High-Integrity Performance Monitoring Units in
Automotive Chips for Reliable Timing V&V

Enrico Mezzetti*, Leonidas Kosmidis*, Jaume Abella*, Francisco J. Cazorla*'
* Barcelona Supercomputing Center (BSC), Spain
"IIA-CSIC, Spain

Abstract

As software continues to control more system-critical functions in cars, its timing is becoming an integral element in functional
safety. Timing validation and verification (V&V) assesses software’s end-to-end timing measurements against given budgets. The
advent of multicore processors with massive resource sharing reduces the significance of end-to-end execution times for timing
V&V and requires reasoning on (worst-case) access delays on contention-prone hardware resources. While Performance
Monitoring
Units (PMU) support this finer-grained reasoning, their design has never been a prime consideration in high-performance
processors - where automotive-chips PMU implementations descend from - since PMU does not directly affect performance or
reliability. To meet PMUs instrumental importance for timing V&V, we advocate for PMUs in automotive chips that explicitly track
activities related to worst-case (rather than average) software’s behavior, are recognized as an I1SO-26262 mandatory high-integrity
hardware service, and are accompanied with detailed documentation that enables their effective use to derive reliable timing
estimates.

Index Terms - Multicore Automotive Chips, Performance Analysis, Performance Monitors

|. INTRODUCTION

The number of mechanical automotive subsystems being enhanced or completely replaced by electrical/electronic (E/E)
components is on the rise. Due to their safety-critical nature, it is mandatory to bring evidence that E/E systems behave
correctly. 1SO-26262 [1], which is becoming the prevalent safety standard for road vehicles, explicitly addresses the
identification of functional and non-functional software safety requirements. For software timing, which falls into the latter
category, 1S0-26262 associates a time budget to each software unit. Budgets are determined on the basis of estimates or
bounds to the software Worst-Case Execution Time (WCET) behavior. WCET estimates and budgets are therefore the basic
elements for determining feasible task schedules, and for assessing the timing behavior of the overall system.

Timing V&V heavily relies on extensive testing aiming at spotting timing failures, i.e. a software component overrunning its
assigned time budget (functional failures, which also have a prominent role in 1ISO-26262, are not covered in this work). The
absence of timing failures during the testing phase serves as an argument to sustain the correctness of the software timing
behavior. The effectiveness of the consolidated approach to timing V&V, which has historically focused on (just) assessing end-
to-end execution times against the assigned timing budget, is hampered by the advent of complex platforms comprising high-
performance features. In the automotive domain, on-board systems already embed software in the order of hundreds of
millions of lines of code [2], with some complex functionalities, such as Advanced Driver Assistance Systems (ADAS), projected
to increase their computational needs by 100x in coming years [3]. These levels of performance are met with high-
performance multicore processors comprising features like caches and accelerators (historically not used in automotive) like
the NVIDIA DrivePX, RENESAS R-Car H3, QUALCOMM SnapDragon 820 and Intel Go.

Software’s timing behavior on top of high-performance hardware is hard to model accurately due to overly extensive and
highly dispersive documentation of the latter, with possibly incomplete and inaccurate coverage of timing information. Further,
timing behavior cannot be verified to a sufficient extent with end-to-end measurements due to complex interactions among
hardware resources. For instance, the fact that a given task might incur long memory latencies due to cache misses, can be
concealed by the same task experiencing (luckily) low contention delays in other resources, e.g. in the bus, preventing the task
itself from violating its overall expected budget. End-to-end observations might then fail in capturing the task miss rate as a
possible cause of exceeding the budget during operation. As a result, end-to-end timing behavior (i) fails to expose the main
features affecting execution time, (ii) can hide the fact that some factors that contribute to the overall timing may compensate
each other, and hence (iii) cannot be considered anymore as a reliable indicator for deriving WCET estimates. In this same line
of reasoning, end-to-end measurements cannot be even used as means of evidence for sufficient independence between
mixed-criticality software elements, referred to as “freedom from interference” [1].

Finer-grained metrics (e.g. shared resources utilization and worst-case delays) are required to support timing-related safety
arguments in the face of an independent certification/qualification authority or in-house department. The ability to break

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works

down task execution time at a finer granularity level than end-to-end observations provides stronger timing evidence,
fundamental to increase the level of confidence on WCET estimates and thus on the adequateness of timing budgets.

While the Performance Monitoring Units (PMUs) in mainstream processors do offer a promising baseline for this low-level
analysis, the historical role and limited relevance PMUs have been given in mainstream systems - from where PMU design in
automotive chips is inherited - is in strident contrast with the critical role they would acquire for timing analysis. In fact, PMUs
and Performance Monitoring Counters (PMCs) have been traditionally intended to capture average behavior rather than the
worst-case one and have been used as cursory, low-level debugging support by the chip manufacturer (hence with reduced
need for detailed documentation). Moreover, the fact that PMU and PMCs do not directly impact the timing and functional
behavior of applications running on top of the platform has a twofold consequence: first, PMU’s inclusion in the hardware
design usually occurs in late design phases, with reduced flexibility to incorporate new counters or to fix potential deviations;
and second, the PMU does not need to comply with high-integrity constraints and can be designed according to low-integrity
(e.g., ASIL-A) requirements. This difference in integrity level exposes system designers to the evident paradox of using low-
integrity, poorly-documented PMUs as the basis for timing analysis mechanisms that are expected to guarantee that the
system achieves enough freedom from interference for higher-integrity tasks (e.g., ASIL-C/D).

Our claim is that high-integrity (i.e. ASIL C/D), WCET-aware, well-documented PMUs will become an instrumental tool to
simplify and consolidate the arguments in support to timing V&V in the presence of automotive multicore complex processors.
In this paper we make the case for new requirements and guidelines in the design and implementation of PMUs that can be
reliably used to collect timing information. In particular, our proposal focuses on three major aspects:

1) WCET focus: PMUs shall be oriented towards the analysis of the worst-case behavior rather than the average one only.
This means, PMCs should allow deriving worst-case delays and execution time. We report our experience in
implementing some of those events in an FPGA implementation of a real-time multicore processor;

2) Quality of documentation: PMU documentation has to be significantly improved with respect to current practice.
Emphasis should be put on availability (i.e., disclosure) and clarity of the information. To support this argument, we
report our experience in mastering the PMU of an automotive processor;

3) PMU criticality level: PMUs must be designed, implemented and tested under the highest ASIL constraints given their
central role in software timing validation.

Il. PMU PROPERTIES IN MAINSTREAM SYSTEMS

The design and philosophy in the PMUs in automotive chips are inherited from mainstream high-performance systems, for
which PMCs were first introduced. In the following we analyze relevant common features in modern PMUs and discuss how
they fit in the emerging scenario where PMUs are increasingly used for timing V&V of multicore automotive chips.

Number of events and PMCs. Events and PMCs address different concepts: events refer to those activities (e.g. cache
misses, bus access count) that can be monitored, while PMCs are user-visible and configurable registers that count events.

Events. The number of events in modern mainstream processors reaches hundreds. Despite their high number, their design
philosophy is not monitoring worst-case delays and contention across tasks. Instead, they are typically intended for debugging
purposes and optimization of average system performance. With currently tracked events, one can easily derive whether a task
was delayed because of some type of stall in the memory system, which blocked a core resource (e.g. the load/store unit). By
contrast, it is hard - if at all possible - to derive how long a task running in a core was delayed due to the requests of other
tasks to the memory system (e.g. bus, cache, memory controller). The latter, however, is fundamental to articulate whether the
delays and worst-contention delays observed for the execution of a task come from its intrinsic behavior or were induced by
the activities of other tasks. Hence, existing events in mainstream processor architectures do not allow analyzing the (worst)
contention that tasks can create on each other [4] (more details in Section III).

PMCs. In general, processors feature a limited number of PMC registers, e.g. 4-8 [5] in IBM POWER series and 64 in the IBM
BlueGene [5] series. To track more events than available PMCs, multiplexing techniques can be used. Alternatively, the end
user is required to carry out several runs to collect several event sets. Depending on the processor, PMC multiplexing can be
implicit, allowing to measure more events than the physical registers, in exchange of accuracy due to event sampling. Other
processors expose this limitation to the programmer, limiting the collection of events to the number of physical registers,
frequently allowing only certain events to be counted with a given register. This results in scenarios where a particular
combination of events cannot be monitored in the same execution, due to the fact that they are assigned to the same physical
register. Timing experts have to factor in the WCET estimates the sampling inaccuracy (deriving bounds to it) and/or design
experiments to collect the set of events required, accounting for the discrepancies across experiments (e.g. several runs of the
same experiment may produce different event counts due to limited controllability).

PMUs not directly contributing to average performance. Although in recent years several works have shown that PMUs
have positive repercussions on software performance and software engineers productivity [6][7], PMUs per se are not
mechanisms directly increasing average performance. This naturally relegates PMUs to late chip design phases with limited
time to solve issues that can arise, test PMUs deeply and document them conveniently. This translates into several problems
for the end user. Reduced - or hard to find documentation - causes users working out costly reverse-engineering solutions.
Further, limited documentation contributes to the lack of understanding of some sources of variability in some events, under
apparently the same system setup. This causes some PMC features to be reported as unknown [8], reducing the confidence
the user can reasonably place on PMUs.

PMUs not affecting functional safety. In real-time systems PMUs do not have a direct impact on hardware reliability, i.e. a
faulty PMU does not cause the chip to become functionally inoperative. This naturally makes chip vendors (in the real-time
market) reluctant to design PMUs under the requirements of ASIL levels. For example, PMCs neither feature protection against
faults such as ECC or hardware redundancy, nor are deeply assessed against design faults, potentially creating another source
of uncertainty in the measurements and, consequently, in the trustworthiness of their values.

I1l. CROSSROADS FOR PMU DESIGN IN AUTOMOTIVE CHIPS

PMUs design and implementation in high-performance automotive processors should meet the requirements coming from
current practice on WCET analysis.

Analytic modeling (more frequently used in other domains than in automotive) faces a complexity wall when building
reliable and tight timing models of complex hardware. The latter, not only builds on information about hardware internals, in
many cases subject to IP protection, but also requires models whose complexity is well beyond any timing model developed to
date. This is confirmed by recent studies of major companies in domains such as Automotive for the ARM-based SABRE Lite
multicore system by Renault [9] and Avionics for the NXP P4080 by Airbus [10], which build on some form of measurement-
based analysis to derive timing bounds.

Measurement-based timing analysis modeling - the most common industrial practice in automotive - typically uses the
highwater mark (HWM) measurement and adds to it a safety margin to account for unobserved behavior. This approach
suffices for simple (e.g. SCADE-like) software that incurs limited execution time variability when runs on simple processors, but
hits an uncertainty wall with the emerging systems. For complex hardware, the confidence of WCET estimates obtained with
measurement-based timing analysis builds on the user’s ability to reason on the application’s timing behavior and, in particular,
on its interaction with hardware components. The bounds to the maximum contention delay that a given request (or
cumulatively all the requests of a task) can suffer are needed to provide evidence of the correctness of WCET estimates for 1SO-
26262. Deriving such bounds requires constructing ad-hoc test cases where empirical execution-time measurements are
shown not to violate those bounds.

PMUs will be instrumental to cope with some of the current limitations of timing analysis on complex high-performance
hardware platforms. Some preliminary studies in the real-time domain already explore the role of PMUs in deriving evidence
on software correct timing behavior. To that end, specific events such as per-task (and possibly per-type) access counts to
different shared resources are tracked [10], [11]. Those figures can be used to define shared-resource access or usage quotas
that are later enforced during system operation, via specific run-time enforcement mechanisms. While existing PMUs already
provide valuable features for timing analysis, current (average-performance centric) PMU design, implementation and
documentation does not suffice to keep up with (i) the hardware and software platform complexity increase and (ii) the more
stringent safety requirements as ADAS autonomy levels increases. Additional more reliable and suitable PMUs are needed to
obtain solid evidence on the timing behavior on top of future high-performance automotive processors.

A. Events, PMCs and their usage

Mainstream processors, such as IBM POWER, Intel x86 and ARM A series, provide a set of PMCs that count specific events
such as floating-point operations, cache misses or processor pipeline stalls [4]. The particular events monitored allow tuning
average performance, but their focus is not monitoring worst-case delays, e.g. contention across tasks.

From those events a Cycle stack or CStack (aka CPIStack) can be built. The CStack provides a breakdown of how a given
application ‘has consumed’ each cycle following a hierarchical approach. Focusing on the example provided in Figure 1(a), the
total execution cycles bar on the left corresponds to the end-to-end execution time of the application. This component is
divided into few first-level sub-components, which usually include: running time (covering the cycles in which one or more
instructions were committed), idle cycles (in which no instruction was committed because the pipeline was empty), stall cycles
(in which no instruction was committed because some resources got full), and other (that covers the remaining cycles that
cannot be classified in any of the previous categories). Each first-level component can be further subdivided into several

second-level components. For instance, stall cycles normally are split per main resource on which a stall can be incurred:
floating point unit, fetch unit, load/store unit, etc. The process can continue for few additional levels depending on the
PMC/event support.

By operating (i.e. adding and/or subtracting) on PMC readings from different events, the user can build the CStack.

Interestingly, the CStack has evolved from models proposed by researchers to more reliable models provided by chip vendors,
e.g. IBM provides the CStack for its POWER7 processor [6]. Based on the same type of events, models to identify the
performance criticality (different from the integrity-criticality described in the Introduction) of each thread in a given task have
also been proposed [7]. Further extensions for energy tracking have also been considered [12].
Per-core contention delay: High-performance hardware has high complexity from safety standards perspective, meaning that
it is difficult to control and verify. The trend towards multi- and many-cores makes contention in shared resources to become
one of the most difficult elements to analyze and control. For worst-case (contention) delay analysis, we advocate for adequate
PMU support in way similar to what has been proposed in [4], focusing on the relevant hardware events that need to be
tracked for a reference platform in the aerospace domain. The following illustrative example shows how worst-case related
information can be derived. The well-known Advanced Microcontroller Bus Architecture (AMBA) protocol defines the signals
HBUSREQ;, which is set by master M; to request the bus, and HGRANT that is set by the arbiter to identify the master (e.g.
HGRANT-= j) that is granted access to the bus in each cycle. By tracking the number of cycles during which HBUSREQ; is set and
HGRANT= j, with i = j, we obtain the number of cycles M;is stalled by M; [4]. Tracking this information, including the time M;
uses the resource, for each of the Nyymasters requires Ny xNy registers.

mshr full
Load/Store Dcache miss ;
Unit T e | Core cycles
i (idle + local stall
Stall . ! N :
. | Cycles Flpatlng ! ; running)
o Point Unit K]
S Integer Unit S Processing
Lé (‘é | waiting core 1
o o Bus Cycles waiting core 2
- Lt e
3 Tcache miss 3 waiting core 3
4 branch miss g ra
i i waiting core 1
© © waiting core 2
+ -+ .
2 A} waiting core 3
Processing
waiting core 1
Memory Cycles |\ aiting core 2
waiting core 3
(a) CPI Stack i (b) Cycle-Contention (CC) Stack

Fig. 1. lllustrative Examples of CPIStack (or CStack) and CCStack

Following this philosophy in the events to track, we can also derive how long each task has been delayed by others in the
access to some hardware resources. This information is illustrated in Figure 1 (b) as a Cycle-Contention Stack (CCStack) [4] for a
multicore with private first level instruction and data caches and whose main shared resources are the bus, the L2 cache and
the memory interface. The CCStack splits the time that the application was running into two main categories: cycles in which
the application was actually running or stalled due to its intrinsic behavior; and cycles in which the application was stalled due
to the contention generated by tasks running in other cores. In the former category, we fit the first component in Figure 1 (b)
that captures the time the task was running or stalled/idle due to local (intrinsic) events and the time the task was processing a
request in shared resources. The second category covers all those components that capture the contention delay experienced
by the task, labeled as ‘waiting [for] core X’ in Figure 1 (b).

With the CCStack, the time a critical task is delayed in a given resource collectively by tasks running on any other core is
given by the addition of all ‘waiting core X' components for that resource. Likewise, the time the critical task is delayed
collectively across all resources by another task running on a given core, e.g. the one running in core 3, can be derived by

4

adding up all ‘waiting core 3’ CCStack components. Both are very valuable pieces of information to provide evidence about the
correctness of the timing behavior of a task according to its safety timing specification.

Evidence for certification: The proposed WCET-centric PMCs can also track the longest contention delay a request from a
given core can cause on others, which is fundamental for validation of WCET estimates. Several techniques have been
proposed to estimate the worst-contention delay in the accesses to hardware shared resources, which are used as building
blocks for multicore WCET estimation. Tests can be built to add high load on a resource (e.g. the bus), checking with the
proposed PMCs whether the contention delay observed for any request goes beyond the estimate made. The absence of this
scenario, together with an explanation of the experiment carried out to cause high load on the bus, serves as evidence on the
correctness of the estimation to the worst-case contention delay.

The benefits expected from the sought PMU support are not limited to guiding the analysis process and consolidating its
results. PMU support can also be exploited after production and deployment when in-field observations are collected. The
cause of a detected software timing violation is often as opaque as the hardware internals and can only be explained with the
support of WCET-centric PMUs. Moreover, insightful information from PMUs can also be exploited to identify for example
anomalous (i.e., unobserved at analysis time) magnitude of contention from a given core and on a given resource and trigger
corrective actions.

Overall, a good set of contention-aware events is the basis for timing V&V to assess that all worst-case delays are not
violated, hence providing evidence for 1ISO-26262 qualification.

B. Documentation Quality

Several factors are specifically critical for automotive in terms of documentation depth, accuracy, and technical content.

In terms of depth, the amount of information currently provided in relation to PMUs is evidently scarce when compared
with, for example, the information on other debug support functionalities. It is quite common to have event description limited
to a single line of text or a short entry in a table. This trend reflects the fact that, in contrast to other functional debug features
(e.g. intercepting communication errors), performance monitoring has been historically considered useful only for high-level
verification of the hardware design and coarse-grained profiling information.

In terms of availability, PMU information is usually not fully provided in the processor programmer’s manual (or alike). Many
events and PMCs are provided in documents only available upon request or directly subject to NDA. The availability of the
information may also reduce when there is a hardware IP provider company and a manufacturer company (as opposed to a
single company holding the IP and implementing the chip). In fact, some events are marked as implementation dependent. This
may result in several documentation sources, not necessarily consistent among them.

In terms of accuracy and technical content, relevant information is sometimes unavailable or blurred, to avoid PMUs to
indirectly disclose sensitive details on the underlying IP. While the rationale is clearly shareable, this should not prevent from
exploiting the PMU altogether. Timing information in processor manuals can even be inaccurate, with disruptive effects on
modeling of timing. For instance, the ARM Cortex-R5 - specifically targeting real-time systems - was accompanied by errata
specification of timing: in revision rip2 the stall cycles caused by the divider unit and the latencies of some operations
(VDIV.F64 and VSQRT.F64) were incorrect and only rectified in subsequent revisions. Next, we provide our first-hand
experience when trying to master the PMUs of a processors used in automotive.

The QUALCOMM SnapDragon family of processors, based on the ARM big.LITTLE architecture , are used in automotive chips
like RENESAS R-Car H3. These processors consist of two clusters with 4 cores each, one of them optimized for performance
whereas the other is optimized for power efficiency. In-core events are monitored with PMCs documented by ARM, whereas
most off-core events (including those beyond the L2 cache) are implemented - and so documented - by QUALCOMM.
Unfortunately, our practical experience is that ARM documentation for the PMCs of this architecture, which has become no
longer public, is scarce and incomplete. For instance, each data cache miss may produce two L2 accesses even if data are
present in L2. While we suspect this effect relates to the prefetcher, incomplete documentation does not allow even to turn it
off. QUALCOMM documentation for PMCs is simply not available.

All in all, automotive chip providers should find a good balance between extended PMU documentation and IP protection,
and promote more fluent interactions with timing analysis experts, to better understand how typical usage of PMUs is evolving
and which pieces of information are sought. Providing this support is fundamental for software timing verification and will
become even more important as the autonomy of ADAS increases up to level five - under level 5 autonomy, ADAS control
cannot be given back to the human driver under any driving scenario - carrying a significant increase in the evidence required
for safety assurance.

C. ASIL-compliant design

The 1S026262 safety lifecycle captures safety-related activities during the concept, development and production phases (the
latter is not covered in this document). The concept phase is concerned with the items to be developed in the course of the
lifecycle, with emphasis on formulating high-level safety requirements (aka safety goals) to prevent hazardous situations.
1SO26262 dictates that each safety goal is attached an ASIL, and used to derive a set of functional safety requirements, and to
allocate them to specific item’s architectural elements. The development phase determines how the hardware and software
layers implement the safety functionality required to achieve the safety goals. 15026262 defines hardware and software
development workflows as shown in Figure 2.

An important step in PMU design and implementation is determining its target ASIL. With the trend towards mixed-criticality
software, automotive chips are going to support the simultaneous execution of software with different and apparently
incompatible ASIL (from A to D). Further, our proposed WCET-aware PMU contributes to timing correctness, and hence may
also influence the probability of violation of safety goals. For these reasons, PMU ought to be designed and verified following
the same practices as for the other hardware components part of ASIL C/D subsystems. The assessment of the ASIL compliance
for a subsystem (HW2) defines the ASIL of its components, which in turn depends on their architecture. For instance, using
redundant and diverse implementations is an effective safety measure to reach higher ASIL than those of individual
components. This holds because individual random hardware faults or residual design faults do not cause a system failure,
mitigating the risk due to single-point failures.

PMUs require undergoing appropriate fault analysis to identify potential faults, mitigate their probabilities with appropriate
designs (HW3) and make sure that safety is not affected by placing the appropriate means (HW4-HWé defines metrics and
tests to provide evidence of compliance). This includes (i) dedicated safety measures (e.g. redundancy, diversity, hardened
designs), (ii) the ability to shift the system to a safe state in a sufficiently short period of time, and (iii) notifying the driver (or
make the fault perceptible) so that harmful consequences of faults can be avoided. Further, PMU fault analysis requires
classifying faults according to the severity of their impact on the safety function (hardware fault tolerance), and assessing the
coverage attained with the safety measures in place. As a rule of thumb, the higher the ASIL level, the higher the requirements
imposed in terms of fault tolerance and diagnosis coverage required: their combined effect must comply with specific levels,
intended to guarantee that the failure rate per hour is below ASIL-dependent predefined thresholds.

. Hardware (HW)_ .__Software (SW)___:
{ HW1 [Product development | | Product development SWI !
initiation initiation
"Hw2 | Safety requirement Safety requirement | SW2
specification specification
(YT i o YT |
P HW3 | : SW architecture SW3
RRRRLEEEE HW design N SRR ’
design
{ HW4 HW metrics SW unit design SW4 |
evaluation and implementation
CHWS SW5 |
LHWS | Safety g_oal SW unit testing |-
evaluation
rHW{i HW integration and SW integration 5W6
testing and testing
Verification SW SW7 |
safety requirements

Fig. 2. Sketch of 15026262 hardware and software development workflows

The interaction with the software workflow, outlined in the right part of Figure 2 is equally critical. During SW2, and in
conjunction with HW2, the set of hardware events that demand high ASIL should be identified. These events, including for

6

instance those used to build the CCStack, together with the PMCs and the required PMU logic, should be designed to meet
high ASIL. The rest of the events, could be designed, developed and evaluated (HW3-HW®6) under less stringent ASIL. This
allows achieving a good balance among hardware overhead and high-ASIL compliance. Coming back to the software workflow,
ISO-26262 requires WCET estimates and budgets to be defined during the software architectural design phase (SW3), which
could build on the PMU support in place. Conversely, as part of the (timing) unit testing and integration testing (SW5 and SW6),
the user needs to provide evidence that the software has sufficient time budget to complete according to its assigned ASIL.
Evidence from PMU should expose fine-grain timing metrics such as, for example, contention effects and assess those metrics
against predefined bounds.

Overall, PMU deployment for automotive chips requires a suitable combination of design and verification practices, together
with safety measures so that the most stringent integrity levels can be achieved when building timing guarantees upon PMU
measurements.

IV. CONCLUSION

The increasing demand for guaranteed performance in the automotive domain calls for the adoption of mainstream
processors whose complexity largely exceeds the capabilities of existing timing analysis techniques. In order to obtain sufficient
evidence for safety certification, timing V&V techniques require appropriate hardware support to model contention in shared
resources, which are abundant in high-performance multi- and many-cores. However, existing PMUs fail to capture and expose
relevant events to measure worst-case access delays (including contention), their design does not meet the highest integrity
levels, and their documentation often provide inadequate levels of accuracy, coverage and availability.

We propose leveraging WCET-aware PMUs to obtain evidence for certification in the automotive domain. In particular, we
contend that the ability to derive worst-case access delays and per-task contention delay is pivotal for timing V&V. Achieving
this requires some changes in PMU design and implementation: WCET awareness, improved documentation, and design and
verification towards achieving safety certifiability against the highest 150-26262 levels (C and D).

ACKNOWLEDGMENTS

This work has also been partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant
TIN2015-65316-P and the HIiPEAC Network of Excellence. Jaume Abella has been partially supported by the MINECO under
Ramon y Cajal postdoctoral fellowship number RYC-2013-14717. Enrico Mezzetti has been partially supported by the Spanish
Ministry of Economy and Competitiveness under Juan de la Cierva-Incorporaciéon postdoctoral fellowship number 1JCI-2016-
27396.

REFERENCES

[1] International Organization for Standardization, ISO/DIS 26262. Road Vehicles - Functional Safety, 2009.

[2] R. N. Charette, “This car runs on code,” in IEEE Spectrum Magazine and IEEE Spectrum Online, vol. 46, no. 2, February 2009, p. 3.

[3] ARM, “ARM Expects Vehicle Compute Performance to Increase 100x in Next Decade,” https://www.arm.com/about/newsroom/arm-expects-
vehiclecompute-performance-to-increase-100x-in-next-decade.php, 2015.

[4] J. Jalle, M. Fernandez, J. Abella, J. Andersson, M. Patte, L. Fossati, M. Zulianello, and F. J. Cazorla, “Contention-aware performance monitoring
counter” support for real-time MPSoCs,” in 11th IEEE Symposium on Industrial Embedded Systems (SIES). IEEE, May 2016, pp. 1-10.

[5] V. Salapura, K. Ganesan, A. Gara, M. Gschwind, J. C. Sexton, and R. Walkup, “Next-generation performance counters: Towards monitoring over

thousand concurrent events,” in Proceedings of the ISPASS 2008 - IEEE International Symposium on Performance Analysis of Systems and Software . IEEE
Computer Society, April 2008, pp. 139-146.

[6] IBM, CPI events and metrics for POWER7, https://www.ibm.com/support/knowledgecenter/linuxonibm/liaal/ iplsdkcpievents.htm.

[7] K. D. Bois, S. Eyerman, J. B. Sartor, and L. Eeckhout, “Criticality stacks: identifying critical threads in parallel programs using synchronization
behavior,” in The 40th Annual International Symposium on Computer Architecture, ISCA’13. ACM, June 2013, pp. 511-522.

[8] V. M. Weaver and S. A. McKee, “Can hardware performance counters be trusted?” in 2008 IEEE International Symposium on Workload
Characterization. IEEE Computer Society, Sept 2008, pp. 141-150.

[9] A. Blin, C. Courtaud, J. Sopena, J. L. Lawall, and G. Muller, “Maximizing parallelism without exploding deadlines in a mixed criticality embedded
system,” in 2016 28th Euromicro Conference on Real-Time Systems (ECRTS). IEEE Computer Society, July 2016, pp. 109-119.

[10] J. Nowotsch, M. Paulitsch, D. Buhler, H. Theiling, S. Wegener, and M. Schmidt, “Multi-core interference-sensitive WCET analysis leveraging runtime
resource capacity enforcement,” in 2014 26th Euromicro Conference on Real-Time Systems. IEEE Computer Society, July 2014, pp. 109-118.

[11] G. Fernandez, J. Jalle, J. Abella, E. Q. nones, T. Vardanega, and F. J. Cazorla, “Resource usage templates and signatures for COTS multicore
processors,” in 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC). ACM, June 2015, pp. 1-6.

[12] R. Zamani and A. Afsahi, “A study of hardware performance monitoring counter selection in power modeling of computing systems,” in 2012

International Green Computing Conference (IGCC). IEEE Computer Society, June 2012, pp. 1-10.

	A. Events, PMCs and their usage
	B. Documentation Quality
	C. ASIL-compliant design

