorithm, was adapted to exploit GPUs. In this paper, we de-
scribe how we ported this algorithm to FPGAs, and we compare
its performance against the original CPU-only and GPU-accelerated
versions.

The contributions in this work can be summarized as follows:

e We describe how the OpenCL GPU algorithm for k-mers gen-
eration and shuffling was redesigned from scratch to run
in FPGAs using a multi-kernel approach efficiently. Plus, we
show how this approach could be extended to multiple FPGAs
using a data partitioning mechanism.

e We carry out a scalability analysis of the multi-kernel ap-
proach outlining how the solution scales linearly with the
number of kernels replicas until a point where performance is
limited by off-chip memory and by the high resource utiliza-
tion - that in turn lowers the clock frequency of the design.
Additionally, we show how the random memory accesses of
Bloom filters kernels to off-chip DDR4 limit the scalability.

e We evaluate the impact on the entire k-mer frequency count-
ing algorithm. Results show that two FPGAs can outperform
a CPU-only execution by a factor of 1.32x in both time-
and energy-to-solution. Instead, GPU offloading yields an im-
provement of 1.77x in time-to-solution but of a lower 1.49x
in energy-to-solution.

e We provide samples of the power consumption to show
how the GPU noticeably increases the power envelope of the
node. On the other hand, the two FPGAs do not increase the
power consumption; maintaining it on the same range or
even lowering by few Watts. With these power samples, we
clarify why the GPU offers a lower improvement in energy-
to-solution than it does in time-to-solution (1.49x vs. 1.77x).
Whereas, acceleration with two FPGAs exhibits an identical
improvement in both metrics.

o We characterize how the inferior on-board memory and PCle
capabilities of current FPGA boards hinder the performance of
the entire workload. Besides, we outline how, thanks to their
lower power consumption, next FPGA boards constitute a real
asset for more energy-efficient genomics workloads.

The remainder of this paper is as follows. Section 2 introduces
k-mer frequency counting, an overview of the SMUFIN method
and its GPU acceleration. Section 3 surveys related work. Next,
Section 4 presents the FPGA acceleration method in detail. Sec-
tion 5 discusses results of the proposed changes. Finally, Section 6
concludes.

2. Background
2.1. Genomics and k-mer frequency counting

A typical input of a genomics application consists of sequenced
DNA samples usually taking hundreds of GB. Such samples are
stored as heavily compressed data and include short sequenced
strings of DNA nucleobases called reads. Each sequenced genome
sample typically contains 10° to 10!° reads; depending on some
factors such as depth of coverage, which indicates how many times
each DNA position is represented in the sequenced genome. The
length of each read is in the order of 10 s to 100 s of bases that
are represented by the four character alphabet {4, C, G, T}. In
a sequenced DNA sample, along with each base, there’s also an
associated score that measures its quality; doubling the amount
of data. Data that, for a whole human genome, can easily reach
around 300 GiB. As a consequence of this enormous amount of
data, offloading genomics applications to accelerator like FPGAs
and GPUs has become a common trend.

Moreover, many genomics applications require splitting DNA
reads into smaller pieces called k-mers. k-mers of a nucleic acid
read are all the possible sub-sequences within the original read
which have a length k. The amount of k-mers in a read of length
M is M — k + 1. For instance, the number of 8-mers in a sequence
of 10 bases is 10 — 8 + 1 = 3, meaning ACGGCAGCTG has the fol-
lowing 8-mers: ACGGCAGC, CGGCAGCT, and GGCAGCTG. Counting
the frequencies of k-mers is widely used for genome assembly and
error detection, but it also has other applications such as sequence
alignment and variant calling [3,4].

2.2. SMUFIN and its k-mer frequency counting

SMUFIN is a state-of-art method whose peculiarity is the com-
parison of normal and tumor genomic samples of the same pa-
tient without the need for a reference genome [1]. The basic idea
behind this method can be summarized in the following steps:
(i) input two sets of nucleic acid reads, normal and tumoral; (ii)
build frequency counters of normal and tumoral substrings in the
input reads; and (iii) compare normal and tumoral counters to find
imbalances, which are then extracted as candidate positions for
DNA mutations. The method is meant to run at scale to process
repositories with thousands of human DNA samples to extract can-
didate somatic mutations for each patient. This output, together
with the clinical records of each patient, will help biologists to
identify common groups of mutations among patients with the
same disease and vice versa. In other words, this method could
allow the discovery of what mutations lead to a particular disease.
Software implementations of this method are going to be executed
at scale making both time-to-solution and energy-to-solution cru-
cial factors.

The latest software implementation of the SMUFIN method [2]
relies upon an initial k-mer frequency counting algorithm - Fig. 1.

150 N. Cadenelli, Z. Jaksic, J. Polo et al. / Future Generation Computer Systems 94 (2019) 148-159

Input
(300 GB)

.
SFT~ K-mer ~7~~«
/ \ 7
[{ Prune 1 Table ([yp
[m!
\\
N
Nl r—Hh
Bloom Frequency
Filter Table
(9 GB) (600 GB)

K-mer Frequency Counting

Output

Index Index

(200-500 GB) (200 GB)

Fig. 1. SMUFIN’s variant calling architecture: overview of units and its data flow. In this example, computation is distributed among 2 different nodes. Each node reads the
entire input and uses a data partitioning scheme to discard k-mers not belonging to their partition. Prune and Unify units are optional and used to run in configurations with

less than 2 TB of DRAM.

Due to the peculiarity of the method, that takes as input normal and
tumor genomic samples of the same patient, the algorithm counts
k-mers from both kind of input sample building a frequency table
of around 600 GB per each patient and it is used in the later units of
the software as input. This implementation of the k-mer counting
algorithm is designed to handle whole genome k-mers for values of
kin the range of 24 < k < 32. Within this range k-mers are unique
enough to provide useful results. For values outside this range the
results would become either too general (for k < 24) producing
meaningless results or too selective (for k > 32) risking to miss
potential mutations. This algorithm consist in the following three
units:

e Prune: Produces a Bloom filter that tells whether each k-
mer is observed more than once, or not, in both normal and
tumoral input genomes. This filter is built using a chain of two
simple Bloom filters where only those k-mers already in the
first filter (i.e., seen before), plus eventual false positives, are
propagated to the second one. Once processed both genomes
entirely, the second and smaller Bloom filter of the chain
constitutes a structure that tells whether a k-mer is unique
or not in the two genomes. This filter is used in the following
Count unit to discard unique k-mers that are not relevant
for the algorithm, reducing the memory requirement. In fact,
albeit the size of the second Bloom filter can be as high as 9
GiB, it allows sparing hundreds of GB required to store unique
k-mers in a simple list or directly in the frequency table.

e Count: Builds a frequency table of normal and tumoral k-
mers using the Bloom filter generated in the previous unit
to discard unique k-mers. Intermediate tables are eventually
swapped to storage if the system does not have enough DRAM
available.

e Unify: Combines frequency tables swapped in the previous
unit. This unit also changes the memory layout of the tables
to its expected form required by the following units. Memory
layout that can change according to the kind of DNA analysis
being executed in the next unit of the application. Lastly, this
unit also removes false positives given by the Bloom filter
(i.e., unique k-mers). An operation that, at this point, is very
simple because it only requires to check if the sum of the
normal and tumoral counters in the frequency is equal to one.
This unit is not accelerated so it’s not discussed further in this
paper and it’s not taken into account in the result section.

This latest implementation of the method, makes use of a data
partitioning scheme to spread the k-mers, thus the workload,

among different CPU threads but also among multiple nodes if
needed. This partitioning scheme is based on a simple base-match
criterion defined a priori that uses statistical data on k-mer distri-
bution to spread the amount of k-mers equally into partitions. The
work we present here focuses only on single node configurations;
thus the partitioning scheme is used to spread the work among
multiple CPU threads; usually with as many partitions as the num-
ber of CPU consumer threads. The main benefit of this partitioning
of the k-mers is that it enables CPU consumer threads to work on
dedicated data structures - chain of two Bloom filters or frequency
table depending on which unit is being executed - removing the
need to synchronize accesses to the data structure. Note that, the
aggregation of all frequency tables or bloom filters can be seen as
a big unique data structure covering the entire k-mers domain.

Additionally, the latest implementation enables the offload-
ing of some computation intensive operations of the Prune and
Count units to a GPU. Offloading, takes place by splitting the
input genomes into many chunks - hereinafter referred to as
input chunks - and adopting a 5-step double buffering pipeline to
overlap CPU/GPU computation and PCle transfers. At each cycle of
the pipeline each step works on a different chunk of data. In more
detail, the five steps comprise: (i) CPU loader threads read and
decompress input files from storage to an input chunk in DRAM;
(ii) PCle transfers of an input chunk containing DNA sequences
and quality markers from host DRAM to GPU on-board memory;
(iii) GPU kernels execution to generate k-mers from input DNA
sequences; (iv) PCle transfers of k-mers from GPU to host DRAM;
and (v) CPU consumer threads that insert k-mers into the chain
of Bloom filters in the Prune unit or into the frequency tables in
the Count unit. The GPU algorithm counts of five different kinds of
kernels executed one after the other per each input chuck. The first
four kernels are executed only once per each input chuck. Their
aim is to generate all k-mers from the input DNA reads and to
shuffle them according to partition - thus, CPU consumer thread -
they belong to. Differently, the last kind of kernel is executed, per
each input chunk, as many time as many partitions. Its purpose
is to unburden CPU consumer threads of some or all Bloom filters
lookups taking advantage of the high bandwidth memory typical
of GPUs. The kernels can be summarized as follows:

e Zero-out kernel: Resets all device-side data shared among
different kernels from the previous cycle of the pipeline.

e Encode kernel: Generates all k-mers from the DNA reads and
builds a global histogram to count how many k-mers belong
to each partition in the entire input chunk. Then, OpenCL

N. Cadenelli, Z. Jaksic, J. Polo et al. / Future Generation Computer Systems 94 (2019) 148-159 151

work-items of each work-group collaborate to store all k-
mers of each group already shuffled at a group level. Finally,
it also stores information like the global histogram and the
offset of each work-group so to be used as input in the next
kernels.

e Prefix-sum kernel: Performs an exclusive prefix-sum on the
global histogram.

o Shuffle kernel: Reads and rewrite all k-mers generated in the
Encode kernels to shuffle them by the partition they belong
using the exclusive prefix-sum values as offsets.

e Bloom Filter kernel: Tests whether each k-mer is the second-
level Bloom filters or not. This is the only kernel that be-
haves differently depending on the unit being executed. In
fact, in the Prune unit, this kernel collaborates with the CPU
consumer threads in checking if each k-mer is already in the
second-level. If that is the case, there is no need to add that
same k-mer again to the chain of Bloom filters. When this
happens, the kernel marks the k-mer as invalid so that the
CPU threads will know to ignore it. In other words, the GPU
helps the CPU preventing useless lookups and adds to the
chain of Bloom filters. In the Count unit instead, this kernel
unburdens the CPU of all the lookups to the Bloom Filters and
marks as invalid those k-mers not in the filter - k-mers seen
only once in the whole input.

As Algorithm 1 shows, the code resembles a parallel count sort
that uses SMUFIN data partitioning scheme to shuffle k-mers by the
partition they belong to. With input chunks of hundreds of MB and
containing millions of DNA reads, the code takes advantage of the
high level of parallelism offered by GPUs and showed a reduction
of the time-to-solution for the entire k-mer frequency counting
algorithm [2]. In the following sections we describe how this GPU
code was redesigned to work on FPGAs.

3. Related work

Thanks to high-level languages such as OpenCL, designing FP-
GAs became more accessible and we expect that always more code
from all possible domains will be ported to FPGAs. However, to
achieve good performance an extra effort to port and optimize the
code for FPGAs must be made. In this direction, IntelFPGA Design
Examples offers basic OpenCL example for a range of different
optimizations. Among these, [5] shows how channels and multi-
ple kernels can be used to spread the work to multiple pipeline
(kernels). Similarly, [6] studies how the multi-kernel design can
be used for relational databases. However, very little was found
about comparing OpenCL performance portability between GPUs
and FPGAs on real-world fully fledged applications [7-9]. In fact,
most of the literature focuses either on synthetic benchmarks like
in [10,11], or only on the kernel time completely disregarding
PCle transfers between host and device, and without showing the
overall impact on the application. In particular, in [7] the authors
showed how Cherenkov angle reconstruction algorithm, an algo-
rithm used in high energy physics, is 3.6x slower on an FPGA than
on two GPUs but that, when PCle transfer times are accounted
for, the FPGA is only 1.4x slower. Proving that does not matter
how fast a kernel is, if the transfer component is much larger,
the overall speedup will be significantly reduced. Furthermore,
because of the low power profile offered by the FPGA, the single
FPGA implementation is 3.4x more energy-efficient than the dual-
GPU implementation.

With regards of genomics, different efforts has been done to
exploit FPGAs using OpenCL for Smith-Waterman algorithm [12-
16] and for DNA Assembly with De Bruijn Graphs [17]. Others
instead [9], explored the acceleration of the PairHMM algorithm
for the GATK (Genome Analysis Tool Kit) mapping the algorithm

into a 2D systolic array. Results shown an improvement of peak
performance of 3.4x over the performance obtained with a GPU
NVIDIA Tesla K40 and of a 2x over the best-practice with Intel AVX
technology using 44 cores. However, the overall speedup of the
entire application over the best Intel AVX implementation was of
alower 1.2x; confirming how important it’s to consider the overall
impact on the application.

The work presented in [18] studies how k-mer counting using
Bloom filters on FPGA can get one order of magnitude faster when
using newer memory technologies such as HMC (Hybrid Memory
Cube) instead of DDR memory, proving how FPGAs have the poten-
tial to become more competitive with the adoption of more recent
memory technology. Genomics workloads and pipelines are, in
general, a good fit for resource disaggregation but their large-scale
exploitation hasn’t been explored much and usually focuses on
adapting the existing algorithm. With SMUFIN instead, the work
presented in [19] shown that NVMe over Fabrics storage can be
shared across multiple instances running on different nodes with
a minimal penalty in performance.

4. Acceleration method

The characterization of the application presented in [2] showed
that the main bottleneck for the Prune and Count units is the
randomness of accesses to host DRAM given by lookups and in-
sertions in Bloom Filters and hash tables. In this paper, we do not
discuss a method to improve the data locality, nor we intend to. We
focus instead, on how we redesigned the accelerated GPU code for
FPGAs and on FPGA-specific techniques required to achieve good
performance on FPGAs.

First, we present a method to reduce global memory access
that could also be used with GPUs. Next, we describe in detail
how the OpenCL kernels were redesigned to run on FPGAs. Finally,
we demonstrate how the redesigned code can take advantage of
multiple FPGAs at the same time.

4.1. Reducing global memory usage and accesses

As described in the previous section, the GPU algorithm writes
to memory all the k-mers two times. At first, in the encode kernel,
k-mers are written to an extra buffer for staging. Then, in the shuf-
fle kernel, k-mers are read back to the device, shuffled, and written
to the final output buffer. This additional memory trip and the extra
buffer for staging k-mers are required by the shuffling algorithm.
Algorithm that shuffles in an out-of-place manner because it’s
impossible to know a priori the offsets to use when writing the k-
mers to the output buffer. This because, these offsets are the result
of the exclusive sum-prefix on the global histogram which changes
from one input chunk to another. This method works well on GPUs
where the memory bandwidth offered by GDDR5X or HBM2 is in
the order of hundreds of GB/s. However, on today’s FPGA boards,
which use DDR4, memory bandwidth is one order of magnitude
lower and global memory accesses should be minimized.

To prevent this second memory trip on FPGAs, we developed a
different strategy that relies on the partitioning scheme adopted
by SMUFIN to evenly distribute the number of k-mers between the
different partitions (i.e., CPU consumer threads). Knowing that the
distribution is balanced and ensuring that each input chunk is large
enough to have tens of millions of k-mers, one can assume that
given any input chunk the number of k-mers generated is evenly
distributed among the partitions. In such a way, predefined fixed
offsets can be used to write directly to the output buffer without
the need to stage to a third buffer. Still, synchronization among all
work-items is required to prevent threads from overwriting each
others results. Also, to make this solution compatible with the host
code, the exclusive sum-prefix is still needed by the CPU consumer

152 N. Cadenelli, Z. Jaksic, J. Polo et al. / Future Generation Computer Systems 94 (2019) 148-159

threads to know how many k-mers are in each partition. Obviously,
there is always the chance that in a particular input chunk, one
partition gets more k-mers than expected; overwriting the k-mers
of the next partition and leading to wrong results. To make this
unlikely to occur, this solution was complemented by allocating
output buffers slightly bigger than required; thus, wasting a bit of
memory and adding more PCle traffic. But, it's a simple and effec-
tive solution that proved to work already with a over-provisioning
ratio of 1.1. However, this does not completely prevent overwrites
from happening and it’s essential that the application is able to
detect these kind of episodes. For this, the application ensures that
each partitions has no more k-mers than allowed in each output
chunk. That is, for partition i if histogram[i] > offset[i+1] - offset[i]
then, an unbalance occurred and some k-mers of partition i were
written in the region of memory dedicated to partition i+ 1. When
this occurs, the host program detects it, and resolves, rescheduling
the kernels on only half of the input chunk and adding a bubble
in the first two stages of the pipeline. In the next cycle, the second
half of the chunk is processed, and the first two stages will stall due
to the bubble. Clearly, this is not an optimal solution as it slightly
increases the execution time. But, it is good enough because, with
the over-provisioning of the output buffer, overwrites are very
unlikely to happen.

4.2. FPGA-specific optimizations

OpenCL programming language is designed to be used on dif-
ferent kind of hardware platforms (e.g., CPUs, GPUs, DSPs, FPGAs).
However, its performance varies from architecture to architecture.
Moreover, optimizations typical of GPU programming can lead
to poor performance on FPGAs and the other way around. This
fact is mostly due to the different parallelism offered by GPUs
and FPGAs (i.e., multithreaded SIMD vs. Pipeline) and it is a key
concept when porting code from one architecture to another. For
this reasons, many GPU algorithms require the refactoring of the
whole accelerated code to make it best suit FPGAs.

In our case, the GPU algorithm relies on a parallel histogram and
shuffle algorithm that uses millions of threads to process the just
as many DNA reads in each input chunk like outlined in Section 2.2.
In detail, the code in Algorithm 1, makes use of 64-bit atomic
operations (line 25) and also of local and global barrier functions
(lines 4, 19, and 37); making it a bad fit for FPGAs or even unfeasible
for those devices that lack some of these functionalities (e.g., 64-bit
atomics). Motivated by these factors, we redesigned the algorithm
from the ground up to take advantage of FPGA-specific features and
optimizations.

4.2.1. Parallel paradigms

To better adapt the algorithm to FPGAs, the OpenCL NDRange
kernels used for the GPU were replaced with OpenCL tasks — single
work-item kernels using only one thread. With only one thread,
the global histogram can be built directly without the need of
atomic operations nor memory barriers. In such a way, the code
gets extremely simplified; making it a simple build for the FPGA
compiler and reducing the number of resources needed. Moreover,
when using tasks, also the Zero-out and Prefix-sum kernels can
be removed. In fact, the only reason why these two kernels are
separated is that there is no way to create a global memory barrier
that synchronizes all the work-items of an NDRange if not to
conclude the kernel. Similarly, also the Bloom Filter kernel was
changed to a task by merely adding a loop to process all k-mers.

Even if we changed the parallelism model to a pipeline, loop
unrolling could always be exploited to process multiple DNA reads
in parallel like outlined in the listing 3. In fact, using loop unrolling
(line 8 and 17), the encode kernel can process many DNA reads in
parallel and generate one k-mer from each read at every cycle.

Table 1
Hardware specification.
Host CPU GPU FPGAs
(2x Xeon (GeForce (Arria 10 1150 GX -
E5-2680v3) GTX 1080 Ti) Nallatech 510T)
Compute units 24 Cores 3584 Cores 427 K ALMs
Maximum frequency 3200 MHz 1582 MHz 450 MHz
Memory size 512 GB 11GB 8 GB
Memory technology LR-DDR4 GDDR5X DDR4
Memory bandwidth 72.5 GB|s 484 GB|s 37.5GB/s
Maximum TDP 2 x 120W 250 W 1125 W
PCle interface - Gen3 x16 Gen3 x8
PCle dual copy engine - Yes No

4.2.2. Kernels replication and channels

To prevent the need of synchronization when writing k-mers to
global memory, we adopted a single-producer/multiple-consumers
solution that takes advantage of Intel’s OpenCL channels to directly
stream the k-mers from the producer to the consumer kernels
like Fig. 2 depicts. In this solution, the producer (encode) kernel
processes N DNA reads in parallel using loop unrolling and delivers,
at each FPGA cycle, one k-mer to each of the N consumer (shuffle)
kernels. Consumer kernels that, in turn: read the k-mers from
the dedicated channel; and store, shuffling, them to a dedicated
global memory buffer and builds a private histogram. In this way,
k-mers are equally spread among the different consumer kernels,
each of them receiving the same amount of k-mers set by the host
program.

While kernel replication removes the need of synchronization,
the usage of channels allows to directly stream data from the
producer to the consumer kernels; eliminating the need to write
all k-mers to global memory in the producer kernel and to read
them back in the consumer kernels.

In general, this approach provides a way to equilibrate possible
throughout unbalances between the producer and consumer code.
In our case, the number of DNA reads processed in parallel in
the producer must match the number of consumer kernels and
should be chosen accurately. Ideally, the more the consumer kernel
is replicated, the more FPGA resources are used, and the higher
should be the throughout. However, performance does not scale
linearly because at some point the maximum memory bandwidth
is reached; thus, the replication factor depends not only on the
FPGAs but also on the board used and its memory. We describe
this in more detail in the result section. Moreover, now that the
solution has multiple different output buffers, one can also decide
to replicate the Bloom Filter kernels to be able to filter the k-mers
of one partition from all, or some, output buffers in parallel.

4.2.3. On-chip and global memory

The only downside of SMUFIN partitioning scheme is that given
a DNA read; there is no relation between consecutive k-mers and
the partition to which they belong. This is because the partitioning
criterion only takes into account the k-mer itself. As a consequence,
when shuffling, the partitions of two consecutive k-mers and so
the offsets in the output buffer are completely random; resulting
in random memory accesses. To mitigate this effect and perform
memory writes in bulk, the consumer kernels are designed to cre-
ate a small cache in the on-chip memory of the FPGA (kmers_cache
in Algorithm 4). This cache allows to store up to eight k-mers per
each partition and to flush to global memory all eight k-mers of one
partition using one unique 512-bit wide request to use the memory
bandwidth at best.

4.3. Multi-FPGA support

As described in [2], when there is no space to store the second
level Bloom filters in the accelerator memory, the application

N. Cadenelli, Z. Jaksic, J. Polo et al. / Future Generation Computer Systems 94 (2019) 148-159 153

On-board . On-board
FPGA Chip
Memory | Memory
k-mer Consumer 1 | Bk-mers
k-mer Consumer 2 | Fk=mers Out
v N . Partition 1
npu P .
Chﬂnk DNA Reads roducer Partition 2
k-mer Consumer N | Bk=mers Partition P

Fig. 2. Overview of the FPGA Producer-Consumers kernels and data flow. The figure depicts an FPGA design with one producer and N consumers kernels. The Producer
kernel reads and processes N DNA reads in parallel using loop unrolling (i.e., #pragma unroll N) and sends one k-mer to each Consumer kernel at each cycle. K-mers are
streamed from the Producer kernels directly into the Consumer kernels via Intel OpenCL Channels preventing accesses to the FPGA main memory. The Consumer kernels
shuffle the incoming k-mers and write them to the main memory in bulks using 512-bit wide memory writes.

virtualizes the device memory in host DRAM. In such way, the
host program itself takes care of copying each Bloom filter in the
device memory before being used at each cycle. Meaning that,
at each cycle, the entire 9 GB of the filters are transferred from
the host to the device; putting pressure on the PCle bus. Despite
this, performance and system analysis carried out by the authors
in [2], showed that neither the GPU nor the PCle Gen3 x16 bus
were ever the bottleneck of the application. Instead, it was the CPU
consumer threads. However, when using devices with a narrower,
thus slower, PCle connection and slower on-board memory tech-
nology, transfers between the host and the accelerator take more
time and might become the bottleneck of the software pipeline. To
overcome this, one possible path is to use multiple accelerators at
the same time.

We implemented the support to multiple FPGAs assigning a
subset of partitions to each FPGAs and copying all input chunks to
all accelerators. The changes in the OpenCL kernel code were mini-
mal and regarded only the FPGA shuffle kernel that was instructed
(line 14 of Algorithm 4) to output only those k-mers belonging
to partitions assigned to the FPGA where the kernel is running
(parameter pid_in and pid_in of Algorithm 4). In this manner, each
FPGAs only need to process, and store, the Bloom filters of the par-
titions assigned to it. The advantages of this solution are multiples.
Firstly, the Bloom Filter kernels are distributed and executed in
parallel on multiple FPGAs decreasing the kernel time. Secondly,
spreading the Bloom Filters to the different accelerators reduces
the memory requirement on each accelerator. And, when the over-
all memory of all FPGAs is enough to fit all the buffers, there is
no need to virtualize the accelerator memory; reducing the PCle
transfers. In fact, when this is the case, in the Prune unit offloaded
Bloom Filters can be updated every few cycles of the software
pipeline. In the Count unit instead, where the Bloom filters are only
used for lookups, the filters are copied to the FPGAs memory only
at the beginning of the execution; significantly reducing the PCle
transfers. The last advantage is that, because kernel parameters are
used to tell each FPGA its subset of partitions, this implementation
allows to reuse the same FPGA design with an arbitrary number of
FPGAs without requiring to recompile.

5. Results

In order to evaluate the impact of the presented work, we
compare execution time, energy and power consumption of the
latest version of SMUFIN running with and without accelerators.
For simplicity’s sake, and because the execution time of non-
accelerated units is constant, we report only the results of accel-
erated units relative to k-mers frequency counting — Prune and

Table 2
FPGA Resources used, Clock Frequency, and Compilation Time.
Kernels Logic I/O DSP Memory RAM FPGA Compilation
replicas pins blocks bits blocks frequency time
1 14% 35% 3% 11% 21% 223.9MHz 101 min
2 19% 35% 5% 15% 27% 2343 MHz 142 min
4 27% 35% 11% 22% 42% 227.5MHz 272 min
8 44% 35% 21% 39% 72% 211.9MHz 351 min

Count. The evaluation also includes an analysis of the scalability of
the single-producer/multiple-consumers design and a discussion
on downsides and benefits of the accelerator boards used (see
Table 1).

5.1. Experimental setup

We conducted our experiments on a machine with two Intel
Xeon CPU E5-2680v3 with 48 CPU threads in total, sixteen 32-GB
DDR4 DIMM s running at 2133 MHz for a total of 512 GB of DRAM.
As storage, we used one 1600 GB HGST Ultrastar SN100 Series
NVMe SSD used as normal storage and one 375 GB Intel Optane SSD
DC P4800X used as memory extension. Both NVMe were formatted
using ext4. The machine ran CentOS 7.4 with a 3.10.0-693 kernel
with OS swapping disabled. Source codes were compiled with g++
version 4.8.5 and the -03 flag set.

For the GPU, we used one GeForce GTX 1080 Ti with 11 GB of
GDDR5X, Nvidia Driver version 390.30 offering OpenCL version 1.2.
The GPU was used with with ECC enabled and GPUBoost disabled.

On the FPGAs side, we used a Nallatech 510T board equipped
with two independent Arria 10 1150 GX FPGAs for a denser com-
pute power. Each of the two FPGA has 427 K Adaptive logic mod-
ules (ALMs), 1.7 M registers, 2.7 K M20 K memory blocks (53
Mb), 12.7 Mb MLAB memory blocks, and 1,518 variable-precision
DSP blocks; and sports a maximum frequency of 450 MHz. with a
theoretical peak performance of 1.366 TFLOPS. Both FPGAs come
with 16 GB of 2133 MHz DDR4 memory in a 4-bank configuration
but, at the time of writing, only 2 banks per FPGA - 8 GB - could
be used with OpenCL for a nominal DDR4 memory bandwidth of
37.5 GB/s. Even if hosted in the same board, the two FPGAs are
independent and, as shown in Fig. 3, they only share the PCle
Gen3 x16 bus and an on-board dedicated interface to talk to each
other. FPGA code was compiled and executed using IntelFPGA SDK
for OpenCL version 17.1 Build 270 and Nallatech board support
package version R001.005.004 for HPC offering OpenCL version 1.0
with an embedded profile.

154 N. Cadenelli, Z. Jaksic, J. Polo et al. / Future Generation Computer Systems 94 (2019) 148-159

i 4GB L o N FPGA-to-FPGA Streaming o w1 4GB |
! DDR4 < ,..Xx712._ > Interfaces (2 x 40Gbps) < ,.x72.__% DDR4 |
| SODIMM | ‘ " | SODIMM |
{4GB L ; L i 4GB |
| DDR4 3‘ ..x172__ | FPGA X8 | PCleBridge | < X8 FPGA |« ,.xT2.., % DDR4 3
. SODIMM ArrialQ ArrialQ . SODIMM .
4GB 1150 1150 4GB
DDR4 x72 GX = GX x72 DDR4
Soldered ol Soldered
4GB 4GB
DDR4 x 72 PCle Gen3 x16 x 72 DDR4
Soldered Edge Connector Soldered

Fig. 3. Diagram of the Nallatech 510T dual-FPGA board.

4500 ~
T Encode & Shuffle Kernels T Bloom Filters Kernels —"71
2 4000
=]
g
§ 3500 T
E 3000 | [
° T
£ 2500 -
=
£ 2000 T
T
2 1500 J
&5
g 1000 1 J
; T
¥ 500
% o T
0 T T T T T T T T T
1 2 4 8 1 2 4 8
1 FPGA 2 FPGAs GPU
)
< 8 7 K < 8 7 S
5] Encode & Shuffle Kernels - | FPGA —&— C‘b\\\” G} All Kernels - | FPGA —&— d)\\\”
& | Encode & Shuffle Kemels - 2 FPGAs —-@-- 7 & | AllKemels - 2 FPGAs --2-- oS
E Bloom Filters Kernels - | FPGA —e— W _.-8 ;. WV
3 6 Bloom Filters Kernels - 2 FPGAs ---0-- e 36
g g
N N
55 557
£ g
2 !
£ 44 £ 44
o o
&) @]
§ 3 § S N Hemmmmmmmmmmmmmmmmmm oo a
o P P - o) - .-~
E 2 E 2 ;/.'
E e -
z1 z1
é 1 é 1
=0 T T T =0 T T T
1 2 4 8 1 2 4 8
Number of Consumer Kernels Number of Consumer Kernels
(b) ©

Fig. 4. Performance comparison of OpenCL kernels running on FPGAs (with different kernel replications) and on the GPU (a) and scalability of the FPGA kernels (b) and (c).
Data is relative to the 1630 circa cycles of the software pipeline required to process the whole input.

5.2. Evaluation methodology

We executed using four different hardware configurations: (i)
CPU only, (ii) CPU plus one FPGA, (iii) CPU plus two FPGAs, and
(iv) CPU plus one GPU. In each configuration, we always used 8
CPU loader threads and 48 CPU consumer threads; thus, 48 par-
titions and as many Bloom Filters in the accelerators. Accelerators
unburdened both kinds of CPU threads and removeed communica-
tion from loader to consumer threads. Communication that in the

CPU only configuration takes place via 8 x 48 dedicated single-
producer single-consumer queues. Note that, in configurations (ii)
and (iv) that use only one accelerator, the device memory was not
enough to fit all Bloom filters; thus, the application virtualized
the device memory in host DRAM as outline in [2]. Meanwhile,
the overall memory of the two FPGAs of configuration (iii) was
enough not to require the virtualization; thus, reducing the PCle
traffic in both Prune and Count unit. In fact, as discussed in 4.3, only
for configuration (iii), in the Prune unit Bloom filters are updated
once every eight cycles of the software pipeline instead than at

N. Cadenelli, Z. Jaksic, J. Polo et al. / Future Generation Computer Systems 94 (2019) 148-159 155
250
Prune Unit £227] 1.8 7 Time-to-Solution] L77x
Count Unit C—] .E‘ 16 Energy-to-Solution
200 - 108 mins o 1.49x
2 J
g 1.00 kWh 6 14 1‘3\2)(\:i\\:i
E g 12 \\ NN
g 150 3 NN NN
4‘% 75 mi = 1 \\\\\\ \§
g J \
3 e P N NN N
@ 0.68 kWh o] NN NN NN
£ 100 » 57 mins g 087 N N NN
2 103 mins : g N NN N
£ 0.94kWh 0.52 kWh - E 06 1 NN NN NN
= 46 mins © \\\\\ NN NN
so | |65 mins _ 0.48 KWh £04q | 2 NN 2 2 \'”§ ERINGN
0.62 kWh 49 mins 3 NN E E \\é% AN
0.46 kWh 33 mins 0.2 1 = N = ISEINY SINESN
= N bS] 2 N
039 KWh N\ a AR &
0 T T T T 0 T
CPU CPU CPU CPU CPU CPU CPU CPU
Only + 1 FPGA + 2 FPGAs +1GPU Only + 1 FPGA + 2 FPGAs +1GPU
(@ (b)
CPU Only
700 4 i i SORE L RN CPU + 1 FPGA ------
i CPU + 2 FPGAs -
600 ¢ CPU + 1 GPU -~~~
o | ——— | | S | | p—|
H L R s | —
500
2 2 g 5 E
£ 300 | 3 3 g
» =Y]
&} Z] <
2 @) 3)
200 + A = &) &
O [=)
— IS = o
+ + o +
100 S 5 st 5
oy Ay By oy
@) @) @) @)
0 T T T T T T
0 1000 2000 3000 4000 5000 6000
Time (s)
©

Fig. 5. Time-to-solution and energy-to-solution (a), relative improvements (b), and power samples (c¢) of SMUFIN’s k-mer frequency counting without acceleration, with
one FPGA, with two FPGAs, and with one GPU. Power samples relative to the Count unit are omitted for similarity and space.

000 CPU + 1 FPGA 5000 CPU + 2 FPGAs 5000 CPU + 1 GPU
N Median of Overall Cycle Time
4000 ! | 4000 - Median of Mere Kernel Time - - - - 4000 - -
3 T 2 2
= =3 =]
g 3000 - i g 3000 7 g 3000 - =
g ‘ E om0 b i Eoof -
ot % S - : 1 € 2000
£ ! £ bordo----ro-----+ e et --4 E +
= ’ = i = -
= 100 == i 1000 f% i ; T = =
0 | i — | 0 | I—-‘——-EZI %‘ | o [I ——— [
CPU CPU CPU CPU CPU CPU
Loader PCle Kernels PCle Consumer Loader PCle Kernels PCle Consumer Loader PCle Kernels PCle Consumer
Threads H2D Execution D2H Threads Threads H2D Execution D2H Threads Threads H2D Execution D2H Threads
(a) (b) (©)

Fig. 6. Distribution of execution time of each individual step of the software pipeline using one FPGA (a), two FPGAs (b), and one GPU (c) to execute the Prune unit for the

whole input.

each cycle. In Count unit instead, this configuration allowed to load
the Bloom filters to the two FPGAs at the very beginning of the
execution and, because during this unit the filters are not altered
by the CPU consumer threads, there is no need to update them
constantly.

For all the hardware configurations we evaluated the time-
to-solution and energy efficiency to count k-mer frequency of
a personalized genome based on the Hg19 reference. The input

genome was characterized by randomly chosen germline and so-
matic variants as described in [1]; including SNPs, SNVs (more
than 100 bp apart), translocations, and with random insertions,
deletions and inversions, all ranging from 1 to 100 Mbp. In silico
sequencing was simulated using ART Illumina21. The total size
of the final normal and tumoral samples is of 312 GB of gzip
compressed FASTQ files — around 638 GB once uncompressed.
With accelerators, the software double buffering pipeline was set

156 N. Cadenelli, Z. Jaksic, J. Polo et al. / Future Generation Computer Systems 94 (2019) 148-159
P! 1 FPGA P! FPGAs
5000 CPU+ | FPG 5000 CPU + 2 FPGAs so00 CPU +1GPU
: Median of Overall Cycle Time N
4000 - i - 4000 Median of Mere Kernel Time - - - - L
3 3 — 4000
| S F €
émoof,,,,,,,,,,: ,,,,,,,,,,,,,,,,,,,,,,,, 7 §3000’ n §3()()()— —
: |z | :
< 2000 - % 5 2000 - + B % 2000 - ,
E | | E e T—------------f--1 £
= = :) -+ ;
1000 —% T - 1000 . ! 4 F +
‘ = T ; % 1000 === T ==
0 I — I 0 I % % I P e B S R PR
CPU CPU CPU CPU CPU CPU
Loader PCle Kernels PCle Consumer Loader PCle Kernels PCle Consumer Loader PCle Kernels PCle Consumer
Threads H2D Execution D2H Threads Threads H2D Execution D2H Threads Threads H2D Execution D2H Threads
(@) (c)

Fig. 7. Distribution of execution time of each individual step of the software pipeline using one FPGA (a), two FPGAs (b), and one GPU (c) to execute the Count unit for the

whole input.

to work with input chunks of 400 MB; requiring around 1630 cycles
to process the whole input.

Energy measurements and power samples were collected using
a metered-by-outlet PDU (Power Distribution Unit) and also IPMI
(Intelligent Platform Management Interface) to validate the results.
Lastly, to prevent accounting the power consumption of idle accel-
erators, the PCle slot of unused device was disabled from the BIOS.

5.3. Performance and scalability of OpenCL kernels

As we outlined in Section 4.2.2, one possible strategy to increase
the performance of FPGAs is to increase the parallelism by repli-
cating kernels. We achieved this using a single-producer/multiple-
consumers design were the internal parallelism of the produced
kernel, obtained with loop unrolling, equals the number of the
consumer kernels.

Fig. 4a shows the execution time of the kernels with a break-
down for the Encode plus Shuffle kernels and the Bloom filter
kernels in one and two FPGAs. For comparison, execution time of
equivalent kernels on the GPU are also reported. With multiple
devices and kernels, that are executed concurrently, the plot re-
ports the execution time of the slower kernel among all devices.
Also, the time related to the Bloom filters kernels is the aggregated
time for all partitions, which are executed one after the other.
That is, 48 with one FPGA and 24 with two FPGAs. The plot clearly
shows how the execution time of the Encode and Shuffle kernels
scales with the number of Consumers kernels but it does not with
the number of FPGAs. Intuitively, this is because when scaling to
multiple devices, the Encode and Shuffle kernels of each device
still process the same data, like if only one device was to be used.
With the only difference being in the shuffle kernels that discard k-
mers belonging to partitions assigned to another device. As aresult,
when increasing the number of devices, the only difference is in the
amount of data written by the Shuffle kernels in each device. For
instance, if with one device the output is of 1 GB; with two devices
instead, the amount of output is spread evenly fora512 MB on each
FPGA. More in detail, Fig. 4b illustrates that the kernel execution
time of only the Encode and Shuffle kernels scales linearly to up to
four replicas; but, with eight replicas the improvement starts to be
sub-linear. With the rationale being the lower frequency achieved
by the FPGA design, noted in Table 2, and the pressure on DRAM
subsystem. The former can be either a direct consequence of higher
FPGA resourced used by the design, a different seed used in the
place-en-route algorithm during compilation, or a combination of
the two. Regarding the pressure on DRAM instead, one can deduct
this by looking at how, with eight replicas, the execution time with
two FPGA:s is slightly better than with one.

On the Bloom filter kernels side instead, Figs. 4b and 4c illustrate
how these kernels do not scale with the number of parallel kernels.

Intuitively, this is due to the random memory accesses of the Bloom
Filter due to the many random requests. On the other hand, as
we split the Bloom filter kernels between devices, they do scale
linearly with the number of FPGAs. Besides, Figs. 4c details how
the execution of the Bloom filters dominates the execution time
and how this hinders performance scalability. However, because
this is due to the low bandwidth offered by the DDR4 DIMMs, next-
generation FPGA board equipped with faster memory technology
are expected to be competitive like studied in [18].

Finally, even if the best FPGA configuration - eight Shuffle
kernels and two FPGAs - is approximately 4.9 times slower than
the GPU, one should not look only at the execution time of kernels
but also at the total execution time of the entire application. In
fact, to evaluate one board and one acceleration technique, one
should always keep into account other factors like: host-device
synchronization, PCle performance, how well PCle transfers and
kernels execution are overlapped on each board, and how is the
overall software impacted.

5.4. Considerations on time-, energy-to-solution, and power con-
sumption

Figs. 5a and 5b display the time- and energy-to-solution of all
four hardware configurations. Results show how only one FPGA
is not sufficient and becomes the bottlenecks of the application
considerably increasing the execution time. Both configurations
with two FPGAs and one GPU outperform the non-accelerated
configuration in terms of time and energy. Moreover, as depicted
in Figs. 5b, while with two FPGAs there is an improvement in time-
and energy-to-solution of 1.32x for both measurements, with one
GPU instead, the improvement is of 1.77x in time-to-solution but
of a lower 1.49x in energy-to-solution. This difference between the
improvement in time and energy of the configuration with one
GPU is to attribute to the higher power consumption of GPU itself.
In facts, like Fig. 5c¢ illustrates, with one GPU there is steady higher
power consumption than with any other configuration. This figure
shows how, not only is the power consumption with FPGAs similar
to the CPU Only configuration, but, in some cases, it's even lower;
demonstrating how the FPGAs are more power-efficient than the
CPUs.

Lastly, the difference in the power consumption between two
FPGAs and one GPU suggests that: if it were possible to shorten the
execution time of the configuration with two FPGAs of some min-
utes, this configuration could become the most energy-efficient
even if still slower than the configuration using one GPU.

N. Cadenelli, Z. Jaksic, J. Polo et al. / Future Generation Computer Systems 94 (2019) 148-159 157

5.5. Final considerations on GPU and FPGAs performance

Considering the different FPGAs and GPU components, it is
not easy to define the real reason of why the setup with two
FPGAs falls behind the one with one GPU. Fig. 4 suggests that
the FPGA kernels as main bottleneck. However, when it comes
to evaluate one board for an application, where PCle transfers
and kernels execution are overlapped, one must look beyond the
mere kernel execution time taking into account the cycle time
of each component of the software pipeline. A consideration that
is even more important when there are dependencies between
different steps. For instance, a kernel execution that, before to start,
must wait for PCle transfer to conclude. A visual aid that helps in
this direction comes from the plots in Figs. 6 and 7. These plots
show the distribution of the execution time of all five steps of the
software pipeline used to overlap CPU threads, PCle transfers, and
kernel execution on the accelerators. Intuitively, the longest step
consist in the main bottleneck of the software pipeline. Plots 6a,
6b, 7a, and 7b confirms that the kernels execution is the bottleneck
for the configurations using FPGAs. However, as discussed in 5.3,
the random memory accesses of the Bloom filter kernels together
with the low bandwidth offered by the on-board DDR4 are to
be blamed. Moreover, these plots show the effect of Bloom filter
kernels waiting for the PCle transfer of the relative Bloom filter to
complete before to start; thus, increasing the cycle time for kernel
execution. One can observe the effect of these dependencies in all
plots in Figs. 6 and 7, where the median of the box plots relative to
the kernel execution is significantly higher than the median of the
mere kernel execution time. The figures also show how, for config-
urations with one device, the difference between the two medians
is even more significant. This because, in these configurations, the
application virtualizes devices memory in the host DRAM, copying
the Bloom filters buffer to the device at every cycle of the software
pipeline. In the configuration with two FPGAs instead, where the
overall memory is enough to store the second level Bloom filters,
the Bloom filters in the accelerators are updated only once every
eight cycle in the Prune unit and only at the beginning of the
execution in the Count. Which results in a much lower PCle host to
device time and much closer, yet distinct, medians of mere kernel
time and kernel execution step of the pipeline. Lastly, and to be
completely fair, these plots also prove that in the configuration
with one GPU, the GPU itself is not always busy, and how the CPU
threads become the bottleneck. However, because SMUFIN makes
use of the whole 11 GB of memory that the GeForce GTX 1080 Ti
offers, when deploying it at scale it’s not possible to share the GPU
with other instances of SMUFIN or other workloads.

Another aspect that must be taken into consideration is the
inferior PCle capabilities of the FPGAs when compared to the GPU
used. Not only have the FPGAs a narrower and slower connection,
but also they lack of a dual copy engine. Meaning that, whereas the
GPU is capable of overlapping transfers in both directions, transfers
to and from the FPGAs are serialized. As a result, with FPGAs the
PCle time increases in both directions.

A third factor to bear in mind is how well a board can overlap
independent PCle transfers and kernel execution. Although it is a
common belief that independent tasks (i.e., a PCle transfer and a
kernel) enqueued on different command queues could be carried
out whenever the resource (i.e., bus or chip) is free, this is not
always true. In fact, even if the FPGA board we used can start
one PCle transfer and many kernels at the same time, for some
yet not clear reasons, it is not able to start a kernel execution
if a PCle transfer is in process. Consequently, stalling the FPGA
chip in executing following kernels in each cycle of the software
pipeline, and the facto, exacerbating the kernel execution time;
thus, the cycle time and time-to-solution of the entire software.
Therefore, justifying the difference between the box plot of the

kernels execution cycle time and the median of the mere kernel
execution in Fig. 7b where there is no dependencies between
PCle transfers and kernels execution and all steps of the software
pipeline could, in principle, be fully overlapped.

In conclusion, we can affirm that, for this k-mer counting al-
gorithm, the two FPGAs are slower than the GPU because of the
slower on-board memory and due to the inferior PCle capabilities.
Also, we can deduce that future FPGAs board equipped with faster
memory and adequate PCle subsystem, including a dual memory
engine to allow full overlapping of transfers and kernels, could
come closer to the performance of the GPUat a lower power en-
velop. Making FPGAs an asset for future energy-efficient genomics
workloads.

6. Conclusions

In this paper, we presented the result of porting and optimizing
a k-mer frequency counting workload from GPUs to FPGAs boards.
Even if the code is written in OpenCL, due to the fundamental
differences between the two hardware architectures the work
comprised different programming techniques such as kernel repli-
cation, inter-kernel communication using Intel’s OpenCL channels,
and loop unrolling. Additionally, we described how data partition-
ing could be used to expand similar designs to support an arbitrary
number of FPGAs without the need to recompile the design. We
presented a detailed scalability analysis of the kernel replication
technique that showed how performance scales linearly until the
off-chip DDR4 memory of the FPGAs become the bottleneck. For
the same reason, this same technique proved very poor improve-
ment for Bloom Filter kernels where the filters where stored off-
chip.

Overall results showed that one FPGA is not enough to improve
the baseline CPU-only implementation but that two FPGAs yield
an improvement of 1.32x in both time- and energy-to-solution.
Results also showed how the GPU outperforms the two FPGAs with
an improvement of 1.77x in time-to-solution but, due to higher
power consumption, of a lower 1.49x in energy-to-solution. We
carried out a comprehensive analysis that took in consideration
PCle capabilities and the on-board memory of both FPGA and GPU
boards to uncover that the FPGA chip itself is not the main bot-
tleneck. With power samples collected throughout the executions
we revealed how the offloading to FPGAs didn’t increase the power
envelope but instead, in some moments, even lowered the power
consumption of the entire node of few Watts. Based on these
findings, we outlined how next-generation FPGA boards constitute
an asset for energy-efficient genomics workloads.

We are currently working on methods to improve data locality
for the Bloom filters and that could make the FPGAs more compet-
itive. Besides, we are exploring how NVMe over Fabrics [19] and
pooled accelerators can reduce the total cost of ownership without
overly penalizing the execution time.

Acknowledgment

We are grateful to Intel who provided the Optane drive and to
SandDisk for lending the HGST card.

Funding

This work was supported by the European Research Council
(ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement s No 639595); the Min-
istry of Economy of Spain under contract TIN2015-65316-P and
Generalitat de Catalunya, Spain under contract 2014SGR1051; the
ICREA, Spain Academia program; and the BSC-CNS Severo Ochoa,
Spain program (SEV-2015-0493).

158 N. Cadenelli, Z. Jaksic, J. Polo et al. / Future Generation Computer Systems 94 (2019) 148-159

Appendix. OpenCL kernels

Algorithm 1 GPU Encode Kernel

Input: in (DNA input read and quality markers).

Output: mid (Buffer of k-mers generated from the input DNA),
histo (Number of k-mers in each partition),
wg_offsets_mid (Work-groups offsets in the middle buffer),
wg_offsets_out (Work-groups offsets in the output buffer).

1: procedure ENCODE

2: // Cohesively read all the input for this work-group to local memory
3: |_in = cohesive_read_input (in, get_group_id(0), get_local_id(0))
4: barrier(CLK_LOCAL_MEM_FENCE)

5:

6: // Generate all k-mers and build a private histogram

7: for i = 0, KMERS_PER_READ do

8: p_kmers[i] = generate_kmer(l_in, get_local_id(0), i)

9: if p_kmers[i] == INVALID then continue

10: end if

11: p_histo[get_partition_id(p_kmers[i])]++

12: end for

13:

14: // Merge private histograms into a local histogram and store

15: // the result to be used as offset by this thread to shuffle k-mers locally
16: for i = 0, NUM_PARTITIONS do

17: p_offsets[i] = atomic_add(I_histo[i], p_histo[i])

18: end for

19: barrier(CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE)

20:

21: if get_local_id(0) == O then

22: // Merge local histograms into a global histogram and store

23: // the result to be used as offset by this work-group in the mid buffer
24: for i = 0, NUM_PARTITIONS do

25: wg_offsets_out[i] = atom_add(histo[i], I_histo[i])

26: end for

27:

28: // Perform an exclusive sum-prefix on the local histograms applying
29: // an offset and store the result to be used by this work-group

30: // in the mid buffer

31: wg_offsets_mid[0] = get_group_id(0) * get_local_size(0) *

32: KMERS_PER_READ

33: for i = 0, NUM_PARTITIONS do

34: wg_offsets_mid[i+1] = wg_offsets_mid[i] + [_histo[i]

35: end for

36: end if

37: barrier(CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE)

38:

39: // Write generated k-mers shuffling them locally - within a work-group
40: fori=0, KMERS_PER_READ do

41: if p_kmers[i] == INVALID then continue
42: end if

43: offset = wg_offsets_mid[i] + p_offsets][i]
44: mid[offset] = p_kmers[i]

45: p_offsets[i]++

46: end for

47: end procedure

Algorithm 2 GPU Shuffle Kernel

Input: mid (Buffer of k-mers generated in the encode kernel),
offsets (Consumer threads offsets in the output buffer),
wg_offsets_mid (Work-groups offsets in the middle buffer),
wg_offsets_out (Work-groups offsets in the output buffer).

Output: out (Buffer of k-mers shuffled by partitions).

1: procedure SHUFFLE

2 for i = 0, NUM_PARTITIONS do

3: // Cohesively read all k-mers from this work-group to write

4: // and shuffle them globally

5: num_items = wg_offsets_mid[i+1] - wg_offsets_mid[i]

6 wg_offset_out = offsets[i] + wg_offsets_out[i]

7 for j = get_local_id(0), num_items, j += get_local_size(0) do

8: out[wg_offset_out+j] = mid[wg_offsets_mid[i]+j]

9: end for

10: end for

11: end procedure

Algorithm 3 FPGA Encode Kernel (Producer)

Input: in (DNA input read and quality markers),
num_reads (Number of DNA reads in input).

1: procedure ENCODE

2: for chunk_id = 0, num_reads/READS_PER_SUBCHUNK do

3: // Load READS_PER_SUBCHUNK DNA reads in bulk

4: // from the global (off-chip) to the on-chip memory

5: read_input (in, chunk_id, 1_in)

6:

7: // Generate all k-mers from the DNA reads in the subchunk in parallel
8: #pragma unroll READS_PER_SUBCHUNK

9: for r_id = 0, READS_PER_SUBCHUNK do

10: for k_id = 0, KMERS_PER_READ do

11: kmers(r_id][k_id] = generate_kmer(l_in, r_id, k_id)
12: end for

13: end for

14:

15: // Send one k-mer to each shuffle kernel at every cycle

16: for k_id = 0, KMERS_PER_READ do

17: #pragma unroll READS_PER_SUBCHUNK

18: for r_id = 0, READS_PER_SUBCHUNK do

19: write_channel_intel(channel[r_id], kmers[r_id][k_id]);
20: end for

21: end for

22: end for

23: end procedure

Algorithm 4 FPGA Shuffle Kernels (Consumers)

Input: num_reads (Number of DNA reads in input),
pid_min (Minimum pid for this device),
pid_max (Maximum pid for this device).

Output: out (Buffer of k-mers shuffled by partitions),
histo (Number of k-mers in each partitions).

1: procedure SHUFFLE #N

2 histo_cache[NUM_PARTITIONS] = {0}

3 kmers_cache[NUM_PARTITIONS][8] = {{INVALID}}

4: num_kmers = num_reads * KMERS_PER_READ /

5: READS_PER_SUBCHUNK

6:

7 |/ Digest one k-mer at each cycle

8: for kmer_id = 0, num_kmers do

9: kmer = read_channel_intel(channel[N])

10: pid = get_partition_id(kmer)

11:

12: || Store the k-mer in the on-chip memory and count only valid ones
13: kmers_cache[pid][histo_cache[pid] & 0x7] = kmer

14: if kmer != INVALID && pid_min <= pid && pid <= pid_max then
15: histo_cache[pid]++

16:

17: /| Flush k-mers from the on-chip memory to global memory
18: [/ in bulk using 512-bit wide memory transactions

19: if (histo_cache[pid] & 0x7) == 0x0 then

20: out[(histo_cache[pid]) >> 3] = kmers_cache[pid]

21: end if

22: end if

23: end for

24:

25: |/ Flush on-chip caches to the global memory
26: for pid = pid_min, pid_max do

27: out[(histo_cache[pid]) >> 3] = kmers_cache[pid]
28: histo[pid] = histo_cache[pid]
29: end for

30: end procedure

References

[1] V. Moncunill, S. Gonzalez, S. Bea, L.O. Andrieux, I. Salaverria, C. Royo, L.
Martinez, M. Puiggros, M. Segura-Wang, A.M. Stiitz, et al., Comprehensive
characterization of complex structural variations in cancer by directly com-
paring genome sequence reads, Nature Biotechnol. 32 (11)(2014) 1106-1112.
N. Cadenelli, J. Polo, D. Carrera, Accelerating K-mer frequency counting with
GPU and non-volatile memory, in: 2017 IEEE 19th International Conference
on High Performance Computing (HPCC), 2017, pp. 434-441, http://dx.doi.
org/10.1109/HPCC-SmartCity-DSS.2017.57.

[3] R.Li, H.Zhu,]. Ruan, W. Qian, X. Fang, Z. Shi, Y. Li, S. Li, G. Shan, K. Kristiansen,
etal., De novo assembly of human genomes with massively parallel short read
sequencing, Genome Res. 20 (2) (2010) 265-272.

D.R. Kelley, M.C. Schatz, S.L. Salzberg, Quake: quality-aware detection and
correction of sequencing errors, Genome Biol. 11 (11) (2010) R116.

2

4

http://refhub.elsevier.com/S0167-739X(18)31418-3/sb1
http://refhub.elsevier.com/S0167-739X(18)31418-3/sb1
http://refhub.elsevier.com/S0167-739X(18)31418-3/sb1
http://refhub.elsevier.com/S0167-739X(18)31418-3/sb1
http://refhub.elsevier.com/S0167-739X(18)31418-3/sb1
http://refhub.elsevier.com/S0167-739X(18)31418-3/sb1
http://refhub.elsevier.com/S0167-739X(18)31418-3/sb1
http://dx.doi.org/10.1109/HPCC-SmartCity-DSS.2017.57
http://dx.doi.org/10.1109/HPCC-SmartCity-DSS.2017.57
http://dx.doi.org/10.1109/HPCC-SmartCity-DSS.2017.57
http://refhub.elsevier.com/S0167-739X(18)31418-3/sb3
http://refhub.elsevier.com/S0167-739X(18)31418-3/sb3
http://refhub.elsevier.com/S0167-739X(18)31418-3/sb3
http://refhub.elsevier.com/S0167-739X(18)31418-3/sb3
http://refhub.elsevier.com/S0167-739X(18)31418-3/sb3
http://refhub.elsevier.com/S0167-739X(18)31418-3/sb4
http://refhub.elsevier.com/S0167-739X(18)31418-3/sb4
http://refhub.elsevier.com/S0167-739X(18)31418-3/sb4

[5]

[6]

(7

[8

[9

[10]

[11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

N. Cadenelli, Z. Jaksic, J. Polo et al. / Future Generation Computer Systems 94 (2019) 148-159 159

IntelFPGA Channelizer Design Example. URL https://www.altera.com/
support/support-resources/design-examples/design-software/opencl/
channelizer.html.

Z. Wang, B. He, W. Zhang, A study of data partitioning on OpenCL-based
FPGAs, in: 2015 25th International Conference on Field Programmable Logic
and Applications (FPL), 2015, pp. 1-8, http://dx.doi.org/10.1109/FPL.2015.
7293941.

S. Sridharan, P. Durante, C. Faerber, N. Neufeld, Accelerating particle iden-
tification for high-speed data-filtering using OpenCL on FPGAs and other
architectures, in: 2016 26th International Conference on Field Programmable
Logic and Applications (FPL), 2016, pp. 1-7, http://dx.doi.org/10.1109/FPL.
2016.7577351.

0.. Arndt, F.D. Trger, T. Mo, H. Blume, Portable implementation of advanced
driver-assistance algorithms on heterogeneous architectures, in: 2017 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), 2017, pp. 6-17, http://dx.doi.org/10.1109/IPDPSW.2017.100.
Accelerating Genomics Research with OpenCL and FPGAs. URL https:
//www.intel.com/content/www/us/en/healthcare-it/solutions/documents/
genomics-research-with-opencl-and-fpgas-paper.html.

F.B. Muslim, L. Ma, M. Roozmeh, L. Lavagno, Efficient FPGA implementation
of OpenCL high-performance computing applications via high-level synthe-
sis, IEEE Access 5 (2017) 2747-2762, http://dx.doi.org/10.1109/ACCESS.2017.
2671881.

H.R. Zohouri, N. Maruyama, A. Smith, M. Matsuda, S. Matsuoka, Evaluating and
optimizing OpenCL kernels for high performance computing with FPGAs, in:
SC16: International Conference for High Performance Computing, Network-
ing, Storage and Analysis, 2016, pp. 409-420, http://dx.doi.org/10.1109/SC.
2016.34.

S.0. Settle, High-performance Dynamic Programming on FPGAs with OpenCL,
2013.

E. Rucci, C. Garcia, G. Botella, A.D. Giusti, M. Naiouf, M. Prieto-Matias, Smith-
Waterman protein search with OpenCL on an FPGA, in: 2015 IEEE Trust-
com/BigDataSE/ISPA, Vol. 3, 2015, pp. 208-213, http://dx.doi.org/10.1109/
Trustcom.2015.634.

A. Sirasao, E. Delaye, R. Sunkavalli, S. Neuendorffer, FPGA Based OpenCL
Acceleration of Genome Sequencing Software, 2015.

L.D. Tucci, K. O’'Brien, M. Blott, M.D. Santambrogio, Architectural optimiza-
tions for high performance and energy efficient Smith-Waterman imple-
mentation on FPGAs using OpenCL, in: Design, Automation Test in Europe
Conference Exhibition (DATE), 2017, 2017, pp. 716-721, http://dx.doi.org/10.
23919/DATE.2017.7927082.

E. Houtgast, V.M. Sima, Z. Al-Ars, High performance streaming Smith-
Waterman implementation with implicit synchronization on intel FPGA using
OpenCL, in: 2017 IEEE 17th International Conference on Bioinformatics and
Bioengineering (BIBE), 2017, pp. 492-496, http://dx.doi.org/10.1109/BIBE.
2017.000-6.

C. Poirier, B. Gosselin, P. Fortier, DNA assembly with de bruijn graphs on FPGA,
in: 2015 37th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), 2015, pp. 6489-6492, http://dx.doi.
org/10.1109/EMBC.2015.7319879.

N. Mcvicar, C.C. Lin, S. Hauck, K-mer counting using bloom filters with an
FPGA-attached HMC, in: 2017 IEEE 25th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), 2017, pp. 203-
210, http://dx.doi.org/10.1109/FCCM.2017.23.

A.Call,]. Polo, D. Carrera, F. Guim, S. Sen, Disaggregating non-volatile memory
for throughput-oriented genomics workloads, in: Workshop on Advances in
High-Performance Bioinformatics, Systems Biology Co-Located with the 24th
International European Conference on Parallel and Distributed Computing,
2018.

Nicola Cadenelli received the MS degree at the Universita
degli Studi di Brescia (UniBS), Italy in 2014. During his
master studies, he spent one year as a visiting student
at the University of Applied Sciences of Leipzig, Germany
in 2012, and one semester at the Jiilich Supercomput-
ing Center, Germany in 2014. Currently, he is a Ph.D.
Student at the Technical University of Catalonia (UPC),
Spain and part of the "DataCentric Computing" research
group at the Barcelona Supercomputing Center (BSC),
Spain. In 2018, he was a summer visiting student at the
Massachusetts Institute of Technology (MIT), USA. His

research revolve around the scalability, both vertical and horizontal, of real-world
data-intensive workloads.

Zoran Jaksicis a postdoctoral researcher in Barcelona Su-
percomputing Center (BSC). His primary research interest
is the acceleration of compute-intensive workloads with
FPGAs and GPUs. Before joining BSC, he was with Broad-
com Networks where he worked as an RTL verification
engineer for a year. He obtained a Ph.D. from Universitat
Politecnica de Catalunya in 2015, and for that research,
he was awarded by Intel E.U. Doctoral Student Honour
Programme.

Dr. Jorda Polo received his bachelor’s degree in Com-
puter Science from Universitat Politécnica de Catalunya
in 2009. He then started his graduate work with Profes-
sors David Carrera and Yolanda Becerra at the Barcelona
Supercomputing Center (BSC), completing his Ph.D. in
2014. His research focused on how to manage and model
the performance of data-intensive workloads. He is cur-
rently working as a Postdoc in the same institution, lead-
ing the research in software-defined infrastructures and
data-centric architectures for genomics workloads.

David Carrera received the MS degree at the Technical
University of Catalonia (UPC) in 2002 and his PhD from
the same university in 2008. He is an associate professor
at the Computer Architecture Department of the UPC. He
is also the Head of the "DataCentric Computing" research
group at the Barcelona Supercomputing Center (BSC).
His research interests are focused on the performance
management of data center workloads.

In 2015 he was awarded an ERC Starting Grant for the
project HiEST (1.5M3, 2015-2020), and ICREA Academia
award (2015-2020) and an ERC Proof of Concept grant

("Hi-OMICS’) in 2017 to explore the commercialization of an SDI orchestrator for
genomics workloads. He has participated in several EU-funded projects and has
led the team at BSC that has developed the Aloja project (aloja.bsc.es) and the
servloTicy platform (servioticy.com). He is the PI for several industrial projects and
collaborations with IBM, Microsoft and Cisco among others.

He was a summer intern at IBM Watson (Hawthorne, NY) in 2006, and a Visiting

Research Scholar at IBM Watson (Yorktown, NY) in 2012.

He received an IBM Faculty Award in 2010. He is an IEEE and ACM member.

https://www.altera.com/support/support-resources/design-examples/design-software/opencl/channelizer.html
https://www.altera.com/support/support-resources/design-examples/design-software/opencl/channelizer.html
https://www.altera.com/support/support-resources/design-examples/design-software/opencl/channelizer.html
https://www.altera.com/support/support-resources/design-examples/design-software/opencl/channelizer.html
https://www.altera.com/support/support-resources/design-examples/design-software/opencl/channelizer.html
http://dx.doi.org/10.1109/FPL.2015.7293941
http://dx.doi.org/10.1109/FPL.2015.7293941
http://dx.doi.org/10.1109/FPL.2015.7293941
http://dx.doi.org/10.1109/FPL.2016.7577351
http://dx.doi.org/10.1109/FPL.2016.7577351
http://dx.doi.org/10.1109/FPL.2016.7577351
http://dx.doi.org/10.1109/IPDPSW.2017.100
https://www.intel.com/content/www/us/en/healthcare-it/solutions/documents/genomics-research-with-opencl-and-fpgas-paper.html
https://www.intel.com/content/www/us/en/healthcare-it/solutions/documents/genomics-research-with-opencl-and-fpgas-paper.html
https://www.intel.com/content/www/us/en/healthcare-it/solutions/documents/genomics-research-with-opencl-and-fpgas-paper.html
https://www.intel.com/content/www/us/en/healthcare-it/solutions/documents/genomics-research-with-opencl-and-fpgas-paper.html
https://www.intel.com/content/www/us/en/healthcare-it/solutions/documents/genomics-research-with-opencl-and-fpgas-paper.html
http://dx.doi.org/10.1109/ACCESS.2017.2671881
http://dx.doi.org/10.1109/ACCESS.2017.2671881
http://dx.doi.org/10.1109/ACCESS.2017.2671881
http://dx.doi.org/10.1109/SC.2016.34
http://dx.doi.org/10.1109/SC.2016.34
http://dx.doi.org/10.1109/SC.2016.34
http://dx.doi.org/10.1109/Trustcom.2015.634
http://dx.doi.org/10.1109/Trustcom.2015.634
http://dx.doi.org/10.1109/Trustcom.2015.634
http://dx.doi.org/10.23919/DATE.2017.7927082
http://dx.doi.org/10.23919/DATE.2017.7927082
http://dx.doi.org/10.23919/DATE.2017.7927082
http://dx.doi.org/10.1109/BIBE.2017.000-6
http://dx.doi.org/10.1109/BIBE.2017.000-6
http://dx.doi.org/10.1109/BIBE.2017.000-6
http://dx.doi.org/10.1109/EMBC.2015.7319879
http://dx.doi.org/10.1109/EMBC.2015.7319879
http://dx.doi.org/10.1109/EMBC.2015.7319879
http://dx.doi.org/10.1109/FCCM.2017.23
http://refhub.elsevier.com/S0167-739X(18)31418-3/sb19
http://refhub.elsevier.com/S0167-739X(18)31418-3/sb19
http://refhub.elsevier.com/S0167-739X(18)31418-3/sb19
http://refhub.elsevier.com/S0167-739X(18)31418-3/sb19
http://refhub.elsevier.com/S0167-739X(18)31418-3/sb19
http://refhub.elsevier.com/S0167-739X(18)31418-3/sb19
http://refhub.elsevier.com/S0167-739X(18)31418-3/sb19
http://refhub.elsevier.com/S0167-739X(18)31418-3/sb19
http://refhub.elsevier.com/S0167-739X(18)31418-3/sb19

	Considerations in using OpenCL on GPUs and FPGAs for throughput-oriented genomics workloads
	Introduction
	Background
	Genomics and k-mer frequency counting
	SMUFIN and its k-mer frequency counting

	Related Work
	Acceleration Method
	Reducing Global Memory Usage and Accesses
	FPGA-specific Optimizations
	Parallel Paradigms
	Kernels Replication and Channels
	On-chip and Global Memory

	Multi-FPGA Support

	Results
	Experimental Setup
	Evaluation Methodology
	Performance and scalability of OpenCL kernels
	Considerations on Time-, Energy-to-Solution, and Power Consumption
	Final considerations on GPU and FPGAs performance

	Conclusions
	Acknowledgment
	Appendix OpenCL kernels
	References

