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Abstract  

In this thesis we have solved the two-dimensional problem of locomotion of modular robots on square                
lattices in the presence of obstacles of arbitrary forms, for the class of modular robots that follow the                  
model of movement known as the sliding-cube model. The algorithm we propose is deterministic and               
distributed. All robot modules apply the same set of local rules. That is, they make their own decisions                  
based on local information from their immediate surroundings. The result is a scalable algorithm that               
solves the problem efficiently. Our results close a problem that was open for more than ten years. 

Keywords  

Computer science, robotics and automation, locomotion, modular robots, distributed algorithms,          
geometric rules. 

 



 

Contents 
 
1. Introduction      1 

 
2. Model      5 

 
3. Locomotion without obstacles      8 

 
4. Locomotion over pyramids     11 

 
5. Preventing collisions and deadlocks at bottlenecks    19 

 
6. Correctness                34 

6.1. Locomotion without obstacles …………………………………………………….. 34 
6.2. Locomotion over pyramids ………………………………………………………... 37 
6.3. Preventing collisions and deadlocks at bottlenecks ……………………………….. 41 

 
7. Complexity                42 

 
8. Simulation    44 

8.1. AgentSystem   ………………………………………………………………………. 44 
8.2. Orientation and other difficulties  ………………………………………………….. 44 
8.3. Test Bank    ………………………………………………………………………….. 44 
8.4. Results ……………………………………………………………………………... 49 
8.5. Downloading the rules   …………………………………………………………….. 56 

 
9. Conclusions    57 

 
References    59 
 
  

 



Distributed locomotion of 2D lattice-based modular robotic systems 

1. Introduction 
 
Modular robots are robots designed with parts that can be reconfigured to assume different              
shapes and functions. In many cases, such robots are able to reconfigure their own shape               
autonomously. 
 
They are usually composed of multiple building blocks of a relatively small repertoire, with              
uniform docking interfaces that allow transfer of mechanical forces and moments, electrical            
power, and communication throughout the robot. Figure 1 illustrates the concept of modular             
robotics. 
 

 
Figure 1: Autonomous modular robotics working in space. Source: [1]. 

 
Over the last three decades, the field of modular robotics has advanced from proof-of-concept              
systems to elaborate physical implementations and simulations. However, they have not been            
fully developed. 
 
We find this type of robots interesting because they have some advantages that others do not                
have. Mainly, we can describe three key motivations for designing modular robotic systems: 
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- Versatility: Modular robotic systems are potentially more adaptive than conventional          
systems. The ability to reconfigure allows a robot or a group of robots to disassemble               
and reassemble to form new morphologies that are better suited for new tasks, such as               
changing from a legged robot to a snake robot and then to a rolling robot. 
 

- Robustness: Since robot parts are interchangeable, modular robots can also replace           
faulty parts autonomously, leading to self-repair. 
 

- Low Cost: Modular robotic systems can potentially lower overall robot cost by making             
many copies of one type of modules so economies of scale and mass production come               
into play. Also, a range of complex machines can be made from one set of modules,                
saving costs through reuse and generality of the system. 

 
Our project focuses on the study of modular robotic systems on square lattices. A practical 3D                
example is the Miche system, made in 2006, shown in Figure 2. 
 

 
Figure 2: Miche modular robotic system. Source [1]. 

 
It is a modular lattice system capable of arbitrary shape formation. This system achieves              
self-assembly by disassembly and has demonstrated robust operation over hundreds of           
experiments. Each module is an autonomous robot cube capable of connecting to and             
communicating with its immediate neighbors. The connection mechanism is provided by           
switchable magnets. 
 
The modules use face-to-face communication implemented with an infrared system to detect            
the presence of neighbors. When assembled into a structure, the modules form a system that               
can be virtually sculpted using a computer interface and a distributed process. The group of               
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modules collectively decides who is and is not on the final shape using algorithms that               
minimize the information transmission and storage. 
 
Finally, the modules not in the structure let go and fall off under the control of an external                  
force, in this case gravity. All the algorithms controlling these processes are distributed and              
are very efficient in their space and communication consumption. In [1] many of the other               
instantiated modular robot systems are presented. 
 
The problem now is how robots move in space. This problem is called robot locomotion. This                
is the collective name for the various methods that modular robots can use to transport               
themselves from a place to another. 
 
This problem has been under study for years and continues to be so. Locomotion has many                
different solutions depending on the type of modular robots in question. For example, for              
chain types, locomotion modes as diverse as rolling, flowing like a snake, and various gaits               
have been used, as described in [2]. 
 
In the case of modular robots on lattices, which is the object of this project, it is important to                   
find scalable locomotion methods, since the idea of this type of robot is that in the future they                  
will be miniaturized and will move in large quantities. 
 
That is where use distributed algorithms come into play. They are algorithms designed to run               
on computer hardware constructed from interconnected processors, so that some part of the             
algorithm is run on one processor, other part in another processor, and so forth. Typically data                
is partitioned in advance so that each processor doesn't need to wait for the output of another                 
processor.  
 
There is already a history of distributed algorithms for locomotion of modular robots on              
lattices. Probably the first proposal in this sense is [3]. In this article, however, the distribution                
model used simulates the asynchrony of the movements by making them sequential and,             
therefore, does not take into account the possible collisions between moving modules, which             
may take place in reality. In addition, the authors study the locomotion of a particular shape -                 
a rectangle - in the presence of obstacles of very limited forms. 
 
Subsequently, the same authors extended the types of obstacles they dealt with in [4] but not                
to the point of admitting any type of obstacle. In any case, their execution model for the rules                  
is still sequential. 
 
Probably, the best-known work about distributed locomotion algorithms is [5]. In this paper,             
the authors propose a non-deterministic but quite effective locomotion strategy for large            
modular robots. 
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Our project focuses on distributed locomotion of 2D square lattice-based modular robotic            
systems. In Chapter 2 we describe the model proposed to define the locomotion and the               
distributed algorithm. 
 
Then, in chapters 3, 4 and 5, we present, in an incremental manner, sets of rules to solve the                   
locomotion problem: in the absence of obstacles, over pyramids and preventing collisions and             
deadlocks at bottlenecks, respectively. In Chapter 6 proofs are given of the correctness of the               
proposed rules.  Chapter 7 offers an analysis of the complexity of the algorithm obtained. 
 
In Chapter 8 we describe the simulator with which we have implemented our algorithm and               
discuss our experimental results. 
 
Finally, in Chapter 9, we present the project conclusions. 
 
The report concludes with the enumeration of the references used along this work. 
 
 
 
 
 
  

4 



Distributed locomotion of 2D lattice-based modular robotic systems 

2. Model 
 
A module is any robotic unit located in a 2-dimensional cell in a square lattice. We represent                 
modules by squares occupying one grid cell, although their actual shape need not be a square.                
A cell can be empty, or occupied by an obstacle or a module. 
 
A modular robot is a connected configuration of homogeneous modules like the ones             
described above. By “connected” we mean that the edge-adjacency graph of the robot             
configuration is connected. Figure 3 shows the definition of connected configuration. 
 

 
Figure 3: A connected configuration  

and its adjacency graph. 
 
We call first neighborhood of a module the four cell positions edge-adjacent to it. We               
describe such positions as top (0,1), right (1,0), bottom (0, 1) and left ( 1,0). Each module         −    −    
can detect whether or not any of its neighboring positions are empty, occupied by another               
module or an obstacle. 
 
Modules also have a state - a short text string -. 
 
Actions that modules can do are attach, detach, change position or change their states.              
Attaching and detaching is done with reference to a neighboring module, and does not involve               
changing position. 
 
There are two ways a module can change position: by sliding or by a convex transition. 
 
A module m can slide towards its right if positions (0, 1) and (1, 1) are occupied by other          −   −      
modules and position (1,0) is empty. Sliding means that m moves from its current position               
(0,0) to position (1,0), as we can see in Figure 4. Sliding up, down or to the left are defined                    
analogously. 
 

 
Figure 4: Definition of sliding to the right. 
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A module m can perform a convex transition from position (0,0) to position (1, 1) provided             −   
that position (0, 1) is occupied by another module and positions (1,0) and (1, 1) are empty.  −           −    
We illustrate this move in Figure 5. Analogously, the module can perform a convex transition               
to positions (1,1),  ( 1, 1) and 1,1).− − −(  
 

 
Figure 5: Definition of convex transition  

to the lower right position. 
 
States we consider in our algorithm are “static”, “cork”, “opener” and “active”. At the              
beginning, all modules are static. Only active modules can move. States cork and opener are               
two specific kinds of static modules that adopt a specific behavior intended to unlock locked               
situations during the locomotion. Chapter 5 describes these states in detail. 
 
Notice that the two moves - slide and convex transition - can be described in terms of the                  
relative position of the static module with reference to the active module moving relative to it.                
If we always assign the static module (0, 1) as relative coordinates with respect to the active       −          
module, then the active module will always slide to its right (1,0) or make a convex transition                 
to the position (1, 1).−  
 
The goal of our work is to solve the following problem for 2-dimensional lattice-based              
modular robotic systems: given a initial connected configuration with n modules - the strip              
configuration -, and a set of obstacles, we want to pass all obstacles from left to right. Along                  
the locomotion, the robotic system must stay connected at all times, and no collisions can               
happen. 
 
Within this framework, our algorithm is completely distributed. It consists of a set of rules,               
each one having a priority, a precondition, and an action or postcondition. 
 
Priorities, represented as small integers, are used by the modules to decide which of possibly               
several rules that apply to their situation to execute. 
 
A precondition is any constant-size boolean combination of the following: compare priorities            
and check neighboring positions (whether they are empty, obstacles, static or active modules). 
 
A postcondition can be a movement, a state change, or both. 
 
Rules are identical for all modules, and are simultaneously executed by all of them. Each               
module applies the same set of rules. Each module can only make one movement or one state                 
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change per round. Only modules with “cork” or “opener” state can be activated and move in                
the same round. 
 
The algorithm runs synchronously. This means that all modules apply one rule per round at               
the same time. Moreover, at most one rule is applied per module and round. 
 
Our locomotion strategy consists in producing locomotion in a caterpillar way, i.e., a strip of               
modules will advance estwards by moving the leftmost module and sending it to the rightmost               
position of the strip. This kind of locomotion is shown in Figure 6. 
 

 
Figure 6: Locomotion in a caterpillar way. 

 
We will present the algorithm incrementally. First, we will discuss the rules - ie, the algorithm                
- that produce this locomotion in the absence of obstacles in Chapter 3. Then, we will                
progressively complicate the difficulty of the obstacles to overcome and, with it, the set of               
rules to use in chapters 4 and 5.  
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3. Locomotion without obstacles 
 
The first step to create a distributed algorithm to move the robot from left to right is to                  
produce locomotion in the absence of obstacles. The surface supporting the modules is totally              
horizontally, and the modules are on it. In Figure 7 we can see an example of a robot with                   
twenty modules. 
 

 
Figure 7: Initial robot over a horizontal surface. 

 
The goal is to move the leftmost module over the rest of the modules until it reaches the first                   
empty position next to the rightmost module. 
 
Suppose that the horizontal surface is line y = 1. So, our robot is located on line y = 0. This         −             
means that the robot modules are located at (x,0), where x is between 0 and n, the number of                   
modules. 
 
We distinguish two cases: 
 

1. If the algorithm was sequential, after m steps we would like the robot to have               
advanced exactly one position to the right. Therefore, the modules would be at             
positions (x,0) such that x is between 1 and n + 1. 
 

2. Since the algorithm runs in parallel, we must take into account the collisions and be               
sure not disconnect the robot at any time. However, from the point of view of a                
module, the actions to perform are the same. 

 
The algorithm for this locomotion consists of a total of five rules. They are the following: 
 
Rule 1: Activation 

Priority: 10 

Preconditions: 

- the state of the current module is static  

- the top position (0,1) is empty 

- the right position (1,0) is occupied by a static module 

- the left position (-1,0) is empty 

- the upper right position (1,1) is empty 

Postcondition: change state to active. 
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Rule 2: Initial convex transition NE 

Priority: 10 

Preconditions: 

- the state of the current module is active 

- the top position (0,1) is empty 

- the right position (1,0) is occupied by a static module 

- the upper right position (1,1) is empty 

Postcondition: convex transition to the upper right position (1,1). 

 

Rule 3: Slide E 

Priority: 10 

Preconditions: 

- the state of the current module is active 

- the right position (1,0) is empty 

- the bottom position (0,-1) is occupied by a static module 

- the lower right position (1,-1) is occupied by a static module 

Postcondition: slide to the right (1,0). 

 

Rule 4: Final convex transition SE 

Priority: 10 

Preconditions: 

- the state of the current module is active 

- the right position (1,0) is empty 

- the bottom position (0,-1) is occupied by a static module 

- the lower right position (1,-1) is empty 

Postcondition: convex transition to the lower right position (1,-1). 

 
To deactivate a module, we define a rule with lower priority than all previous ones. Thus, if a                  
module can not apply another rule, it applies this last rule and deactivates. 
 

Rule 5: Deactivation 

Priority: 1 

Preconditions: 

- the state of the current module is active. 

Postcondition: change state to static. 

 
In Chapter 6 we prove the correctness of this algorithm. 
 
All the rules that we have defined and will define in the following chapters have their                
counterparts by rotations of 90º. This means that if we rotate 90º counterclockwise about the               
origin (0,0), the rules will produce an analogous result, now with respect to a vertical surface.                
Indeed, locally the environment of each module is the same, although from our point of view                
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we see it differently. The modules move upward along a vertical surface, following the              
right-hand rule. Now, the right of a module changes from east to north. If we again rotate                 
counterclockwise 90º, the surface would be a ceiling, and the modules would go west. Finally,               
rotate again 90° counterclockwise, the robot will move to the south along a vertical surface               
located to its left. 
 
We can therefore think of our rules as performing the advance of a modules strip following                
the right-hand rule over any horizontal or vertical surface without obstacles.  
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4. Locomotion over pyramids 
 
After locomotion without obstacles our next step is to move the strip configuration over              
pyramids. 
 
A pyramid is an obstacle that is an orthogonal polygon whose boundary is monotonously              
increasing starting at y = 0 and, once its maximum height has been reach, it becomes                
monotonous decreasing until reaching back the line y = 0, as we can illustrate in Figure 8. 
 

 
Figure 8: A pyramid. 

 
We want to extend our set of rules for locomotion so that they work in the presence of                  
pyramidal obstacles. The goal is to make the robot crowl over the obstacle from left to right                 
keeping the robotic system connected at all times along the locomotion, and so that no               
collisions happen. 
 
From the previous chapter, our rules can deal with horizontal and vertical surfaces. Therefore,              
we only need to cope with their intersections, that is, to be able to turn corners. We can                  
distinguish two kinds of such intersections: when the surface is increasing and when it is               
decreasing. In each case there are two different corners depending on whether they turn from               
horizontal to vertical or the other way around. Figure 9 shows the four types of intersections. 
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Figure 9: Above, monotonously increasing concave and convex corners, respectively.  

Below, monotonously decreasing convex and concave corners, respectively. 
 
When the surface is monotonously increasing and the intersection is formed by a horizontal              
line followed by a vertical line, we have a concave corner. When the intersection has a                
vertical line first, then we have a convex corner. 
 
When the surface is monotonously decreasing and the intersection is formed by a horizontal              
line followed by a vertical line, we have a convex corner. When the intersection has a vertical                 
line first, then we have a concave corner. 
 
We need the rules to make the robot turn such corners. 
 
Since a pyramid has two kinds of vertical edges and one kind of horizontal edges, the robot                 
will perform three kinds of slide motions: slide right, slide up and slide down, and four type                 
of convex transition moves depending on the surface and on whether the robot is in the                
monotonously increasing part of the pyramid or in its monotonously decreasing chain. We can              
see all the slide moves illustrated in Figure 10 and all convex transitions in Figure 11. 
 

 
Figure 10: From left to right: slide up, right and down. 

 

 
Figure 11: From left to right: convex transition to upper right,  

upper left, lower right and lower left. 
 
The concave corners can be dealt with without the need of any specific move. 
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Thus, the new set of rules contains seven movement rules, five activation rules, and one               
deactivation rule. There are several activation rules because now the last module of the strip               
can be in different positions, and its environment may be different from that without              
obstacles. The increase in the movement rules is due to the different orientations. 
 
Therefore, the algorithm for this locomotion has a total of thirteen rules, that we describe               
next. 
 
We have added two preconditions to Rule 1: Activation from Chapter 3. The bottom              
position precondition intended to deal with monotonously increasing concave corners. Also,           
we add the possibility that the left position be an obstacle, in order to deal with monotonically                 
decreasing concave corners. All remaining activation rules in convex transitions are rotations            
of first one. 
 
Rule 1: Activation convex transition NE 

Priority: 10 

Preconditions: 

- the state of the current module is static 

- the top position (0,1) is empty 

- the right position (1,0) is occupied by a static module 

- the bottom position (0,-1) is empty or is an obstacle 

- the left position (-1,0) is empty or is an obstacle 

- the upper right position (1,1) is empty 

Postcondition: change state to active. 

 

Rule 2: Activation convex transition SE 

Priority: 10 

Preconditions: 

- the state of the current module is static 

- the top position (0,1) is empty or is an obstacle 

- the right position (1,0) is empty 

- the bottom position (0,-1) is occupied by a static module 

- the left position (-1,0) is empty or is an obstacle 

- the lower right position (1,-1) is empty 

Postcondition: change state to active. 
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Rule 3: Activation convex transition NW 

Priority: 10 

Preconditions: 

- the state of the current module is static 

- the top position (0,1) is occupied by a static module 

- the bottom position (0,-1) is empty or is an obstacle 

- the left position (-1,0) is empty 

- the upper left position (-1,1) is empty 

Postcondition: change state to active. 

 

In order for the robot to be able to leave concave corners, we also need activation rules in the                   
sliding case. 
 

Rule 4: Activation slide N 

Priority: 10 

Preconditions: 

- the state of the current module is static 

- the top position (0,1) is empty 

- the right position (1,0) is occupied by a static module 

- the bottom position (0,-1) is empty or is an obstacle 

- the left position (-1,0) is empty 

- the upper right position (1,1) is occupied by a static module 

Postcondition: change state to active. 

 

The second slide activation rule is a rotation of the first one. The same thing happens with all                  
movement rules - convex transitions and slides.  
 

Rule 5: Activation slide E 

Priority: 10 

Preconditions: 

- the state of the current module is static 

- the top position (0,1) is empty 

- the right position (1,0) is empty 

- the bottom position (0,-1) is occupied by a static module 

- the left position (-1,0) is empty or is an obstacle 

- the lower right position (1,-1) is occupied by a static module 

Postcondition: change state to active. 

 

The next rule has the same preconditions as Rule 2: Initial convex transition NE              
from Chapter 3. Also, we add three convex transition rules in order to deal with all                
intersections. 
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Rule 6: Convex transition NE 

Priority: 10 

Preconditions: 

- the state of the current module is active 

- the top position (0,1) is empty 

- the right position (1,0) is occupied by a static module 

- the upper right position (1,1) is empty 

Postcondition: convex transition to the upper right position (1,1). 

 

The next rule has the same preconditions as Rule 4: Final convex transition SE              
from Chapter 3. 
 

Rule 7: Convex transition SE 

Priority: 10 

Preconditions: 

- the state of the current module is active 

- the right position (1,0) is empty 

- the bottom position (0,-1) is occupied by a static module 

- the lower right position (1,-1) is empty 

Postcondition: convex transition to the lower right position (1,-1). 

 

We need the following rule in order to leave monotonously decreasing convex corners. 
 

Rule 8: Convex transition SW 

Priority: 10 

Preconditions: 

- the state of the current module is active 

- the bottom position (0,-1) is empty 

- the left position (-1,0) is occupied by a static module 

- the lower left position (-1,-1) is empty 

Postcondition: convex transition to the lower left position (-1,-1). 

 

We also need the next rule in order to leave monotonously increasing concave corners. 
 

Rule 9: Convex transition NW 

Priority: 10 

Preconditions: 

- the state of the current module is active 

- the top position (0,1) is occupied by a static module 

- the left position (-1,0) is empty 

- the upper left position (-1,1) is empty 

Postcondition: convex transition to the upper left position (-1,1). 
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The following rule is needed to go up on vertical surfaces. The following rules are rotations to                 
be able to slide on horizontal surfaces and go down on vertical surfaces. 
 

Rule 10: Slide N 

Priority: 10 

Preconditions: 

- the state of the current module is active 

- the top position (0,1) is empty 

- the right position (1,0) is occupied by a static module 

- the upper right position (1,1) is occupied by a static module 

Postcondition: slide to the top (0,1). 

 

Rule 11: Slide E 

Priority: 10 

Preconditions: 

- the state of the current module is active 

- the right position (1,0) is empty 

- the bottom position (0,-1) is occupied by a static module 

- the lower right position (1,-1) is occupied by a static module 

Postcondition: slide to the right (1,0). 

 

Rule 12: Slide S 

Priority: 10 

Preconditions: 

- the state of the current module is active 

- the bottom position (0,-1) is empty 

- the left position (-1,0) is occupied by a static module 

- the lower right position (1,-1) is occupied by a static module 

Postcondition: slide to the bottom (0,-1). 

 

As in Chapter 3, we add the deactivation rule with lower priority than all other rules. 
 

Rule 13: Deactivation 

Priority: 1 

Preconditions: 

- the state of the current module is active 

Postcondition: change state to static. 
 
In Chapter 6 we prove the correctness of this algorithm. 
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Applying rotations by multiples of 90º, we can get the analogous surface and set of rules for                 
each direction. We can therefore think of our rules as performing the advance of a strip robot                 
following the right-hand rule over any pyramid in any direction. 
 
All together, the moving rules 6, 7, 8, 9, 10, 11 and 12 can be synthetized in just two rules                    
using the right-hand rule: 
 
1 - Slide 

Priority: 10 

Preconditions: 

- state is active 

- right position is empty 

- bottom position is occupied by a static module 

- lower right position is occupied by a static module 

Postcondition: slide right. 

 

2 - Convex transition 

Priority: 10 

Preconditions: 

- the state is active 

- right position is empty 

- bottom position is occupied by a static module 

- lower right position is empty 

Postcondition: convex transition to lower right position. 

 
Furthermore, the activation rules 1, 2, 3, 4 and 5 can be synthetized in one: 
 
3 - Activation 

Priority: 10 

Preconditions: 

- state is static 

- right position is empty 

- bottom position is occupied by a static module 

- left position is empty or is an obstacle 

17 
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- 

 

 

lower right position is occupied by a static module         

and top position is empty 

 
or 

 
lower right position is empty and top position is 
empty or is an obstacle 

Postcondition: change state to active. 

 

Finally, the deactivation rule: 
 

4 - Deactivation 

Priority: 1 

Preconditions: 

- state is active 

Postcondition: change state to static. 

 
Therefore, we obtain four rules to the advance of a strip robot following the right-hand rule                
over any pyramid in any direction.  
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5. Preventing collisions and deadlocks at bottlenecks 
 
In this chapter we want to describe how we have achieved our distributed algorithm to move                
the robot from left to right in a locomotion preventing collisions and deadlocks at bottlenecks               
in the presence of obstacles of arbitrary shape. 
 
A bottleneck is a narrow section of the surface or a junction that prevents the robot modules                 
from naturally flowing. At bottlenecks, modules accumulate and cannot follow the flow from             
left to right in a natural way. By “natural way” we mean the following: given n modules                 
labelled from right to left, module i + 1 is activated before module i, and reaches the                 
rightmost position before module i. 
 
In our locomotion strategy all the obstacle is covered with static modules. Then, if the active                
modules that pass over them have a narrow corridor to move around, they may collide or form                 
a deadlock. 
 
In this chapter we describe the final set of rules that are able to deal with these two kinds of                    
troubles. 
 
To prevent collisions we apply new preconditions to detect potential collisions prior to a              
move (Figure 12 shows an example of how two active modules could collide). We also define                
criteria to decide which module is going to move and which is going to wait in order to                  
prevent the collision. 
 

 
Figure 12: Two active modules about to collide. 

 
A deadlock is a state in which each member of a group of modules is waiting for another                  
member, including possibly itself, to take action. In this case, each module is waiting for               
another to activate or move. An example can be found in Figure 13. 
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Figure 13: Obstacle covered with static modules  

and active modules passing over them forming a deadlock. 
 
In our locomotion strategy, we have found three kinds of deadlocks: 
 

- Dense deadlocks: a set of modules accumulates. The accumulated modules do not            
allow other modules to move, and there is no empty space between them. See Figure               
14, left for an example. 
 

- Cycles enclosing empty holes: the modules form a closed connected path surrounding            
empty cells. Figure 14, center shows an example. 
 

- Cycles enclosing holes with active modules: the modules form a closed connected            
path surrounding empty cells, and there are active modules that move in that empty              
space. See Figure 14, right. 

 

 
Figure 14: Examples of a dense deadlock (left), a cycle enclosing an empty  

hole (center) and a cycle enclosing a hole containing active modules. 
 
In order to solve deadlocks we have defined two new states: “cork” and “opener”. The cork                
state acts in dense deadlocks. The opener state solves both hole deadlocks. 
 
Consequently, we have defined more rules. Some modules change their state from static to              
one of the new states. Then, if they can move and no collision is going to happen, they                  
activate and move in the same round. Finally, they can deactivate. We show examples of               
modules in cork and opener states in Figures 15 and 16, respectively. 
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Figure 15: Example of a module                     Figure 16: Example of a module 

in cork state (yellow).                                       in opener state (black). 
 
Following our rules, some static or active modules are conditioned by the existence of these.               
Some modules activate when these new states appear in a neighboring module, and then              
follow it. Others simply slide or turn a conver corner over them. 
 
Naturally, although all this could generate collisions, also in these new rules with new states it                
is necessary to introduce criteria to prevent them. 
 
Collision prevention requires considering the second environment: that is, neighbors of           
neighbors. This is inevitable, as shown in Figure 13. In all movement rules we apply some                
common preconditions to prevent collisions.  
 

- For a slide to the (relative) right, like the ones illustrated in Figure 17, we require that                 
in the second right position there is no active module that is going to make a convex                 
transition to the upper right position and this active module is inside a hole, and there                
is no active module in the first neighborhood. Also, we require that in the second right                
position there is no active module that is going to slide to the left. 
 

- For a convex transition to the (relative) lower right position, like the one illustrated in               
Figure 18, we require that in position ( 2, 2) there is no active module that is going       − −          
to make a convex transition to the upper left position and this active module is not                
inside a hole, and there is no active module in the first neighborhood. 
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Figure 17: Two examples of an active module that does not slide  

in order to prevent a collision. 
 

 
Figure 18: Example of an active module that does not make  

a convex transition in order to prevent a collision. 
 
In addition, the second environment is also used to maintain order in the movement and               
choose who should activate and move and who should not according to the situation. The               
modules that have more empty cells around them are the first to activate, while those that are                 
surrounded by obstacles or static modules tend not to move. This is determined by the               
priorities of the corresponding rule. 
 
In more detail: there are the standard rules for the two initial states: static and active. The                 
modules activate. Once active, they move. Finally, when they cannot move, they deactivate             
again. 
 
These standard rules are the ones already defined in Chapter 4, to which more preconditions               
are added to prevent collisions. 
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There are also new activation rules that consist of following a cork or a opener. That is, when                  
a cork or opener module activates and moves, the first static module that activates and does                
not trigger another deadlock will use one of these rules. 
 
Finally, there are some added rules for the active modules to walk (with slide or convex                
transition) over corks and openers in case they have order preference. 
 
At the same level than the standard rules are the rules that solve deadlocks: stopper rules. That                 
is, those related to the two new states. These rules consider the four possible states and the                 
two moves. We have already defined which three kinds of deadlocks are possible and which               
states act in each case. 
 
The previous definitions provide us the scheme of rules shown in Figure 19. 
 

 
Figure 19: Scheme of rules classes. 

 
We have already explained the standard rules, which apply to static or active modules. The               
stopper rules apply to cork, opener and static - in order to change state from or to cork or                   
opener - modules and they are different according to the three mentioned situations of              
deadlocks. 
 
Another important functionality in this set of rules is that of priorities. The maximum priority               
is 10 and the minimum is 1. The rules with highest priority are those that tend to act more and                    
those with the lowest priority are those that appear in extreme cases.  
 
Consequently, when a module can apply two different rules due to their preconditions, the              
priorities define an order. The order that we define is that the first module to move is the one                   
that is in the rightmost position following the right-hand rule, whenever possible. 
 
We defined 18 rules. Applying rotations by multiples of 90º, and synthesizing the second              
environment preconditions and the order criterion, we can get the analogous surface and set of               
rules for each direction. The actual implementation of the 18 rules on simulator can be found                
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in Chapter 8. As in Chapter 4, we can therefore think of our rules as performing the advance                  
of a strip robot following the right-hand rule over any obstacle in any direction. In the                
remaining of this chapter, we describe the different sets of rules. 
 
 
STANDARD RULES: OVER PYRAMIDS WITH FURTHER PRECONDITIONS 
 
1 - Activation 

Priority: 10 

Preconditions: 

- state is static 

- right position is empty 

- bottom position is occupied by a static module 

- left position is empty or is an obstacle 

- 

 

 

lower right position is occupied by a static module         

and top position is empty 

 
or 

 
lower right position is empty and top position is 
empty or is an obstacle 

- already described constraints to prevent collisions 

Postcondition: change state to active. 

 

We added top and left preconditions to the next rule in order to keep the robotic system                 
connected at all times along the locomotion and in order. 
 

2 - Slide 

Priority: 10 

Preconditions: 

- state is active 

- top position is not occupied by a static module 

- right position is empty 

- bottom position is occupied by a static module 

- left position is not occupied by an active module 

- lower right position is occupied by a static module 

- already described constraints to prevent collisions 

Postcondition: slide to right. 
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The same happens with the following rule and the top position. 
 
3 - Convex transition 

Priority: 10 

Preconditions: 

- state is active 

- top position is not occupied by a static module 

- right position is empty 

- bottom position is occupied by a static module 

- lower right position is empty 

- already described constraints to prevent collisions 

Postcondition: convex transition to lower right position. 

 

Finally, the deactivation rule stays the same as in Chapter 4. 
 

4 - Deactivation 

Priority: 1 

Preconditions: 

- state is active 

Postcondition: change state to static. 

 
 
STANDARD RULES: FOLLOWING CORKS AND OPENERS 
 
The “following corks and openers” standard rules only need activation. Once activated, the             
modules use one of the other standard rules. We set the priority to 9 because it is not as used                    
as frequently as Rule 1 but it is still very important because of the order. The same                 
observation applies to the next two rules. 
 
5 - Activation 

Priority: 9 

Preconditions: 

- state is static 

- right position is empty 

- bottom position is occupied by a static module 

- left position is occupied by a static module 

- lower left position is occupied by a static module 
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- 

 

 

lower right position is occupied by a static module         

and top position is empty 

 
or 

lower right position is empty and top position is 
empty or is an obstacle 

- already described constraints to prevent collisions 

Postcondition: change state to active. 

 

 
STANDARD RULES: WALKING OVER CORKS AND OPENERS 
 
The “walking over corks and openers” standard rules only need movement. That is, slide and               
convex transition. The modules activate or deactivate using one of the other standard rules. 
 
In the following rule, the active module can walk over cork and opener modules when its                
current position has at its bottom one of them or its next position - that is, its right position -                    
has below it one of them. 
 

6 - Slide 

Priority: 9 

Preconditions: 

- state is active 

- top position is not occupied by a static module 

- right position is empty 

- left position is not occupied by an active module 

- 

 

bottom position is occupied by a cork or opener module          

and lower right position is occupied by a static         

module 

or 

bottom position is occupied by a static module and 
lower right position is occupied by a cork or opener 
module 

- already described constraints to prevent collisions 

Postcondition: slide to right. 
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7 - Convex transition 

Priority: 9 

Preconditions: 

- state is active 

- top position is not occupied by a static module 

- right position is empty 

- bottom position is occupied by a cork or opener module 

- lower right position is empty 

- already described constraints to prevent collisions 

Postcondition: convex transition to lower right position. 

 
 
STOPPER RULES: IN DENSE DEADLOCKS 
 
The “in dense deadlocks” stopper rules have priorities of 5 to 9 depending on whether they                
are used a lot or a little. Moreover, they apply constraints to prevent collisions, keep the robot                 
connected at all times and by order criterion. These constraints make their preconditions very              
particular according to the situation of the environment. Synthesizing, we obtain the following             
rules: 
 
8 - Change state 

Priority: from 5 to 9 

Preconditions: 

- state is static 

- right position is empty 

- bottom position is occupied by a static module 

- left position is occupied by a static module 

- lower right position is occupied by a static module 

- lower left position is occupied by a static module 

- 

 

 

lower right position is occupied by a static module 

or 

lower right position is empty and top position is 
empty, is an obstacle or is occupied by a static 
module 

- already described constraints to prevent collisions 

Postcondition: change state to cork. 

 

27 



Distributed locomotion of 2D lattice-based modular robotic systems 

The difference between change state and activation slide or convex transition is the number of               
other constraints: the next two rules contain less preconditions than the previous one. This is               
due to the need for the current module to be in cork state.  
 

9 - Activation and slide 

Priority: from 6 to 9 

Preconditions: 

- state is cork 

- right position is empty 

- bottom position is occupied by a static module 

- left position is occupied by a static module 

- lower right position is occupied by a static module 

- already described constraints to prevent collisions 

Postcondition: change state to active and slide to right. 

 
10 - Activation and convex transition 

Priority: 10 

Preconditions: 

- state is cork 

- right position is empty 

- bottom position is occupied by a static module 

- left position is occupied by a static module 

- upper right position is not occupied by an active module 

- lower right position is empty 

- lower left position is occupied by a static module 

- already described constraints to prevent collisions 

Postcondition: change state to active and convex transition to lower          

right position. 

 

The following rule goal is not to maintain the cork state if it is not necessary. Therefore, in the                   
situation that a module is surrounded by other static modules, it deactivates, even if its lower                
right position is empty. 
 

11 - Deactivation 

Priority: 1 

Preconditions: 

- state is cork 

- top, right, bottom, left, upper right, lower left and upper          

left positions are occupied by static modules 

- lower right position is empty or is occupied by a static module 

Postcondition: change state to static. 
 

28 



Distributed locomotion of 2D lattice-based modular robotic systems 

STOPPER RULES: IN EMPTY HOLES 
 
Commonly the “in empty holes” stopper rules need their right and left positions empty. But               
there is a corner case that requires it to be static. Due to this case we have added some of the                     
needed preconditions to make this corner case unique. The same observation applies to the              
next two rules. 
 

12 - Change state 

Priority: from 6 to 9 

Preconditions: 

- state is static 

- top position is occupied by a static module 

- right position is empty 

- bottom position is occupied by a static module 

- 

 

 

left position is empty 

 
or 

 

left position is occupied by a static module, upper         

right position is not empty, position (-1,2) is        

occupied by a static module and position (2,1) is not          

occupied by an active module 

 

- 

 

 

lower right position is occupied by a static module 

 
or 

 
lower right position is empty, lower left position is         

empty, is an obstacle or is occupied by a static          

module and upper left position is occupied by a static          

module 

- already described constraints to prevent collisions 

Postcondition: change state to opener. 

29 



Distributed locomotion of 2D lattice-based modular robotic systems 

13 - Activation and slide 

Priority: from 7 to 9 

Preconditions: 

- state is opener 

- top position is occupied by a static module 

- right position is empty 

- bottom position is occupied by a static module 

- lower right position is occupied by a static module 

- 

 

 

left position is empty and second top position is         

empty or is an obstacle 

 
or 

left position is occupied by a static module and         

second top position is occupied by a static module 

- already described constraints to prevent collisions 

Postcondition: change state to active and slide to right. 

 
We prioritize the activation and convex transition of the next rule to follow the order criterion. 
 
14 - Activation and convex transition 

Priority: 9 

Preconditions: 

- state is opener 

- top position is occupied by a static module 

- right position is empty 

- bottom position is occupied by a static module 

- left position is empty 

- lower right position is empty 

- upper left position is occupied by a static module 

- already described constraints to prevent collisions 

Postcondition: change state to active and convex transition to lower          

right position. 

 

As in the previous deactivation stopper rule, there is a last rule in this set to deactivate                 
modules. 
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15 - Deactivation 

Priority: 1 

Preconditions: 

- state is opener 

- top, right, bottom, left, upper right, lower left and upper          

left positions are occupied by static modules 

- lower right position is empty 

Postcondition: change state to static. 

 

 
STOPPER RULES: IN HOLES WITH ACTIVE MODULES 
 

The following set of rules requires an active module inside a hole. We have also a corner case.                  
In our implementation, the most frequent is that the top position is occupied by a static                
module and the left position is occupied by an active module. 
 

16 - Change state 

Priority: from 7 to 9 

Preconditions: 

- state is static 

- right position is empty 

- bottom position is occupied by a static module 

- 

 

 

top position is occupied by a static module and left          

position is occupied by an active module 

 
or 

top position is an obstacle and left position is         

occupied by a static module 
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- 

 

 

upper right position is an obstacle, lower right        

position is occupied by a static module and upper left          

position is empty 

 
or 

lower right position is empty 

- already described constraints to prevent collisions 

Postcondition: change state to opener. 

 

17 - Activation and slide 

Priority: from 7 to 9 

Preconditions: 

- state is opener 

- top position is occupied by a static module 

- right position is empty 

- bottom position is occupied by a static module 

- upper right position is an obstacle 

- lower right position is occupied by a static module 

- already described constraints to prevent collisions 
Postcondition: change state to active and slide to right. 

 

18 - Activation and convex transition 

Priority: from 7 to 9 

Preconditions: 

- state of the current module is opener 

- top position is an obstacle or is occupied by a static module 

- right position is empty 

- bottom position is occupied by a static module 

- lower right position is empty 

- upper left position is not occupied by a static module 

- already described constraints to prevent collisions 

Postcondition: change state to active and convex transition to lower          

right position. 

 

Finally, the deactivation rule is the same as in the “in empty hole cycles” stopper rules. 
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In conclusion, our algorithm uses 18 rules divided into two big sets of rules - each with three                  
subsets - to the advance of a strip robot following the right-hand rule over any obstacle in any                  
direction. The rules use four states and require exploring the second environment in order to               
prevent collisions and deadlocks at bottlenecks. 
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6. Correctness 
 
6.1. Locomotion without obstacles 
 
In this section, we prove that the rules described in Chapter 3 produce any connected strip of 
modules to advance eastwards in the absence of obstacles. 
 
Proposition 1: Let R be a connected modular robot with n modules forming a horizontal strip                
on a horizontal surface in the absence of obstacles. The set of rules for locomotion without                
obstacles from Chapter 3 makes the leftmost module and only this module to activate. 
 
Proof: All modules are static initially. There is just one rule to activate a module: Rule 1:                 

Activation. This rule requires the left position to be empty. The only module who has its                
left position empty is the leftmost module. Therefore, it is the only module that can activate.                
This module is static, its right position is a static module, and its top and upper right positions                  
are empty. Therefore, it applies Rule 1 and activates. 
 
Proposition 2: Let R be a connected modular robot with n modules forming a horizontal strip                
on a horizontal surface in the absence of obstacles. Under the rules for locomotion without               
obstacles from Chapter 3, the lattice cells where modules can move are exactly at distance               
from the initial shape. 
 
Proof: There are just three rules involving movement, namely rules 2, 3 and 4. All of them                 
need the module to be activated. By Proposition 1, only the leftmost module is activated. 
 
The active module has its right position occupied by a static module, and his top and upper                 
right positions empty. Then, by Rule 2: Initial convex transition NE, the module             
moves to its upper right position. As a result, the module is at a distance one from the initial                   
shape, just above the second leftmost module. 
 
Then, the module applies Rule 3: Slide E and slides to its right. Since its bottom and                 
lower right positions are occupied by static modules, and its right position is empty. As it is                 
still in contact with an initial static module, the moving module stays at distance one from the                 
initial robot configuration. This process repeats until the moving module ends up located lust              
above the rightmost static module in the strip. Then, it applies Rule 4: Final convex               

transition SE since its right and lower right positions are empty, and its bottom position               
is occupied by a static module. Therefore, the module moves to its lower right position.               
Again, the module stays at a distance one from the initial configuration, next to the initially                
rightmost module in the strip. 
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We have proved that the lattice cells occupied by moving modules are all at distance one from                 
the initial robot configuration. 
 
Proposition 3: Let R be a connected modular robot with n modules forming a horizontal strip                
on a horizontal surface in the absence of obstacles. The set of rules for locomotion without                
obstacles from Chapter 3 keeps the robotic system connected at all times along the              
locomotion, and no collisions happen. 
 
Proof: Let us first prove that the robotic system stays connected at all times throughout the                
reconfiguration. By Proposition 1, only the leftmost module is activated. So, at the beginning,              
all other modules stay static and connected. 
 
By Proposition 2, the moving modules stay at a distance one from the static modules at all                 
times. Therefore, the moving modules are connected to the static ones, and the entire robot               
stays connected. 
 
When a module reaches the rightmost position, it can not apply any rule except the last one,                 
Rule 5: Deactivation, and it is deactivated. Since it is sitting to the right of a static                 
module, it is connected to it. 
 
Therefore, the robotic system stays always connected. 
 
Let us now prove that no collisions happen. By Proposition 1, only the leftmost module can                
be activated. Until it does not move, no other module can be activated. 
 
The other rules are deactivation or movement. Deactivation does not involve a move and,              
therefore, cannot produce any collision. All movement follow the right-hand rule (upper right,             
right, and lower right). No collisions between active modules can happen, because the             
advancing rules require the goal position to always be empty. So, if there is a collision, it has                  
to be between the active module in motion and a static module. By Proposition 2, the                
movement region is exactly at distance one from the initial robot. Then, an active module               
never collisions with a static module. 
 
Therefore, no collisions happen. 
 
Theorem 1: Let R be a connected modular robot with n modules forming a horizontal strip.                
The set of rules for locomotion without obstacles from Chapter 3 produces the endless              
advance of R from left to right on a horizontal surface. Along the locomotion, the robotic                
system stays connected at all times, and no collisions happen. When synchronously run, at              
most one rule is applied per module and round. 
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Proof: It is only left to prove that the set of rules for locomotion without obstacles produces                 
the endless advance of R from left to right on a horizontal surface, and that, when                
synchronously run, at most one rule is applied per module and round.  
 
Let us start proving the first statement. For that, we start proving that the leftmost module                
always reaches the first empty position next to the rightmost module. 
 
By Proposition 1, at the beginning, the first module is the only one activated. In the next step                  
only Rule 2: Initial convex transition NE can be used. Then, the module is              
moved to the top of the second leftmost module. 
 
Now, the active module can only apply Rule 3: Slide E. No other rule can be used. 
 
When the module arrives to the top of the initially rightmost module, Rule 3: Slide E is                 
no longer used. Then, Rule 4: Final convex transition SE moves the module to the               
first empty position next to the rightmost module. Then the module can only do one thing:                
deactivate itself by Rule 5: Deactivation. The module will remain static until it again              
happens to sit in the leftmost position of the robot configuration. 
 
Therefore, the leftmost module always arrives at the first empty position to the right of the                
rightmost module. 
 
Furthermore, the module uses no more than one rule at the same time. In other words, the                 
module applies at most one rule per round. 
 
Finally, let us prove that, when run in parallel, each module has the same behavior than the                 
first module. By induction, it is enough to prove that, at the beginning, the leftmost and                
second leftmost modules do not interfere each other, since Proposition 2 guarantees that no              
collisions may happen. 
 
When the first module is moved to the top of the second module, this one cannot activate                 
because its top position is not empty. In the next step, the first module slides to the right, but                   
the second one cannot activate either because its upper right position is not empty yet. It is                 
after two movements - and three rounds - that the second module activates. At this point, it                 
has a clear path, in the next step, to start moving, since the first module keeps sliding to the                   
right. 
 
When run synchronously, the distance between the first and the second modules is three.              
Therefore, they do not collide along the strip, and at most one rule is applied per module and                  
round. 
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6.2. Locomotion over pyramids 
 
In this section we prove that the rules described in Chapter 4 produce any connected strip of                 
modules to advance from left to right in the presence of an obstacle with pyramidal shape. 
 
Proposition 4: Let R be a connected modular robot with n modules forming a horizontal strip.                
The set of rules for locomotion over pyramids from Chapter 4 produces the advance of R                
following the right-hand rule over horizontal and vertical surfaces. 
 
Proof: We are going to prove that the new set of rules works as the set of rules without                   
obstacles. At the beginning, all modules are static. We distinguish two surfaces: horizontal             
and vertical. 
 
On horizontal surfaces, Rule 1: Activation convex transition NE activates the           
leftmost module. Now preconditions are more permissive than in the previous set of rules, but               
for the horizontal surface this is enough. No other module will be activated because it is                
necessary that the left position of each module be empty or an obstacle in all activation rules,                 
and that the module is static. No other rule can be applied by the leftmost module. Indeed                 
Rule 5: Activation slide E and Rule 2: Activation convex transition SE            

require the bottom position to be occupied by a static module and the right position be empty,                 
Rule 4: Activation slide N requires the upper right position to be occupied by a               
static module, and Rule 3: Activation convex transition NW requires the top            
position to be occupied by a static module. None of these conditions hold for the leftmost                
module. No other module will be activated due to the same argument. 
 
Then, the leftmost module can move. Rule 6: Convex transition NE moves the             
module to the upper right position and no other rule can be applied: notice that rules 4, 6, 8                   
and 10 have the same preconditions as rules 3, 5, 7 and 9. Rule 12: Slide S and Rule                   

12: Convex transition NW require the left position to be occupied by a static module.               
Therefore, the leftmost module makes a convex transition to the upper right position. No              
collision happen because this position was empty. 
 
Now, as long as the active module has its top and right positions empty, and its lower right                  
position occupied by a static module, it can only slide to the right position using Rule 11:                 

Slide E. No other module can activate because the leftmost module requires its top position               
to be empty. Therefore, the behavior is the same as with the previous set of rules. 
 
From this point on, the modules progress as in the previous section. We only need to see what                  
happens when the initially leftmost module reaches the end of the strip. 
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Once the initially leftmost module is above the initially rightmost module, as its left, top, right                
and lower right positions are empty, it moves to the lower right position using Rule 7:                

Convex transition SE. 
 
Finally, the current rightmost module deactivates using Rule 13: Deactivation because           
it can not use any other rule: its left, bottom and bottom left positions are not empty.  
 
Therefore, the set of rules for locomotion over pyramids produces the advance of R from left                
to right on horizontal surfaces. 
 
On vertical surfaces, we distinguish two situations depending on whether the surface is             
located to the right or to the left of the strip of modules. If it is located to the right, the strip                      
will advance up, while it will advance down if it is located to the left. In other words, the strip                    
always advances following the right-hand rule over the surface. Due to the symmetry of the               
rules, the previous proof for horizontal surfaces is also valid for vertical surfaces. 
 
Let us now discuss what happens in the presence of corners. 
 
Proposition 5: Let R be a connected modular robot with n modules forming a horizontal strip.                
The set of rules for locomotion over pyramids from Chapter 4 produces the advance of R                
following the right-hand rule at the intersections of horizontal and vertical surfaces (corners). 
 
Proof: We study the four intersections defined in Chapter 4. First we explain how a module                
reaches one intersection. By Proposition 4, when the corner position is empty, there is a               
module that will eventually occupy this cell. 
 
We describe how the modules go over each of the four types of corners: 
 

1. Monotonously increasing concave corner. In this case, following the right-hand rule,           
we have first a horizontal surface, and then, a vertical one. So, the robot modules               
arrive to the corner using rules from the set of rules for horizontal surfaces. 
 
The rightmost module has at its right an obstacle. So, when an active module reaches               
above it, it deactivates by Rule 13: Deactivation, since its right and upper right              
positions have obstacles and its top and left positions are empty. That is, no other rule                
can be applied. 
 
After that, when the next active module reaches the left position of the last deactivated               
module, it applies Rule 6: Convex transition NE and deactivates by Rule            

13: Deactivation, due to its environment. 
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The following active modules just turn the corner by Rule 6: Convex            

transition NE and change their advance mode from horizontal to vertical. 
 

2. Monotonously increasing convex corner. In this case, we have first a vertical surface,             
and then, a horizontal one. So, the robot modules arrive to the corner using rules of the                 
set of rules for vertical surfaces. 
 
The topmost module has an obstacle to its right. There is an empty cell above this                
obstacle cell. 
 
The next active module advances as on a vertical surface. It advances using Rule              

10: Slide N and reaches the topmost position with Rule 6: Convex            

transition NE. At this point it deactivates due to its environment 
 
When the next active module reaches the top position of the last deactivated module, it               
uses Rule 7: Convex transition SE to place itself to the right position of the               
previous module and deactivates too. 
 
The following modules just turn the corner by Rule 6: Convex transition NE             

and change their advance mode from vertical to horizontal. 
 

3. Monotonously decreasing concave corners. By the rotational symmetry of the rules,           
this case is analogous to case 1. 
 

4. Monotonously decreasing convex corner. By the rotational symmetry of the rules, this            
case is analogous to case 2. 

 
Finally, we prove that the last module always leaves an intersection. This is because of the                
new activation rules. More in detail: 
 

1. In case 1, the last static module has obstacle cells at its right and bottom positions. Its                 
top cell is occupied by a static module and its left and upper left positions are empty.                 
The module activates by Rule 3: Activation convex transition NW, and           
moves by Rule 9: Convex transition NW. 
 

2. In case 2, the last static module has a static module to its right, and its left, top and                   
upper right positions are empty. The module activates by Rule 1: Activation            

convex transition NE, and moves by Rule 6: Convex transition NE. 
 

3. In case 3, the last static module has a static module to its bottom, and its top, right and                   
lower right position are empty. The module activates by Rule 2: Activation            

convex transition SE, and moves by Rule 7: Convex transition SE. 
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4. In case 4, the last static module has obstacle cells at its bottom and left positions. Its                 

right cell is occupied by a static module and its top and upper right positions are                
empty. The module activates by Rule 1: Activation convex transition NE,           
and moves by Rule 6: Convex transition NE. 

 
Therefore, the set of rules for locomotion over pyramids produces the advance of R following               
the right-hand rule at the intersections of horizontal and vertical surfaces. 
 
Theorem 2: Let R be a connected modular robot with n modules forming a horizontal strip.                
The set of rules for locomotion over pyramids produces the endless advance of R from left to                 
right over a pyramid surface. Along the locomotion, the robotic system stays connected at all               
times, and no collisions happen. When synchronously run, at most one rule is applied per               
module and round. 
 
Proof: By Proposition 4, the set of rules for locomotion over pyramids produces the endless               
advance of R following the right-hand rule on horizontal and vertical surfaces, while the robot               
stays connected and no collisions happen. By Proposition 5, the same thing happens at all               
intersections. 
 
Therefore, the theorem is almost proved. The only missing detail is to prove that at most one                 
rule is applied per module and round. But this is guaranteed by the structure of the proofs of                  
propositions 4 and 5. 
 
The leftmost module in terms of the right-hand rule uses no more than one rule at the same                  
time. In other words, the module applies at most one rule per round. By induction, it is                 
enough to prove that second leftmost module in terms of the right-hand rule applies at most                
one rule per round. 
 
After the leftmost module’s first moving, the second module cannot activate because its target              
position is not empty. In the next step, the first module moves leaving the target position of                 
the second one. Therefore, this position is empty and the second module is activated. It is after                 
two movements - and three rounds - that the second module activates. At this point, it has a                  
clear path, in the next step, to start moving, since the first module keeps advancing to the                 
rightmost position. 
 
When run synchronously, the distance between the first and the second modules is three.              
Therefore, at most one rule is applied per module and round. 
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6.3. Preventing collisions and deadlocks at bottlenecks 
 
Due to the time constraints of the project, we have not been able to develop further                
correctness proofs. In order to verify the correctness of in practice of the set of rules for                 
preventing collisions and deadlocks at bottlenecks, we have developed and run a large set of               
tests for each set of rules implemented. The description of the tests and the results of the                 
experiments run can be found in Chapter 8. 
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7. Complexity 
 
In this chapter we analyze the complexity of the locomotion described in chapters 3, 4 and 5. 
 
Complexity, in this case, is established in terms of moves in the first place, since moving a                 
module in a slide or a convex transition is the most time-consuming operation of all.  
 
In the second place, we have communication. In our model, we have replaced communication              
protocols between modules by the capability of the modules to check the lattice positions of               
their first and second neighborhoods to know whether they are empty osr occupied. In the last                
case, they can also check whether the occupant is an obstacle or a module and, in the last case,                   
which is its state. Therefore, in our model communication costs per module are a linear               
function of the number of rounds executed by the algorithm.  
 
Finally, complexity also includes the classical computation costs in terms of running time and              
memory space required by each model when evaluating preconditions of rules. Again, the             
running time is obviously linear in the number of rounds performed by the algorithm. As for                
memory space requirements, it is easy to see that each module uses O(1) memory space per                
round. 
 
Therefore, we concentrate on counting the number of moves and the number of rounds              
executed by our algorithm. 
 
We start computing the number of round of the algorithm and the number of moves per                
module for locomotion in the absence of obstacles. 
 
The strip advances one position after the leftmost module activates, moves n positions to its               
right and deactivates. When the module advances three positions, the next leftmost module             
activates and, after four rounds, it reproduces the same movements. 
 
If is the number of rounds (parallel steps) that the strip needs in order to advance k ak                  
positions, we can define the following recurrence: 
 
a0 = 0  
a1 = n + 2  

 4, ∀i .ai+1 = ai +   ≥ 1  
 
This recurrence results in 
 

k , ∀k .ak = n + 4 − 2  ≥ 2  
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Therefore, for locomotion in the absence of obstacles, the strip advances k positions after              
 rounds or parallel steps.(n )O + k  

 
Regarding the number of moves per module, each module moves exactly n times in order to                
traverse the entire strip. Therefore, the strip advances k positions after moves of k           (n)O     
modules. 
 
The same thing happens when it comes to locomotion over pyramids since the behavior is the                
very similar. The leftmost module moves over the rest of the modules without deactivating              
until it reaches the rightmost in terms of the right-hand rule. Therefore, the complexity is the                
same. 
 
The problem appears when crawling over obstacles with bottlenecks. Then, it is possible to              
have a module deactivated before it has reached the rightmost position of the strip. This               
means that the progress made by a module is not constant and depends upon the obstacles and                 
the number of deadlocks that can be formed. 
 
However, we can still complete the complexity of the algorithm. In the best cases no               
deadlocks happen. In this case, we obtain the same complexity as before. 
 
The problems arise when there is at least one deadlock. 
 
In this case, the number of moves per module could increase due to some movements needed                
to solve deadlocks or some modules that move cyclically within a deadlock. But at least one                
module will make use of some rule, otherwise the strip would stop moving forward and our                
algorithm would be incorrect. Therefore, in the worst case, we have: 
 
a0 = 0  
a1 = n + 2  

 n , ∀i .ai+1 = ai +  + 2  ≥ 1  
 
Therefore: 
 

k k, ∀k .ak = n + 2  ≥ 0  
 
Then, the strip advances k positions after rounds. In practice, though, deadlock       (nk)O       
situations do not increase the number of rounds substantially, as we will see in Chapter 8. 
 
All together, the number of parallel steps in order to advance k positions a strip of length n is                   
between O(n + k) and O(kn). The number of moves per module is O(n + k). 
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8. Simulation 
 
8.1. AgentSystem 

 
We implemented our algorithm with AgentSystem, a practical Java tool for simulating            
synchronized distributed algorithms on sets of 2 (and 3) dimensional square (and cubic)             
lattice-based agents. It assumes that each module is capable to change position in the lattice               
and that neighboring agents can attach and detach from each other. In addition, it assumes that                
each module has some constant size memory and computation capability, and can send or              
receive constant size messages to or from its neighbors. The system allows the user to define                
sets of agents - obstacles and modules - and sets of rules and apply one to the other. 
 
The system has its own language to implement rules. It simulates the synchronized execution              
of the set of rules by all the modules, and can keep track of all actions made by the modules at                     
each step, supporting consistency warnings and error checking. For more details see [6]. 
 
 
8.2. Orientation and other difficulties 
 
We described in chapters 3, 4 and 5 all the 18 rules we use to complete our distributed                  
algorithm. 
 
Their actual implementation was done into 323 rules. This was due to two reasons. On one                
hand, the simulator requires all 90º rotations of the rules to be implemented. On the other, the                 
many preconditions to prevent collisions and deadlocks in bottlenecks recommended to           
decompose the rules into smaller ones. 
 
Finally, the fact that the simulator only accepts the logical operators AND and NOT make the                
preconditions longer to express when they contain an OR, and we decided to break them when                
convenient. 
 
 
8.3. Test Bank 
 
In this section we describe the obstacles used to test the algorithm. 
 
For the set of rules in absence of obstacles, there is only one possible test in each direction. 
 
For the set of rules for locomotion over pyramids, we created a pyramids with several step                
sizes. This size is defined by the width and the height of the steps. We illustrate a symmetric                  
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pyramid with several step sizes steps in Figure 20 to test when the robot is going up and when                   
it is going down. Then, we did the same in the other directions. 
 

 
Figure 20: Symmetric pyramid with several step sizes. 

 
For the set of rules for locomotion over any obstacle, we needed a wide variety of tests. So we                   
defined their obstacles systematically. 
 
We started expanding the pyramids. We made histograms with columns separated by a             
distance one at maximum. Each pair of columns could be either of the same height, or of                 
different heights (the first lower and the second higher, or vice versa). See Figure 21 for an                 
example. We defines this kind of histograms in the four directions. 
 

 
Figure 21: Example of histogram with columns separated  

by distance one at maximum. 
 
Then, we considered distance two. That is, we had histograms with columns separated by              
distance two at maximum. In this case, we needed to do more experiments not only with side                 
columns that had different heights. Also that the base of the holes of width two were aligned                 
or with different heights. We illustrate an example in Figure 22. We did the same in all                 
directions. 
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Figure 22: Example of histogram with columns separated 

by distance two at maximum. 
 
We repeated the same process with columns at a distance three at maximum, and we created                
the obstacles in each direction as well. See the Figure 23 for an example. 
 

 
Figure 23: Example of histogram with columns separated 

by distance three at maximum. 
 

Next, we prepared a set of obstacles that were not histograms. These contained diagonal              
cavities in all directions. We show three examples of this set in Figures 24, 25 and 26. 
 

                            
Figure 24: Example of an obstacle with                 Figure 25: Example of an obstacle with  

a simple diagonal cavity.                                      a double diagonal cavity. 
 

 
Figure 26: Example of an obstacle with two diagonal cavities. 

 

46 



Distributed locomotion of 2D lattice-based modular robotic systems 

The following set of obstacles contained obstacles with wide cavities and narrow entrances.             
We illustrate three examples in Figures 27, 28 and 29. 
 

                                             
Figure 27: Example of an obstacle                      Figure 28: Example of an obstacle  
with a wide cavity and a narrow                         with a wide cavity and a narrow  

entrance on the right.                                          entrance on the left. 
 

 
Figure 29: Example of an obstacle with a wide cavity  

and a narrow entrance in the middle. 
 
Then, we combined previous sets to create obstacles with histograms, wide diagonal cavities             
and narrow entrances. See three examples in Figures 30, 31 and 32. 
 

 
Figure 30: Example of an obstacle with one wide  

diagonal cavity and a narrow entrance. 
 

 
Figure 31: Example of an obstacle with two wide  

diagonal cavities and narrow entrances. 
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Figure 32: Example of an obstacle with histograms 

and narrow entrances. 
 
In this point we defined a set of obstacles with some other more irregular cavities and                
bottlenecks. This set contained several obstacles with narrow entrances and holes of different             
irregular shapes. We can see three examples in Figures 33, 34 and 35. 
 

                 
Figure 33: Example of an obstacle with                         Figure 34: Example of an obstacle with 

a narrow entrance on the right and                                a narrow entrance on the left and 
a cavity with irregular shape.                                        a cavity with irregular shape. 

 

 
Figure 35: Example of an obstacle with multiple 

narrow entrances and cavities with irregular shapes. 
 
Finally, we created a huge obstacle combining all sets of obstacles defined above. In addition,               
we included empty cells between obstacle cells, long corridors with no exit, nested bottleneck,              

48 



Distributed locomotion of 2D lattice-based modular robotic systems 

and a long way to go to be able to make a more complete test and be able to perform a better                      
analysis of the complexity of our algorithm. Figure 36 shows this large obstacle. 
 

 
Figure 36: Huge obstacle, with 3662 obstacle cells, multiple narrow entrances, cavities with 

irregular shapes, long corridors with no exit and a long way to go. 
 
In conclusion, we systematically defined several sets of obstacles with different           
characteristics. In total we obtained 61 scenarios. 
 
 
8.4. Results 
 
In this section we analyze the results of the tests carried out. 
 
In Chapter 6 we proved the correctness of the set of rules for locomotion in absence of                 
obstacles. Here, we will only determine the exact complexity in practice. In Chapter 7 we               
proved that the number of rounds was O(n + k), where n is the number of modules of the strip                    
and k is the number of positions that the strip advances. We want to find the exact constant                  
that multiplies this value in our simulator. 
 
We made several tests with different number of modules and number of positions advanced.              
For each test we defined a table with the number of parallel steps run by the algorithm, as a                   
function of these number of modules (n) and these number of positions (k) advanced by the                
robot strip. In addition, we defined a graph with the same information. The trend lines join the                 
number of parallel steps for each number of positions k advanced, and there is a line for each                  
number of modules n. We also show the equation of each trend line. In these equations, x = k. 
 
In Table 1 and Figure 37 we illustrate the table and graph of our test for locomotion in the                   
absence of obstacles. 
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  Number of modules (n) 

  5 10 20 50 100 

Number 
of 

positions 
advanced 

(k) 

1 7 12 22 52 102 

2 11 16 26 56 106 

5 23 28 38 68 118 

10 43 48 58 88 138 

50 203 208 218 248 298 
 

Table 1: Number of parallel steps run by the algorithm, as a function of the number of 
modules (n) and the number of positions (k) advanced by the robot strip,  

in the absence of obstacles. 
 

 
Figure 37: Graphic of the number of parallel steps run by the algorithm, as a function of the 

number of modules (n) and the number of positions (k) advanced by the robot strip,  
in the absence of obstacles. 

 
The slope is constant, . Therefore, we obtain that the number of rounds (parallel steps) is    k∀             
exactly .kn + 4 − 2  
 
We also proved in Chapter 6 the correctness of the set of rules for locomotion over pyramids.                 
We made similar tests with this algorithm to find its exact complexity on our simulator. Table                
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2 contains a new value , which is the minimum value of k needed to overcome the     k*             
symmetric pyramid of Figure 20. For this case, .53k* = 1 + n  
 

  Number of modules (n) 

  5 10 20 50 100 

Number 
of 

positions 
advanced 

(k) 

1 6 11 21 51 101 

2 10 15 25 55 105 

5 20 25 35 65 115 

10 39 44 54 84 134 

50 188 193 203 233 283 

k*  597 622 672 822 1072 
 

Table 2: Number of parallel steps run by the algorithm, as a function of the number of 
modules (n) and the number of positions (k) advanced by the robot strip, 

over a symmetric pyramid. 
 
Figure 38 illustrates the graph of the previous table. 
 

 
Figure 38: Graphic of the number of parallel steps run by the algorithm, as a function of the 

number of modules (n) and the number of positions (k) advanced by the robot strip, 
over a symmetric pyramid. 
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Here we observe that the slope almost does not increase when the number of modules is                
larger. Even so, the increase is very small. We conclude that the slope tends to when               4   

. Therefore, we obtain that the number of rounds (parallel steps) is smaller than orn → ∞                
equal to . That is, the more steps there are in a pyramid, then fewer rounds will  kn + 4 − 2                
have to pass for the strip to overcome the obstacle. Even so, this number is always greater                 
than or equal to .kn + 3 − 2  
 
Therefore, we conclude that the algorithm for locomotion over pyramids is slightly faster than              
the one for locomotion in the absence of obstacles. 
 
Finally, we run some tests with the set of rules for locomotion preventing collisions and               
deadlocks at bottlenecks. Our algorithm managed to overcome all the obstacles defined in the              
Test Bank section, including the ones illustrated in Figure 36. 
 
Recall that for this case, In Chapter 6 we came up with an upper bound for the complexity that                   
was clearly not tight. To obtain a better approximation to the complexity of this algorithm, we                
made some tests with three different obstacles. We set three small values of n that do not form                  
a lot of deadlocks, and three other values of n large enough to obtain a great number of                  
deadlocks. Also, we defined to be the minimum number of steps needed to overcome the    k*             
obstacle for each n. We did tests with and Table 3 and        , /2, k /4, k /8, k /16k = k*  k*  *  *  *   /32.k*     
show the table and Figure 39 the graph of the results of the tests performed with the obstacle                  
of Figure 29. In this case, .2k* = 3 + n  
 

  Number of modules (n) 

  5 10 20 50 70 90 

Number 
of 

positions 
advanced 

(k) 

k /32][ *  12 17 27 66 90 110 

k /16][ *  21 26 40 74 97 120 

k /8][ *  29 34 47 92 115 146 

k /4][ *  43 52 68 126 160 194 

k /2][ *  77 86 114 200 260 320 

k*  147 172 222 374 478 578 
 

Table 3: Number of parallel steps run by the algorithm, as a function of the number of 
modules (n) and the number of positions (k) advanced by the robot strip,  

over the obstacle of Figure 29. 
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Figure 39: Graphic of the number of parallel steps run by the algorithm, as a function of the 

number of modules (n) and the number of positions (k) advanced by the robot strip,  
over the obstacle of Figure 29. 

 
We can see that the difference between this test and the previous one is not decisive. In                 
addition, the difference between the first three values of n, where no deadlock is formed, and                
the second, which do form deadlock, is not very broad. In fact, we obtain the same tendency                 
as in locomotion over pyramids. 
 
See the next test results in Table 4 and Figure 40. The obstacle used is the one illustrated in                   
Figure 30. In this case, .1k* = 4 + n  
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  Number of modules (n) 

  5 10 20 35 50 70 

Number 
of 

positions 
advance

d (k) 

k /32][ *  12 17 27 42 57 84 

k /16][ *  12 24 34 49 71 91 

k /8][ *  26 31 48 70 92 119 

k /4][ *  47 52 76 101 127 154 

k /2][ *  86 94 109 161 208 268 

k*  165 191 241 320 395 495 
 

Table 4: Number of parallel steps run by the algorithm, as a function of the number of 
modules (n) and the number of positions (k) advanced by the robot strip,  

over the obstacle of Figure 30. 
 

 
Figure 40: Graphic of the number of parallel steps run by the algorithm, as a function of the 

number of modules (n) and the number of positions (k) advanced by the robot strip,  
over the obstacle of Figure 30. 

 
Locomotion over the obstacle of Figure 30 is faster than all the previous ones. The slope is                 
between three and four, and increases as the number of modules increases. There is a small                
increase in the locomotion of the strip with few modules to when there are some more, but                 
even so the algorithm quickly overcomes the obstacle. 
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See the last test, with the obstacle of Figure 33, in Table 5 and Figure 41. In this case,                   
.20k* = 1 + n  

 

  Number of modules (n) 

  5 10 15 35 50 70 

Number 
of 

positions 
advance

d (k) 

k /32][ *  9 18 23 43 62 82 

k /16][ *  25 34 39 63 82 106 

k /8][ *  57 69 74 105 127 151 

k /4][ *  120 129 138 178 209 250 

k /2][ *  252 263 276 334 378 428 

k*  473 498 525 638 713 813 
 

Table 5: Number of parallel steps run by the algorithm, as a function of the number of 
modules (n) and the number of positions (k) advanced by the robot strip,  

over the obstacle of Figure 33. 
 

 
Figure 41: Graphic of the number of parallel steps run by the algorithm, as a function of the 

number of modules (n) and the number of positions (k) advanced by the robot strip,  
over the obstacle of Figure 33. 
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In the last test we observed that, regardless of whether deadlocks are formed, the number of                
rounds (parallel steps) increases when the number of modules n increases. In addition, the              
lines have a slope between three and four. 
 
Therefore, we obtain that the complexity of our algorithm is . Even more, we can          (n )Ө + k      
limit the number of rounds between  and .kn + 3 − 2 kn + 4 − 2  
 
 
8.5. Downloading the rules 
 
We stored our rules on one webpage. They can be downloaded in a zip file by clicking on the                   
link [7]. The zip file contains the three sets of rules and all the obstacles with which we have                   
tested them.  
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9. Conclusions 
 
We have designed three sets of rules for a distributed algorithm to solve the locomotion               
problem of 2D square lattice sliding modular robots. 
 
First, we obtained five rules that produce the endless advance of the robotic system from left                
to right on a horizontal surface, applying the right-hand rule. Then, we created a new set of                 
rules for locomotion over pyramids. We proved the correctness of both sets of rules. Along               
the locomotion, the robotic system stays connected at all times, and no collisions happen. 
 
The greatest challenge was to come up with a set of rules that achieved to solve locomotion                 
preventing collisions and deadlocks at bottlenecks over arbitrary obstacles. We were able to             
perform many tests with the AgentSystem simulator and, in some way, prove that the              
distributed algorithm works. Moreover, in practice, the strip advances k positions after            

 rounds or parallel steps.(n )Ө + k  
 
The main further goal is to prove the correctness of the set of rules for locomotion preventing                 
collisions and deadlocks at bottlenecks. In addition, the rules could be optimized. The             
preconditions to prevent collisions and establish a moving order can be cumbersome. 
 
Moreover, a more exact complexity bound could be obtained, although we know it is linear in                
practice. This could facilitate a possible practical application of these robots with this             
distributed algorithm. 
 
There are some extensions of our work that we would like to mention. An algorithm for                
hexagonal lattices could be obtained from our rules. This would be interesting since there              
exist several robot prototypes based on hexagonal lattices. 
 
Another option would be to extend the model to 3D lattice-based modular robotic systems.              
Would the equivalent 3D sets of rules obtained, a practical application with cubic robots could               
be made. It could also be considered that the reticles had different fluids and the modules                
behavior was different in each of them. 
 
In general, we believe that we have done a good job. We have achieved the goal of obtaining                  
a distributed algorithm for locomotion over any obstacle. We have performed tests to prove              
how the rules work in practice. Even so, we have underestimated the time of designing the                
rules and, consequently, we have not been able to advance further in other directions. 
 
We had difficulties in understanding exactly what the modular robotic systems are and all the               
vocabulary that surrounds it. In addition, the algorithm follows an order criterion that can              
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sometimes slow down the strip advance. We believe that we could have thought about the               
strategy and the order criteria to further reduce the number of movements of the modules. 
 
Finally, we think that the rules could be useful in real world application and we encourage the                 
reader to think over it. 
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