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ABSTRACT 

 

This thesis presents the results of applying a statistical hybrid approach for structural health 

monitoring using piezo actuating signals. Where, by combining statistical processing based on 

Principal Component Analysis (PCA), cross-correlation functions and pattern recognition methods it 

was possible to detect, classify and locate damages under varying environmental conditions and 

possible sensor faults. The proposed methodology consists of first transmiting/sensing guided waves 

along the monitored structure surface by using piezoelectric (PZT) devices. Then, cross-correlated 

piezoelectric signals are statistically represented by means of a PCA model. Later, damages are 

identified through error indexes computed from a statistical baseline model. Finally, clustering 

methods and scattered plots are used to verify the performance of the proposed algorithm. Improved 

or new techniques are presented in this thesis which were focused to achieve more reliable diagnosis 

with high robustness and good performance. Specifically, differential genetic algorithms are used for 

automatically tuning parameters in a PCA-SOM damage detection/classification approach. 

Additionally, Ensemble Learning is explored as approach for obtaining more efficient diagnosis with 

high separable boundaries between undamaged and damage conditions taking advantages of learner 

algorithms built from Non-Linear PCA and a Multiactuacting active scheme of piezodiagnostics. 

Also, a modified version of the Reconstruction Algorithm for Probabilistic Inspection of Damage – 

RAPID is implemented to solve location tasks in SHM. The proposed methodology was 

experimentally evaluated on different structures such a a carbon-steel pipe loop, a laminate plate, 

aircraft wings and a scale tower wind, among others; where different damage scenarios were studied, 

including leaks scenarios, mass adding and cuts. The effectiveness of the proposed methodology to 

detect, locate and classify damages under varying environmental and operational conditions is 

demonstrated. Likewise, the feasibility for continuous monitoring is validated by embedding the code 

of the proposed algorithm whose capacity to detect structural damages was demonstrated. As a result, 

the combination of piezodiagnostics approach, cross-correlation analysis, principal component 

analysis,  clustering techniques and Ensemble Learning become as promising solution in the field of 

structural health monitoring and specifically to achieve a robust solution for damage detection and 

location. 
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Chapter 1 

1. Introduction 

1.1. Research Framework and motivation 

"Structural Health Monitoring (SHM) is the integration of several systems or devices: sensory, 

data acquisition, data processing and archiving, communication, damage detection and 

modelling, in order to acquire knowledge about the integrity and load worthiness of in-service 

structures on either a temporary or continuous basis" [1]. In general terms, according to Farrar 

and Worden [2], SHM can be defined as the process of implementing a damage identification 

strategy for engineering structures, where damage refers to changes of the material and/or 

geometric properties of a structural system, that adversely affect the system's performance. Some 

of benefits by implementing a damage identification strategy through a SHM system are: 

avoidance of premature breakdowns, reduction of maintenance costs, continuous remote 

diagnosis and economic benefits in terms of an operational life extension. Many SHM approaches 

have been reported in literature [3], where a trade-off between efficiency and accuracy in the 

diagnosis is one of the main problems to be solved. It is desirable that SHM systems satisfy 

characteristics regarding to reliability, accuracy, robustness, and high sensitivity to the presence 

of damages [4], [5]. Thus, one of the main concerns in the field of SHM is the implementation of 

systems with the capability to continuously evaluate the health of a structure. Such systems should 

have the ability to manage uncertainty caused by operational and environmental conditions [6], 

facilitating the failure identification through algorithms with high performance levels (degree of 

damage diagnosis: detection, location, quantification and prognosis [2]) in order to reduce 

maintenance costs when continuous action is considered. The above requirements demand 

efficient hardware and software resource consumption since the high amount of data recorded 

when continuous SHM systems is achieved.  

An adequate SHM system should meet the following characteristics: 

 Efficiency for identifying structural damages, taking into account that access to structure 

can be limited, and implementation and operation costs should be low.  

 Robustness to environmental changes, noisy data and sensor faults. 

 Capability to identify different damage types.  

 Offer facilities for practical implementation. 

Thus, this thesis is devoted to present a robust approach for structural condition monitoring with 

the next features: Detection of multiple structural damages with implementation feasibilities, such 

as: automatic parameter tuning, easy results interpretation for diagnosis and low hardware 

requirements.  

1.2. Objectives 

1.2.1. Main Objective 

The main objective of this thesis is to propose a robust structural damage detection algorithm 

based on statistical tools such as nonlinear PCA combined with ensemble classification, in order 
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to detect multiple damages in structures under varying environmental conditions and possible 

sensor faults.  

1.2.2. Specific Objectives 

To achieve the main objective, the following specific objectives have been developed: 

 To study different approaches based on Principal Component Analysis, neural Networks 

and Genetic Algorithms, proposed to solve the damage detection problem in structures 

under environmental conditions. 

 To study different approaches of Nonlinear Principal Component Analysis and adapt it 

to the damage detection problem in order to evaluate its performance. 

 To evaluate evolutionary optimization techniques as tool for parameter tuning and 

sensitivity analysis in damage detection algorithms. 

 To evaluate ensemble learning approaches as solution to the multiple damage detection 

problem. 

 To conduct experiments on laboratory specimens and sections of complex structures, 

such as aircraft wing skin, scale wind generator, among others in order to test its 

sensitivity and specificity. 

 To recreate damages such as mass adding and leakages in a laboratory scale pipeline. 

 To code the proposed and previous algorithms developed by CoDAlab group on a final 

integrated system of easy implementation, where any determined piezoelectric can be 

chosen as actuator and the other ones as sensors.  

 To test the embedded system in structures such as lab scale pipelines, operating in 

continuous use. 

1.3. Outline of the main contributions of this thesis 

This thesis was focused to contribute on the online identification of structural multi-damages 

problem by using algorithms with capability of processing experimental data obtained from real-

scale structures under varying environmental conditions as well as monitoring state of sensors. 

In order to achieve this goal, a damage detection algorithm based on piezo-diagnostics approach 

and Principal Component Analysis (PCA) is implemented in a Linux-Based ARM hardware 

platform. The methodology proposed to detect structural damages consists of first obtaining a 

structural baseline model by applying PCA (linear and no linear) on a set of experiments from a 

pristine structure and then evaluating the current condition (Damaged or Undamaged) of the 

structure by comparing new measurements respect to the baseline model. In this sense, square 

prediction error index is used to detect deviations from undamaged condition. The methodology 

includes the use of SOM1 neural networks for visualization and damage classification purposes. 

As a result, a robust methodology was obtained (low sensitivity to noisy measurements, sensor 

faults and several operational conditions) to address SHM tasks, with following novel features: 

 Computational resources related to memory and processor consumption were efficiently 

used as possible by means of a low cost implementation of Principal Component 

Analysis (PCA) through Proper Orthogonal Decomposition (POD) algorithm. Thus, the 

feasibility of continuous monitoring taking advantage of piezo diagnostics principle is 
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no longer major seatback due to the use of an embedded version of PCA damage 

detection algorithm. 

 Identification of atypical and noisy data, as well as management of data cleansing stages 

are facilitated by the implementation of a pre-processing stage based on cross-correlation 

analysis. 

 An augmented PCA baseline model, including environmental influences on the data 

variability, is used as alternative to deal environmental conditions regarding to 

temperature and humidity variations.  

 An automatic tuning of parameters is proposed by using a Differential Evolutionary 

Algorithm (DEA). 

 False alarms and missing report of the damage detection algorithm are minimized by 

improving the differentiation between damage and undamaged conditions through an 

ensemble learning scheme, where diagnosis from several subsystems are mixed to obtain 

a more distinguishable boundary defined by damage indexes.  

 Damage location is achieved by implementing an ensemble learning approach by 

combining the squared prediction error from sensor pairs with an adapted version of 

RAPID2 algorithm, demonstrating the capability to manage features diversity. 

 Robustness of damage detection was validated for two sensor fault conditions: 

debonding and wiring losses. It was demonstrated that sensor failure condition 

corresponds to atypical performance in the diagnosis response and high indices out or 

bellow of common values can be associated to failures in the connection system. 

 Alternative novel indices for damage detection were proposed by using errors between 

measured and reconstructed signals, which are combined in an ensemble framework in 

order to obtain a robust index with capabilities to detect structural damages in a more 

distinguishable way. 

 The feasibility of the system was verified by conducting laboratory experiments in 

several structures: a pipeline section, a pipe loop structure, two aircraft wings, a laminar 

structure of composite material and a scaled wind generator model. Thus, the suitability 

of the proposed methodology was shown in a great variety of structures.  

 Several damages scenarios were used to validate the performance of the proposed 

methodology, in order to detect reversible and non-reversible damages. Thus, the 

proposed algorithms have the capability of detecting and classifying damages such as 

mass adding, cuts and leak conditions.   

According to above statements, in this thesis a hybrid formulation is proposed by combining 

ensemble learning, nonlinear statistical feature extraction and evolutionary based optimization, 

as an alternative method to classify multiple damage scenarios under environmental/operative 

structural varying conditions, with possible sensor fault monitoring and minimal false/missing 

diagnostics. 

1.4. Organization of the thesis 
The present thesis is organized in ten chapters, starting with this introduction where the 

objectives, general results and research framework and the organization are described. The 

second chapter includes a theoretical background that covers a brief definition of the methods 

used in the proposed algorithms. The review covers selected aspects of Structural Health 

Monitoring (SHM) based on statistical methods (Principal Component Analysis - PCA) for 

                                                           
2 Reconstruction Algorithm for Probabilistic Inspection of Damage – RAPID. 



 

4 
 

structural damage detection using baseline models obtained from piezoelectric measurements.  

Afterwards, the third chapter presents the use of cross-correlation signals to facilitate data 

cleansing, noise filtering and damage grouping. Thus, the advantages of including a 

preprocessing stage based on a cross-correlation technique for improving the overall performance 

of structural damage detection algorithms are detailed. The fourth chapter is devoted to present 

the proposed methodology for damage classification by means of unsupervised learning 

algorithms. For this purpose, clustering techniques are implemented in order to group different 

states of a structure, which allows building a damage classifier. In the five chapter, an approach 

for automatically tuning parameters of structural assessment algorithms is discussed. The 

automatic tuning is obtained by using differential evolutive algorithms due to its flexibility, which 

facilitates the adaptation of general data-driven methodologies for structural damage detection. 

In chapter six, a solution for the treatment of environmental conditions related to humidity and 

temperature changes is explained. In this chapter, a short review of the influences and methods 

for environmental conditions treatment are depicted, and it is also detailed how it can be managed 

through augmented baseline models. Chapter 7 contains design, test and specifications for a 

standalone inspection prototype developed on an embedded hardware platform. The following 

elements are shown: instrumentation equipment, computational core capability, programming 

procedure and practical considerations for the implementation of embedded approach of PCA-

SHM algorithms. Chapter 8 analyzes the results of using Ensemble Learning as approach for 

SHM tasks: robust damage detection and damage location. Robust damage detection is achieved 

by combining several proposed damage indices taking into account errors between measured and 

reconstructed signals, which minimizes false alarms and missing reports. In order to determine 

the position of the damage in the structure, contributions of each transducer in the sensor network 

to each damage index are calculated and then merged by means of an adapted version of RAPID 

algorithm.  Chapter 9 discusses the performance and sensitivity of PCA based damage detection 

for two sensor fault conditions: sensor debonding and wiring losses. Each chapter details the case 

studies and laboratory efforts on different structures that have performed in this survey. Finally, 

the last chapter presents the main conclusions of this thesis and some comments about the 

methodologies proposed and the obtained validation results. Moreover, this final chapter contains 

some proposal for future research and main pursued objectives to conclude this thesis. 
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Chapter 2 

2. Theoretical research overview 
This thesis is focused on developing a hybrid multi damage identification approach by combining 

different techniques, damage features and classifiers in order to improve the overall damage 

identification performance. The developments are based on previous work explored by CoDAlab 

and CEMOS research groups at the UPC and UIS universities. In this chapter the fundamental 

concepts of previous algorithms are presented, which serve as technical support for the results in 

this thesis. 

2.1. Structural Health Monitoring principles and concepts 
Structural Health Monitoring (SHM) can be defined as a strategy for detection, location and 

quantification of damages on several structures from mechanical, aeronautical to civil ones. In 

the last years, a special interest is noted for the condition monitoring of structures such as wings, 

bridges, oil pipes, towers and sea platforms among others, which are widely used in tasks related 

to mechanical, civil and aeronautical applications. As a result, new techniques have been 

developed in the field of SHM, in order to detect structural damages due to aging, overloads, 

fatigue or external disturbances. Thus, when damage is early detected, proper actions can be 

conducted to repair or reinforce structural elements that minimize accidents risk, economical 

losses, catastrophic events, and avoid possible human deaths. According to Ooijevaar [7], 

structural damage diagnosis algorithms include the elements summarized in figure 2.1. 

        
Figure 2.1: Components of a SHM process for damage diagnosis according to Ooijevaar [7] 

 

In figure 2.1, the sensor system obtains the signal signature describing the current state of the 

monitored structure. Then, data collected by the sensor network is characterized through features 

in order to get a sensible representation to damage conditions. These features are exploited by 

classification, regression or clustering algorithms with capability to identify abnormal conditions 

(i.e. possible damage). Thus, by implementing the scheme depicted in figure 2.1 the basic SHM 

levels can be achieved: Diagnosis constituted by damage detection (Level 1), location (Level 2) 

and quantification (Level 3), and prognostics by estimating the damage evolution (Level 4), 

where, feature extraction is the area with most attention in the literature [5]. Since SHM process 

requires features with high sensitivity, to distinguish between the undamaged and damage 

conditions, they should be robust to noisy measurements.  Thus, feature extraction can be 

complemented by using data cleansing and pre-processing techniques in order to improve 

diagnosis response of whole system and consequently to minimize effects due to variable 

operational and environmental conditions as well as sensor drifts.  
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2.2. Piezo-diagnostics approach for damage assessment 
The high sensitivity of the guided-wave ultrasonic technique has been an advantage for structural 

health monitoring applications [8]. Guided waves have been extensively studied for damage 

detection and characterization in a wide range of industrial applications, including transportation 

and civil engineering [9]. In this sense, it has been demonstrated that guided waves can be easily 

generated by using Lead Zirconate Titanate piezoelectric devices (PZT). Thus, several 

researches have shown the feasibility of using PZT measurements for condition 

monitoring [10], [11], and [12]. 

Piezoelectric instrumentation is a cheap but effective technology for generating guided waves, 

which comprises PZTs, fine-tuning filters, high wide-band amplifiers and acquisition systems. 

According to figure 2.2, piezo-diagnostics principle is exploited through a piezoelectric active 

scheme to acquire the structural signature of current state condition. Thus, damage identification 

is based on the phenomenon of elastic waves propagation, where several piezo devices are 

attached along the surface of the structure to trace the elastic wave travelling. In this sense, a 

pitch-catch mode is configured to examine scattering, reflection, and mode conversion caused by 

discontinuities (figure 2.2). 

 

 
Figure 2.2: Piezoelectric active configuration 

According to figure 2.2, one of the piezoelectric devices is excited with a periodic high frequency 

burst type signal inducing a guide wave and the remaining piezo-devices are used as sensors to 

measure guided wave response at different locations of the structure. The most important 

parameters to be considered for generating guided waves are related to frequency and type of 

electric field excitation, coupling material for the bonding layer and recommendations for 

electrical connection of piezoelectric elements. Thus, the following experimentation conditions 

should be considered: 

 

i. A burst type signal is applied to obtain a PZT`s actuator response near its resonance 

frequency (around 100 Khz). Since, this type of signal has finite duration and contains 

frequency components around a central band, a maximum amplitude can be guaranteed 

during the process. 

 

ii. Adhesive Cyanoacrylate is used as coupling layer, which has a better performance than 

other materials due to repeatability of its waveform pattern and transmitted energy [13]. 

Also, the adhesive property makes it suitable for continuous monitoring tasks unlike other 

materials used for ultrasonic tests.  

 

iii. General soldering procedure was done using APC instructions [14]. Due to some tests 

executed, it is recommended to use shielded and twisted pair wires to cancel external noise 

and it is highly recommended to build a circuit that works as interface between piezo-

devices and electronic components 
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2.3. Damage detection by using principal component analysis  
The objective of PCA is to reduce the dimensionality of a data set by preserving the data variation 

as much as possible. In this sense, a large number of interrelated variables in a new reduced space 

of coordinates with minimal redundancy can be represented. This reduced representation serves 

to obtain a baseline model respect to a reference state or to reduce data features. Thus, PCA is a 

powerful statistical tool for data fusion and supervised learning [15].  

In this work, PCA is used to represent piezoelectric signals in the reduced space, regarding the 

dynamical response of the structure in nominal state (no damage), which allows comparing 

respect to unknown states (possible damage).  

2.3.1. Data Organization 

Piezoelectric measurement signals of each PZT sensor belonging to several repetitions of the 

undamaged structural state are organized in an unfolded data matrix (X) (figure 2.3).  

Undamage

Exp 2

Exp  N

PZT Sensor 1 PZT Sensor 2 PZT Sensor N

X=

Exp 1

 
Figure 2.3: Undamaged baseline Matrix 

2.3.2. Data normalization  

The undamaged baseline matrix is normalized in order to avoid scaling and bias issues, and to 

reduce the influence of different sources of variability. In this work, normalization is computed 

by means of Group Scaling (GS) method, where each data-point from the undamaged baseline 

matrix (X) is scaled by considering changes between sensors and the nature of data by estimating 

standard deviation for each block of piezo measurements [16].  Thus, a normalized data matrix X̅ 

is obtained by standardizing X using the mean of each time sample for every experiment and the 

standard deviation of each sensor sample vector, where each �̅�𝑖𝑗𝑘 element is determined by eq. 

(2.1). Specifically, normalization is computed by using the standard deviation of data from each 

of the total J PZT sensors, and the mean values of each column of data matrix X with dimensions 

(M x JK) ( K is the number of time samples recorded in the i-th experiment repetition and M are 

the total of experiments.   

 

                   �̂�𝑗𝑘 =
∑ 𝑥𝑖𝑗𝑘

𝑀
𝑖

𝑀
;   �̂�𝑗 =

∑ ∑ 𝑥𝑖𝑗𝑘
𝐾
𝑘

𝑀
𝑖

𝑀∙𝐾
;     �̅�𝑖𝑗𝑘 =

𝑥𝑖𝑗𝑘−�̂�𝑗𝑘

�̂�𝑗
                                     (Eq. 2.1)
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where �̂�𝑗 is the standard deviation per PZT sensor and �̂�𝑖𝑗 is the mean value per column of 

undamaged baseline matrix X. 

 

2.3.3. Optimal basis representation 

A set of 𝑟 basis vectors (P) that satisfies the extreme value problem stablished by eq. (2.2) in 

order to minimize the fitness function 𝜀2 [17] is used to find an optimal representation of 

undamaged baseline matrix. 

min
𝑃𝑖

𝜀2(𝑟) = E{‖X̅ − X̅(𝑟)‖2} 

                                                      𝑠. 𝑡.   𝑃𝑖
𝑇𝑃𝑗 = δ𝑖,𝑗      𝑖, 𝑗 = 1,2, … , 𝑟                        (Eq. 2.2) 

The basis vector 𝑃 can be estimated by computing the singular value decomposition of the 

covariance matrix 𝐶𝑥 established by eq. (2.3), which can be solved by using NIPALS, POD or 

QR procedures [18] 

                                                𝐶𝑥𝑃 = 𝑃𝜆,     𝑤ℎ𝑒𝑟𝑒 CX̅ =
1

M−1
X̅TX̅                             (Eq. 2.3) 

where, 𝑀 is the number of trial records used to estimate the covariance matrix, and 𝜆 the 

respective eigenvalues. Singular value decomposition (SVD) procedures consume high 

computing resources and requires especial treatment when processing big data matrices.  The 

classical algorithm to obtain the PCA matrix transformation consists of three main steps: 

i. Estimate the covariance matrix of the normalized data-matrix �̅� : 

 

                                                    𝐶�̅� =
1

𝑛−1
(�̅�)(�̅�)𝑇                                            (Eq. 2.4) 

 

ii. Calculate the Eigenvectors-Eigenvalues of the covariance matrix. 

iii. Select the first eigenvectors as the principal components. The transformation matrix P 

contains column vectors of the selected eigenvectors, while the model variance is 

described by the respective eigenvalues.  

For obtaining the Eigenvectors-Eigenvalues of the step ii.) it is necessary to compute the singular 

value decomposition, where an Eigenvector is a nonzero vector that satisfies the eq. (2.5): 

                                                         𝐴�⃗� = 𝜆�⃗�                                                                                            (Eq. 2.5) 

Where, A is a square matrix, λ is a scalar, and �⃗⃗⃗� is the eigenvector. The eigenvalues and 

eigenvectors can be find by solving a matrix as a linear equations system. The covariance matrix 

is M x M size, thus it is necessary to determine M eigenvectors and M eigenvalues. However, 

because n ≪ M (n = JK) only n-1 eigenvalues are nonzero, the transformation matrix P consists 

of n-1 statistically significant principal components. The QR algorithm [19] is commonly used to 

obtain the singular value decomposition of a data-matrix expressed in eq. (2.5). 

Since only n-1 eigenvalues are nonzero, alternative methods can be used to estimate the singular 

value decomposition of a data-matrix such a Proper Orthogonal Decomposition (POD) method. 

By applying POD, the normalized undamaged baseline matrix can be decomposed by eq. (2.6):   

                                                                   �̅� = 𝑈Σ𝑉𝑇                                                                              (Eq. 2.6) 
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Where, U and V are called the left-singular vectors and right-singular vectors of �̅�, respectively 

and Σ is a diagonal matrix with the nonzero singular values. If the left-singular vectors of �̅� are 

eigenvectors of  �̅��̅�𝑇and the right-singular vectors of �̅� are eigenvectors of �̅�𝑇�̅�, it is possible to 

establish that: 

                                         �̅��̅�𝑇 = (𝑈Σ𝑉𝑇)(𝑈Σ𝑉𝑇)𝑇 = 𝑈Σ𝑉𝑇𝑉Σ𝑇U𝑇 = 𝑈Σ2𝑈𝑇                          (Eq. 2.7) 

                                         �̅�𝑇�̅� = (𝑈Σ𝑉𝑇)𝑇(𝑈Σ𝑉𝑇) = 𝑉Σ𝑇U𝑇𝑈Σ𝑉𝑇 = 𝑉Σ2𝑉𝑇                            

According to classical procedure, the transformation matrix P corresponds to the singular value 

decomposition of  �̅��̅�𝑇, thus it can be inferred from eq. (2.7) that U=P. By using eq. (2.6), the 

transformation matrix can be computed as: 

                                                              P ≡ �̅�Σ−1𝑉                                                                                  (Eq. 2.8) 

In addition, it is noted that the non-zero singular values of �̅� are equal the square roots of the non-

zero eigenvalues of both �̅��̅�𝑇 and �̅�𝑇�̅�. In this sense, it is enough to find the singular value 

decomposition of  �̅�𝑇�̅�, with dimensions 𝑛 𝑥 𝑛 instead of �̅��̅�𝑇 with dimensions 𝑀 𝑥 𝑀. These 

relations reduce the computational cost required to compute the transformation matrix of the 

statistical model. 

2.3.4. Baseline modeling 

A baseline model is obtained according to PCA procedure in eq. (2.9).  The baseline model is a 

reduced representation of piezoelectric signals of the pristine structure, arranged in the 

undamaged baseline matrix (X), after the normalization procedure (X̅). 

                                                X̅ = 𝑇𝑃𝑇 + 𝐸 = 𝑚𝑜𝑑𝑒𝑙 + 𝑛𝑜𝑖𝑠𝑒                                  (Eq. 2.9) 

where, the basis vectors P form the linear transformation matrix that relates the data matrix X̅ in 

the new coordinates and they are known as the principal components. T is the projected matrix 

to the reduced space and the noise E-matrix describe the residual variance neglected by the 

statistical model (eq 2.9.). The variances of this new coordinates reduced-space are the singular 

values (𝜆). 

2.3.5. Condition monitoring 

The integration of PCA for structural condition monitoring in the piezo-diagnostics approach is 

depicted in figure 2.4, where two main phases can be identified: Modeling and Monitoring. The 

modeling phase is the baseline model building by applying PCA to the undamaged baseline 

matrix, while monitoring phase refers to the projection of current piezoelectric measurements to 

the baseline model. Since current measurements stands for unknown structural states, a statistical 

index is computed to distinguish possible abnormal conditions, where abrupt changes of this 

index can be associated to a structural damage.  
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Figure 2.4: Damage condition monitoring approach 

 

The methodology depicted in figure 2.4 has been previously validated on different structures: an 

aircraft turbine blade, an aircraft wing and an aircraft fuselage. However, a novelty of 

methodology to be presented in this thesis with respect to previous works, is the inclusion of cross 

correlation analysis as a tool for improving separation boundaries for damage conditions. Thus, 

cross-correlation between actuation and sensing piezo-signals is computed previous to the 

principal component analysis. The cross-correlation function between two signals 𝑋(𝑡) and 𝑌(𝑡) 

is defined as: 

                                        𝑅𝑋𝑌(𝑡, 𝑡 + 𝜏) = lim
𝑁→∞

1

𝑁
∑ 𝑋𝑘(𝑡)𝑌𝑘(𝑡 + 𝜏)𝑁

𝑘=1                                           (Eq. 2.10) 

  

Where 𝑁 is the number of signal samples and 𝜏 is the lag time interval used to compute the cross-

correlation function. 

On the other hand, Q-index has shown to be successful in fault diagnosis systems, where 

distinguishable differences between baseline and current state are found, which is attributed to 

damage. Also, it is suitable for visualization purposes on 2D plots of different structural damage 

conditions and it can be easily adapted as input for supervised and unsupervised algorithms in 

order to obtain complementary results regarding to damage classification and quantification tasks 

[20], [21]. The Q-statistic, defined by eq. (2.11), is a lack of fit measurement between the current 

experiment and the baseline records. The Q-values chart is obtained by computing the squared 

prediction error resulting from the reconstruction with the PCA model. 

                                                                                  𝑄 = ∑ (𝑒𝑗)
2

𝑗                                               (Eq. 2.11) 

 

where, 𝑒𝑗 is the residual error for each 𝑗 − 𝑡ℎ principal component used to reconstruct the trial 

experiment. In general terms, error-based indexes like Q-index has been shown good results for 

damage detection compared to others such a hotelling T-squared. The Hoteling 𝑇2 statistic, 

defined by eq. (2.12), indicates how far each trial is from the center (T = 0) of the reduced space 

of coordinates. 
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                                                                 𝑇2 = ∑
𝑡𝑠𝑖𝑗

2

𝜆𝑗

𝑟
𝑗=1 = 𝑇′𝜆−1𝑇                                             (Eq. 2.12) 

The diagnostics is achieved by using visualization tools, which facilitate the interpretation of 

statistical indexes values. It is accomplished by means of scatter plots (𝑇2vs Q) or a clustering 

technique. The scatter plot is an easy manner of representing the information obtained from the 

statistical damage indexes, however some type of damages and possible boundaries can be 

masked. For this reason, clustering is used as a complementary method to the graphical 

interpretation for classification purposes  

2.3.6. The non-linear approach  

Kernel analysis 

The basic idea of kernel PCA is to use a nonlinear kernel function k instead of the standard dot 

product [22]. Implicitly, it is performed PCA in a possibly high dimensional space F which is 

nonlinearly related to input space. In figure 2.5 it is portrayed the effects of using kernel functions 

as feature extraction method. 

 
Figure 2.5: Kernel PCA [22] 

The advantage of implementing kernel functions is their capability for turning nonlinearities into 

possible linearities, without knowing a priori the transformation function. Three kernels are 

commonly reported as successful for pattern recognition problems: polynomial, sigmoidal and 

radial base function (RBF).  This work focuses on the RBF kernel, particularly, the Gaussian 

kernel (see eq. (2.13)), since this kernel is the most common in pattern recognition tasks with 

lower errors. 

                                                                                  𝑘(𝑥, 𝑦) = e
−

‖𝑥−𝑦‖2

2𝜎2                                      (Eq. 2.13) 

 

Where, x and y corresponds to experiments which contain the features in the input space, and 

sigma (𝜎) is the standard deviation estimated by using the measurement samples. As a novel 

measurement, it is used the reconstruction error in feature space [23] calculated by using eq. 

(2.14):  

                                                                                 𝑝(𝑧) = 𝑝𝑠(𝑧) − ∑ 𝑓𝑙(𝑧)2𝑞
𝑙=1                      (Eq. 2.14) 

Where, 𝑝𝑠(𝑧) is the squared distance from the mapping space to the center of the new higher-

dimensional feature space and 𝑓𝑙(𝑧) is the projection of centered data onto the 𝑞 eigenvectors 

evaluated using the kernel function.   
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Auto-associative Neural Networks 

Nonlinear PCA can be achieved by using a neural network with an auto-associative architecture, 

also known as auto-encoder, replicator network, and bottleneck or sandglass type network [24]. 

Such auto-associative neural network is a multi-layer perceptron that performs an identity 

mapping, meaning that the output of the network is required to be identical to the input (see figure 

2.6). However, the middle of the network is a layer that works as a bottleneck, where a data 

dimension reduction is enforced. This bottleneck-layer provides the desired component value 

(scores). 

 
Figure 2.6: Auto-associative neural network (Autoencoder)3.  

Suspected damage data from those of the intact data can be determined based on the residual error 

[25] 𝑒𝑟 according to eq. (2.15): 

                                                                                 𝑒𝑟 = 𝑋 − �̂�                                               (Eq. 2.15) 

Where X is both the input and the output of AANN and �̂� = 𝐺(𝑧) is the response of the network to 

the de-mapping function G, which is intended to minimize the residual error. Thus, the AANN is trained 

to reconstruct the signature response of piezoelectric waves propagating along the structure. 

  

                                                           
3 Extracted from [http://www.nlpca.org/]. Accessed at 16/02/2019 

http://www.nlpca.org/
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Chapter 3. 

3. Data preprocessing based on Cross-correlation functions.  
This chapter discusses the advantage of using cross-correlation analysis in a data-driven approach 

in order to obtain successful diagnosis of events in Structural Health Monitoring (SHM).  In this 

sense, the identification of atypical and noisy data, as well as the management of data cleansing 

stages can be facilitated through the implementation of a pre-processing stage based on cross-

correlation signals. Additionally, the obtained results evidence an improving on damage detection 

and classification when the cross-correlation is included. The influence of cross-correlation 

analysis used in the pre-processing stage is evaluated for damage detection and classification, by 

means of statistical plots and self-organizing maps. Three laboratory specimens were used as test 

structures in order to validate the preprocessing methodology i) a carbon steel pipe section with 

leak and mass damage types, ii) an aircraft wing specimen and iii) a turbine blade structure, where 

damages are specified by mass adding. As the main concluding remark, the suitability of cross-

correlation features to achieve a more robust damage assessment algorithm is verified in order to 

be used in SHM tasks. 

3.1. Cross-correlation analysis for PZT signals 
Several applications for structural damage assessment have demonstrated the effectiveness of 

using cross-correlation signals [26]. For example, in [27] damage identification methods based 

on natural excitation Technique (NeXT) employs cross-correlation signals for modal analysis, 

which has been useful for damage identification in civil structures. Another proposal [28] 

includes the estimation of the time of flight of wave packages by means of cross correlation 

signals to locate defects within a large area of a thin-plate specimen. The cross-correlation 

function between two signals 𝑋(𝑡) and 𝑌(𝑡) is defined as in eq. (3.1). 

                                        𝑅𝑋𝑌(𝑡, 𝑡 + 𝜏) = lim
𝑁→∞

1

𝑁
∑ 𝑋𝑘(𝑡)𝑌𝑘(𝑡 + 𝜏)𝑁

𝑘=1                                     (Eq. 3.1) 

Where 𝑁 is the number of signal samples and 𝜏 is the lag time interval used to compute the cross-

correlation signal. An example of cross-correlation signals belonging to four different PZT are 

illustrated in figure 3.1. 
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a.) Raw data                                                    b.) Cross-correlated signals 

Figure 3.1: Results of preprocessing stage of guided wave structural response 

The signals presented in figure 3.1 belongs to PZT measurements for increasing positions (i.e. 

location of PZT-4 is further than PZT -3, and PZT-3 is further than PZT-2, and so on). The profile 

of the computed cross-correlated signals allows to infer that information about time of flight is 

preserved from time raw measurements. If the smoothed tone-burst signal generated by 

piezoelectric actuator device is stated in the form of eq. (3.2), it can be deduced that implicit 

arrival time is present in the PZT sensor response and can be mathematically represented by eq. 

(3.3) [29].  

                                                                       𝑆𝑇(𝑡) = 𝑆0(𝑡)𝐶𝑜𝑠(2𝜋𝑓𝑐𝑡)                                 (Eq. 3.2) 

where 𝑆0(𝑡) is a short-duration smoothing window applied to the carrier signal of frequency 𝑓𝑐 

between 0 and 𝑡𝑝. The total signal received at point P by a PZT sensor can be expressed by eq. 

(3.3).  

                                                                      𝑆𝑃(𝑡) = ∑ 𝐴𝑟,𝑚𝑆𝑇(𝑡 − 𝑡𝑑,𝑚)𝑀−1
𝑚=0                        (Eq. 3.3) 

where 𝐴𝑟,𝑚 represents the decreasing of the wave amplitude due to the omni-directional 2-D 

radiation, and 𝑡𝐷,𝑚 is the arrival time delay due to the travel distance between the reference PZT 

(m = 0, i.e. actuator) and the point P with no dissipation (i.e. wave energy conservation is 

assumed). It is assumed a distance d between two consecutive PZT’s of the array, which is much 

smaller than the distance r to a generic far-distance point, P (d << r).  

Additional advantages of using cross-correlation signals relies on frequency interpretation, which 

can also be analyzed as a convolution filter. In terms of cross power spectral density, the cross-

correlation function between two signals 𝑋(𝑡) and 𝑌(𝑡) is defined as in eq (3.4). 

 

                                                    𝑅𝑋𝑌(𝑡, 𝑡 + 𝜏) = 1

𝑁
∑ 𝑆𝑋𝑌(𝑘)𝑁

𝑘=1 𝑒
𝑗2𝜋𝑛𝑘

𝑁                                  (Eq. 3.4) 

 

According to eq. (3.4), the cross-correlation function is an average sum of N cross-spectral 

densities  𝑆𝑋𝑌(𝑘), which allows filtering high frequency disturbances caused by outliers. Thus, a 
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smoothed version of the dynamical structure response is obtained, with cleansed data and outliers 

removed or minimized. 

3.2. Condition monitoring approach 
The concept of non-intrusive structural damage detection used in this approach is shown in figure 

3.2. It consists of three main stages: 1. Piezo-electric instrumentation; 2. Statistical processing; 

and 3. Supervised classification. 
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Figure 3.2: Damage assessment methodology 

3.3. Proof of concept: Experimental setup 
The proposed methodology was experimentally validated into three structures: a carbon steel pipe 

section, an aircraft wing specimen and a turbine blade section. The three lab specimens are 

instrumented with piezoelectric devices in order to induce guided waves along the surface 

structure. The carbon steel pipe section facilitates simulating leak and mass adding damage types, 

while in the other two specimen non-reversible damage types as adding masses can be recreated.  

3.3.1. Pipe section 

This test structure is a carbon-steel pipe section with material properties similar to those used in 

the local industry. Its dimensions are 1m length, 2.54 cm diameter and 3mm thickness with 4” 

bridles welded at the ends. In one of the extremes, a blind bridle is connected while in the other 

extreme, an air source is coupled. It is instrumented with piezoelectric devices distributed along 

the structure to capture guided wave response. Two types of damages can be simulated: leak 

condition and mass adding. 

Damage conditioning  

The pipe section is depicted in figure 3.3. Leaks are induced through elements denominated as 

Hole, where four ¼-inch holes are drilled along the pipe section wall by means of adjustable 

screws to control where the leak is produced A valve is used to set at 80 psi the air pressure from 

a compressor. Bolts and other elements used to recreate leak damages are included in the nominal 

state of the structure and consequently in the statistical baseline model. 
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Figure 3.3: Leak damage type configuration. 

In addition to leak conditions, experimental data from mass adding scenarios were used to 

validate the effectiveness of the methodology. Figure 3.4 shows the configuration of this type of 

damage.  

 
Figure 3.4: Mass adding experiment mockup. 

According to photo in figure 3.4 a special shaped accessory is added to the surface of the pipe 

section to recreate mass adding damage type. In this sense, damages cases are the mass accessory 

attached to the structure at different locations. The mass occupies 5 cm of the pipe length, which 

is considered as a source of uncertainty involved in the escenarios configuration.  

3.3.2. Aircraft wing structure 

An aircraft wing specimen hosted in the “Universidad Politécnica de Madrid” (UPM – Spain) 

was also used to validate the proposed damage assessment methodology. This structure is an 

aircraft wing panel, which is divided by stringers and ribs as is illustrated in figure 3.5a. Two 

sections of it were instrumented with 6 PZTs (two at the upper section, two in the lower section 

and two at the rib). Four reversible adding-mass damage type were induced in both structures by 

adding a clay element at different positions according to figure 3.5b. 
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                        a). skin panel                            b.) Mass adding damage description. 

Figure 3.5: Aircraft wing test structure  

3.3.3. Turbine blade structure 

The third specimen used to validate the proposed methodology is an aircraft turbine blade, which 

has an irregular form and includes stringers in both faces (figure 3.6). 10 PZTs were attached to 

its surface, but only 7 of them, located at intermediate positions between the stringers and labeled 

in figure 3.6 as PZT1, PZT2, …, PZT6, were used. The remaining PZT devices are assumed to 

be part of the structure and taken into account at the baseline model. Four mass-adding damage 

types were simulated in the turbine blade by attaching coins of different denomination and labeled 

in figure 3.6 as D1, …, D4.  

  
Figure 3.6: Mass adding damage description for turbine blade structure. 

According to figure 3.6, the damage configuration considers scenarios including different 

positions, severities and potential barriers for guided wave. For example, damage two (D2) is the 

addition of two masses at different positions of the surface structure.   
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3.4. Results and Discussion 
The experimental results herein obtained were evaluated taken into account information 

consistency and effectiveness of structural damage identification. Thus, firstly a spectrum 

analysis is performed to evaluate data cleansing and filtering properties of the cross-correlation 

analysis, where a preliminary test is aimed for data anomaly detection. Then, different damage 

scenarios are evaluated according to the methodology explained previously, where the main goal 

of this work is to demonstrate the contribution of cross-correlation functions as pre-processing 

stage, for a better boundary between damage cases. In the next sections, these experimental results 

are presented and discussed. 

3.4.1. Data cleansing and filtering 

This item describes some results intended to demonstrate the applicability of pre-processing stage 

based on cross-correlation in order to minimize the adverse influence of noisy data. For this 

purpose, experimental data from pipe section in figure 3.3 are analyzed. In this experiment, 4 

PZTs are used to sense the guide wave produced by one PZT located at the extreme of the pipe 

section and excited by an 80 KHz burst signal each one (1) second. 100 repetitions of the 

experiment were conducted and recorded for the undamaged state by using a sample time Ts=56 

ns. Thus, the potential advantages of using cross-correlation for data cleansing and filtering are 

explored by analyzing measurements from undamaged state. 

Data Filtering 

First, a spectrum analysis is achieved in order to verify that information in the frequency domain 

is preserved. Figure 3.7 is an example of the recorded signals for each PZT and their respective 

cross-correlated signals respect to the actuation signal. 

   
a.) Raw data from PZT sensors       b.) Cross-correlation signals 

Figure 3.7: Experiment acquired signals  

According to figure 3.7, it can be observed that cross-correlation reduces the offset signal, besides 

it is a smoothed representation of dynamical behavior. The above result can be confirmed by 

estimating the power spectrum, which is illustrated in figure 3.8 for all 100 acquired signals.  
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a.) PSD from Raw data PZT measurements 

 

b.) Cross-PSD from correlation signals. 

Figure 3.8: Power spectrum 

In figure 3.8 is observed that high frequency noise is reduced by the attenuation of the high order 

harmonics. Thus, the power density of secondary side lobules in the power spectrum is reduced. 

As a result, the consistency of frequency information is preserved by means of an average 

spectrum with the same central frequency. Also, the common offset values are excluded from 

signal representation. In this sense, cross-correlation function is an effective filtering technique 

to be applied to piezoelectric measurements.  

3.4.2. Data anomaly detection 

Cross-correlation analysis is also useful as data anomaly detection tool. For this purpose, 

information about occurrence of maximum values of cross-correlation signal can be used. Thus, 

the locations where occur maximum cross-correlation are found and plotted in order to find 

possible atypical data. Figure 3.9 shows the index location for maximum values of cross-

correlation piezo-measurements, where each value is associated with only one of the 100 

experiments.  
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Figure 3.9: Indexes of cross-correlation maximum values. 

According to figure 3.9 the maximum cross-correlation values are located in the same lag 

position. Thus, possible abnormal or atypical data measurements could be associated to 

deviations of max positions. In figure 3.10 can be identified some possible atypical data belonging 

to five measurement signals (i.e. 7, 12, 20, 23, and 35 indexes) from PZT sensor 1. In this way, 

the atypical data according to information extracted from cross-correlation are depicted in figure 

3.10 and could be associated to offset values and trends. However, according to upper subplot, 

the cross-correlation filters these atypical signals which results in a well-defined pattern for all of 

the 100 experiment repetitions. Thus, the structural dynamical response due to guided waves are 

characterized by the mode conversion and low amplitude changes as is remarked in figure 3.11, 

where variations of concatenated cross-correlation signals are highlighted.  

 
Figure 3.10: Cross-correlation signals from atypical data. 
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Figure 3.11: concatenated cross-correlation signals. 

3.4.3. Structural damage detection 

In this section is intended to illustrate how pre-processing technique based on cross-correlation 

signals improve the results of structural damage and classification algorithms. For this purpose, 

several experiments were conducted to show its suitability by considering different damage 

scenarios over the three previously described structures.   

Pipe section experiment 

As a first scenario, mass-adding damage type is considered according to experiment set up in 

figure 3.4. Thus, two piezoelectric devices (sensor-actuator) were attached near to the structure 

bridles in the pipe section. 70 damage classes were recreated in the test specimen by consecutive 

displacements of the mass along the structure. Each damage scenario, (denominated D1, D2 

⋯D70), belongs to a mass located at 1cm, 2cm, and so on, respect to the PZT actuator. 

Experiments related to pristine structure cases are labelled as ‘UND’ (70%) and ‘orig’ (30%). A 

number of 100 experiments per condition (Damaged/Undamaged) were conducted. A guided 

wave is induced by applying a 5 cycles, 80 kHz burst type pulse on the PZT located at one end 

of the pipe section. The resulting T2 Vs Q scatter plot is depicted in figure 3.12, for both cases: 

with and without cross-correlation analysis.  



 

22 
 

 
a.) without cross-correlation 

  
b.) By including cross-correlation 

Figure 3.12: Damage indexes. 

According to figure 3.12, by including cross correlation some damage clusters can be 

distinguished unlike processing raw PZT measurements. Also, a clear boundary for the 

undamaged condition is obtained, which facilitates damage detection process. A comparison 

between PCA model variances are depicted in figure 3.13. 
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Figure 3.13: PCA model variances for mass adding scenarios in pipe section. 

According to results in figure 3.13, a smoothed distribution of variance model for each principal 

component is obtained for the case of cross-correlation signals. Thus, unlike the results obtained 

from processing raw PZT measurements, it does not exist the abrupt change respect to the first 

principal component. In this sense, the variance distribution due to cross-correlation analysis 

entails on a better clustering of damage case data.   

The second example is a leak damage detection using the experimental configuration of figure 

3.3, where five PZTs were attached along the structure. The PZT at one of the ends is used as 

actuator and the remaining ones as sensors. The proposed damage configuration includes different 

leak sizes specified in table 3.1. For each type of damage, 100 experiment repetitions were 

conducted, where undamaged experiments are tagged with label ‘UN’. 

 

Table 3.1: Leak Damage specification 

Label Leaks (Red = open) Label Leaks (Red = open) 

D1 H1,H2,H3,H4 D5 H1,H2,H3,H4 

D2 H1,H2,H3,H4 D6 H1,H2,H3, H4 

D3 H1,H2,H3,H4 
D7 

H1,H2,H3,H4 

D4 H1,H2,H3,H4 *H denotes hole 

 

Figure 3.14 presents the resulting Q and T2 statistical indices, where a well-defined 

separation between different leaks combinations can be appreciated for the case of cross-

correlated signals. 
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a.) without cross-correlation                            b.) By including cross-correlation 

Figure 3.14:  Damage indexes for leak detection. 

In order to emphasize the advantage of using cross-correlated signals, a Self-Organizing Map was 

trained by using as feature inputs the T-squared and Q-statistics indexes (same data from figure 

3.14), whose clusters are depicted in figure 3.15. 

   

a.) without cross-correlation analysis                  b.) By including cross-correlation processing 

Figure 3.15: SOM network for leak damages. 

According to figure 3.15, boundaries clearly defined by empty clusters and BMU distance matrix 

(U-matrix) can be observed when the cross-correlation as preprocessing stage is applied. Thus, a 

major differentiation between different damage types is obtained. In addition, the cases 

distribution avoids damages combination in one similar cluster, which allows a better 

classification 

Skin panel structure 

Experimental results for the skin panel test structure are depicted in figure 3.16, by using 

statistical indices values and cluster centers for each damage scenario. It can be observed that 
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major dispersion appears without than with correlation analysis. Additionally, correlation 

analysis shows its efficacy to filter atypical data-cases. 

 
                    a.) without cross-correlation                            b.) By including cross-correlation 

Figure 3.16: Statistical indexes for skin panel experiment. 

The respective SOM network is depicted in figure 3.17.  

 

 

a.) without cross-correlation analysis                  b.) By including cross-correlation processing 

Figure 3.17: SOM network for skin panel structure damages. 

According to figure 3.17, undamaged cases are separated in a better way when cross-correlation 

signals are used to obtain the SOM network. Also, the U-matrix shows a major distance values 

between damage cases.  Table 3.2 summarizes the SOM quality indexes for skin panel structure 

data. 
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Table 3.2: SOM quality indexes for skin panel structure data 

Index Uncorrelated Signals Cross-correlated signals  

Quantization error 0.0186 0.0025 

Topographical error 0.0686 0.2381 

Distortion measure 0.7840 0.2734 

Training Error 0.5714 0 

Empty Clusters 42 63 

Validation Error 2.6667 1.3333 

  

Turbine blade structure 

Experimental results on turbine blade test structure are depicted in figure 3.18, by using similar 

parameters of the above experiment. Here can be highlighted a clear separation between different 

types of damage when cross-correlation analysis is included and a better performance by 

including cross-correlation analysis is confirmed. 

 
a.) without cross-correlation                            b.) By including cross-correlation 

Figure 3.18: Results for turbine blade experiment. 

The respective SOM network is presented in figure 3.19. 
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a.) without cross-correlation analysis                  b.) By including cross-correlation processing 

Figure 3.19: SOM network for turbine blade structure damages. 

Also, it is observed a better cluster separation for the case when cross-correlation is used as 

feature inputs to SOM network. It is validated by the SOM quality indexes summarized in table 

3.3, where best indices are obtained for the case of cross-correlated signals. 

Table 3.3: SOM quality indexes for turbine blade structure data 

Index Uncorrelated Signals Cross-correlated signals  

Quantization error 0.0238 0.0021 

Topographical error 0.3320 0.0362 

Distortion measure 0.7840 0.1053 

Training Error 6.2857 0 

Empty Clusters 27 46 

Validation Error 15.5556 1.3333 
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Chapter 4. 

4. A Data-driven Approach Based on Clustering Techniques 

for Damage Classification 

This chapter discusses a data driven approach for structural damage classification based on 

clustering analysis. Unsupervised learning is implemented to a reduced feature space, in order to 

identify clusters of damaged cases.  The experimental results show an improvement of the 

classification-learning rate, evaluated through the performance of clustering indices. For 

validation purposes, a first experiment is conducted over two test structures: i.) A turbine blade 

of a commercial aircraft and ii.) The skin panel of the torsion box of a wing. Damages are induced 

adding masses at different locations of the structure section surface. Then, a second experiment 

is conducted on a steel carbon pipe section conditioned with leaks of different sizes and locations 

in order to emulate abnormal conditions. The results obtained show the effectiveness of the 

methodology to distinguish between different damage cases. 

4.1. Structural Damage Classification Methodology 

Figure 4.1 summarizes the procedure for structural damage classification, where statistical 

indices are used as inputs for unsupervised learning algorithms in order to cluster cases in similar 

damage types, which allows manage classification tasks in SHM.  

PIEZODIAGNOSTIC 
SYSTEM

PCA BASED
CLUSTERING 

ANALYSIS





n

i

ijvj x
n 1

1


vjijij xx 

ni ,,1
























mnjnnn

mijiii

mj

zzzz

zzzz

zzzz

Z

,,2,1,

,,2,1,

,111,11,1

........

........................

........

........................

........

Proyected Data

1 n

Reduced Space

MinMax

























nmnjnn

imijii

mj

xxxx

xxxx

xxxx

X

......

..................

......

..................

......

21

21

111211

ZX  '

XZ 
PCA

PIEZO 
DEVICE

PIEZO 
DEVICE

ADQUISITION 
SYSTEM

SIGNALS 
RESPONS

DATA 
BASE 

GENERATOR 
WAVE

CROSS-CORRELATION 
ANALYSIS

0.9 0.95 1 1.05 1.1
-5

-4

-3

-2

-1

0

1

2

3

4

 

 

Actuator signal

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

-10

-5

0

5

10

0.6 0.8 1 1.2 1.4 1.6

x 10
4

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

ACTUATOR SIGNAL

SENSOR SIGNAL

CORRELATED 
SIGNAL

CROSS-
CORRELATION 

𝑇2 Q Vs

 
Figure 4.1: Structural Damage Classification Approach. 
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The methodology depicted in figure 4.1 involves the application of cross-correlation analysis, as 

novelty with respect to previous works, in order to improve separation boundaries for damage 

conditions. Also, different techniques for clustering analysis are evaluated demonstrating its 

feasibility for structural damage classification and detection. 

4.2. Unsupervised learning for damage clustering 
In this section, the basic fundamentals of clustering techniques are described. These algorithms 

can be adapted in SHM methodologies for damage classification. Results of its application are 

detailed in next section. 

  

K-means algorithm. 

The K-means algorithm can be used to organize damage cases into groups. This algorithm is one 

of the most commonly used optimization-based unsupervised learning methods. The goal of K-

means clustering is to organize the data into k groups, such that the within-group sum-of-squares 

be minimized [30].  

                                          𝑚𝑖𝑛 [∑ ∑ (𝑥𝑖𝑔 − �̅�𝑔)
′
(𝑥𝑖𝑔 − �̅�𝑔)

𝑛𝑔

𝑖=1
𝑘
𝑔=1 ]                            (Eq. 4.1) 

 

Each 𝑔𝑡ℎ-cluster in the partition is defined by 𝑛𝑔 datacase members and by its centroid �̅�𝑔, or 

center. The centroid for each cluster is the point to which the sum of distances from all members 

in that cluster is minimized. The K-mean centers represent adequately the data in a cluster if the 

observations within a group are more similar to each other [31]. The quantization error (squared 

sum of errors) and the dispersion in each cluster (standard deviation) can be also computed as 

quality indices to evaluate the clustering process. 

 

SOM Neural Networks 

Self-organizing maps (SOM) are also used as clustering technique in order to group cases in 

similar damage types [32]. This clustering is achieved by means of competitive learning and 

preserving topology. Accordingly, nearby data in the input space are mapped into neighbor 

clusters. Thus, SOM network facilitates classification tasks and graphical interpretation. Figure 

4.2 deploys how SOM network operates over the input space, specified by T2 and Q-indexes.  

 
Figure 4.2: SOM clustering for damage classification. 
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From figure 4.2, the SOM consists of N clusters, characterized by a prototype vector (Codebook) 

or cluster center, and grouping several labelled cases. Then similar cases are labelled in clusters, 

where each label keeps only one instance and the number of stored cases. Similarly, the validation 

cases are ticked assigning the label with most instances and with the most similar cluster to find 

the best matching units (BMU). In consequence, the classification error can be estimated by 

majority voting. 

Finally, the SOM quality is evaluated with the quantization and topographic errors. The first one 

is the average distance between each experiment and its BMU. The second one corresponds to 

the proportion between data vectors whose first and second BMUs are not adjacent clusters and 

the total number of experiments. 

4.3. Proof of concept  
In this section, the results for damage classification by means of clustering techniques are 

detailed. The methodology is experimentally validated for pipeline leaks detection and results for 

classifying several mass adding in a wing aircraft structure are also discussed. 

4.3.1. Damage Classification in Aircraft Wings 

Two test structures were used to validate the damage detection/classification approach (figure 

4.3). The specimens are hosted in the “Universidad Politécnica de Madrid” (UPM – Spain). The 

first structure belongs to an aircraft wing, which is divided by stringers and ribs and the second 

one to an aircraft turbine blade, which has an irregular form and includes stringers in both faces. 

 

 

 
Figure 4.3: Aircraft section structures used to validate the methodology.  

Above: skin panel of aircraft wing, Below: turbine blade 

The skin panel was instrumented with 10 PZTs, while the turbine blade with 8 PZT’s. An 80 KHz 

burst type signal was configured to produce guided waves along the surface structures. Reversible 

damages were induced in both structures by adding masses in different positions, four damages 

for skin panel experiment (D1,…, D4) and five damages for turbine blade case (D1, …, D5). For 

both specimens 150 experiment repetitions for each damage were recorded. 

Results for each experiment consider a number of clusters for the K-means algorithm equal to the 

number of damages in the respective structure. Therefore, each damage can be grouped in an 

individual cluster. In addition, 50 replicates of the K-means algorithm are executed to avoid local 

minima. Data normalization by means of variance values are used before K-means algorithm to 

minimize the within-cluster dispersion. In addition, NIPALS algorithm is configured to estimate 
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a number of principal components equal to the number of experiments induced for each damage 

case, i.e. 150. 

 

Test 1: Skin Panel Experiment 

Variance of the principal components are depicted in figure 4.4, where it can be observed that 

100 components capture most of the principal components variability. In consequence, only 100 

components are selected as the most meaningful features.  

 

 
Figure 4.4: Principal component variances for skin panel experiment.  

The figure 4.5 presents statistical indices and K-means clusters centers for each damage type. 

 
Figure 4.5: K-means centroids for skin panel experiment.  
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According to results in figure 4.5, each damage scenario can be well-represented by means of 

cluster centers, which can be used for classify damage types through similarity measures.  

 

Test 2: Turbine Blade Experiment 

According figure 4.6 and similarly to the previous experiment, most of the principal 

components variability is captured with 100 components. 

 
Figure 4.6: Principal component variances for turbine blade experiment.  

Once the cluster procedure is performed, the final clusters for damages in turbine blade 

experiments are depicted in figure 4.7.  

 
Figure 4.7: K-means centers for turbine blade experiment. 

According to results in figure 4.7, it is possible to highlight a clear separation between different 

types of damage. 

4.3.2. Pipe Leaks Classification  

The methodology detailed in this chapter was validated for leak detection in a pipeline as part of 

a non-intrusive damage monitoring system. The specimen used as test structure is a carbon-steel 
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pipe section of dimensions 1 m x 0,0254 m x 0,003 m (length, diameter, thickness). The pipe 

section has bridles at the ends and a valve sets the air pressure from a compressor in 80 psi at one 

of the ends (figure 4.8). 

 

 
Figure 4.8: Experiment configuration 

In order to induce leaks in the test structure, four ¼-inch holes were drilled along the pipe section 

wall. Graduable screws are used to control where the leak is produced. Table 4.1 details the 

damages studied in this work. The proposed damage configuration allows concluding if 

classification and location of different sizes leaks is possible. For each damage type, 100 

experiment repetitions were conducted with 1-second periodic excitation signal, where 

undamaged experiments are tagged with label ‘UN’. 

Table 4.1: Leak Damage specification 

Label Open Hole Label Open Hole 

1 H1 5 H4 ,H3 

2 H2 6 H4, H3, H2 

3 H3 
7 H4, H3, H2, H1 

4 H4 

 

Five piezoelectric devices (PZT) were attached along the structure, (previously explained in 

Figure 4.8). One of the PZT is used as actuator and the remaining devices as sensors. The PZT 

actuator was excited by an 80 KHz burst signal generated by an AWG PicoScope series 2000 and 

then amplified to ±10 V. The piezo electrical response is recorded with a picoscope and 

multiplexor board. Figure 4.9 deploys the time piezo electrical response for each piezo device, 

where it is possible to visualize time of flights for one of the experiments under undamaged state. 

 

 
Figure 4.9 Time piezo dynamic structural response 

The Figure 3.10 presents the respective cross-correlation functions. 
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Figure 3.10. Evolution of the Cross-correlation function for each PZT sensor 

Results and Discussion 

Figure 4.11 presents the statistical indices for the studied experiments, which were estimated 

preserving 15 principal components. In addition, the SOM codebooks location and their 

respective labels (assigned by majority voting) are shown in the right scattered plot. It is observed 

that groups for studied damages are obtained and that empty SOM codebooks are necessary to 

describe the data distribution.  

 
Figure 4.11: Distribution of damage indexes. 
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The clusters obtained in the Self Organizing Map are depicted in figure 4.12. Different damage 

types, with boundaries clearly defined by empty clusters and BMU distance matrix (U-matrix), 

can be well differentiated. In addition, the cases distribution avoids damages combination in one 

similar cluster, which allows a better classification. 

 
Figure 4.12: Training SOM network. 

The SOM quality indices are summarized in table 3.2, which are calculated by using 70% of 

cases for training purposes and 30% of cases for validation.  

Table 3.2: SOM quality indexes 

Index Value 

Quantization error 0,0336 

Topographical error 0,0833 

Distortion measure 0,4327 

Training Error 0 

Empty labels in Training data 0 

Empty Clusters 44 

Validation Error 1,5625 

Empty labels in validation data 5 
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Chapter 5. 

5. Parameters automatic tuning of structural damage 

detection algorithms 

Nature is composed by a huge number of complex organisms that perform a large number of 

tasks in order to survive, reproduce and protect their communities. Biology produces complex 

and self-adaptable organisms with a vast amount of less reliable components, but with abilities 

such as self-assessment, self-repair, self-configuration, levels of redundancy and protection. 

Examples of such organisms are ants, birds and bees, which individually are fragile, but, together, 

can be very strong and exhibit intelligent solutions of daily survival problems. Since many 

organisms exhibit very effective functioning, bio-inspired techniques such as Evolutionary 

Algorithms (EA) have been extended for solving optimization problems. 

Genetic Algorithms (GA) is one the most popular EAs and largely applied in optimization 

problems [33]. The main characteristic of a GA is the presence of mechanisms for selecting and 

recombining individuals, thereby enabling genetic inheritance from the parents throughout the 

search execution.  

Price and Storn [34] recently proposed differential evolution (DE), which is an effective, robust, 

and simple global optimization algorithm with few control parameters. According to frequently 

reported comprehensive studies [35], [36], differential evolution outperforms many other 

optimization methods in terms of convergence speed and robustness over common benchmark 

functions and real-world problems.  

A methodology for automatic tuning of the parameters of an SHM algorithm is proposed by 

minimizing a fitness function, which is a weighted sum of the damage identification error: 

                                      𝑓(�⃗�𝑖,𝑗) = ∑ 𝑤𝑗 ∗ 𝑒𝑗
𝑀
𝑗=1                                                          (Eq. 5.1) 

Where �⃗�𝑖,𝑗 Is a vector containing a combination of SHM algorithm parameters; 𝑤𝑗 are weighting 

factors, and 𝑒𝑗  is the classification error for each damage type. Figure 5.1 summarizes the 

operation mode for DE algorithm [26], which consist of seven main steps: 
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Figure 5.1: Differential Evolutive Algorithm Operation [37] 

 Generate a random population according to the SHM algorithm parameters. 

 Choose randomly two population members as target vector and base vector. 

 Compute the weighted difference vector between two random population members. 

 Add the resulting difference to the base vector and apply mutant operator. 

 Apply crossover operator between target vector and the result of step iv. ) in order to 

obtain a trial vector. 

 Select the trial vector or target vector as member of the next population according to 

fitness evolution. 

 Repeat steps ii. ) −  iv. ) in order to obtain all members of the new generation 

5.1. Automatic parameter tuning of a SOM damage assessment approach 
A damage assessment scheme based on SOM networks is evaluated in order to validate the 

proposed methodology with parameters involved in structural damage assessment methods 

automatically tuned. In figure 5.2 the general scheme for damage assessment is summarized, 

where evolutive algorithms are used to find optimal parameters of a damage classification method 

based on SOM networks.  
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Figure 5.2: SOM network for structural damage assessment and classification. 

According to figure 5.2, the scores and PCA indices are used as features to train a SOM Network, 

in order to facilitate visualization of different damage types and to assist classification tasks. The 

success of the damage classification algorithm depends of an appropriated SOM training. In table 

5.1 is detailed the SOM algorithm parameters required, in order to obtain a high-quality SOM 

according to the indices exposed in table [32].  

Table 5.1: SOM parameters and indexes 

SOM 

parameters 

 

Description 

SOM 

Quality 

Indexes 

 

Description 

Normalization 

method 

Data normalization avoids false dominant 

clusters. Options: variance/linear 

range/logarithm/logistic. 

Topographical 

error 

It is a measurement of topology 

preservation. It should be near to 

zero 

Output 

neurons 

number 

It is the clusters number 

Distortion 
Shows how well each neuron 

represents the input data 

Grid structure 
Local topology map. 

Options: Rectangular/Hexagonal 

Map shape 
Local topology map. 

Options: Laminate/Cylindrical/Toroid 

Histogram 

uniformity 

It is measurement of the cases 

distribution in the clusters. 

Ideally, each cluster should be 

containing cases of the same 

type and there is not be empty 

clusters 

Neighborhood 

function 

Interactions between reference vectors. 

Affects the precision and generalization of 

the SOM network. Options: Gaussian/ cut 

Gaussian / Bubble. 

 

Thus, the SOM parameters are automatically tuned by using a Differential Evolutive Algorithm 

(DE), where a fitness function consisting of a weighted sum of SOM quality indices and damage 

identification error (see eq. 5.2), is minimized 

                                               𝑓(�⃗�𝑖,𝑗) = ∑ 𝑤𝑖 ∗ 𝑞𝑖  
𝑛
𝑖=1 + ∑ 𝑤𝑗 ∗ 𝑒𝑗

𝑀
𝑗=1                                         (Eq. 5.2) 

Where �⃗�𝑖,𝑗 Is a vector containing a combination of SOM parameters; 𝑤𝑖, 𝑤𝑗 are weighting factors, 

𝑒𝑗  the classification error for each damage type and 𝑞𝑖 are the SOM quality indexes. The fitness 

function is minimized by applying the.  

5.2. Validation on a turbine blade structure  
A first experiment was conducted over a test structure, which corresponds to a turbine blade of a 

commercial aircraft manufactured by a homogenous material, with a similar density than titanium 

(3.57 g/mL) and whose experimental data where supplied by the research group CoDAlab of the 

Universitat Politécnica de Catalunya (UPC). Time vibrational response was recorded by using an 
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active piezoelectric system with seven PZT nodes distributed over the surface structure (see figure 

5.3). PZT 1 was excited by means of a burst signal of 3 peaks and 350 kHz and the other PZTs 

were used as sensors.  

 
Figure 5.3: Aircraft turbine blade and active PZT system 

Damages were induced by adding masses at several locations shown in figure 5.4. 19 undamaged 

cases were used to build the PCA model, where 18 principal components were maintained. 100 

experiments (10 per each of 9-damage types D1-D9 and 10 undamaged cases) were conducted in 

order to evaluate the performance of the fault detection algorithm.   

 
Figure 5.4: Locations of simulated damages 

In figure 5.5 the damage detection indices T2 and Q are depicted in a scatter plot. Shapes and 

colors represent different types of damage. Original data correspond to the undamaged cases used 

to build the PCA model and labeled with tag ‘orig’.   

 
Figure 5.5: Q and T2 indexes for damaged cases.  

In figure 5.5 is observed that undamaged cases (Orig, Und) are clearly separated from damaged 

cases (D1-D9). Then, presence or absence of damages can be easily detected by using a PCA 

model. On other hand, discrimination of damages could be complex for some groups where they 

appear quite overlapped. Since only PZT 1 is being excited, damages 5, 6 and 7 are the most 

 

0 50 100 150 200 250
0

5

10

15

20

25

30

Hotelling's T2-statistic

Q
-S

ta
ti
s
ti
c

 

 

Orig

Und

D1

D2

D3

D4

D5

D6

D7

D8

D9

5 10 15 20 25 30 35 40 45 50

0

2

4

6

8

10

Hotelling's T2-statistic

Q
-S

ta
ti
s
ti
c

 

 

Orig

Und

D1

D2

D3

D4

D5

D6

D7

D8

D9



 

40 
 

difficult to be identified. Also, damages 8 and 9, which take into account quantification 

performance, appear to be overlapped with their similar located damages 1 and 4. In order to take 

into account possible nonlinear relations between features, a SOM network was built to map them 

onto a 2D cluster representation and the resulting Map is depicted in figure 5.6.   

 
Figure 5.6: SOM network using default-training values   

The SOM was trained by using default values: map size: [8 5]; lattice: 'hexa'; shape: 'sheet'; norm 

method: 'var'; neigh: 'gaussian'. The Final quantization error: 1.865 and Final topographic error: 

0.000. For SOM training purposes 14/29 undamaged cases and the half of damaged cases were 

used. According to figure 5.6, the SOM network has 15/40 empty clusters, which influence empty 

labeling for validation cases. The damage cases grouped in each cluster are specified in table 5.2.  

Table 5.2: Damage cases cluster 

#→ SOM Clúster       

# Cases # Cases # Casos # Cases 

1 'Un',D8','D8' 11 'D7' 21 'Un', 'D2' 31 Empty 

2 'D8' 12 'D6' 22 'Un', 'D2' 32 Empty 

3 'D8','D9' 13 'D6' 23 'D9' 33 Empty 

4 'Un','D9' 14 Empty 24 'D9' 34 'Un','Un','Un','Un','D7' 

5 'D4','D5','D9' 15 'D6','D6' 25 Empty 35 'Un', 'Un' 

6 Empty 16 'D4','D4' 26 'D1','D1','D7' 36 'Un','Un','Un' 

7 'D5', 'D5' 17 'D5' 27 Empty 37 'Un','Un','Un','Un' 

8 'D4','D4','D5' 18 'D1','D1','D1' 28 'D2',D7' 38 'Un', 'Un', 'D2' 

9 'D8' 19 Empty 29 Empty 39 Empty 

10 Empty 20 'D6' 30 'D2','D7' 40 'D3','D3','D3','D3','D3' 

 

In a more detailed view of table 5.2, it is clearly identifiable that damage types D3, D6, D9 and 

undamaged cases appear in separate groups. Figure 5.7 shows the labels assigned by the SOM 

network to the training/validation data. 
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Figure 5.7: Class assignment by using SOM default-training values   

In figure 5.7, the training and validation errors correspond to 10% and 22.0339% respectively. 

Since the SOM empty clusters, 7/59 test data appear without labels and no damage type were 

assigned to seven validation cases. In order to improve the SOM quality, 10.000 iterations of a 

DE algorithm were executed for minimizing the sum of training and validation errors. The main 

parameters for solving the optimization problem were set to: CR: 0.2000, F: 0.5629, VTR: 0 and 

NP: 200, where the DE algorithm taken about two hours. Figures 5.8 and 5.9 illustrate the 

evolution of the fitness function for all SOM parameters options. 

 
Figure 5.8: All evaluation values over parameter munits.   
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Figure 5.9: All evaluation values over parameters Norma, lattice, shape and neighborhood.   

The results obtained in the optimization process show that the munits parameter affects the 

identification error in a major proportion. The number of SOM clusters must be at least 20 and 

approximately 40 in order to obtain low identification errors. Otherwise, all other SOM 

parameters (Norma, lattice, shape and neighborhood) allows low identification errors for their 

different options. The best configuration for the SOM network parameters, which are suggested 

by DE algorithm, correspond to norm method: 'logistic', neigh: 'gaussian', msize: [8 5], lattice: 

'rect', and shape: 'sheet'. Figure 5.10 depicts the final resulting map.   

 
Figure 5.10: Optimal SOM network.   

The resulting quantization error, topological error and Distortion measure are 0.3896, 0.0333 and 

1.6440 respectively. The distance values illustrated in the U-matrix indicate that damage types 

are separate by better-defined boundaries. In addition, it is observed that empty clusters were 

reduced to 13/40. Figure 5.11 shows the labels assigned by SOM network to the 

training/validation data and by using the optimally tuned parameters. 
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Figure 5.11: Class assignment by using SOM optimal-training values.  

The associated training and validation errors were 6.6667% and 20.3390%. In this case, only one 

validation case was classified as empty label. Table 5.3 details the distribution of damage types 

in each SOM cluster.         

Table 5.3: Damage cases cluster 

#→ SOM Clúster       

# Cases # Cases # Cases # Cases 

1 'D5' 'D4' 'D4' 'D5' 'D5' 'D5' 

'D5' 
11 'D6' 'D6' 21 'D6' 'D6' 31 Empty 

2 'D4' 'D4' 'D4' 'D5'      12 Empty 22 Empty 32 'D3' 'D3' 

3 'D4' 'D4'   13 Empty 23 Empty 33 'D1' 'D1' 'D1' 'D1' 'D1' 
'D1' 

4 'D9' 'D9' 'D9''D9'   14 'Un' 'Un' 24 'D3' 'D3' 'D3' 'D3' 

'D3'  
34 Empty 

5 'D9' 'D9'   15 Empty 25 'D8' 'D8' 'D8' 35 'Un' 'Un' 'Un'    

6 'Un' 'Un'   16 Empty 26 Empty 36 'Un' 'Un' 'Un' 'Un' 'Un' 

7 'Un' 'Un' 'Un' 'Un'   17     'D8' 'D8' 'D8' 'D8' 27 'Un' 'Un' 37 'Un' 'Un' 'Un' 

8 Empty 18 Empty 28 'D2' 'D2' 38 'D7' 'D7' 'D7' 'D7' 

9 'D9' 'D9'   19 'D6' 'D6' 'D6' 'D7' 29 'Un' 'Un'  39 Empty 

10 'D6' 'D6'  20 'D2' 'D2' 'D2' 'D2' 
'D2' 

30 'D7' 'D7'  40 Empty 

 

In table 5.3, it is observed that overlapping between damage types was reduced and separation 

groups are defined most clearly. 

5.3. Validation on a pipeline structure  
A second experiment was conducted over a test structure, which consists of a section of carbon 

steel pipeline (similar to those used in the local industry) flanged at the extremes, whose 

dimensions are:  1m x 1 x 3mm (Large x diameter x thickness). Time vibrational response was 

recorded by using an active piezoelectric system with three PZT nodes distributed along the 

surface of the structure (see figure 5.12). Every PZT was operated both as sensor and as actuator, 

thus if PZT n is used to excite the structure, the remaining PZT record signals used to build the 

PCA model. The obtained model is named Model n (n=1,2,3) and this configuration is repeated 
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for every installed PZT, thus 3 different PCA models are built. The structure was excited during 

one period of a 350 KHz sinusoidal signal and time vibrational response, corresponding to the 

difference between actuation signal and sensed signal (Ch1 – Ch2), was recorded and stored by 

using a scope with sample period equal to 40ns. 

 
Figure 5.12: Tubing section and active PZT system 

 

Structural damages were induced by adding two masses between nodes 1 and 2 (see figure 

5.13). In order to build the PCA model, seven undamaged cases were used (five for training 

purposes – orig, and two for validation purposes - und). In order to evaluate the performance 

of the fault detection algorithm, three different damage types (D1, D2, and D3) were 

considered, which are described in table of figure 5.13. Seven repetitions for every damage 

case were conducted and PCA models were built by retaining four principal components. 

   

 
Figure 5.13: Locations of generated damages and description 

 

Figures 5.14 and 5.15 depict the two most significant scores and the damage detection indices 

(T2 and Q) in a scatter plot for the PCA-Models. Shapes and colours represent different 

damage types. Original data corresponds to the undamaged cases used to build the PCA 

model labelled with tag orig.   
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Figure 5.14: Results for PCA-model. 

 

In figure 5.14 can be observed that undamaged cases (Orig, Und) are clearly separated from 

damaged cases (D1-D3) by using the statistical indices. Thus, the PCA model allows 

detecting easily the presence or absence of damages. Discrimination of damages is hardly for 

some groups since they appear quite overlapped.  

 

In order to take into account possible nonlinear interactions between the features used to 

detect damages, a SOM network was built in order to map the inputs onto a 2D cluster 

representation. Figure 5.15 depicts the resulting Map, for a SOM network trained by using 

parametric values by default: map size: [6 5]; lattice: hexa; shape: sheet; norm method: var; 

neigh: gaussian. The Final quantization error: 1.014 and Final topographic error: 0.000. 

 
Figure 5.15: SOM network using default-training values 

  

By training group labels using the SOM network it was obtained a high identification error, 

where only 4/30 cases were properly labelled. Then a differential genetic algorithm (GA) was 

programmed in order to obtain a set of optimally tuned parameter of a SOM neural network. 

Figure 5.16 shows the evolution of the fitness function, where the weighted sum of 

identification errors and SOM quality indices were normalized to one.  
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Figure 5.16: Fitness function evolution for the GA 

 

After applying the optimization, it was found that the SOM Neural Network automatically 

tuned by using the differential genetic algorithm, improves the identification error at rate of 

at least 50 percent. Since only a few of experiments were used to build the PCA model,  an 

improving could be expected if this number is increased.  
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Chapter 6. 

6. Environmental conditions treatment through augmented 

baseline models 

Structural damage diagnosis under varying environmental conditions is one of the main 

challenges for developing reliable condition monitoring systems. If damage detection systems are 

implemented without taking into account environmental influences, false alarms can be produced. 

Thus, in this chapter a data driven approach, which considers augmented baseline models, is used 

to treat different temperature and moisture scenarios in a pipe leak detection algorithm based on 

principal component analysis (PCA). Thus, PCA based damage detection strategy is adapted to 

environmental conditions by using robust features where statistical indexes allow establishing 

several temperature and moisture levels as different cluster states. Specifically, PCA is used as 

alternative to deal environmental conditions regarding to temperature and humidity variations. It 

is proposed to build an augmented baseline model in order to include the environmental 

influences into the data variability, where environmental variables are measured only once. The 

effectiveness of the methodology is demonstrated by analyzing experimental measurements 

obtained from a carbon steel pipe section. The results show that the methodology can be used to 

detect leaks under different environmental conditions, suitable for noninvasive structural damage 

detection. It is demonstrated that pipe leaks detection is achieved considering several 

temperature/humidity scenarios at laboratory scale. 

6.1. Environmental influence for structural damage identification. 
In most of SHM methodologies proposed in the state of the art that consider varying 

environmental conditions, they can be confused with changes caused by structural damages. 

Thus, reliable methodologies for damage detection should take into account the effect of these 

environmental conditions (humidity, wind, temperature gradients, etc.) in order to avoid false-

positive or negative damage diagnosis. In this sense, in last years, several approaches in the field 

of damage diagnosis have paid attention to the effect of variable environmental conditions [6]. 

One of the methods used to deal this effect is to perform correlation between the measured 

vibration characteristics and the corresponding environmental conditions [38]. Other approaches 

separate different environmental conditions into different clusters by means of Self Organizing 

Maps [39] or by using NullSpace method [40], which facilitates optimal based selection 

techniques [41]. Also, principal component analysis (PCA) [42] have been proposed as statistical 

tool to distinguish structural damages under environmental conditions, where environmental 

effects are treated as embedded features.  

However, to discern changes resulting from environmental influences respect to changes due to 

actual damages is still a challenging task. One of the drawbacks is the high sensitivity of measured 

responses from a structure to damage and environmental variables; therefore, it is difficult to 

define robust features insensitive to environmental variations. Other issues regarding practical 

situations is the requirement of environmental variable sensors installed in the host structure 

permanently, which is highly dependent of a proper location. Thus, SHM methods are adversely 

influenced by variable environmental and operational conditions of the monitored structure, 

where false alarms are the main issue reported in the literature.    
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Temperature and humidity changes effects on PZT measurements 

Several researches (see [43], [44] and [45]) in the field of damage detection based on 

measurements from piezoelectric devices summarize the next adverse effects produced by 

temperature changes: 

 Change in the properties of PZT transducer such as piezoelectric constants.  

 Degradation in properties of adhesive used to bond transducers to the host structures. 

 Thermal expansion, such as change in plate thickness, piezo dimensions and distances 

traveled by the guided wave along the structure. 

 Change in elastic properties, including density and Young modulus, which cause changes 

in wave velocity. 

In addition, high temperatures in metallic materials cause thermal creep and stress conditions, 

which reduce its useful life with a higher effect when it is subjected to fatigue. 

On the other hand, the mechanical and piezoelectric properties of the PZT are fewer influenced 

by humidity absorption. However, in the literature is reported a remarkable large impact of 

humidity changes over amplitudes measured from PZT systems [46]. Additionally, high relative 

humidity produces corrosion degradation in the structure. 

6.2. Methodology for structural damage identification under 

environmental influence. 
In this thesis temperature and humidity changes effects are considered by augmenting the baseline 

model, in order to become robust damage detection. Since the structure to be monitored operates 

under several temperature and humidity scenarios, it is proposed to consider these conditions by 

building an augmented baseline model including measurements at the expected 

temperature/humidity real operation scenarios. Thus, experimental records of undamaged state at 

different temperature/humidity levels should be unfolded in a two-way matrix as is shown in 

figure 6.1.  

 

Figure 6.1: Undamaged - augmented experimental data matrix 
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In this sense, by processing the augmented experimental data in figure 6.1, the variation for 

different temperature/humidity levels are taken into account in the PCA model building 

procedure. It means that the PCA baseline model is built after computing cross-correlated 

piezoelectric signals of the undamaged-augmented data matrix.  

6.3. Experiment design 
The methodology described in the above section was experimentally validated in a carbon-steel 

pipe loop by considering leaks at different temperature and humidity conditions. Thus, this 

section presents the experimental setup to produce different temperature/humidity scenarios.  

6.3.1. Humidity and Temperature Conditioning 

Figure 6.2 describes the conceptual design established to obtain experimental records considering 

several temperature/humidity scenarios. High power lamps, located at the top of the pipe 

structure, mimic the sun influence by radiating heat waves on the pipe. The heating is focused in 

the area where the PZT devices are installed, which is intended to affect mainly the piezo-devices 

couplant properties. On the other hand, a trough-shaped vessel was conditioned between the floor 

and pipe zone to produce humidity changes. Temperature levels were feedback controlled by an 

adjustable power source, while the humidity was treated as a disturbance since the high 

interrelation between these two environmental variables. However, in order to achieve 

homogenized conditions in the moisture levels, the through-shaped vessel was filled with water, 

which is then regulated by using coolers and heating resistors. Thus, moist air and steam flow 

affects the humidity conditions near to the pipe structure. 

 

Figure 6.2: Experiment design to produce temperature and humidity variations 

Temperature and humidity measurements were obtained by using the HSM20G and LM35 sensor 

devices, which operate at [10% to 90%] and [55° C to 150°C] ranges respectively. In addition, a 

PI algorithm was implemented (phase controlled) in the Arduino hardware platform in order to 

regulate the average temperature in the pipe structure. The scenarios studied in this chapter are 

detailed in figure 6.3, where a combination of heating lamps, heating resistors (steam) and cooler 

elements (moist air) are specified. 
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Figure 6.3: Temperature and humidity scenarios 

According to figure 6.3, the first record  (t0) corresponds to uncontrolled environmental 

conditions, and then eleven temperature set-points (t1, …, t11) were produced each 10 minutes 

for a total of 11 humidity/temperature scenarios.    

6.3.2. Pipe loop description  

The test structure used to validate the methodology is a carbon-steel pipe loop, which consists of 

five 100x2.54x0.3 cm (length, diameter, thickness) sections (see figure 6.4). Each pipe section 

contains bridles at its ends and three piezoelectric devices (PZT) bonded along the surface 

structure. The PZT devices located at the middle of each section operated as actuators and the 

remaining ones as sensors. A burst type signal, generated by means of an AWG PicoScope series 

2000, was used to excite the PZT actuator around its resonance frequency (~100 KHz) and then 

it is amplified to ±10 V. In addition, a valve that controls the airflow from a compressor at 80 psi 

is installed in the pipe loop, while a manometer is used to indicate the operation pressure. 
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Figure 6.4:  Pipe loop experiment. 

According to figure 6.4, changes in the temperature/humidity conditions mainly affects the third 

section of the pipe loop, where three lamps and two coolers are used for these purposes. In order 

to evaluate the effectiveness of the methodology, 100 experimental repetitions were recorded for 

scenarios corresponding to undamaged and leak states under different temperature/humidity 

conditions (t0, …, t11). The leaks were induced by a full opening of a hole between the PZT 

devices (Actuator-Sensor) in the third section of the pipe loop structure. The baseline model is 

built by using measurements from the ten PZT sensors. 

6.4. Experimental results 
A preliminary test was conducted by using only the 100 experiments at uncontrolled 

environmental conditions, in order to build the PCA baseline model. Figure 6.5a presents the T −

squared and Q statistical indexes for the undamaged (UND1, …, UND11) scenarios under 

different temperature/humidity conditions, while figure 6.5b depicts results for one leak at the 

respective humidity/temperature scenarios (T0, …, T11), where clusters for each environmental 

condition are observed.  
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Figure 6.5:  Q vs T-squared statistical indexes at different humidity/temperature conditions 

computed by using a non-controlled temperature signals baseline model. A.) Undamaged states. B.) 

Leak condition 

 According to figure 6.5, the leak and undamaged states are treated as different conditions for 

each temperature/humidity scenario. Even, for small environmental changes is difficult to 

differentiate between the undamaged and leak states. Also, the dispersion for different 

temperature/humidity conditions at undamaged state is large and comparable to the leak 

measurements. Therefore, humidity/temperature changes could be confused with leak states, 

which is an undesirable characteristic for detection purposes. 

In order to build the robust baseline model, 1200 undamaged experiments under different 

environmental conditions (UND0,…, UND11) were achieved. The Q and T-squared statistical 
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indexes for undamaged and leak scenarios at different humidity/temperature conditions, 

computed by using this augmented baseline model, are depicted in figure 6.6. 

 

 

Figure 6.6: Damage indexes for leaks at different environmental conditions by using an augmented 

baseline model. 

According to the results in figure 6.6, a better differentiation between the undamaged and leak 

states is observed, and they are grouped in separated clusters. For undamaged cases it is observed 

low Q-values [0,3𝑥10−3 -2𝑥10−3] and 𝑇2 indexes with lower dispersion respect to the initial 

indexes (figure 6.5a).  In addition, Q statistic has a lower sensitivity to variations in environmental 

conditions than 𝑇2 index. 

The time piezo-electrical signals recorded in one of the PZT sensors for the undamaged state 

under different temperature conditions are plotted in figure 6.7. The relative humidity for these 

cases can be considered constant (~60%). 

 

Figure 6.7: Time records of PZT responses at different temperature conditions 
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According to figure 6.7, temperature changes produce phase shift and amplitude attenuation in the 

guided waves response, which has been reported in the literature. 

Since temperature and moisture environmental variables are highly correlated, a second test was 

conducted in order to emphasize the humidity influence. Thus, the lamps were power off and the 

humidity conditions were modified by means of coolers and heating resistors (figure 6.2). The six 

(t1, …, t6) studied scenarios are detailed in figure 6.8. 

 

Figure 6.8: Scenarios to evaluate humidity influence 

According to figure 6.8, if steam is used to change the humidity conditions, a temperature disturbance 

is induced (scenario t3).  The respective time piezoelectric signals are illustrated in figure 6.9, where 

no meaning differences can be observed, except for scenario t3. In this case, similar to the above case, 

the temperature affects the signal amplitude. 

 

Figure 6.9: Time records of PZT responses at different humidity conditions  
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Chapter 7. 

7. Implementation of a Piezodiagnostics approach for damage 

detection based on PCA in a Linux-based embedded 

platform 
 

The implementation of damage detection methods for continuously assessing the structural 

integrity entails systems with attractive features such as storage capabilities, memory capacity, 

computational complexity and time processing consuming. In this sense, embedded hardware 

platforms are a promising technology for developing integrated solutions in Structural Health 

Monitoring. In this chapter, design, test and specifications for a standalone inspection prototype 

is presented, which take advantage of piezo-diagnostics principle, statistical processing via 

Principal Component Analysis (PCA) and embedded systems. The equipment corresponds to a 

piezoelectric active system with the capability to detect defects in structures, by using a PCA-

based algorithm embedded in the Odroid-U3 ARM Linux platform. The system performance was 

evaluated in a pipe test bench where two kind of damages were studied: first, a mass is added to 

the pipe surface, and then leaks are provoked to the pipe structure by means of a drill tool. The 

experiments were conducted on two lab structures: i) a meter carbon steel pipe section and ii.) a 

pipe loop structure. By means of the equipment it was recorded the wave response between the 

instrumented points for two conditions: i) The pipe in nominal conditions, where several 

repetitions will be applied to build the nominal statistical model and ii) when damage is caused 

to the pipe (mass adding or leak).  Damage conditions were graphically recognized through Q-

statistic chart. Thus, the feasibility to implement an automated real time diagnostic system is 

demonstrated with minimum processing resources and hardware flexibility. 

7.1. Architecture of the proposed piezo-diagnostics system 
Some commercial solutions for SHM have been developed by companies such as Accelent with 

their Portable ScanGenie that integrated with Layer Sensors and Smartpatch (their operative 

software) can be used to monitor engine disks, joints, beams among others objects [47]. Digitexx 

Data System [48] also provides semi-permanent solutions for structural health monitoring, 

providing data from many different sensors such as accelerometers and tiny manometers. 

However, these systems have several implementation problems since they have not demonstrated 

high reliability and feasibility [49]. 

In this thesis, by combining Principal Component Analysis (PCA) with piezo diagnostics 

principle on an embedded system, advantages such as the risk reduction in the loss of information 

is added, in addition to providing greater flexibility at the where and when can be accessed to the 

stored information. Therefore, the making decisions to ensure structural health is facilitated, as 

some experts in remote monitoring can assure4. In this work a preliminary embedded system is 

performed, in that way most problems related to computational resources, such as memory and 

processor performance, are no longer a major problem for structural damage assessment. Also, 

several desirable features for condition monitoring systems like user-friendly results 

interpretation, low power requirements, easy setup, low cost, small size, expandability and 

                                                           
4 Permasense—Experts in Remote Monitoring Solutions. Available online: https://www.permasense.com/  

(accessed on 23 September 2018) 

https://www.permasense.com/
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hardware accessibility can be obtained.  The architecture of the system is schematized in figure 

7.1, where its main components are: i) the structure to be monitored, ii) piezoelectric devices 

attached to the structure surface, iii) excitation elements, iv) power supply, v) data acquisition 

components, vi) digital processing unit (Odroid-U3) and vii) means to show results. 

 
Figure 7.1: Damage diagnosis system schematic 

 

According to figure 7.1, the equipment uses an active piezo-diagnosis scheme that consists of 

using piezoelectric devices to produce elastic waves and evaluate its propagation along the 

examined structure. The most important parameters to be considered for generating guided waves 

are related to frequency and type of electric field excitation, coupling material for the bonding 

layer and recommendations for electrical connection of piezoelectric elements, as was detailed in 

section 2.2.  

 

7.2. Hardware design 
The system configuration and its electronic components is depicted in figure 7.2, where its main 

component is the embedded platform (system’s core) capable of streaming, processing 

(mathematical computations) and storing data, as well as handling a user interface. Other system 

components are the data acquisition system, amplifiers and signals conditioners.  

 

 
Figure 7.2: Logical relationship configuration diagram.  
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7.2.1. Signal conditioning and acquisition system 

It was necessary to build a signal conditioning circuit for electrical coupling between PZT devices 

and electronic components, where a charge mode amplifier was used to ensure the operating 

frequency and to minimize signal loss due to loading effect [50] (see figure 7.3). 

 

Piezo electric response is amplified to ±10 V and acquired by means of a Picoscope 2000 and a 

24-channel multiplexor board (16 PZT sensors and 8 PZT actuating signals), such that each PZT 

response can be acquired in each channel with low delay, depending on the total amount of 

sensors connected.  

 

The PicoScope™ includes Arbitrary Wave Generation (AWG) function, which allows generate 

burst excitation. It is highlighted that PicoScope™ is used as DAQ/Generation system since it 

has desirable features for standalone and portable systems: Good bandwidth, faster waveform 

update rates, low price (From $129), and ultra-compact size compared to other commercial 

devices [51]. The sample rate of system is specified by acquisition system bandwidth (100 MHZ) 

and number of PZT-sensor channels (16). Thus, the maximum sampling frequency achievable in 

the system is 6.25 MS/s. 

 

 
Figure 7.3: Charge amplifier. Extracted from [30]  

7.2.2. Embedded platform 

An embedded system is a small device designed to execute specific tasks and contains elements 

that vary according to its goal, but it always maintains a group of basic elements for operation: 

RAM memory, input-output peripherals and a microprocessor as CPU. These platforms are 

generally based on ARM architectures, with smaller size than regular computers making them 

ideal for low power applications. One of its main features is its capability of processing 

information in real-time. A good platform for SHM is Odroid-U3 and its characteristics are 

summarized in table 7.1. 

 
Table 7.1:  Odroid-U3 characteristics  

Feature Description   

CPU 1.7GHz Exynos4412 Prime Cortex-A9 Quad-core processor  

2Gbyte LPDDR2 880Mega Data Rate 

SO ubuntu-14.04.2lts-lubuntu-odroid-u-20150224 

RAM 2072 [MB] 

Onboard Flash 8Gb, eMMC 

Power Source 5VDC/2A 

USB 2.0 Host 3 x USB 2.0, 1 x Micro USB 

Serial Port UART 1.8 V 

Ethernet 10/100, RJ45 

Video Out HDMI (480p/720p/1080p) 

GPIO 5 



 

58 
 

 

According to table 7.1, the Odroid-U3 has peripherals package that allows making several 

improvements using Ethernet communication, USB, SD, HDMI ports, video out and on-board 

memory. It also allows execution in real time of operating system such as Ubuntu Distributions, 

which supports the architecture of the system described in this chapter.  

 

The final component included in the hardware system design corresponds to the USB-to -IO 

expansion board that provides GPIO interface. It is used to implement the logical programming 

of the multiplexor board through the PIC18F45K50 microcontroller. 
 

7.3. Algorithm programming 
The overall methodology described in section 2.3.5 is implemented in the embedded hardware 

by using the flowchart detailed in figure 7.4, which is designed to evaluate the current time 

structural state through index damage charts.   

 
Figure 7.4: Pseudo-code of piezo-diagnostics algorithm in the embedded platform 

According to figure 7.4, the embedded algorithm consists of three procedures: set up and 

configuration, baseline model building (training stage) and structural condition monitoring 

(monitoring stage), which are sequentially executed. Once the configuration parameters and 

drivers to manage data acquisition are established, the transformation matrix P of the statistical 

model is obtained via Proper Orthogonal Decomposition method (POD) [17]. POD require fewer 

computational resources over alternative methods such as SVD and NIPALS, maintaining a 

compromise among resources memory and time consuming [18]. Thus, POD method is 

implemented as processing tool for baseline model building since low memory and execution 

time are required. 
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7.4. Structural damage continuous monitoring 
This section presents the results of using the damage detection approach based on principal 

component analysis, described in previous chapters, for continuous structural monitoring. The 

feasibility for continuous monitoring of the methodology is demonstrated by analyzing 

experimental measurements obtained from two structures: i.) a carbon steel pipe section and ii.) 

a laboratory tower that mimics a wind turbine. The results of the studied cases show the capability 

of the methodology for structural continuous monitoring by detecting abrupt changes in the 

structural response when damages occur. 

7.4.1. Experiment description 

The performance of PCA approach for online monitoring is evaluated by analyzing data from two 

structures in order to validate.  

Carbon steel pipe section 

The first specimen used as test structure is a carbon-steel pipe section of dimensions 100x 2.54 

x0.3 cm (length, diameter, thickness). It was conditioned with piezoelectric devices in order to 

induce guided waves along the surface structure (figure 7.5). 

 
Figure 7.5: Carbon steel pipe section 

In order to induce leaks in the test structure, four ¼-inch holes were drilled along the pipe section 

wall with adjustable screws. 

Laboratory tower 

The second test structure is a tower model, representing a wind turbine model previously studied 

for damage detection [40]. The structure (2.7 m high) is composed by three components (figure 

7.6a):  jacket, tower and nacelle. A modal shaker simulates the nacelle mass and it is used to 

produce external 100 Hz white noise in the structure, which mimic the modal dynamics of an 

offshore wind turbine. Damage in the tower was induced by replacing one of the undamaged 

section in the jacket with a 5 mm cracked section (figure 7.6b). Five PZT sensors were installed 
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in the jacket (figure 7.6a, red markers correspond to PZT devices) in order to record 50-

experiment repetitions from guided wave structural responses produced by the PZT actuator. 

 
Figure 7.6: Laboratory tower structure. 

Figure 7.7 presents the piezo-electrical response obtained from one of the PZT sensors by using 

a sample time Ts = 32.0 [ns]. It is observed a noise trend due to the modal shaker, which is 

removed by means of a digital filter (figure 7.8). 

 
Figure 7.7: PZT response. Left: Actuator signal before amplification. Right: PZT Sensor measurement 
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Figure 7.8: Noise removing from PZT response 

7.4.2. Results and performance for damage assessment  

The feasibility to detect cracks in a laboratory tower and leaks in a pipe section is demonstrated 

by processing online measurements. 

Continuous monitoring of Leak in the carbon steel pipe section 

Figure 7.9 shows the Q-statistical index computed when a mass adding damage and a leak is 

caused in the pipe structure. 

 
Figure 7.9: Damage index for monitoring pipe section. 

 

According to results in figure 7.9, the Q-index values suffer notable changes when damage is 

induced in the structure. In addition, a clear difference in damages is observed. It is important 

remark that transient dynamics is captured in the index values. 

Suddenly Crack detection in the laboratory tower 

Figure 7.10 shows the evolution for Q-index values when crack damage is caused in the structure. 

Mass

Leak

Undamaged
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Figure 7.10: Statistical indexes in the Laboratory tower. 

According to results in figure 7.10, a noisy trend is observed. It is because noise caused by the 

shaker which corresponds to a low frequency noise source. However, it can be distinguished the 

damage state from undamaged one. However, the transient dynamics it is no clearly observable. 

7.5. Results and validation of embedded platform for damage assessment 
This section details the main features and performance of the integrated piezoelectric damage 

diagnosis system. Validation tests were conducted on two structural lab models in order to 

evaluate the system performance: i.) a carbon steel pipe section, and ii.) a pipe loop bench.  These 

two experiments were configured to evaluate the performance of the system and the overall 

methodology. The first experiment was validated in a pipe section with reversible damages by 

adding masses to the surface structure and the second one corresponds to a carbon steel pipe loop 

configured to study leaks type damage. For both experiments guided waves was induced with 5 

cycles burst type pulse. One example of the scattered waves recovered is illustrated in figure 7.11.  

 

 
Figure 7.11: Actuation and sensing signals 

For all experiments, baseline model was obtained by applying PCA to 100-experiment repetitions 

during 1s of periodic excitation signal (Ts= 40 ns).   
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7.5.1. Piezo-diagnoster Hardware performance 

The piezo-diagnoster equipment developed for standalone inspection tasks is detailed in figure 

7.12. Its dimensions are 19.3cm height x 18.8cm large x 33.2cm width and it is provided with a 

7” HDMI display of 800 x 480 resolution. Configuration and operation are achieved by using 

standard input/output peripherals (keyboard and mouse).  

   

Figure 7.12: Piezo-diagnoster hardware platform 

The instrumentation components including the data acquisition system, amplifiers and signal 

conditioners are detailed in figure 7.13. They comprise peripheral packages for Ethernet 

communication, as well as USB, SD, HDMI ports, video out and on-board memory. 

 

 
Figure 7.13: Components of Piezo-diagnoster hardware platform 

The system is able to acquire signals up to a maximum of 24 PZT sensors, whose hardware was 

designed with J-fet technology amplifiers (THS4031) that allows a proper bandwidth response 

(100 MHZ), high switching speed and good signal/noise ratio. Voltage gain is adjustable in order 

to manage drifts and offset of different structures to be monitored, which is produced by electrical 

and mechanical coupling effects. The typical performance of the proposed piezo-diagnoster 

system for a set of 8 PZT sensors is summarized in table 7.2.  
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Table 7.2: Average performance of Piezo-diagnoster system 

 CPU usage % Memory usage % Time response Visualization delay 

Graphical interface 10.2 2.1 ~1 second  4 seconds 

PCA processing 50.3 0.9 0.876 seconds NA 

TOTAL 60.5 3.0 1.876 seconds  

 

Results in table 7.2 regarding to time corresponds to mean, while memory resources to maximum 

peak from all processed data in real time. A significant delay is observed on the performance of 

the system due mainly to graphical tasks, thus a dedicated graphical unit is required to manage 

visualization process. Likewise, results storage is managed through unformatted text-file writing 

and should be considered as resource demanding task. According to table 7.2, the embedded 

hardware platform accomplishes the computing tasks with acceptable resource consumption for 

monitoring purposes. A comparative test was conducted in a general-purpose computer (Intel 

core I5 @2.67GHz and 3.8GB RAM) where results was obtained in 0.4219993 seconds; 

demonstrating the consistency of the embedded algorithm with minimal hardware resources.  

7.5.2. Reversible damage assessment in a pipe section 

A carbon-steel pipe section test bench was used to validate the system performance. The pipe 

section (figure 7.14) is 100 cm length x 2.54 cm diameter, x 0.3 cm thickness and contains bridles 

at its ends. Three piezoelectric devices were attached to the surface of the structure, where the 

PZT located at the middle was used as actuator element and those near to the bridles as sensors. 

Acquisition hardware was configured in single mode setup; thus, a pitch-catch record is obtained 

from the respective PZT sensor each time that an actuation signal is sent to PZT actuator. As it is 

illustrated in figure 7.14, a special shaped accessory was added to the surface pipe section in order 

to recreate damages of type mass adding at different locations of the surface. 

 
 Figure 7.14: Pipe Section experiment mockup. 

The behavior of Q-index when the mass element is added to the surface structure is presented in 

figure 7.15.  First, the structure is monitored without damage, then the special mass accessory 

was added between PZT1 and PZT actuator (M1), next and additional mass was added between 

PZT2 and PZT actuator (M1+M2) and finally both masses was removed to return to the initial 

undamaged condition.   
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FIGURE 7.15: MASS ADDING DAMAGE DETECTION FOR A PIPE SECTION 

According to figure 7.15, a clear difference between undamaged and damaged conditions is 

observed for abrupt changes in Q-values, and minimal variations are obtained for healthy state of 

the structure. Also, transient response is captured while the masses are being installed. 

A second experiment was conducted to evaluate the system response sensitivity by locating the 

mass (damage) at different points of the test specimen. In this case, two piezoelectric devices 

(sensor-actuator) were attached near to the structure bridles and 100 experiments per condition 

(Damaged/Undamaged) were registered. Fifteen damage scenarios, (denominated D1, D2 ⋯ 

D15), were recreated locating the mass at 5cm, 10cm, and so on, respect to the PZT actuator (see 

figure 7.16).   

 
 Figure 7.16: Mass displacement experiment mockup. 

Performance of Q-statistic damage index is shown in figure 7.17, where all damage conditions 

are summarized in a scatter plot with ordered labels according to ascending Q-values for a better 

visual interpretation. Experiments related to pristine structure cases, used for validation purposes, 

are labeled as ‘UND’ and those used to build the PCA model as ‘Orig’. 
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Figure 7.17: Sensitivity of Q-statistical index for mass location experiment. 

According to results in figure 7.17, the system differentiates between damaged condition and 

healthy state, maintaining repeatability in Q values for pristine condition (Orig and UND). 

However, some scenarios are confused despite boundaries between several damage experiments. 

This overlapping is detailed in table 7.3, where it is observed that this occurs for experiments 

recorded when the mass is located around the middle of the pipe section, with major influence 

just in the center of the structure. For scenarios away from the center of the pipe better decision 

margins was obtained.  

Table 7.3: Overlap degree of mass location experiment 

Group Damage Labels Mass Location [cm] Overlapping 

0 {Orig, UND} No damage Expected 

1 {D7, D12} [35, 60] Minimal  

2 {D11, D13, D9} [55, 65, 45] Full  

3 {D8, D4} [40, 20] Minimal  

 

Also, the Q-values are not ordered in relation to mass position, meaning that is not possible use 

Q statistic as measurement of damage location.  

7.5.3. Leak detection in a pipe loop 

Figure 7.18 shows the experiment configuration for leak detection, which consists of three, 100 

cm length x 2.54 cm diameter x 0.3 cm thickness, carbon-steel pipe sections. Each pipe section 

contains bridles at its ends and three piezoelectric devices (PZT) bonded along the surface 

structure. The PZT devices located at the middle of each section operate as actuators and the 

remaining ones as sensors. A valve controls airflow at 80 psi from a compressor installed in the 

pipe loop, while a manometer indicates the operation pressure. Acquisition hardware was 

configured in pairwise mode setup, such that sequential pitch-catch records are obtained from 

each pipe section in single mode set up. 



 

67 
 

 
Figure 7.18: Pipe-Loop experiment 

As it is illustrated in figure 7.18, leaks were produced by a full opening of a hole between the 

PZT devices (Actuator-Sensor) and located at different points along the structure. These kinds of 

leaks are recreated by means of ¼-inch holes drilled along the pipe section wall, maintaining the 

pipe loop pressure at 80 psi. In this case, the influence of damages at curve portion of the pipe 

were not study and no PZT devices were located there.  However, all pipe sections are considered 

as part of the undamaged state for baseline model building by concatenating the respective PZT 

response of each section in the undamaged case matrix.  Figure 7.19 presents the corresponding 

Q-values for leak damage cases. First, the pipe loop is monitored in healthy state (no damage), 

then a leak is caused in one section (L1), next an additional leak is recreated in other section 

(L1+L2) and finally the last leak is plugged with a Teflon screw returning to condition where 

only one leak is present (L1). 

 
Figure 7.19: Leak detection in the loop experiment 
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The results presented in figure 7.19 confirm the suitability of Q-index for differentiating between 

damaged and undamaged conditions. In addition, the performance of Q-index shows that the 

system has capability for detecting different damage types (mass and leaks), high sensitivity to 

transient response and capacity to recover a previous state or condition. A final remark is 

highlighted about differentiation between leak and mass-adding damage types which requires 

additional modeling stages such neural networks and complementary features as is demonstrated 

in previous works [52]. Thus, by using only Q-index it is no possible to distinguish between mass 

damage and leak.  
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Chapter 8.  

8. Structural damage identification through an innovative 

hybrid ensemble approach 
The algorithms commonly used for damage condition monitoring present several drawbacks 

related to unbalanced data, optimal training requirements, low capability to manage feature 

diversity and low error tolerance, which is traduced in a high probability for erroneous diagnostic. 

In addition, few strategies for damage localization in an integrated scheme have been reported in 

literature, which makes difficult failure identification and increases maintenance costs. 

Nevertheless, robust structural damage localization and identification can be achieved by 

integrating individual techniques through an ensemble architecture in order to increase the 

performance of the whole expert system, obtaining more efficient diagnosis. This chapter presents 

a hybrid algorithm approach as alternative to combine diagnosis obtained from different PCA-

based damage indexes in order to improve the probability of damage identification. The proposed 

architecture employs a network of piezoelectric devices configured in multi-actuating scheme, 

where each pair sensor allows the construction of a baseline model. Different damage conditions 

are distinguished through error indexes computed by applying linear and non-linear PCA, while 

damage location is achieved by combining contributions of each baseline model, by using an 

adapted version of the RAPID algorithm. The proposed methodology allows determining the 

condition assessment and damage localization in the structure, and it is experimentally validated 

on a laminate plate, where cut saw scenarios are studied as possible failures. Results of the studied 

cases show the feasibility of ensemble learning for detecting occurrence of structural damages 

with successful results, where it is demonstrated the potential of the methodology to significantly 

enhance localization tasks. 

8.1. Ensemble learning as approach for SHM 
This work proposes the use of ensemble learning as approach for structural damage assessment, 

since one of the main requirements to achieve reliable continuous monitoring systems is to 

minimize false alarms and missing reports. Ensemble learning algorithms are considered meta-

algorithms designed to work on top of existing learning algorithms and the main idea is to 

combine multiple models to improve prediction performance. It is also known in the literature 

with several keywords: ensembles, ensemble methods, ensemble learning methods, model 

combination, combining models, combining classifiers, multiple classifiers, multiple classifier 

systems, majority voting or mixtures of experts. This diversity of keywords related to EL hinder 

the identification of previous works in any application field [53], [54], [55]. Also, EL is suitable 

to manage some issues when large or little data volumes are available by the adaptation of 

resampling techniques and decision averaging. Additionally, EL is useful to integrate features 

from diverse information sources, which serves as a simple data fusion scheme. Therefore, the 

efficiency and accuracy of expert systems for SHM are maximized by using EL. Figure 8.1 shows 

the concept of the expert system based on Ensemble Learning.  
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Figure 8.1: Expert System approach based on Ensemble Learning 

According to figure 8.1, the main components of ensemble learning correspond to multiple 

learning algorithms organized in a parallel scheme and a combination function (fuser). Thus, the 

feature inputs are processed and manipulated with the methods selected to construct ensembles, 

in order to obtain the final diagnostic decision. The final output prediction in ensemble is 

averaged across the predictions of every sub-models, or produced on the concept of voting or 

weighted average according to the performance of ensemble models [56], [57]:  

                                                     𝑓𝑒𝑛𝑠(𝑥) =  ∑ 𝑤𝑖
𝑀
𝑖=1 𝑓𝑖(𝑥)                                            Eq. (8.1) 

In eq. (8.1), the combined prediction 𝑓
𝑒𝑛𝑠

(𝑥) is obtained from the 𝑀 models of the ensemble, and 

the output �̂�
𝑖
 of model 𝑖 on an input 𝑥. The weights 𝑤𝑖 can be seen as the relative confidence in 

the correctness of the models predictions, and are thus constrained to sum to 1 (𝑤𝑖 > 0, ∑ 𝑤𝑖
𝑀
𝑖=1 =

1) [58] 

EL has not been applied sparingly in SHM despite the advantages of its use for task related to 

pattern recognition. As an illustration, support vector machines and neural networks have been 

used in combination to detect and classify two damage types in the aircraft fuselage [59]. Other 

example is detailed in [60], where a classifier is proposed as fusion strategy to manage different 

sources of information from acoustic emissions, ultrasound tests and flows measurements. The 

aim of this system is to improve leak detection in pipeline structures. A similar application is 

described in [61], where independent classifiers are used to combine measurements from different 

type of sensors in order to obtain higher level diagnostic responses. In this sense, a vote majority 

scheme is implemented to identify pipe damages as an approach in nondestructive testing. Other 

example is discussed in [62], where the authors present results of full-scale fatigue test (FSFT), 

which are analyzed by means of an ensemble of Artificial Neural Networks (ANNs). This last 

approach allows compensating temperature and environmental effects present during acquisition 

of Lamb-wave signals. 

Different variations of ensemble learning have been reported, where different taxonomies are 

used. For example [55, 56, 57] use multiple models, while [62] combines classifiers, [59] 

proposes committee of experts and [60] classifier fusion. This is since philosophy of ensemble 

learning is not only the combination of classifiers, but also of different models, types of features, 

methods or any other combination that allow to improve the estimation. Thus, ensemble learning 

could be an adequate technique for locating damages on laminate structures by combining 
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different baseline models obtained when an array of several piezoelectric devices is attached to 

laminate structures, which is the purpose of this work. 

8.2. Learning algorithm based on multi-actuating method 
In recent years, different Structural Health Monitoring (SHM) techniques that use guided waves 

activated and sensed by means of piezoelectric devices have been proposed to assess the current 

structural state. Under this principle different methodologies have obtained a high performance 

for detecting damages [16], but also different works have demonstrated progress on damages 

localization. For example, in [63] a PZT sensors network was used for locating damages, [64] 

used the signal envelope for estimating wave group velocity through time of flight (TOF) and 

then locate different damages as crack, hole, clamp, while in [65] the Total Focusing Method is 

used to locate damages by using the TOF of a guided wave generated by means of PZTs on an 

aluminum square plate.  

Thus, this chapter presents the mixing of Ensemble Learning with piezo-diagnostics principle as 

a novel approach for improving damage identification tasks regarding to robust detection and 

detection of small defaults. Firstly, piezo-diagnostics is based on analyzing guided waves 

(generated by means of piezo-electrical devices) propagation through the structure in order to 

find patterns with high sensitivity to structural damages, as is illustrated in figure 8.2.  

 
Figure 8.2: Guided wave generation through piezoelectric devices  

In figure 8.2, one of the PZTs mounted on the surface structure operates as actuator, and the 

remaining PZTs work as sensors in a pitch–catch mode, taking advantage of piezoelectric effect.  

This approach proposes to build baseline models in order to examine the structural damages by 

using measurement from each pair of PZT devices. Thus, each PZT works as actuator and 

baseline model is obtained for each PZT sensor, as is illustrated in figure 8.3. 

 
Figure 8.3: Guided wave generation through piezoelectric devices  

Actuator

pzt sensors

Actuator
pzt sensors
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According to figure 8.3, 𝑛2(𝑛 − 1) baseline models are obtained, where each actuator produces 

𝑛 − 1 models (being 𝑛 the number of PZT devices). The responses of each model can be 

combined in an ensemble approach, according to described in previous section, by means of a 

simpler fuser like the average or multiplicative operator. In this sense, the learning algorithms 

correspond to 𝑛2(𝑛 − 1) damage indexes computed through different PCA methods (linear or 

nor linear) and the combination rules is specified as the average or multiplication of all computed 

indexes.   

8.3. Damage Location by using adapted RAPID algorithm 
The Reconstruction Algorithm for Probabilistic Inspection of Damage (RAPID) [66] uses the 

correlation coefficient defined in eq. 8.2 to detect defects:  

                                                                        𝜌 =
𝐶𝐴𝐵

𝜌𝐴𝜌𝐵
                                                                Eq. (8.2)  

where 𝐶𝐴𝐵 is the covariance of the pristine data set A and each new set B with possible damage 

condition, 𝜌
𝐴

 and 𝜌
𝐵

 are the standard deviations of A and B. In order to estimate damage location, 

the probability of defect distribution is estimated by a linear summation of the correlation 

coefficients from all actuator-sensor pairs. The RAPID algorithm assumes the spatial distribution 

is to be a linearly decreasing following an elliptical distribution as shown in figure 8.4.  

 
Figure 8.4: Elliptical distribution function of probability of defect location – RAPID [67]  

According to figure 8.4, when a defect occurs, the sensor signals in the direct/indirect path will 

be affected by an elliptical distribution and the defect distribution probability will have higher 

probability where the defect is located, compared to other points according to correlation 

coefficient. The elliptical spatial distribution 𝑆𝑖𝑗(𝑥, 𝑦) is defined by eq. 8.3:  

                                              𝑆𝑖𝑗(𝑥, 𝑦) =
𝛽−𝑅𝑖𝑗(𝑥,𝑦)

1−𝛽
  for 𝛽 > 𝑅𝑖𝑗(𝑥, 𝑦),                                      Eq. (8.3) 

𝑆𝑖𝑗(𝑥, 𝑦) = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, where 

𝑅𝑖𝑗(𝑥, 𝑦) =
√(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2 + √(𝑥𝑗 − 𝑥)

2
+ (𝑦𝑗 − 𝑦)

2

√(𝑥𝑖 − 𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)
2

 

where 𝑥 𝑎𝑛𝑑 𝑦 define each coordinate position in the 2D plane, limited by the structure 

boundaries; and 𝛽 is a scaling parameter to control the size of the elliptical distribution function. 

𝑥𝑖, 𝑥𝑗, 𝑦𝑖 , 𝑎𝑛𝑑 𝑦𝑗 correspond to the locations of each pair of actuator-sensor. 

This chapter presents an adapted version of RAPID algorithm as an approach to locate structural 

damages. Instead of correlation coefficient, it is suggested the use of the normalized Q-index 

obtained for each actuator-sensor pair. The normalization is computed taking into account the 
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maximum of Q-values computed from the respective actuator baseline model. Thus, the defect 

distribution probability 𝐸𝑖𝑗(𝑥, 𝑦) for each actuator-sensor pair is defined by eq. 8.4:  

                                            𝐸𝑖𝑗(𝑥, 𝑦) = ∑ ∑ 𝑄𝑖𝑗𝑆𝑗𝑖(𝑥, 𝑦)𝑁
𝑗=𝑖+1

𝑁−1
𝑖=1                                                Eq. (8.4) 

After computing the squared prediction error (Q-index) from each baseline model, the final 

damage location is estimated by applying image sum operator as processing technique in order 

to combine all Q-index contributions. It is important to remark that localization procedure is 

applied after the damage detection stage, when damage index exceeds a predefined threshold. 

8.4. Experiment and validation results 

8.4.1. Experimental setup 

An aluminum plate with dimensions 100cm width x 100cm large x 2mm thickness was used to 

validate the proposed methodology. According to figure 8.5, the structure was instrumented with 

8 piezoelectric wafer devices of 10 mm diameter and 0.5 mm thickness (PWAS – PRYY+0110), 

which are manufactured by using PIC255 ferroelectric material suitable for guide wave 

generation with a resonance frequency of 200 KHz. 

 
Figure 8.5: Aluminum plate for damage localization  

Four damage scenarios were conditioned by drilling a hole of different diameters between the 

piezo-devices path. The damages were obtained by increasing the size of the hole in a progressive 

manner, which are detailed in figure 8.6: 
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D1:3/8” (10mm) 
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D3: 9/16” (14mm) 

 
D4: 1” (25.4mm) 

Figure 8.6: Damage scenarios specification 

According to figure 8.6, undamaged condition (pristine structure) is labelled as ‘UND’ and the 

respective damage conditions as ‘D1’, ‘D2’, and so on. The damage is located in the same position 
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and only damage severity is considered, since the non-reversible property of studied damage 

condition. Experimental data were acquired during 90 hours of continuous monitoring.  

8.4.2. Robust damage detection 

Experimental results for the different damage indexes are presented in figure 8.7, where all 56 

baseline models (𝑛 = 8) are evaluated for linear and non-linear PCA in a parallel ensemble 

scheme. As combination strategy an algebraic method based on average is used, which is 

presented in the right of figure 8.7. In this preliminary analysis, the combination is only applied 

for the same type of PCA method (linear or non-linear). 
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Figure 8.7: Damage index from multi-actuating scheme 

According to results in figure 8.7, several degrees of sensitivity are obtained from each baseline 

model, where it can be observed that average of all damage indices works better than using only 

one, which avoids selection of the worst case and guarantees a better performance. The result of 

combining the answer of different PCA methods by means of sum and product operators are 

depicted in figure 8.8: 

 

 
Figure 8.8: Combined damage index from ensemble  

According to figure 8.8, by using a combined index through ensemble approach a better boundary 

is obtained for each damage scenario (class), specially for the sum operator. Also, overlapping is 

minimized and more identifiable separable regions between damage conditions can be 

recognized. Thus, a more reliable and robust procedure for damage detection is obtained by 

means of the ensemble architecture. Nevertheless, transient and behaviors caused by the 

continuous monitoring are maintained, which requires the use of methods for the treatment of the 

respective influences, like those caused by the environmental and operational conditions.   

 

UND

D1
D2

D3

D4



 

78 
 

8.4.3. Damage location 

In order to predict or estimate the location of the damages, a scaling parameter of 𝛽 = 1.05 is used 

(as literature suggests). Figure 8.9 depicts the performance of the adapted RAPID algorithm for 

the case of undamaged condition, where is observed that a smooth image is obtained due to low 

values of Q-index and only objects for PZT devices can be identified. 

 
Figure 8.9: Image from undamaged condition.  

Figure 8.10 shows the contributions of Q-index in the first damage scenario (D1) for each baseline 

model, when each one of the PZT devices operates as actuator.    

 
Figure 8.10: Normalize index contribution.  

Figure 8.11 presents the elliptical spatial distribution, weighted by the contributions of Q-

statistical index and obtained from the baseline model built with pzt-1 operating as actuator: 
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Figure 8.11: Spatial distribution of damage index contribution.  

According to figure 8.11, the major contributions correspond to paths near to the location of 

damage, where signal is distorted by scattering, reflection and mode conversion caused by 

discontinuities (damage). Figure 8.12 depicts the image with the sum of all contributions for each 

pair of actuator-sensor, corresponding to the analysis of first damage scenario (D1). The real 

damage position is specified by the x-red mark and the damage location is estimated after 

binarizing the image with the sum of contributions. The binarization is achieved by filtering low 

modes of the image histogram (< 0.3), which results in the identification of objects representing 

the damage and PZT devices.    

 
D1: 3/8” (10mm) 

 
Figure 8.11: Image for damage.  
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Results in figure 8.11 show that the proposed algorithm has the capacity of locating damage in 

the neighborhood, where the drill was conducted. The results for the remaining damage scenarios 

under study are depicted in figure 8.12. 

D2:7/16” (11mm)                                

 

D3: 9/16” (14mm)                         

 

D4: 1” (25.4mm) 

 

Figure 8.12: Damage location under progressive severity.  

According to results of figure 8.12, it is demonstrated the feasibility of the proposed damage 

location methodology with a high sensitivity to different damage sizes. However, some 

disturbances are obtained for cases when damages are bigger than PZT devices. 
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Chapter 9. 

9. Study of damage index performance for sensor fault 

detection in a damage detection approach based on piezo-

diagnostics 
Online monitoring algorithms require an adequate operation of sensor system, since if a faulty 

sensor record is used in the diagnosis algorithm, it could be a source of uncertainties and 

unsuitable alarms could be generated. Thus, appropriate operation of sensor system is a critical 

requirement in order to obtain a high reliability for structural damage diagnosis algorithms. In 

this chapter a data-driven procedure is studied in order to mitigate the faulty sensor effect on a 

monitoring system. The studied method takes advantage of piezo-diagnostics approach, where 

PZT devices are attached to the surface structure to produce guided waves. Thus, PZT 

measurements are analyzed by applying PCA and cross-correlation in order to establish a baseline 

model, which allow detect abnormal behaviors. In this sense, the squared prediction error and 

Hotelling squared index are used as indicators to observe atypical performance caused by sensor 

problems or structural damages.  The methodology is validated by using experimental data 

recorded from a carbon steel pipe section. The scenarios include electric power failures, 

disconnecting power cords as well as mass adding.  As concluding remark, in this chapter it is 

demonstrated that is possible to separate structural damage and fault sensor states at different 

clusters. 

9.1. Methods and procedure 
An important issue in SHM is the identification of faulty sensors, which can degrade the 

performance of the assessment system [68]. This research topic has been studied during the last 

years, where high sensitivity to connectivity, bias, complete failure, drifting and precision 

degradation have been found. Also, environmental variables influence greatly proper response of 

sensors including PZT based architectures [46].  

This chapter is focused on studying methods and procedures used to manage possible PZT 

malfunction due degradation of its intrinsic properties and wrong manipulation. In this sense 

Overly et.al work [69] describes a PZT active-sensor diagnostics and validation using 

instantaneous baseline data. Also, fracture behaviors of PZT materials are studied by Zhang and 

Gao [70] and PCA is presented as alternative to evaluate sensor cuts and debonding in a PZT 

active system [71]. The methodology used in this thesis is based on piezo-diagnostics approach 

and (PCA) as it is summarized in figure 9.1.  
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Figure 9.1: Diagram of the system  

According to the scheme presented in figure 9.1, statistical indexes are used to detect any 

deviation of current PZT measurements respect to a baseline model. Therefore, for new PZT 

records, deviations can be reduced by means of the projection matrix P in the statistical model. 

Then, two indices are computed as a measurement of abnormal behavior: the squared prediction 

error (eq. 9.1) and the t-squared index (eq. 9.2).   

 

𝑄 = ∑ (𝑒𝑘)2
𝑘                                                                 (Eq. 9.1) 

 

𝑇2 = 𝑇𝑇𝜆−1𝑇                                                               (Eq. 9.2) 

 
In eq. (9.1), 𝑒𝑘 is the residual error estimated with 𝑘 principal components, and in eq. (9.2) 𝜆 is 

the variance of the statistical model. As a result, differences between index values computed from 

baseline and current state are attributed to a structural damage or a PZT failure. 

 

9.2. Experimental set-up and structure conditioning  
Tests were conducted in a carbon steel pipe loop, which is equiped with an air compressor at 80 

PSI and the respective valve to control air-flux, a monometer as indicator of operation pressure 

and an aluminum frame with facilities to produce temperature variations in the environment 

through high power lamps. Also, the structural lab specimen is provided with a piezo-active 

system for producing guided wave by means of amplifiers, data recorders and signal conditioners.      

 

 
Figure 9.2: test structure  

The sketch of the specimen is presented on figure 9.2, that corresponds to a carbon steel pipe loop 
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with five bridled sections of dimensions 100x 2.54 x0.3 cm (length, diameter, thickness). On each 

section a PZT actuator was installed the middle point and two PZT sensors were located at the 

extremes. In order to evaluate system performance, structural damages consisted of mass adding 

were recreated and several experiments including PZT faults were considered, without varying 

environmental temperature around 27ºC (ambient). 

 

9.2.1. PZT fault scenarios 

Two conditions were studied as sensor fault conditions: Sensor debonding and wiring losses. First 

scenario is intended to degrade adherent properties, while second one is aimed to recreate electric 

power failures or unexpected power cords disconnections. PZT failures are physically induced 

over one of the PZT sensors installed on the third section of pipe loop and they are supposed to 

be critical for acquisition purposes. Appearance of bonding damages is illustrated in figure 9.3. 

 

 
Figure 9.3: Debonding PZT areas  

According to figure 9.3, PZT bonding damage cases comprise the absence of couplant layer 

which are shown as the shaded area. Specifically, adhesive cyanoacrylate serves as interface 

between piezoelectric device and structure surface (coupling material). The diameter of PZT 

devices used in this study is approximately 2 cm and decoupling areas are configured to be 0.5cm 

(25%), 1.0cm (50%), 1.5cm (75%) and 2.0cm (100%), which produces 4 scenarios from incipient 

failure to full debonding. On the other hand, the induced wiring faults are shown in figure 9.4, 

where two additional PZT failure scenarios were conducted. These experiments (ground loss and 

full disconnection) affect the data reliability due to an isolated condition of PZT sensor from the 

acquisition system, which produces corrupted information in the recording process with a high 

probability of false alarm in the diagnosis response.  

 

 

Figure 9.4: Wiring PZT failures. Left: Ground loss. Right: Full disconnection.  
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9.2.2. Structural damage scenarios 

In order to show how the indexes for damage detection are affected by structural damage and 

sensor faults, a special shaped accessory was added to the surface pipe section between the PZT’s 

sensor-actuator path (see figure 9.5). Thus, this external element modifies the equivalent mass of 

the structure and it alters the guided waves traveling through structural surface due to 

discontinuities.  

 

 
Figure 9.5: structural damage. 

9.3. Results and discussion 
The combination of different types of damages described on previous sections allows analyzing 

if it is possible to distinguish between structural damages and faulted sensor. For each condition 

previously described, 100 experiment repetitions were conducted in order to evaluate the 

methodology introduced in this work. Also, guided waves are induced with a 5 cycles Burst type 

pulse, which is then amplified to +-10V in order to excite the PZT actuators around resonance 

frequency (80 [KHz]). 

 

As first result, the T-squared and Q-statistic plots are obtained for the case of healthy sensors and 

mass adding (see figure 9.6). 

  

Mass 
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Figure 9.6: Statistical indexes for structural damage. 

According to results in figure 9.6, a clear differentiation of structural damage is obtained when 

all sensors are well installed and they are working properly. It is highlighted a great difference on 

values of statistical indexes, which produce compact clusters with low variability. Then, in order 

to analyze the influence of sensor faults, the scatter plot of statistical indexes is obtained for the 

case of wiring losses (see figure 9.7). An additional experiment was conducted by acquiring data 

without signal actuation. This last condition corresponds to processing only noise signals since 

the PZT actuator was not excited. 
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Figure 9.7: Statistical indexes for faulted sensors. 

The scatter plot in figure 9.7 shows an evident separation for data corresponding to conditions of 

PZT sensor ground wiring losses. However, data regarding to undamaged state (no sensor faults 

and no structural damages) shows an apparent overlapping. In order to observe better how values 

are distributed, a zoom is presented in figure 9.8.  
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Figure 9.8: Zoom for sensor faulted condition. 

The results in figure 9.8 indicate that behavior without actuation signal is located below 

undamaged state. Also, it is noted that exists a small difference between index values used to 

build the baseline model and those computed for undamaged conditions.  As final outcome, 

damage index plot using data from debonding sensor condition is shown in figure 9.9. 

 

 
Figure 9.9: Statistical indexes for debonding PZT faults. 

According to results detailed in figure 9.9, a bigger difference is obtained when debonding is 

greater than 25% probably since small energy of acquired signals. In addition, the index values 

are sorted in a decreasing way that could help to define identification zones in the scatter plot. 

However, in contrast to wiring scenarios, debonding fault type is hard to distinguish from other 

cases (wiring failures and structural damages) since statistical index values present some degree 

of confusion.  

 

In summary, the methodology discussed in this work has the capability of differentiating sensor 

fault conditions and structural damages. Moreover, each damage type is grouped in different 

ranges and organized in separated clusters facilitating decision making process through 

thresholds or classification learning algorithms.  
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Chapter 10. 

10. Conclusions and future work 
This thesis is dedicated to the development of a robust damage assessment methodology by 

combining piezo-diagnostics, cross-correlation signals, and principal component analysis with 

capabilities to detect, locate and classify structural damages. This development is focused on 

presenting statistical hybrid algorithms for damage detection in different types of structures such 

as aluminum plates, fuselage, commercial aircraft wing, pipe loops, etc. Different signal 

processing and pattern recognition methods are used to achieve this goal, with a novelty use of 

non-linear principal component analysis, cross-correlation functions, genetic algorithms, 

ensemble learning and clustering techniques; which are adapted for obtaining a more reliable 

structural damage diagnosis methodology.  Moreover, the effect of temperature and humidity 

changes on presented methods is analyzed. It has been shown in this work that adverse effects 

caused by environmental and operational conditions can be addressed through augmented 

baseline models. In addition, discussion about the performance of the PCA algorithm for damage 

detection under possible sensor failures is presented, where results show that sensor faults can be 

identified as atypical cases. Finally, the implementation of a prototype for structural damage 

detection is developed by means of an embedded Linux platform. Main features such a memory 

consumption, signal conditioning, and time processing are optimized in order to accomplish 

requirements of continuous monitoring. 

In this section, a brief conclusion on the described methods is presented and after that, some 

future work is suggested for further investigation. In general, several conclusions can be drawn 

from this thesis, highlighting the advantages from the application of proposed methods. They are 

organized in seven subsections according to the results throughout this manuscript: preprocessing 

based on cross-correlation, clustering approach for damage classification, automatic tuning of 

structural damage detection algorithms, environmental conditions treatment through augmented 

baseline models, implementation of PCA damage detection for continuous monitoring in an 

embedded platform, analysis of PZT fault sensor scenarios in the PCA-based damage detection 

approach and ensemble learning as approach for damage detection and location. 

10.1. Concluding remarks 

10.1.1. Preprocessing based on cross-correlation 

One of the main contributions of this doctoral thesis is the inclusion of cross correlation analysis 

as preprocessing stage. In this way, cross-correlation analysis is used both to minimize the 

influence of atypical data and to generate better boundaries, in order to improve damage detection 

and classification tasks. Hence, abnormal data related to common external noise signals are 

excluded as well as atypical cases are filtered. Also, a better damage differentiation was obtained 

when cross-correlation technique is used as preprocessing technique.  

On other hand, since cross-correlation improve the clustering and differentiation of statistical 

indices between damages, it is possible to classify damages by a simple graphical analysis. The 

effectiveness of the methodology was validated by analyzing experimental data from different 

laboratory structures, where improvements were obtained for all experiments by studying 

different damage types and complexity in the damage scenarios. 
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Experimental results reported in this thesis demonstrated that damage detection and classification 

are highly dependent of preprocessing stage. However, by using correlation of piezoelectric 

signals a better behavior is obtained, with promising results for analyzing different damage types. 

Thus, it was found that cross-correlation analysis can be used in real world structural damage 

assessment tasks. 

10.1.2. Clustering approach for damage classification  

This thesis shown that by using common clustering techniques is possible to distinguish damages 

in a simple way, through the implementation of unsupervised learning algorithms based on self-

organizing maps and K-means. Thus, damage classification is achieved by assigning clusters to 

damage types in order to group damage cases represented in an optimal way. Then, applicability 

of proposed methodology for SHM tasks was experimentally validated, whose capacity to 

differentiate unhealthy from undamaged structural conditions with better boundary separation 

between damage classes and minimal damage type group dispersion, was demonstrated.  

10.1.3. Automatic tuning of structural damage detection algorithms-  

Another contribution of this thesis is the automatic tuning of a fault detection algorithm based on 

PCA analysis and a SOM neural network by means of a differential genetic algorithm. It was 

demonstrated that by using default parameters the algorithm does not work appropriately, 

however if optimal values are tuned by using differential GA, its performance is improved. 

Experimental results related in this work show that DE algorithm works adequately for SHM 

applications and it can be generalized for optimal training by choosing a proper cost function that 

allows to enhance the identification error. It is important to emphasize that if not proper tuning 

parameters are defined for each application, high identification errors can be found according to 

results obtained in this thesis. Finally, since no previous information about the best tuning 

parameters for a specific SOM network are available, it is recommended to apply evolutive 

strategies in order to obtain good classification tools. 

10.1.4. Environmental conditions treatment through augmented baseline models. 

In this thesis, effects of environmental conditions (such as humidity/temperature variations) on 

structural damage detection tasks were treated by including cross correlated signals and an 

augmented baseline model in an previously proposed methodology. Experimental results of the 

modified methodology shown to be robust in the damages detection under temperature/humidity 

variations. Thus, damage indices for undamaged cases keep low for different 

humidity/temperature conditions, which means that the pristine structure state is properly 

represented. In addition, it can be concluded that piezoelectric records are mostly affected by 

temperature changes than by humidity variations. Finally, one advantage of the modified 

methodology is that only one experiment for undamaged state should be conducted in order to 

build a robust baseline model and no optimal location of sensors was required. 

10.1.5. Implementation of PCA damage detection for continuous monitoring in an 

embedded platform  

This thesis demonstrated the feasibility of monitoring structural conditions on real time by 

embedding a PCA based piezo-diagnostics approach in a Odroid-U3 ARM platform. The 

robustness of the system and its capacity to detect different damage conditions such as leaks and 

mass adding in pipe structures was experimentally validated. Continuous monitoring is achieved 

by implementing squared prediction error (Q-statistic) as index to identify deviations from 

undamaged structural state. Thus, a qualitative measurement of damage through Q-index was 
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obtained, where the presence or absence of damage are related to changes in Q-values. Thereby, 

the applicability of embedded systems was demonstrated for being used in the development of 

continuous SHM applications.  

10.1.6. Analysis of PZT fault sensor scenarios in the PCA-based damage detection 

approach 

In this thesis experimental tests were conducted to validate the efficiency of a PCA based piezo-

diagnostics approach for separating fault sensors from structural damages. It was demonstrated 

that statistical index for sensor fault cases are much greater or lesser than those associated to 

structural damage cases. Thus, sensor failure condition corresponds to atypical deviations of the 

mean diagnosis response and high indexes out or bellow from common values can be associated 

to failures in connection system.  Therefore, the PCA based methodology is suitable for condition 

monitoring tasks with a reduced probability of false alarms. It is highlighted that normalization 

method used in the pre-processing stage influences and meanly modifies the inference of results, 

so it is suggested to carry out sensitivity analysis of this issue. 

10.1.7. Ensemble learning as approach for damage detection and location 

A damage detection and localization approach for structures was presented in this thesis with the 

novelty of combining PCA analysis and ensemble learning in order to improve the performance 

of models in the SHM problem. Advantage of PCA statistical indices was taken to combine 

different learning algorithms in an ensemble scheme in order to obtain a better diagnosis 

algorithm. The proposed combined methodology allows assessing the structural condition and 

locating the damage in the structure. Experimental results shown the feasibility of ensemble 

learning for detecting occurrence of structural damages with successful results.  

10.2. Suggestions for future work 
This thesis has contributed to SHM problem, however many issues still remain as open research 

topics. The following open research problems, related to the contributions of this thesis, are 

outlined as future works:  

 Future works are recommended regarding the implementation of methods for damage 

quantification and prognosis in order to improve the capability of the system, including 

detection of damages in areas of difficult access. 

 Future evaluations could be performed with other typical damages as corrosion or 

bending, among others, even when they occur simultaneously.  

 Future works about normalization strategy in the preprocessing stage are suggested, due 

to the high sensitivity to different methods of data preprocessing reported in the literature. 

 In order to improve general results, it is recommended to study a methodology to 

determine the optimal location and the number of sensors according to each structure. 

 Further studies are required to evaluate the methods described in this thesis on more 

complex structures, such as long pipes, buried pipes, among others. 

 Additional studies are necessary to evaluate coupling effects as well as real operational 

conditions 

 It is suggested to study in a depth way degradation of PZT devices as for example crystal 

deterioration, plate cuts and stressing uses among others. 

 Additional tests should be conducted considering aging properties of the whole elements 

included in the system. 
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