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Abstract—Commercially available Off The Shelf (COTS) mul-
ticores have been assessed as the baseline computing platform
even in the most conservative real-time domains. Multicore
contention arising on shared hardware resources, with its circular
dependence with scheduling, is among the most challenging
issues that require urgent attention before multicores can be
fully embraced for real-time computing. In the context of static
scheduling, still the most used scheduling approach in real-
time industries, we propose an ILP formulation for computing
the worst-case contention delay suffered by a task due to
interference on a shared bus. Our model provides accurate
contention delay bounds that avoid unnecessary over-accounting
of conflicts between bus requests, by considering contention
effects at system-level (i.e., across tasks) rather than at task-level
only. This allows precisely capturing the interdependence between
timing interference of conflicting requests, issued in parallel by
other cores (tasks), and the identification of the particular set of
tasks co-running on those cores. We assess our technique both
analytically and empirically on a real COTS multicore platform.
We show, via extensive evaluation, that jointly accounting for
worst-case task overlapping and request distribution scenarios
always provides tighter contention bounds when compared to
state-of-the-art solutions.

Index Terms—Multicore contention, ILP, COTS, Static
scheduling

I. INTRODUCTION

Critical embedded real-time systems are witnessing an un-
precedented growth in performance requirements and com-
putational complexity in response to the advent of next-
generation software functionalities such as, for example, those
related to the increased level of automation involved in au-
tonomous driving and unmanned vehicles [8], [25]. Multicore
systems are being widespreadly assessed as the reference
solution to meet those emerging requirements, even in the most
conservative critical embedded real-time domains, such as
avionics, automotive and space. In particular, Commercially-
available-Off-The-Shelf (COTS) hardware solutions are typi-
cally preferred over custom hardware design in consideration
of their reduced non-recurring costs, greater flexibility, and
shorter time to market [2], [1], [38].

Critical systems, however, need to undergo a rigorous as-
sessment on both their functional and non-functional prop-
erties, generally dictated by domain-specific standards and
certification bodies [45], [26]. The timing behavior is a funda-
mental non-functional property in critical embedded real-time
systems, and timing analysis approaches [43] are advocated
by standards in order to derive trustworthy guarantees on the
timely execution of software functions. The amount of effort

devoted to Verification and Validation (V&V) and the precision
required to abide by a standard is typically proportional to
the consequence of a system failure, which corresponds to
different criticality levels (e.g., DAL in avionics [45] or ASIL
in automotive [26]) assigned to each function.

Providing strong performance guarantees on top of COTS
hardware is complicated by the fact that tasks’ execution time
can be heavily affected by the contention on accessing shared
hardware resources, which can cause a severe increase of the
response time of a program [41], [28]. While it is recom-
mended to counter and mitigate all interference channels [16],
to the best of our knowledge, no COTS hardware exists that al-
lows excluding all sources of interference [49]. Unfortunately,
the effects of contention are difficult to characterize as they de-
pend on when, and how often, the program and its co-runners
will access the shared resources; and conservatively assuming
the worst-case theoretical contention turns out to be an overly-
pessimistic assumption. Pessimism translates into a reduction
of the system’s guaranteed performance, which is generally
unaffordable. The unused (wasted) computational power could
be used, for example, to accommodate more functions and
hence contributing to reduce hardware procurement costs to
allocate a fixed set of software functionalities; to perform best-
effort activities; or to reduce the energy profile.

Several approaches have been proposed for the charac-
terization of inter-core interference on hardware resources.
Some of them aim at exploiting hardware or software level
mechanisms to control [29], [50], [38] or even to entirely
avoid [41], [40], [6], [11], [13] the effects of contention.
While provably effective, these approaches typically build
on some assumptions on hardware, RTOS support, and/or
application characteristics (e.g., phased execution [41]) that
cannot always be guaranteed to hold in practice, especially in
COTS platforms. When none of the above solutions can be
applied, the only practical way to provide trustworthy perfor-
mance guarantees under multicore execution that remains is
accounting for the worst-case contention delay (WCD) [47],
[19]. An important aspect in bounding contention effects is
that the computed bounds should be as tight as possible,
which in turn depends on the amount of information available
to the analysis. Some conservative assumptions are somehow
unavoidable: for instance, it is virtually impossible to model
precisely how requests from different cores align in the access
to shared hardware resources, and analysis approaches are
forced to assume worst-case alignments. Some other aspects,
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instead, as how tasks may overlap on different cores, can
be modeled to a certain degree; and tight contention bounds
can be obtained by combining information on the activity on
shared resources of both the program or task under analysis
and a concrete set of potential co-runners.

Context. We focus on the characterization of the worst-case
contention effects in statically-scheduled multicore systems.
Static scheduling is a prevalent solution in real-time software
specifications (e.g., AUTOSAR RTE [9], ARINC [7], ARINC
in Space [22]) in critical embedded real-time system domains,
as a means to guarantee better determinism, predictability and
isolation, even for multicores. In particular, we consider a
multicore instance of the ARINC 653 framework, where a
static scheduler repeatedly executes a major frame (MAF),
further subdivided into a sequence of minor frames (MIF). A
statically-mapped set of periodic tasks are non-preemptively
executed within each MIF on a multicore platform where cores
share a common (partitioned) L2 cache and a main memory,
both accessed via a shared round-robin bus. The system (static)
schedule is typically automatically generated from a model
(e.g., Simulink or SCADE) defining the set of functionalities
with their functional and timing requirements. Task-to-core
mapping and task ordering is normally determined by consid-
erations on functional cohesiveness and data sharing patterns
(e.g., consumer-producer).

Wasting computational resources is especially unwelcome
in statically scheduled systems since resources cannot be
dynamically reclaimed by the scheduling algorithm. As a
result, a potentially large share of computational power may be
squandered when excessively loose (un-tight) timing budgets
are assigned to tasks. The ability to derive tight contention
bounds is, therefore, of utmost importance in such systems.
As an example, contention effects have been shown to cause up
to 20x increase in execution time in the NXP P4080 [37], and
21x in the NGMP [24]. Alike, the amount of pessimism that
can stem in the budget apportionment phase when considering
contention effects is potentially huge.

Contribution. In this work, we propose an Integer Linear
Programming (ILP) formulation for the accurate computation
of the WCD suffered collectively by a set of tasks within
a MIF owing to the task running on the other cores in the
same interval. The proposed method aims at reducing the
amount of pessimism in the WCD computation in view to
determine an increase in the guaranteed performance within a
MIF. The resulting spare timing budget can be used to improve
the quality of the current functionalities (e.g., producing more
accurate results) or to accommodate other functionalities, thus
avoiding costly system over-dimensioning. Additionally, on a
more generic scenario, the accurate WCD computation enabled
by our approach can also be leveraged as a heuristic to
guide the task-to-core mapping and scheduling optimization.
We differ from similar approaches in two aspects: first, we
avoid unnecessary pessimism in considering conflicts among
requests, by considering contention effects at system-level,
rather than at task-level only; and second, we fully exploit
the circular dependence among contention and task timing:

contention effects on response time change how tasks overlap
in time, which in turn determines the contention that can arise
in the access to shared hardware resources.

The proposed ILP formulation models all possible overlap-
ping between tasks within a MIF, and computes the worst
case contention effects by considering all possible alignments
of memory accesses through the bus. Notably, bus accesses
may exhibit different latencies depending on the triggering
operation: while the number of contention events is bounded
by the number of accesses performed by the task under
analysis, the contention effects (incurred delays) are deter-
mined by the access type of the co-runners. The WCD is,
therefore, computed by also taking the access types of the co-
runners into account. Our model, therefore, exploits in full
the available task-level and system-level information: more
accurate WCD bounds can only be obtained under specific
scenarios, by leveraging on additional details or constraints
on access distribution. Although we make no assumption
on access distribution, we show that our ILP formulation is
flexible enough to model even those restrictive scenarios.

We extensively evaluate our contention model on ran-
domly generated synthetic task sets, showing that the de-
rived contention bounds support significantly higher overall
utilization within MIFs when compared to state-of-the-art
approaches [46], [19], thus allowing to deploy more function-
alities while keeping strong performance guarantees.

The remainder of this paper is organized as follows. Sec-
tion II motivates our work and introduces the fundamentals of
our approach. Section III discusses related works. Section IV
presents the assumptions on which our model builds. Sec-
tion V presents our ILP formulation for the WCD problem.
Section VI provides an analytical and empirical assessment of
our technique against representative approaches in the state of
the art. Section VII draws some conclusions.

II. MODELING CONTENTION BASED ON ACCESS PAIRING

Accesses to the off-chip memory are one of the most
critical sources of interference [46], [19], [21]. Every access
to the memory hierarchy (either direct or in response to a
cache miss) must pass through the interconnect, which easily
becomes a performance bottleneck and, equally important, a
huge source of timing variability. The WCD suffered by a
task τi on bus accesses depends on the specific arbitration
policy implemented on the bus, and is a function of both (i)
the number of accesses performed by τi, and (ii) the number
and type of accesses performed by its co-runner tasks [18],
[28], [21]. Observation (i) is simply dictated by the fact that,
based on conservative assumptions on access alignment and
considering the specific arbitration policy in the bus, each of
τi’s access can, in the worst-case, suffer a contention delay.
However, as per observation (ii), the WCD is also determined
by the set of potential co-runners of a task: first, the number of
accesses causing contention delay on τi cannot be larger than
the number of accesses of other tasks running in parallel; and
second, the WCD depends on the type of accesses performed
by the contender as not all accesses exhibit the same latency.
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Fig. 1: Dependence btw access pairing and task overlappings.

In order to conservatively but accurately capture the effect
of different types of accesses, we use the concept of access
pairing. Pairing models the fact that requests from different
cores can collide in the access to a shared hardware resource.
Contention causes an increase in the execution time of the in-
terfered task: the impact on the WCET of the latter is bounded
by pairing victim and culprit accesses. Accesses of interfering
tasks will cause a contention delay (up to the interfering
access latency) on the interfered task for each access they can
be paired with. Pairing is ultimately determined by the way
accesses to the shared hardware resources are arbitrated. Fair
and predictable arbitration policies, like Round-Robin, allow
only one-to-one pairings, in the sense that one access from one
core cannot be interfered by more than one access per each
of the other cores. Priority-based arbitration schemes instead
enable different pairings, based on the arbiter semantics. In
this paper, we focus on contention arising when accessing a
bus implementing FIFO or Round-Robin arbitration, but the
approach can be adapted to model any predictable arbitration
policy. Note that pairing can only happen when the interfered
task and the interfering task, in different cores, overlap in time
(i.e., run in parallel). As an example, task τ1 in Core 1, in
Figure 1(a), performs two accesses to the shared resource,
symbolized with ◦, that can be paired with two accesses in
τ3, executing in parallel in Core 2. These two accesses in τ3,
will not be available for pairing with other accesses from Core
1. Since contenders’ accesses may exhibit different latencies
depending on the access type, it is important to conservatively
pair accesses starting from the most interfering ones (the one
exhibiting higher latency).

Access pairing, as a metric to compute contention, and
tasks overlapping are in a mutual relationship as pairing is
determined on the accesses from the set of overlapping tasks,
and the latter is affected and potentially altered by the increase
in execution time caused by the WCD. At a system level,
when considering all tasks in each core, such relationship
can be counter-intuitive as local worst-case pairing for a task
may lead to a shorter makespan (thus resulting in a timing

anomaly [34]). Figure 1 provides an illustrative example of
such an effect, avoiding any consideration on access types,
for the sake of simplicity. Tasks τ1, τ2 execute on Core 1
and perform respectively 2 and 5 accesses, while tasks τ3, τ4,
τ5 execute on Core 2, with 4, 1 and 1 accesses respectively
(see Figure 1(a)). We focus on the WCD of tasks running on
Core 1 and the induced makespan. In principle, 6 out of 7
accesses in τ1 and τ2 can potentially be paired, thus conflict,
with accesses from tasks running on Core 2. However, this
ultimately depends on how tasks overlap in time, which is
influenced by how much contention tasks suffer. Let us assume
a locally-good scenario, Figure 1(b), in which only 1 access
in τ1 is paired with accesses in τ3 (i.e. τ1 will be delayed by
exactly one access in τ3). The resulting overlapping still allows
τ2 having all its 5 accesses paired with accesses from τ3−5,
totaling 6 delays. The local worst-case scenario, where τ1 has
all its accesses paired, instead, leads to a task overlapping that
is compatible with τ2 having at most 2 accesses paired with
accesses from τ4−5, totaling 4 delays. Thus a local worst-case
assumption leads to a shorter, optimistic worst-case makespan.

As a motivation for our work, this simple example shows
that trying to compute the WCD on a purely per-task basis
can lead to unsafe system-level bounds. We observe that tasks
overlapping conditions and access pairing lend themselves to
be captured with ILP. We use an ILP formulation to model
and explore all possible (feasible) combinations of tasks over-
lapping and access pairing, thus providing a safe system-level
bound to the worst-case contention delay. System-level bounds
are particularly relevant in those real-time systems whose
execution is clearly organized as the cyclic succession of
time frames, such as cyclic-executive and Integrated Modular
Avionics (IMA) systems.

III. RELATED WORKS

The transition to multicores in critical embedded real-time
domains has disruptive effects on the consolidated practice for
V&V and timing analysis in particular. Several efforts have
been invested in the last decades to capture the effect of hard-
ware resource sharing in multicore systems [23], unequivocally
identified as the main source of timing interference1. While
several sources of interference exist at system and processor
levels, most works focus on the interference stemming from
the shared interconnect.

A first class of approaches aims at limiting the amount
of contention in a system or avoiding contention altogether.
Some approaches [41], [40], [6], [11], [13] rely on an exe-
cution model where task execution is split into memory and
computation phases, where accesses to shared resources (i.e.,
memory system) exclusively happen during memory phases.
Tasks are, therefore, scheduled in a way to avoid overlapping
of memory phases. The underlying assumptions in these works
are that memory phases can be clearly isolated, which is
generally made possible by loading the task working set into

1We do not consider the effect of software resource sharing and inter-core
synchronization, for which analyzable protocols have been devised (e.g., [15]).



local scratchpad memories, and that the platform supports
some degree of resource partitioning. While phased execution
is a reasonable assumption in parallel applications, it lacks of
generality, and clashes with the use of legacy code. Controlling
how hardware resources are made available to cores, instead,
seems to offer a more generic solution to enforce conflict
avoidance. Authors in [29] focus on DRAM and memory
controller operations to bound the delay potentially suffered
on memory accesses and propose bank partitioning as a way
to reduce the amount of inter-core interference. The work
in [30] combines hardware management and mixed-criticality
based resource provisioning as a means to trade off isolation
and sharing of resources and make multicore execution more
predictable (i.e., performance guarantees for high-criticality
tasks). When hardware isolation is not an option, contention
can be controlled at the software level by exploiting specific
RTOS support to enforce analysis-time utilization bounds. A
memory bandwidth management system to enforce memory
usage quotas has been proposed in [50]. In [38], instead,
run-time monitoring is used to ensure that co-runner requests
stay under a given utilization threshold determined at analysis
time. Our proposal does not build on any assumption on task
semantics, hardware-level segregation or RTOS-level support,
but our ILP formulation is flexible enough to model and
eventually take advantage of those same solutions.

In the absence of specialized hardware and/or RTOS-level
mechanisms, tight upper bounds for contention effects must be
derived, which are often used to guide task to core mappings
and co-scheduling decisions. Different heuristics are explored
in [14] to classify tasks according to the (negative) effects
of running in parallel, and a core-mapping algorithm that
avoids tasks with high cumulative miss rates to run together
is presented. Early works focused on bounding the number of
requests to a shared hardware resource for each single task:
assuming uniform distribution of accesses, with a minimum
distance between consecutive accesses [46], or assuming ded-
icated task phases [47]. An upper bound to the interference
suffered from a task is determined by summing up the number
of accesses from all potential co-runners. The interference
bound can be tightened by limiting the analysis to co-runners
that may actually overlap with the task under analysis. This
observation is exploited in [18], [19], where an upper bound
to the effect of contention suffered by a task is derived from
an analysis of the maximum number of bus requests issued
from the other cores in a given interval. The computation of
contention effect is embedded in the standard response time
analysis. As a common trait in these approaches, contention
analysis is primarily focused on the activity of co-runners. Our
approach is similar to [18], [19] in that we do not rely on task
phases or specific RTOS support. However, we exploit the fact
that tighter bounds to the number of resource requests that may
potentially incur contention can be obtained by considering
both, task’s own requests and co-runners’ requests [29]. As a
paramount difference with respect to other approaches we use
access pairing to avoid over-accounting of conflicting accesses
among tasks. Additionally, we model the fact that different

request types typically exhibit different latencies to further
tighten the worst-case contention effects. The work in [48]
addresses different sources of contention in NoCs, in a view
to optimize task mapping and scheduling optimization, but
does not distinguish between request types.

Other works explore the use of ILP for the characterization
of contention effect, especially tailored to domain-specific
platforms in the automotive [11], [21] and parallel comput-
ing [44], [36] application domains. The work in [11] uses
an ILP formulation to schedule tasks with phased execution
(as in [6]). The ILP formulation presented in [21] models
contention delays between pairs of tasks, without any con-
sideration on whether the addressed tasks were overlapping,
or on the system-level view of conflictive accesses. Authors
in [44] propose contention-aware time-triggered scheduling
strategies using some knowledge of the application’s structure
to find a schedule that minimizes contention under the read-
execute-write semantics assumption. We differentiate from
these approaches in that we do not seek for optimal schedules
and, instead, we assume both static schedule and task-to-core
mapping. The work in [36] addresses parallel applications
(still assuming read-execute-write semantics) where task-core
mapping and schedule are statically defined, and aims at
introducing additional slack time in the schedule to reduce
resource contention. While sharing some similarities with our
work, the method proposed in [36] builds on pessimistic task-
level bounds. Our ILP formulation, instead, accurately models
worst-case tasks overlapping at system-level and supports
pairwise mapping of different request types.

IV. SYSTEM-LEVEL ASSUMPTIONS

Focus on statically scheduled periodic systems: In this
work, we focus on statically scheduled, periodic systems,
which remain the preferred solution to guarantee timing pre-
dictability in the most critical embedded real-time systems.
In doing so, we refer to IMA and ARINC-653 [7] concepts,
but the same reasoning can be extended to statically scheduled
systems in general. In our reference systems, tasks or functions
are executed within pre-determined scheduling slots of a
given duration, known as MInor Frames (MIF) in ARINC
terminology. In the scope of this work we are interested in
MIFs as the smallest time interval at which timing guarantees
are required to hold. For the time being, we will consider
MIFs with duration in the order of milliseconds. The statically
determined succession of MIFs finds its larger, collective
hyperperiod in the so-called MAjor frame (MAF).

In our multicore scenario, computational resources in each
core are assigned according to the same static scheme (as
determined by MIFs and MAF), which means that cores execu-
tion is synchronized at MIF boundaries. Core synchronization
at MIF boundaries is featured, for example, in the IMA
multicore implementation supported by SYSGO PikeOS [3]
RTOS, and in the Multicore Multiple Independent Levels
of Security/Safety (MILS) paradigm supported by VxWorks
RTOS [4], [39]. Despite sharing common scheduling slots,



functions on different cores do not engage in any synchro-
nization or communication protocol, unless they preserve time-
composability [10]. Inter-core communication (including shar-
ing data) happens through ports or buffers, usually accessed
at MIF boundaries to avoid interference from unavailable,
incoherent data.

Hardware and software assumptions: We consider a set
T of m independent, periodic tasks with constrained deadlines,
denoted τ1, τ2, . . . , τm. Tasks are statically mapped to cores
(i.e., no migration allowed) and are non-preemptively executed
according to a time-triggered [31], cyclic static schedule, also
known as cyclic executive. We do not consider the effect of
release jitter in time-triggered architectures, which we could
accommodate in our model building on existing solutions [35].
A task is, therefore, defined as a tuple (ci, ri, Pi, Di), where
ci, ri represent respectively the worst-case execution and re-
lease time, and Pi, Di represent the task’s period and relative
deadline. Tasks priorities implicitly model the precedence
constraints between tasks. The assumed schedule is not work-
conserving as a job will not be executed before the end of
the timing budget associated with the job of its predecessor
task, even if the latter has already terminated. Without loss
of generality, we assume that tasks mapped to the same MIF
share the MIF period as their common period, and their relative
deadline is set as the MIF size (i.e., the MIF represents the
timing budget collectively allocated for the functions thereby
mapped). The static schedule is defined by a static allocation
of tasks to MIFs that execute in sequence within the MAF.
Accordingly, we are not interested in finding an optimal task
schedule and/or assignment of tasks to cores [44]. The baseline
notation w.r.t. the task set used in the paper is shown in Table I.

We consider a homogeneous system comprising a set Π
of n-cores, denoted as π1, π2, . . . πn. Each core exploits its
own on-chip private instruction and data caches. Accesses
to the shared L2 cache – and eventually to memory – are
performed over a shared interconnect (e.g., memory bus),
which is therefore the source of contention in the system.
The L2 is partitioned, to prevent it from producing inordinate
timing interference among tasks. This same setting is found,
for example, in the Cobham Gaisler NGMP COTS [5] widely
adopted in the space domain. Different types of requests t
are served through the interconnect, each one exhibiting a
different latency, for which an upper bound lt is derived,
typically through exhaustive measurements [27]. Since we
assume homogeneous cores, access targets and types are the
same across the system. The information on the target of an
off-chip access can be relevant in the presence of multiple
interconnects or interconnects that support some degree of
parallelism. For each task τi we consider the number of
issued accesses ati for each access type t. We always refer
to worst-case access counts that hold valid for any path in the
program, as argued in [18]. The total number of accesses of
a task is the summation over all access types of that task. We
further assume that requests from different cores queued to a
shared resource are served according to a predictable policy
(e.g., round-robin). Under round-robin, for example, an access

can be paired with at most |Π| − 1 accesses, each from a
different core, regardless of the type of such accesses (which
in turn may determine the suffered delay). The notation used
to address accesses and their types is summarized in Table I.

Section V describes how these assumptions are factored in
our ILP model for the computation of the WCD at MIF level.

V. CONTENTION MODELING VIA ILP

A task may suffer a contention delay whenever it tries
to send a request to a shared resource while another task,
running on another core, is accessing the same resource. More
precisely, contention is suffered only when the request from
the task under analysis arrives after a request from the con-
tender (interfering) task. In the impossibility of determining
the exact arrival time of other requests to the shared resources,
the computation of the WCD cannot escape from conserva-
tively assuming the worst-case request alignment. Under this
assumption (and with predictable arbitration policies), we do
not need to model the state of the resource access queue to
compute the maximum interference incurred by each access
as they will be assumed to be served last, after all interfering
accesses (e.g., up to one per contending core in round-robin).
For this reason, each paired access from an interfering core
will systematically contribute to the interference suffered by
the (interfered) task under analysis. The task timing budget
is inflated by adding the (worst-case) latency for each paired
access, as determined by the access type of the contender tasks.

Tight WCD calculation for a given task, therefore, depends
on two factors: (i) the set of overlapping tasks; and (ii) the
number and types of conflicting accesses to a shared resource.
To complicate the computation of the WCD, those variables
are not independent but can affect each other in a counter-
intuitive way, as shown in the illustrative example in Section II.
On the other hand, making conservative assumptions on task
overlapping, conflicts (e.g., allowing one access to cause more
than one conflict on a given core), or incurred latencies (e.g.,
always assuming the worst-case latency lmax regardless of the
request type) easily leads to overly-pessimistic results, that
might not be usable in practice. For this same reason, an
iterative approach for computing the WCD is unfit since it
would imply making potentially unsafe task-level assumptions
over conflicting accesses.

Modeling both, task overlapping and access pairing, as an
ILP problem allows to compute a tight WCD by implicitly
accounting for all possible (feasible) task overlapping and
access pairing. In formulating such an ILP problem, we
are mainly interested in modeling the worst-case effects of
contention at system level rather than at task level. In fact,
under the cyclic executive paradigm, performance guarantees
are typically enforced at each scheduling interval: in this sense,
the MIF duration represents the time budget cumulatively
allocated for its mapped functions.

In the following we formally describe our ILP formulation,
using the notation reported in Table I.



TABLE I: Notation used in the paper.
Tasks, cores, and mapping

Π
def
= {π1, · · · , πn} Considered set of homogeneous cores

T def
= {τ1, τ2, . . . , τm} Considered task set

Pi ≥ Di Period (Pi) and deadline (Di) of task τi
ci Worst-case execution time in isolation of τi
ri Release instant of τi
Ts

def
= {τi : τi 7→ πs} Subset of tasks statically mapped to core πs

Γ
def
= {t1, · · · , tk} Access types admitted in the system

lt Upper bound to the latency incurred by a single access of type t ∈ Γ
lmax Worst-case latency incurred by a single access of any type in t ∈ Γ
ati Number of accesses of type t in τi
ai

def
=

∑
t∈Γ

ati Total number of accesses issued by task τi

Worst-case delay computation
1i(Ts) Set of tasks Ts mapped to core πs 67→τi, potentially overlapping with the task under analysis τi
atj.i Number of accesses of type t in τj ∈ 1i(Ts) that are paired with accesses in τi
aj.i Total number of accesses (of any type) in τj ∈ 1i(Ts) that are paired with accesses from τi
∆j.i Interference suffered by τi because of contention triggered by paired accesses of any type in τj
∆i Overall interference suffered by τi
ci + ∆i = ei Execution-time budget reserved for multicore execution of τi after accounting for WCD effects (∆i)

A. Objective function

Our system-level WCD computation implies considering the
WCD over a sequence of tasks (under the non-preemptive
assumption, common in cyclic executive systems). This allows
discarding the possibility of considering an interfering access
to cause conflicts on more than one task in the same core. As
an example, in contrast with other works, we model the fact
that even in case a task τi in Core 1 is running in parallel with
two tasks τj and τk in Core 2, each access of τi can generate
contention on at most one request in Core 2, either from τj or
τk. Still, an access of τi can generate conflicts on another task
in Core 3. When not otherwise specified, our analysis applies
at the granularity of scheduling intervals or MIFs: the analysis
has to be separately applied to all MIFs in the MAF. Since
the model and its formulations apply to a given MIF, we avoid
overloading our notation and do not add an indicator of the
considered MIF.

For a given task τi, we define ∆i as the WCD suffered
by that task when executed within the considered MIF. The
inflated execution-time budget reserved for τi in multicore
execution is denoted as ei = ci + ∆i. Consequently, our
objective function maximizes the makespan of the set of tasks
mapped to a core and executing within a given scheduling
interval (MIF). This is equivalent, in terms of maximization,
to the overall cumulative effect of contention suffered by those
tasks. For example, considering core πs (and a MIF):

maxmakespans ≡ max
∑
τi 7→πs

ei ≡ max
∑
τi 7→πs

(ci + ∆i) (1)

It is worth observing that while the ILP models the con-
tention effects on all cores, it only maximizes the delay
cumulatively incurred by tasks running in the core under
analysis, which normally does not coincide with the maximum
delay incurred by the tasks in the other cores.

An alternative objective function would be maximizing the
cumulative makespan across all cores within a MIF, such

as max
∑
πs∈Π

∑
τi 7→πs

ei. However, this formulation would
only provide realistic makespan figures, which cannot be
considered as valid upper bounds for the single cores.

The term ∆i, used in the objective function to indicate the
WCD suffered by τi, is the cumulative result of the contention
caused by (paired) accesses from overlapping tasks mapped to
contender (interfering) cores in the MIF under consideration.
For each task τi, 1i(Ts) identifies the set of tasks mapped to
(interfering) core πs 67→τi that can overlap in time with τi. At
a task-to-task level, the variable of interest is ∆j.i to represent
the interference suffered by τi because of accesses triggered
by τj ∈ 1i(Ts).

The interference depends on the number and types of
accesses from τj that are assumed to collide with accesses
from τi. In order to model the different latencies entailed by
multiple access types, we define ∆j.i as follows:

∆j.i
def
=

∑
t∈Γ

atj.i × lt (2)

where atj.i represents the number of accesses of type t in
τj that are paired with accesses in τi, and lt represents the
maximum latency for that type of access.

Accumulating the interference generated by all overlapping
tasks in all contender (interfering) cores yields ∆i:

∆i =
∑

Ts:πs 67→τi

∑
τj∈1i(Ts)

∆j.i

B. Modeling pairing of contenders accesses

The WCD caused by τj on τi is computed based on
the number and type of paired accesses since the latter are
conservatively assumed to always generate interference on τi
(i.e., τj requests always precedes τi ones). To compute the
WCD for τi we need to consider all possible access parings for
τi accesses, which depend on, and at the same time potentially
affect, the set of (overlapping) contender tasks τj . The WCD
analysis is performed per contender core (i.e., Ts : πs 67→τi)
and per MIF. The interference suffered due to each core is
summed up to derive the global WCD for τi.



The tightness of the ILP formulation depends on its capabil-
ity to exclude infeasible pairings. We identified the following
constraints on access pairings:

1) Bounds on task-to-task access pairing: The total number
of accesses in τj paired (hence conflicting) with accesses in
τi is bounded by the access counts in both tasks:

aj.i ≤ min(ai, aj) (3)

where aj.i is a generalization of atj.i and indicates the total
accesses (of any type) in τj ∈ 1i(Ts) that are paired with
accesses from τi.

More precisely, task pair-wise interference (i.e., the sum of
the paired accesses on one direction or the other) cannot be
greater than the access counts in both tasks:

ai.j + aj.i ≤ min(ai, aj) (4)

In fact, either a task is causing interference or is suffering
from it. This constraint, however, will be automatically inval-
idated by maximizing the contention on one of the two tasks
(i.e., setting one term on the left side of Eq. 4 to 0).

When considering different access types, the above con-
straints can be redefined on a per-type basis (to allow a
consistent pairing of latencies) as follows:∑

t∈Γ

atj.i ≤ min(ai, aj) (5)

A further constraint can be formulated based on the obser-
vation that the number of paired accesses of a given type in
the interfering task (τj) is limited by the number of accesses
of that type in the interfering task and the number of accesses
in the interfered task:

atj.i ≤ min(ai, a
t
j) (6)

2) Bounds on core-to-core access pairing: While the above
task-level constraints are fundamental blocks in the ILP model,
they still fail to accurately model the way accesses are paired
from a system perspective. The system level perspective con-
siders pairings over the set (sequences) of tasks mapped to
a core. Core-level constraints allow modeling the fact that
one specific access of a given task cannot be delayed (i.e.,
be paired) with more than one conflicting access per each
contender core. For example, a given task access cannot suffer
contention from two accesses performed by two distinct tasks,
mapped to the same contender core. These constraints are
improving the tightness of the computed WCD, and are one
of the aspects that differentiate our approach from related
works [44], [36], [21]. In particular, Eq. 8 and 10 are modeling
the system-level aspect of our approach and, together with
the overlapping condition, are causing a swift increase in the
computational complexity of the problem.

We formulate the constraint first from the standpoint of the
interfering task, observing that any of its accesses cannot be
paired multiple times with tasks on the same interfered core (it
can be paired with at most one access per core). Accordingly,
we constrain the sum of (interfering) accesses of an interfering

task τj , that are paired with accesses of tasks on a given core
πs 67→τj , not to exceed the number of accesses in τj itself:∑

i:τj∈1i(Ts)

aj.i ≤ aj (7)

From the opposite perspective, we also enforce that the
number of accesses paired with accesses triggered by the set
of overlapping tasks from the same interfering processor can
never exceed the number of accesses in the interfered task τi:∑

τj∈1i(Ts)

aj.i ≤ ai (8)

In a scenario admitting different types of requests (and
latencies) we can redefine the constraints by modeling also
access types as a further dimension to the problem, as we did
for the task-to-task constraints. The number of paired accesses
of a given type, triggered by a given contender (τj) on the
overlapping tasks on a given core cannot exceed the number
of accesses of that type in the contender itself.∑

i:τj∈1i(Ts)

atj.i ≤ atj (9)

In its dual formulation, the number of paired accesses of a
given type and triggered by the set of overlapping contender
tasks on a given processor, is bounded by the overall number
of accesses of any type in the interfered task (τi):∑

τj∈1i(Ts)

atj.i ≤ ai (10)

It is worth noting that a necessary conservative assumption
in the analysis of the WCD at task level is to assume that
the task under analysis always suffers the worst-case possible
contention. As a consequence, pairing in the presence of typed
accesses should conservatively pair those accesses that incur
higher-latency first (see Eq. 6, 10). However, we do not need to
model this constraint as the worst-case pairing (of a request of
type t) to each task request is already induced by maximizing
the overall makespan, as part of the objective function.

C. Modeling task overlapping

The ILP also needs a convenient definition of the overlap-
ping condition between tasks. For each scheduling interval, the
static schedule defines the set of tasks running on each core,
which in turn identifies the set of possible task overlappings.
At any instant, each task will only execute in parallel with
at most one task per contending core. Further, since tasks
follow statically-defined precedence constraints, only a subset
of overlappings are possible in practice.

The ILP formulation seeks the worst-case overlapping
among the feasible ones. In order to do so, we need to define
an overlapping condition. We formalize the negative sufficient
condition for task τj overlapping with τi as follows:

τj /∈ 1i(Ts) ⇐⇒ (ri + ei ≤ rj) ∨ (rj + ej ≤ ri) (11)

That is, τi ends in the worst case no later than τj release
instant or vice versa, as illustrated in Figure 2. We also observe
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Fig. 2: Non-overlapping tasks.

that Eq.11 is a reflexive relation, so that τj ∈ 1i(Ts) ⇐⇒
τi ∈ 1j(Ts′). Moreover, a task cannot overlap with tasks
mapped to the same core: τi ∈ Ts ⇒ 1i(Ts) = ∅.

The condition we need to model builds on integer variables
ei, ej and ri, rj that represent tasks’ inflated execution time
budget and release instant respectively. When overlapping oc-
curs, these absorb the contention effect on the tasks themselves
and their predecessors in the scheduling slot. In fact, the time
in isolation and the WCD will determine the budget allocated
to each task in the slot. Given a task τi and the triggering
time of its scheduling slot tMIF , we define a recursive relation
to compute the release time of a task, where pred(i) is the
predecessor of τi, executing right before τi on the same core.

ri =

{
tMIF if τi is the first task in its MIF
rpred(i) + epred(i) otherwise

Note that ei represents the execution time budget assigned to
τi to account for the WCD interference (i.e., ei = ci+∆i). The
interval ri + ei is thus irrevocably reserved for τi’s execution
(as per not work-conserving assumption).

However, it must be noted that both rx and ex are indeed
variables in the model: for a task under consideration, rx
indirectly models the contention delay incurred by the previous
tasks on the same core (as rn+1 = rn + en); ex instead
models the delay incurred by the task itself (ci+∆i). The ILP
evaluates every feasible overlapping scenario (as determined
by access pairing) under every feasible value of rx and ex,
(for both tasks τi and τj in Eq. 11), and chooses the values
that lead to the (cumulative) WCD for the core under analysis,
which does not necessarily correspond to the local task-to-task
worst-case delay.

The overlapping condition has to be linearized in order to
be included in the ILP model. In simpler cases, conditionals
are typically modeled using binary variables in combination
with boolean algebra. In our case, for each pair of potentially
overlapping tasks τi, τj we model the overlapping condition
by encoding a constraint on ∆j.i (equivalent to ∆i.j), which
is set to be nil when τj /∈ 1i(Ts) (and τi 7→ πs). To this
extent we used a pair of auxiliary boolean variables Bi,j , B′i,j
as well as a large-enough constant M , typically in the order
of hundred thousands.

We encode the overlapping condition as a pair of constraints
(one for each operand in the disjunction in Eq.11) as follows:

∆j.i ≤ 0 + M ∗ (1−Bi,j) (12)
∆j.i ≤ (ri + ci − rj) ∗max(ai, aj) ∗ lmax + M ∗Bi,j (13)

and

∆j.i ≤ 0 + M ∗ (1−B′
i,j) (14)

∆j.i ≤ (rj + cj − ri) ∗max(ai, aj) ∗ lmax + M ∗B′
i,j (15)

We show the correctness of the above formulation by cases,
focusing on the constraints modeling the first operand (Eq. 12-
13) as the same reasoning applies to the dual operand. We
recall that ri+ci−rj ≤ 0 meets the non-overlapping condition.

1) ri + ci − rj < 0: If τi and τj are not overlapping,
ri+ci−rj will take a negative value. Under all scenarios, the
ILP solver will strive to maximize the bounds on ∆j.i (i.e.,
having looser bounds). Therefore, for example, if ri+ci−rj <
0, the solver will set Bi,j = 1 (thus activating the big M ),
to avoid ∆j.i being upperbounded by a negative number in
Eq. 13. As a side effect, Eq. 12 will set ∆j.i ≤ 0, which is
exactly what we wanted to model.

2) ri + ci − rj = 0: In this case, the tasks are not
overlapping either. In fact, ∆j.i ≤ 0 for any choice of Bi,j .

3) ri+ci−rj > 0: In this case, tasks might be overlapping
(depending on the dual conditions in Eq. 14-15). The solver
will set Bi,j = 0, to avoid ∆j.i being upperbounded by
0 in Eq. 12. By setting Bi,j = 0, Eq. 13 will simply
bound the variable ∆j.i to a quantity that is in all cases
larger than the theoretical maximum contention delay. In
fact, a task cannot suffer more collisions than the number
of its requests (ai) or the requests from the contender (aj),
and for each colliding request it cannot incur an additional
latency larger than the maximum latency for any request type
(lmax). That is, ∆j.i ≤ x ∗ max(ai, aj) ∗ lmax is a tautol-
ogy for any value of x, and will be superseded (discarded)
by the constraints on access pairing.

VI. EXPERIMENTAL EVALUATION

Our experiments focus on evaluating the capabilities of our
approach to compute tight system-level WCD bounds. To this
extent, we assess our approach both analytically, against other
WCD computation approaches in the state of the art, and
empirically, on a real multicore COTS, reference platform
in the space domain. As part of the analytical assessment,
we compare the cumulative effect on the MIF makespan
of the WCDs computed using our ILP formulation, against
those obtained with comparable state-of-the-art approaches.
In fact, since our approach does not rely on any assumption
on the application semantics (e.g., separated memory and
computation phases) or specific support from the underlying
hardware or RTOS, we first assess it against approaches
with similar and comparable assumptions [46], [19], [40].
However, for the sake of completeness, we also consider a
more restrictive computational model where task’s execution
is divided into phases (e.g., [41], [40]), to assess the flexibility
of our technique to adapt to and support different scenarios.

We complement the evaluation with an empirical assess-
ment of our technique on a real target. Again, we focus on
the MIF-level timing behavior and compare the WCD-aware
timing budgets, computed with our method and comparable
approaches, against the maximum observed makespan.



A. Characterization of the evaluation platform

We assessed our technique on the Cobham-Gaisler LEON4
Next Generation Multicore Platform (NGMP) [5], a reference
multicore COTS platform in the space domain, frequently
adopted in European Space Agency (ESA) initiatives. The
NGMP was considered for both the instantiation of the ILP
model to a concrete platform and the empirical assessment of
the analytical WCD. The NGMP comprises 4 homogeneous
cores operating at 250MHz, with private, first-level instruction
and data caches. An Advanced Microcontroller Bus Archi-
tecture (AMBA) connects the four cores to a set-associative,
unified L2 cache, and to the main memory. The AMBA is
therefore the main source of contention in the considered
architecture. As a relevant attribute for the WCD modeling,
the AMBA implements a Round-Robin arbitration policy, and
requests block the execution until they are completely served.
In the considered configuration, the L2 cache is partitioned,
to avoid further, inordinate timing interference among tasks in
different cores. The data cache implements a write-through no
write allocate policy, while the L2 cache is write-back.

Different types of requests can go through the AMBA bus
to reach either the L2 or the main memory: L2 store hits
(s2h) and load (l2h) hits, L2 clean and dirty misses triggered
by load (l2mc, l2md) and store (s2mc, s2md) operations. We
assume that number and types of accesses can be derived either
by static analysis [43] or by collecting information from the
performance monitoring counters, as done in [18]. Each access
type is characterized by a worst-case latency. The considered
per-type latencies were retrieved from [20], [5] and empirically
verified by means of the Performance Monitoring Counters
(PMC) available on the target, and a set of specific micro-
benchmarks. Access types and worst-case latencies, inclusive
of low-level memory access delays, such as DRAM refreshes
and bank conflicts, are summarized in Table II.

B. Analytical evaluation of the WCD

The analytical evaluation aims at assessing the precision of
the ILP-based WCD computation against previous approaches.
The experiments consist in computing the WCD for a task
set and under a given contention scenario, and then consider
how the overall makespan may vary depending on the adopted
approach. The analysis is applied within the scope of one core
(the analysis has to be applied to each core separately) and
a single scheduling slot (MIF) as it is at its boundaries that
timing budgets must be enforced. The analysis can be straight-
forwardly extended to fit the hyperperiod (MAF) boundaries
by applying it to each MIF individually.

Experiments were performed on a large number of synthetic
tasks sets, with various overall utilizations, assuming a fixed
scheduling slot of 100 milliseconds, which is a representative
value for statically scheduled systems [33]. Any other slot
size can be considered. Task sets were randomly generated
using the UUniFast algorithm [12], filtering out task sets with
no overlapping. In particular, we generated 4,000 task sets
for each utilization threshold in the range [0.1, 1] with 0.05
steps, for a total of 76,000 task sets. On average, each task

TABLE II: Worst la-
tency per access

Operation Latency
s2h 1
l2h 8

l2mc, s2mc 28
l2md, s2md 31

TABLE III: Categories created from
per-access profiles

Profile Description
CPU ≤ 75 APKI, ≤ 1 MPKI
BUS > 75 APKI, ≤ 1 MPKI
MEM ≤ 75 APKI, > 1 MPKI
B+M > 75 APKI, > 1 MPKI

set consisted of 32 tasks. An experiment entails a task set to
be allocated to each core, to be later run under contention
in this particular scenario. Experiments were executed on a
cluster with 2x Intel Xeon E5-2630L v4 running at 2.2GHz,
with 128GB of RAM memory. ILP-WCD took only 2 minutes
in the average case to compute the cumulative WCD for a
given core, using the IBM CPLEX solver [17]. As part of the
evaluation, we developed a set of python scripts supporting a
fully automated experimental process covering the generation
of the task sets, formatting them into the ILP formulation
inputs, and calling the external ILP solver to compute the
WCD. The tool is highly adaptable to allow the definition of
flexible ILP models, with respect to scheduling assumptions,
request types and latencies, and to interface with most popular
ILP solvers. The toolset can run experiments in batches.

From the standpoint of inter-core interference, the amount of
bus activity performed by an application is a critical aspect of
the problem. To warrant a fair evaluation, we focused on few
representative access profiles, based on the memory access and
cache statistics of benchmarks in the EEMBC [42] and media-
bench [32] suites. We characterize four representative profiles
based on the performed number of memory accesses and L2
misses per kilo (thousand) instructions, which we abbreviate
into APKI and MPKI respectively, as summarized in Table IV.
Profiles range from the CPU-bound profile (CPU), relatively
robust in terms of contention, to the BUS- and MEM-bound
profile (B+M), which instead is prone to consistent contention
effects. Task accesses/misses are determined proportionally to
the number of instructions in the task itself.

The ILP model is then populated with the data from the task
specification and access profiles and experiments are repeated
for all access profiles. For a given utilization threshold, each
experiment consists in selecting one task set per core: one as
the focus of the analysis, whereas the others are assumed to
be mapped to the contender cores. We compared the original
task set makespan against the one obtained by factoring in the
WCD for each task in the set. In particular, we determine
the ratio of task sets whose makespan does not overrun
the slot boundaries after accounting for the WCD, thus not
resulting in an unfeasible schedule. The tighter the WCD
bounds the smaller the increase in the makespan and the
lower the probability of overruns. We compare our solution
against similar approaches in the state-of-the-art, as will be
detailed in the description of the individual experiments. Each
experiment is specifically designed to underline an aspect that
differentiates our proposed approach from the state-of-the-art.

1) Focusing on system-level bounds: Our ILP-based WCD
formulation proceeds by pairing accesses at system-level,
across job boundaries, by considering the sequence of tasks
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Fig. 3: ILP-WCD vs task-level interference (ILP-STL).

executing in a core. This allows capturing the core-to-core
pairing constraints we introduced in Section V-B2. Mainly,
the model benefits from the fact that we are preventing the
accesses of a task to interfere with more than one access
on the same interfered core (it can be paired with at most
one access per core). To evaluate this aspect, we compare our
ILP approach, which we call ILP-WCD, against the baseline
approach presented in [46], which instead operates exclusively
at task level, without considering the actual contender tasks.
The approach in [46] considers task-level constraints, linking
the maximum suffered contention to the number of issued
requests. However, all tasks running on contender cores are
assumed to be always potential contenders, regardless of the
concrete task overlapping. To perform our evaluation, we
adapted our ILP model to mimic [46] in our particular setting
by disregarding task overlapping and core-to-core constraints.
We refer to the implemented technique as ILP single-task-
level (ILP-STL), as it exploits detailed information on the task
under analysis but uses only core-level cumulative information
on the interfering tasks. To isolate the effect of not considering
overlapping, we slightly diverged from [46] by making ILP-
STL capable of discriminating between request types.

We assess both approaches based on the ratio of task
sets whose timing requirement stays within the schedule slot
when the WCD is added to their execution time bounds in
isolation. Figure 3 shows the ratio of schedules that stay
feasible for each utilization threshold, and all workload types
(CPU, BUS, MEM, and B+M). Each sample consisted in
applying the WCD analysis to 1,000 randomly generated task
sets. It is worth noting that utilization threshold refers to the
ratio between slot size and tasks WCET in isolation, i.e., not
factoring in multicore contention. As a result, as the pressure
on the shared resources increases – which mainly happens
for MEM and B+M workloads – the resulting multicore CPU
utilization goes beyond 100% (at core level) simply making
the task set not schedulable any more.

We observe that ILP-WCD consistently surpasses ILP-STL,
achieving good success rates across all utilizations. In fact,
the drop in success ratio (‘knee’ in the figure) for ILP-
STL occurs, across all workloads, in the utilization range
[0.15−0.25], compared to [0.35−0.85] for ILP-WCD. In terms

TABLE IV: Assessment of WCD computation methods.
CPU BUS MEM BUS+MEM

IL
P-

ST
L MAX 2,535233001 4,924514214 4,956007407 6,999572144

MIN 1,898782342 1,666684591 1,734024544 1,451548745
AVG 2,149146167 2,331153634 2,679636015 2,982557487

StdDev 0.082178947 0.209694737 0.310715789 0.569968421

IL
P-

1R
T MAX 4,531218917 8,151250861 3,352102488 5,791334261

MIN 1,181862802 1,216282028 1,203235147 1,300552258
AVG 2,844155223 4,548735984 2,052623178 2,347722482

StdDev 0.437821053 0.907668421 0.307968421 0.455689474

of workloads, as the pressure on the shared resources increases
(from CPU to B+M), all approaches suffer a proportional
reduction in the feasibility ratio, with ILP-WCD still improving
over ILP-STL.

Table IV provides further insight into the assessment of ILP-
STL across utilization threshold, reporting maximum, mini-
mum, average difference and standard deviation, normalized
to ILP-WCD results. While maxima essentially confirm the
sensitivity of ILP-STL to all types of requests, minimum values
exhibit bounds that are closer to those computed with our
method. This arguably happens when the task under analysis
is CPU-bound. The very low standard deviation indicates that
values are, in general, very close to the average case, thus at
around 2.15x slowdown for ILP-STL w.r.t. ILP-WCD.

The pessimism of ILP-STL when compared to ILP-WCD
stems from the fact that the latter works at MIF (makespan)
level, preventing that a given request from the same contender
core is paired more than once with accesses from the task
(and core) under analysis. Instead, ILP-STL suffers from two
main drawbacks: first, the approach considers all tasks in
the contender core as potentially overlapping; and, second, it
works at task level not keeping track of which requests from a
given task have been already paired. As a result, in the worst
case, one request of a task in the core under analysis can be
paired up to K times, where K is the number of tasks in all
the contender cores.

In contrast with ILP-WCD, the ILP-STL approach is not
placing any constraint on overlapping nor on requests map-
ping. Indeed, assuming all tasks in the contender cores to be
running in parallel with the task under analysis overturns Eq. 8:∑

τj∈1i(Ts)

aj.i > ai

This causes ILP-STL to assume ai conflicts with way more
accesses than practically possible, which in turns entails a
notable increase in pessimism in the WCD computation.

2) Supporting single or multiple access types: Another
interesting characteristic of ILP-WCD is that it captures the
fact that the latency incurred by a conflicting access typically
varies, even within the same resource, as it depends on the
type of the interfering request. Our solution considers several
request types and their associated latencies, as can be observed
in all typed constraints in Section V. To evaluate this aspect,
we compare our approach against the technique presented
in [19], which improves over [46] by considering information
on both, interfering and interfered tasks, but (i) fails to account
for accurate access pairing; and (ii) does not consider that
interconnects typically exhibit variable latencies, depending on
access types. The approach in [19], still focused on task level,
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Fig. 4: ILP-WCD vs. single access type (ILP-1RT).

allows one access to conflict at the same time with accesses
from different tasks on the same core. Further, it assumes
a single request type, which is equivalent to assuming that
all requests incur the highest (worst) latency. To conduct the
evaluation, we modeled the ILP to mimic [19]. We refer to
this technique as ILP with one-request-type (ILP-1RT).

Again, we evaluate the ratio of task sets whose timing
requirements do not exceed the schedule slot when the WCD
is accounted for. Figure 4 shows the feasibility ratio obtained
for ILP-WCD and ILP-1RT for workload types and utilization
thresholds. As expected, our ILP-WCD model outperforms
ILP-1RT across all workload types and utilizations. The gap
between the two curves identifies the increase in pessimism
incurred by ILP-1RT with respect to ILP-WCD. Interestingly,
the pessimism gap between ILP-1RT and ILP-WCD is more
sensitive to the number of bus requests rather than memory
ones. This is explained by the fact that each request is assumed
to take the longest latency: for bus requests, either loads or
stores, that reach L2 but do not miss in the cache (hence not
contributing to the MPKI), the incurred pessimism is larger
than that associated to actual memory requests. The worst-
case latency lmax in our platform is 31, which corresponds to
the latency incurred in case of dirty L2 cache misses (either
loads or stores). We can compare the overestimation incurred
by each bus request as follows. For stores hits (s2h), the
pessimism added is lmax−ls2h = 31−1 = 30 cycles, whereas
for loads hits it results in lmax− ll2h = 31−8 = 23 cycles.
Instead, ILP-1RT incurs notably less pessimism for L2 clean
misses, where lmax−ls2mc = 31−28 = 3 (the same holds for
ll2mc). Finally, no additional pessimism is introduced on dirty
misses, as ls2md= ll2md= lmax. This behavior can be observed
comparing Figure 4(b) for BUS and Figure 4(c) for MEM. In
the former, tasks trigger a larger amount of bus requests than
in the latter, resulting in reduced feasibility ratio for ILP-1RT.

As reported in Table IV, the WCD computed with ILP-
1RT is in the best case quite close to those computed with
ILP-WCD (just 1.3x in the worst-case contention scenario
BUS+MEM). Maxima confirm the sensitivity of ILP-1RT to
bus requests rather than memory ones, producing 4 times
worse contention bounds then ILP-WCD. Although the dif-
ference between the maximum and minimum is large, the
relatively low standard deviation indicates that values are

(a) CPU (d) B+M
Fig. 5: Comparison of ILP-WCD and ILP-ECE.

generally close to the average case, i.e., 2.84x slowdown of
ILP-1RT w.r.t. ILP-WCD.

The ILP-1RT, while improving over ILP-STL by consider-
ing task overlapping, still fails in placing any constraint on
requests mapping, and does not distinguish between access
types. Indeed, the final effect, despite a reduced set 1i(Ts),
is that Eq. 8 gets (again) often overturned, with similar neg-
ative effects than in ILP-STL. In addition, ILP-1RT does not
distinguish between access types. The amount of pessimism
stemming from this limitation is platform dependent. In our
case, this is equivalent to assume that all requests take 31
cycles, as shown in Table II.

C. Supporting multiple execution phases

We further extended our evaluation by considering the
flexibility of ILP-WCD by extending the underlying model to
represent execution phases within tasks. Several studies [41],
[40], [6], [11], [13] assume an application semantics that
clearly separates phases dedicated to data exchange (E) (usu-
ally from/to a local on-chip memory) from phases devoted to
pure computation (C). Phases are usually exploited to devise
scheduling solutions [40], [6], [11], [13] aiming at conflict
avoidance, but they also naturally constrain the possible task
overlappings and, hence, access pairing. While we are not
interested in imposing restrictions, we are interested in evalu-
ating the potential WCD reduction that can be achieved under
a favorable – and more constrictive – computation model and
scenario, where additional details are available.

We compare the baseline ILP-WCD against its adaptation
that supports a scenario where tasks are split into three phases:
a relatively large C phase is preceded and followed by E
phases, with accesses to shared resources exclusively occurring
during the latter. We assume a uniform and fixed duration
of each phase in the proportion of 20% and 60% of the
task execution budget, for the E phases and the C phase
respectively. Tasks carry out half of their accesses in each E
phase. We restricted our evaluation to the workloads with the
highest and lowest pressure on shared resources, i.e., B+M
and CPU respectively. Figure 5 compares the success ratio
of ILP-WCD and ILP-ECE. As expected, ILP-ECE always
outperforms ILP-WCD. The WCD reduction is entirely as-
cribable to the restrictive assumptions on access distribution.
The separation into phases rules out several pairing scenarios
that are instead necessarily considered in ILP-WCD, leading
to better results. However, the ECE execution model requires
changes to the application, and it is hard to apply on cache-
based systems, where accesses to the bus cannot be scheduled
at will. In any case, our ILP formulation also supports it.



For the particular workloads and setup in this experiment,
we see that the improvement of ILP-ECE over ILP-WCD is
considerably larger under the B+M workload. This is in line
with the characterization of the workloads: B+M is meant to
incur the highest contention effects, and the advantage it takes
from the ECE setting is proportional to the number of accesses.

D. Empirical evaluation on COTS hardware

We also performed a set of experiments to observe the effect
of contention on real tasks executing on top of an NGMP
target. These experiments aimed at providing a comparative
assessment of our ILP model against Maximum Observed
Contention Delays (MOCD). It is worth noting that the MOCD
is not representative of the worst-case scenario, as it is not
possible to control the experiments to incur the worst-case
overlapping of bus requests. The ILP-WCD, instead, captures
the possibility of the worst-case overlapping to occur.

An automatic code generator was used to generate a set
of C dummy functions, mimicking the access profile of a
number of randomly-generated tasks. These functions have
been subsequently serialized in a single sequence (to sim-
ulate the behavior of a SCADE static schedule) totaling a
cumulative utilization of approx. 50ms. In order to stress our
model, we created four task sets with high contention profiles,
corresponding to the BUS and B+M workloads. We executed
them concurrently on the four NGMP cores and collected
1,000 runs, to capture small variations in the alignment of
requests. The PMC on the NGMP were used to track the
execution time in isolation (corresponding to the makespan) of
those aggregated functions, as well as the number of AMBA
requests issued per type. The collected profile information
was used to compute the analytical WCD according to the
different methods. The same function aggregation is finally
executed against other function aggregations in the other cores,
to collect the Maximum Observed Execution Time (MOET)
under contention, inclusive of the MOCD.

Figure 6 compares the average (coefficient of variation less
than 0.3%) MOET under contention against the execution
time in isolation, inflated by the analytical WCD computed
according to ILP-WCD, ILP-1RT and ILP-STL. Results are
normalized to the MOET under contention. As can be ob-
served, ILP-WCD provides the most realistic (tighter) WCD
bounds. Despite the conservative assumptions, the obtained
timing bound (i.e., accounting for the WCD) was approxi-
mately only 2 to 2.5 times the MOET under contention, which
we know is typically very optimistic. More pessimistic bounds
were obtained with the ILP-1RT and ILP-STL approaches. The
observed behavior is in line with the evidence from analytical
assessment, with ILP-STL exhibiting larger pessimism due to
high MPKI in the task sets. In particular, the experiments
confirm that ILP-STL behaves better when applied to the task
set running in core π3 as it is characterized by smaller MPKI,
while ILP-STL is better performing with the task set in core
π4 showing a smaller APKI. Finally, as expected, ILP-ECE
always outperforms ILP-WCD (but still upper-bounding the
MOET), owing to the more favorable computation model.

Fig. 6: Empirical assessment on the NGMP target.

E. Computational complexity and scalability considerations

Our method computes the WCD incurred by a set of tasks
on a given core and within a given interval (e.g., MIF). As
a matter of fact, it is not possible to compute the WCD for
all cores at the same time. Assuming two cores π1 and π2,
the particular request alignment that makes π2 to cause the
WCD on π1 is not necessarily – and is normally not – the one
leading to the WCD for π2 itself. The overall complexity of
the approach is thus linear on the number of cores, intervals in
the system and tasks in those intervals, that is O(|Π| × |Π| ×
#MIF × |T |).

However, the cost of solving a single instance of the ILP
problem – O(|Π| × |T |) – is quite modest in practice. In
our evaluation, with interval size and number of tasks in
line with typical IMA applications [33] (100ms MIFs and
averaging 32 tasks per MIF), the CPLEX solver [17] took
just 2 minutes on average to find an optimal solution for
single ILP-WCD instances. Moreover, each ILP-WCD instance
is completely independent from the other instances, which
enables massive parallelization of the computation. Finally,
while our evaluation is limited to a 4-cores scenario, we
observe that larger number of cores are typically deployed
with some form of clustering/segregation, which will limit the
scope of the ILP and prevent serious scalability issues.

VII. CONCLUSIONS

The way multiple tasks running in a multicore overlap in
time has a key effect on the contention they suffer in the
access to shared hardware resources. Reciprocally, the latter
changes tasks makespan and hence, affects tasks overlapping
in time. In this paper, we study the circular dependence
between these factors and propose an ILP formulation (ILP-
WCD) for the computation of tight worst-case contention
delay for all tasks. In the context of statically scheduled
multicore systems, and in particular of a multicore instance
of an ARINC-like system, we have shown that the ability of
ILP-WCD to operate at core level, on the entire scheduling
makespan, allows to outperform other techniques that restrict
WCD computation to the task level. Lower WCD bounds can
only be obtained by leveraging more restrictive computation
models, which are hardly available in general. As a by-product
of our evaluation, we also demonstrated the flexibility of ILP-
WCD, which has been successfully adapted to model different
WCD assumptions and scenarios.
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