
Safety-Related Challenges

and Opportunities for GPUs

in the Automotive Domain

GPUs have been shown to cover the computing

performance needs of autonomous driving (AD)

systems. However, since the GPUs used for AD build

on designs for the mainstream market, they may lack

fundamental properties for correct operation under

automotive’s safety regulations. In this paper, we

analyze some of the main challenges in hardware

and software design to embrace GPUs as the

reference computing solution for AD, with emphasis

in ISO 26262 functional safety requirements.

INTRODUCTION

High-performance embedded systems are increasingly used in critical domains such as transpor-

tation (road vehicles, airplanes, trains), industrial machinery, health devices and satellites. Engi-

neers of Critical Real-Time Embedded Systems (CRTES) develop products following commonly

accepted best practices and, in the case of safety-critical systems, showing compliance with legal

directives is mandatory before they are allowed to operate. This requires going through a certifi-

cation process as defined by applicable safety standards, e.g., ISO 26262 1 for road vehicles.

The increasing use of ‘smart’ software functionalities as the main competitive factor in CRTES is

relentless. In automotive, the main software functionality relates to driving automation, whose

potential benefits range from the reduction of accidents and the CO2 footprint to increasing peo-

ple’s quality of life by reducing the time they spend driving. These benefits have boosted the trend

towards full automation with most mid- and high-end cars already featuring some Advanced

Driver Assistance Systems (ADAS) and the first Autonomous Driving (AD) Level 3 car already

in mass production (the Audi A8). Note that there are five Autonomous Driving Levels from 0, or

no automation, to level 5: fully automation in which driving is automatically handled in (all) sce-

narios as complex as those as human drivers can encounter on the roads.

AD functionality can be broadly classified into the perception of the environment surrounding the

vehicle, localization to estimate vehicle’s position, planning the vehicle trajectory, and controlling

vehicle actuators. Perception, the most compute intensive module, builds on object detection and

tracking. In the past few years, impressive improvements in machine learning (ML) techniques,

e.g. Deep Neural Networks (DNNs), have dramatically changed state-of-the-art algorithms for

perception by achieving significantly higher accuracy. This has made ML-based perception tech-

niques the preferred solution in industry. The other side of the coin is that ML techniques carry

unprecedented performance demands in automotive. The performance requirements of ADAS

alone are projected to increase by 100x from 2016 to 2024 2.

Sergi Alcaide

Universitat Politècnica de Catalunya

Barcelona Supercomputing Center (BSC)

Leonidas Kosmidis

Barcelona Supercomputing Center (BSC)

Hamid Tabani

Barcelona Supercomputing Center (BSC)

Carles Hernandez

Barcelona Supercomputing Center (BSC)

Jaume Abella

Barcelona Supercomputing Center (BSC)

Francisco J. Cazorla

Barcelona Supercomputing Center (BSC)

IIIA-CSIC

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works

Initial research studies 3 and performance data from chip vendors show the effectiveness of GPUs

to accelerate ML-based libraries for AD. This has attracted the attention of car manufacturers who

have started analyzing GPU’s potential to cover AD’s performance requirements.

Since high-end GPUs targeting AD systems build on designs for the mainstream market, they may

find some difficulties to adapt to automotive’s specific requirements. In this paper, we analyze

some of the main challenges that GPUs, and the software running on them, will face providing

safety assurance in accordance with ISO 26262 functional-safety standard. We also cover other

relevant challenges such as time predictability. Specifically, the main contributions of this work

are:

1. At the hardware level, harsh operation conditions (e.g., extreme temperatures) makes

GPUs more vulnerable to random hardware faults. Resorting to ISO 26262 standard so-

lutions such as diversity and redundancy has to be done cautiously in GPUs. For in-

stance, while GPUs naturally offer redundancy sources, they must be carefully exploited

to preserve high performance and prevent a single fault from becoming a common cause

failure in all redundant instances, which could lead the system to a hazardous situation.

2. At the software level, we identify these challenges.

 The AD builds on generic, i.e., non-automotive specific, ML libraries. This allows car

makers to enjoy the improved functionality (e.g., higher object detection accuracy) of the

latest available generic ML libraries, which see a new release every few months. How-

ever, their generality increases the probability that the libraries implement hard-to-vali-

date features, increasing the effort to assess libraries’ adherence to ISO 26262 guidelines

on software coding and development. As an illustrative example, our results with YOLO

v3, a state-of-the-art object detector system, show that the code coverage achieved, a basic

software unit structural coverage metric, is well below the 100% needed in ISO 26262.

 For performance-improving reasons, ML libraries build on low-level GPU-optimized li-

braries such as cuDNN. The black-box, i.e., closed-source, nature of these libraries, how-

ever, challenges assessing their adherence to ISO 26262 guidelines for software. This

requires library owners to undergo the certification process or the use of open-source li-

braries that provide similar performance to their closed-source counterparts, so that end

users take care of its certification. In either the case, changes to simplify validation and

verification can reduce efficiency and result in the creation of ISO 26262-specific

branches of the libraries.

 Languages to program GPUs make use of features that hamper software (code) verifica-

tion activities that already amount for most of the total development effort for the highest

safety levels (ASIL D). As illustrative examples, we discuss two well-known features:

the use of pointers (that must be prevented) and the use of defensive programming to

prevent systematic software faults (that must be favored). We show that ISO 26262-aware

programming languages prevent (favor) some of those undesired (desired) features while

maintaining GPU’s performance benefits.

3. Time predictability,4 a fundamental requirement of CRTES, is another relevant chal-

lenge in GPUs since it is hard to achieve on (complex) high-performance hardware like

GPUs. To address this challenge, we advocate for hardware support to increase observ-

ability as a necessary element to obtain evidence of the correctness of the derived Worst-

Case Execution Time (WCET) estimates. Further, it is required to analyze those ele-

ments in DNN codes negatively affecting predictability, which have only been

superficially explored so far.

Overall, while adherence to ISO 26262, already achieved for ADAS, is challenged by AD. Under

ADAS, the computing system acts as a fail-safe system and in case of misbehavior, it returns the

control to the driver. However, AD makes some systems fail-operational preventing the control to

be returned to the driver. This has onerous consequences on the safety solutions adopted to guar-

antee that the system remains operational upon a fault (aka fault-tolerant).

Recently, the NVIDIA Xavier has been announced as an ISO 26262-capable GPU-based SoC for

AD. While detailed technical specifications on how this SoC achieves fail-operational capabilities

are not yet available, achieving ISO 26262 compliance requires appropriate redundancy and di-

versity strategies. To our understanding, in the NVIDIA platform, this is achieved with a non-

negligible amount of replication of functionalities (e.g. using GPUs and Deep Learning Accelera-

tors), which may significantly increase V&V costs due to the use of two different software and

hardware implementations, or may lead to inefficient solutions since execution time will be

dominated by the slowest implementation. In general, it remains unclear to what extent AD sys-

tems can be efficiently deployed and validated in a cost-effective manner on an AD-capable SoC.

In this paper, we analyze some of the most relevant challenges related to this matter.

BACKGROUND ON SAFETY AND AD SOFTWARE

Hardware accelerators can provide the computing performance required to execute in real-time

artificial intelligence applications, making them central elements to enable AD in automotive.

GPUs, in particular, are already on the roadmap of many car manufactures to cover the perfor-

mance needs of AD. Yet, several fundamental questions remain unanswered on how GPUs will

cover other functional and non-functional requirements of safety-critical systems.

The automotive functional safety standard ISO 26262, defines 4 Automotive Safety Integrity Lev-

els (ASIL) varying from ASIL-A (lowest criticality) to ASIL-D (highest criticality). Besides, the

Quality Management (QM) category covers those components that cannot cause safety risks upon

a failure.

Certification requires evidence that the risk of systematic failures is residual and that failures due

to random hardware faults do not exceed specific probability bounds. In general, the higher the

criticality, the more evidence required to show compliance with safety requirements, and the lower

the probability bounds. Also, whether the system is fail-safe (i.e., the system can reach a safe state

upon a failure) or fail-operational (i.e., the system must remain operational, independently of the

presence of a failure) plays a key role defining the mitigation techniques needed to meet those

failure probability bounds.

ASIL allocation. Functional safety conformance requires identifying the safety goals of the system.

Those goals are subsequently mapped into safety requirements that are propagated to components

as the system is decomposed until reaching atomic software and hardware components, which are

finally implemented and integrated. The higher the severity and exposure to hazards, and the lower

the controllability, the higher the ASIL allocated to the component. As an example, in general,

most systems related to steering and braking are ASIL D, and hence, AD operation must also

adhere to ASIL D certification.

Redundancy and diversity. Under ISO 26262 ASIL C/D – as required by AD systems – can be

achieved by means of redundant and diverse implementations. This requires setting up redundant

instances of an item such that they are not subject to common cause failures. Diversity can be

achieved in multiple ways. For instance, one may set up different systems performing the same

functionality (e.g., one based on lidar and another based on a camera), or the very same system

may be replicated introducing diversity at lower levels (e.g., different software implementations,

staggered execution).

SAFETY ASSURANCE: IMPACT ON HARDWARE

A. ASIL Decomposition

Traditionally, automotive systems have been considered fail-safe, which requires simpler

measures to guarantee adherence to ISO 26262, such as returning the control to the driver. How-

ever, the transition to fail-operational systems driven by level-5 AD significantly complicates

achieving functional safety and hampers some forms of ASIL decomposition that were tradition-

ally employed to save development costs.

ASIL decomposition is used (i) to implement high-ASIL components with redundant and

sufficiently independent lower-ASIL components (see top example in Figure 1 in which two ASIL

B components can be used to reach ASIL D) and (ii) to allow a subset of the components preserve

safety, thus remaining at the corresponding ASIL level, whereas others are regarded as Quality

Managed (QM) since, on a failure, ASIL components will detect it and keep the system safe. Such

decomposition is often used to keep monitoring functionalities at the corresponding ASIL level

(e.g., ASIL D in the bottom example in Figure 1), whereas computation components are regarded

as QM. On a failure of the QM component, the monitoring one detects it and moves the system to

a safe state, thus impacting availability but not safety. Whether faults occur often is, therefore, a

matter of availability and so, business, but functional safety is preserved.

Figure 1. Examples of ASIL decomposition and appropriateness for fail-safe and fail-operational
systems.

In AD, since some ASIL C/D functionalities are fail-operational (e.g., those related to braking and

steering), the components implementing such functionality must achieve the corresponding ASIL,

and ASIL decomposition cannot be applied to keep those items as QM since a safe state may not

exist at all. Hence, some form of fault tolerance must be incorporated to keep the system opera-

tional despite faults.

B. Redundancy and Diversity

GPUs naturally offer lots of hardware redundancy that can be exploited to implement diversity

solutions. However, for IP confidentiality reasons, some GPU’s internal behaviors (e.g., resource

allocation) are managed automatically by hardware, i.e., in a black box manner. Unfortunately,

this practice clashes with guaranteeing diversity, since low-level management of the resources

from software may be needed.

Yet, it is in our view that those issues are not roadblocks for the use of GPUs for AD in the auto-

motive domain. That is, the type of homogeneous hardware redundancy offered by GPUs can be

made compatible with automotive needs, similar to the case for homogeneous cores operating in

lockstep mode. For instance, identical cores, despite being homogeneous in terms of front-end

design, provide diversity by several means like operating with some time shift so that activities

carried out at any given time differ across cores and hence, upon a fault affecting both cores, the

effect is necessarily different and thus, errors can be detected timely. Another diversity technique

usually employed in lockstep cores is the use of layout diversity. Similar approaches can be ena-

bled on top of GPUs as long as common cause failures are avoided by construction by, for instance,

using similar concepts as for cores (e.g. allocating separate sets of resources to each redundant

thread and operating with some time shift). Also, GPU architectures may evolve and match ISO

26262 requirements in the future since modifications will likely have a roughly negligible impact

in cost and performance, and GPU vendors like NVIDIA already acknowledge the need for ISO

26262 compliance 5.

Example: A typical example of redundancy in the context of ISO 26262 is lockstep execution

which, in the case of Infineon AURIX processors (e.g., TC29x processor family) is performed

with staggered execution so that a given fault does not cause the same faulty output on both in-

stances. However, regular lockstep designs cannot provide fail-operational levels. For instance,

regular lockstep systems (referred to as 1oo2, meaning one out of two) rely on the fact that, on a

fault, it will be detected by comparing the output of both items, which will differ. In fact, such

output can be faulty for both items but, as long as it differs due to some source of diversity (e.g.,

staggered operation), it guarantees fault detection. Unfortunately, fail-operational systems can

only build upon 1oo2 implementations when fault detection is guaranteed and either (1) one of the

items is necessarily non-faulty, and the non-faulty item can be identified so that regular operation

can be preserved; or (2) on a fault, the functionality can be re-executed correctly before causing a

hazard, which however, is a complex process. Hence, reaching efficient ASIL C/D for fail-opera-

tional systems remains as an open challenge for the automotive industry, which might require 2oo3

redundancy, plus some form of voting scheme to keep the system fault-tolerant.

Summary: GPUs massive parallelism allows supporting NooM (where N < M) redundancy. How-

ever, two key open challenges remain. First, guaranteeing diversity by avoiding common cause

failures. And second, excessive use of 1oo2 (or 2oo3) may result in unaffordable procurement and

energy costs, which calls for providing efficient NooM redundancy solutions.

C. Ability to Operate in Harsh Environments

Hardware qualified for automotive use needs to have an operating temperature that ranges between

-40 ºC and 150 ºC for the highest criticality (Grade 0 Automotive Electronics) and increased reli-

ability requirements for soft errors. While those operation conditions are much more challenging

than those for server or office electronic equipment, they are affordable for GPUs by employing

appropriate circuit designs such as larger transistors and wider wires. However, those design prac-

tices may cause some performance degradation due to the use of slower circuits, which may also

consume more power. Still, in our view, suitable tradeoffs can be found.

SAFETY ASSURANCE: IMPACT ON SOFTWARE

A. Coding Standard and Architectural Design

Critical software across all sectors needs to comply with coding and development guidelines, in

order to facilitate its validation and certification against the standards of the particular domain. In

automotive, ISO 26262, for instance, recommends the limited use of certain features that compli-

cate the certification of software applications such as pointers and dynamic memory allocation. It

also encourages the use of safe language subsets to limit the use of error-prone language features.

For instance, MISRA C is a subset of the C language that defines a set of rules that can be statically

checked by commercial tools and therefore enforce their use. Besides coding standards, ISO 26262

defines (i) requirements on the architecture of critical software that must exhibit properties such

as modularity, encapsulation and minimal complexity; (ii) verification methods of the safety re-

quirements including source code review (walk-through and inspection) and source code analysis

(control flow, data flow, static code); and testing methods – used to verify software and ascertain

its quality. For instance, at the unit testing level, ISO 26262 requires structural code coverage such

as statement and branch coverage.

GPU software is based on low-end C-like APIs like CUDA and OpenCL, which bring some chal-

lenges to show adherence to ISO 26262. These challenges include the following:

Use of Pointers. CUDA and OpenCL programs use pointers as an indispensable feature of their

programming model, since the programmer has to explicitly allocate and maintain two separate

sets of pointers, one for the host memory and one for the device memory. Moreover, the program-

mer also has the responsibility to perform memory transfers between these two memory spaces.

Note that recent versions of both CUDA (6 and later) and OpenCL (2.0) provide two equivalent

features called Unified Virtual Memory and Shared Virtual Memory respectively. These features

simplify the programmability and enhance productivity by taking care of the transfers implicitly,

providing the user with the abstraction of a single address space. However, they might incur a

performance penalty while introducing another black-box in the timing and functional behavior,

which complicates the certification of the system as we discuss in the following Section. Moreo-

ver, even with these features, pointers are still present in the programing model.

Brook is a stream-programming language targeting GPUs. In the same way, MISRA C constraints

C, Brook Auto 6 defines a subset of Brook rules that are certification friendly, without limiting the

expressiveness of the language. For instance, Brook Auto does not expose pointers to the program-

mer, and takes care of those tasks automatically, reducing the possibility of human errors.

Example: Figure 2 (left) shows an illustrative example of Brook Auto that highlights some of its

benefits. The sample program launches a GPU kernel that operates on two input data vectors

(streams in Brook terminology) and generates its result in a third data vector. In the program that

calls the kernel, there are two versions of each vector required, one for the host (suffixed “ h”) and

one for the device (suffixed “ d”), shown in the lines 14 and 15 respectively. The same code written

in CUDA, see Figure 2 (right), shows that pointers are required both in the GPU, for passing data

in the kernel (line 1), as well as on the host side for allocating memory (lines 14-16) and manage

the transfers between host and GPU buffers (lines 18-19 and 21). Note that the OpenCL version

of the code has the same characteristics as CUDA, but it is more verbose. Therefore it is omitted

for clarity. Brook uses statically defined streams that prevent explicit memory allocations

(cudaMalloc) and low-level memory management, which could result in programming mistakes

due to wrongly supplied size parameters or memory exhaustion. Streams cannot be directly ac-

cessed (e.g., indexed) from the host side, since this would result in a compilation error and they

can only be accessed using certain API calls (streamRead and streamWrite) to copy data from and

to host buffers. Stream size is integrated within these calls, preventing out of bounds accesses from

the host side.

Figure 2. Same code programmed with Brook Auto (left) and CUDA (right)

From the kernel side, streams can be accessed in two ways. Regular streams in which each GPU

thread accesses its corresponding element in the array, declared as ‘<>’ and gather streams, which

are declared with ‘[]’. In the former case, Brook Auto takes care of accessing the correct element,

while in the latter it suppresses potentially illegal out of bound accesses ensuring fault isolation.

Other Dynamic Features. Brook Auto also restricts dynamic language features that can lead to

deadlocks or complicate the WCET analysis of the software. For example, notice that the kernel

in the Brook Auto example contains an extra defensive-programming condition in the loop (line

6). This condition restricts the number of iterations of the kernel to a statically defined upper bound

limit, although the main loop condition is input dependent. The absence of such a statically com-

puted condition would result in a compilation failure, thus enforcing this rule. On the contrary, the

CUDA version is unprotected of this type of programming risks, which complicate GPU software

certification with ISO 26262.

B. Generic ML and Black-Box CUDA Libraries

Generic ML Libraries. The dramatic increase in ML usage in a variety of domains makes that

leading artificial intelligence companies provide several widely-used frameworks and highly op-

timized libraries to facilitate and make better use of available platforms and architectures 7. Like

in many other areas, state-of-the-art AD systems strongly rely on these libraries and use them

extensively. However, not only the algorithms but also these frameworks and libraries are quite

generic, designed based on totally different objectives to those of CRTES in general and AD par-

ticular, which challenges providing evidence that software achieves its safety requirements. In

fact, to our knowledge, no study has been carried out on the adherence of those libraries to ISO

26262 software requirements.

Example. As an illustrative example, we focus on statement coverage, a basic structural coverage

metric at the software unit level. In particular, we run the YOLO v3, which is a state-of-the-art

object detector widely used in real AD systems comprising more than 20 functions. We run several

real-scenario tests and measure simple statement and branch coverage using RapiCover low-over-

head coverage analysis tool 8. The former captures the fraction of static instructions (those in the

binary) executed in the tests, and the latter the fraction of program branches or conditional states

triggered during the tests. Obtained results are shown in Figure 3.

Figure 3. Code Coverage for YOLO v3

Each column represents all the functions in each file. Note that, despite excluding all YOLO func-

tions that were not called, both branch and statement coverage are very low. Average coverage is

83% and 79% for statement and branch respectively, and as low as 19% and 37% respectively for

individual files. While ISO 26262 does not specify coverage targets, its parent standard, IEC61508

(Functional Safety of Electrical/Electronic/Programmable Electronic Safety-Related Systems)

recommends 100% coverage for all metrics. Hence, the coverage levels observed for YOLO are

not acceptable for any ASIL since either branch or code statement are highly recommended (‘++’)

for all ASIL levels.

It is also worth noting that the concept of code coverage has not even been defined for GPU code.

The fact that GPU instructions are SIMT (Single Instruction, Multiple Thread) and warp diver-

gence (predicated execution) complicate simply extending CPU code coverage to GPUs.

Low-level CUDA Libraries. Libraries used for artificial intelligence and machine learning in AD

– as the majority of widely-used operations in GPUs – rely on highly optimized closed-source

libraries (e.g., cuBLAS and cuDNN). From a functional safety point of view, these are black-boxes

without detailed information on their implementation, code, and algorithm. This might prevent

their safety analysis by end users, e.g., source code analysis and code coverage, a mandatory re-

quirement of ISO 26262. In our view, overcoming this limitation requires one of the following:

 The use of open-source libraries, which must provide competitive performance. For in-

stance, results show that CUTLASS,9 NVIDIA’s open-source collection of CUDA C++

templates and abstractions for implementing high-performance GEMM computations,

provides very close performance in comparison with cuBLAS.

 Closed-source libraries owners go through the certification process and adapt their li-

braries to fit ISO 26262 requirements.

Code changes to achieve ISO 26262 adherence can, however, cause performance loss with respect

to the original performance-improving centric code, which is not acceptable in other non-critical

domains in which these libraries are used. This can result in the creation of branches of the code

specific for the automotive domain, with increased development and maintainability costs.

C. Domain Specific Optimizations

Numerous schemes have been proposed to optimize deep learning models (e.g., layer removal and

fusion). From those, calibrating the neural network models for lower precision (a.k.a quantization)

is one of the commonly-used schemes. In general, these optimizations aim at delivering lower

latency and higher throughput for deep learning inference applications and/or reduce the energy

profile. However, some of these optimizations can come at the expense of increasing the proba-

bility of producing a wrong result by the application. Hence, these approaches directly affect the

accuracy of the application within a considerable and wide margin depending on the input data.

For a critical domain such as automotive, these schemes decrease the decisiveness of the applica-

tion. Hence such optimizations must be used with caution in AD factoring their impact on overall’s

application accuracy.

D. Time Predictability

In CRTES, functionalities need to be completed within certain timing bounds, called deadlines.

Hardware and software architectures in CRTES require time predictable timing behavior that al-

lows deriving tight and reliable WCET estimates 10. WCET analysis of GPU software is still in a

very early stage 11. Static timing analysis has been performed under very limited scenarios, such

as assuming that the kernel is executed on a single streaming multiprocessor, while measurement-

based analysis on the other side has been performed without providing enough evidence that the

worst-case scenarios have been exercised. Both solutions are negatively affected by the existence

of many undocumented features in GPU architecture and software, contributing to analyzing their

real-time properties analysis hard, compared to the CPU architectures used traditionally. In our

view, a way to alleviate this problem is by increasing GPU observability. In particular, a more

powerful set of WCET-aware monitors (performance monitoring counters) helps to provide in-

sightful information on application worst-case behavior when run on the target hardware as an

instrumental element to build a safety argument 12. On the timing analysis side, the use of statisti-

cal-based approaches is on the rise as it fits the increasing execution-time variability applications

suffer when running on complex processors such as GPUs 3-4.

CONCLUSION

As the software component to implement safety-related functionality continues to increase in cars,

so do its performance requirements and the guarantees required on its correct behavior. The former

is covered in a cost-effective manner by deploying software and hardware-accelerator techniques

originally designed for other high-performance, i.e., noncritical, domains. As we have discussed

in this paper, the sustainability of this approach builds on developing well-designed adaptations to

address key challenges when satisfying safety regulatory standards. The overall ISO 26262 phi-

losophy builds on defining a set of requirements and a set of tests, which emanate from the re-

quirements, that are used to assess whether a particular software implementation is correct.

Whether this approach can be directly applicable to ML-based code is still an open question due

to the difficulties in defining whether, for instance object detection software works properly, and

defining the tests to assess so. Overall, new interpretations and analysis of how to certify software

with respect to that in place by ISO 26262, might be necessary.

ACKNOWLEDGMENTS
Authors would like to thank Guillem Bernat from Rapita Systems for his technical feedback

on this work. The research leading to this work has received funding from the European Re-

search Council (ERC) under the European Union's Horizon 2020 research and innovation

programme (grant agreement No. 772773). This work has also been partially supported by

the Spanish Ministry of Science and Innovation under grant TIN2015-65316-P and the

HiPEAC Network of Excellence. Jaume Abella has been partially supported by the Ministry

of Economy and Competitiveness under Ramon y Cajal postdoctoral fellowship number

RYC-2013-14717. Carles Hernández is jointly funded by the Spanish Ministry of Economy

and Competitiveness and FEDER funds through grant TIN2014-60404-JIN.

REFERENCES
1. ISO/DIS 26262. Road Vehicles - Functional Safety, ISO Standard 43.040.10, Nov.

2011.

2. ARM, “ARM expects vehicle compute performance to increase 100x in next decade,”

ARM, Cambridge, U.K., Apr. 23, 2015. [Online]. Available:

https://www.arm.com/about/ newsroom/arm-expects-vehicle-compute-performance-to-

increase-100x-in-next-decade. php.

3. S.-C. Lin et al., “The architectural implications of autonomous driving: Constraints

and acceleration,” in Proc. 23rd Int. Conf. Archit. Support Program. Lang. Oper. Syst.,

2018, PP. 751–766.

4. F. J. Cazorla et al., “Reconciling time predictability and performance in future

computing systems,” IEEE Des. Test, vol. 35, no. 2, pp. 48–56, Apr. 2018.

5. J. Zander, “Functional safety for autonomous driving,” in Proc. Auton. Veh. Mach.

Conf., 2017.

6. M. M. Trompouki and L. Kosmidis, “Brook Auto: High-level certification-friendly

programming for GPU-powered automotive systems,” in Proc. 55th Annu. Des.

Autom. Conf., 2018, pp. 1–6.

7. M. Abadi et al., “Tensorflow: A system for large-scale machine learning,” in Proc.

12th USENIX Conf. Oper. Syst. Des. Implement., 2016, pp. 265–283.

8. Rapita Sytems Ltd., “RapiCover.” [Online]. Available:

https://www.rapitasystems.com/ products/rapicover.

9. A. Kerr et al., “CUTLASS: Fast linear algebra in CUDA Cþþ,” blog. [Online].

Available: https://devblogs.nvidia.com/cutlass-linear-algebra-cuda/.

10. R. Wilhelm et al., “The worst-case execution-time problem—Overview of methods

and survey of tools,” ACM Trans. Embedded Comput. Syst., vol. 7, 2008, article 36,

pp. 1–53.

11. A. Betts and A. Donaldson, “Estimating the WCET of GPU-accelerated applications

using hybrid analysis,” in Proc. 25th Euromicro Conf. Real-Time Syst., 2013, pp. 193–

202.

12. E. Mezzeti et al., “High-integrity performance monitoring units in automotive chips

for reliable timing V&V,” IEEE Micro, vol. 38, no. 1, pp. 56–65, Jan./Feb. 2018.

ABOUT THE AUTHORS
Sergi Alcaide is a PhD student in Universitat Politècnica de Catalunya (UPC) and Barcelona

Supercomputing Center (BSC). His research interests include computer architecture and re-

liability. He obtained his Master in Innovation and Research in Informatics at UPC. Contact

him at salcaide@bsc.es.

Leonidas Kosmidis is a senior researcher in BSC. He has a PhD in computer architecture

from the Polytechnic University of Catalonia (UPC), and he previously studied at the Uni-

versity of Crete. His research interests span hardware design and low-level software for real-

time systems and embedded accelerators. He is the co-PI of the GPU4S (GPU for Space)

ESA-funded project. Contact him at leonidas.kosmidis@bsc.es.

Hamid Tabani is a postdoctoral researcher at Barcelona Supercomputing Center (BSC). His

research interests include computer architecture, autonomous driving, and machine learning.

Tabani received a PhD in computer architecture from UPC. Contact him at ha-

mid.tabani@bsc.es.

Carles Hernandez received the PhD in computer sciences from Universitat Politècnica de

Valencia in 2012. He is currently senior PhD Researcher at BSC. His area of expertise in-

cludes time-predicable and reliability-aware processor design. Contact him at carles.hernan-

dez@bsc.es

Jaume Abella is a Senior PhD Researcher at BSC since 2009. He holds a PhD in Computer

Science from UPC (2005) and worked at Intel Corporation until 2009. His research interests

include timing and functional verification of critical real-time systems, and performance anal-

ysis. He is member of IEEE and HiPEAC. Contact him at jaume.abella@bsc.es.

Francisco J. Cazorla is the director of the CAOS research group at BSC and a researcher at

IIIA-CSIC. He has a PhD in computer science from UPC. His areas of interest cover hardware

design and performance analysis of embedded real-time and high-performance systems. Con-

tact him at francisco.cazorla@bsc.es.

https://devblogs.nvidia.com/cutlass-linear-algebra-cuda/
mailto:salcaide@bsc.es
mailto:leonidas.kosmidis@bsc.es
mailto:hamid.tabani@bsc.es
mailto:hamid.tabani@bsc.es
mailto:carles.hernandez@bsc.es
mailto:carles.hernandez@bsc.es
mailto:jaume.abella@bsc.es
mailto:francisco.cazorla@bsc.es

