Is CASE Technology Still Alive?

Camilo Ocampo*', Begoiia Albizuri™?, Pere Botella®"

*Departament de Llenguatges i Sistemes Informatics
Universitat Politécnica de Catalunya
Barcelona, Catalonia
'Division Académica de Ingenieria
Instituto Tecnolégico Aumnmn}) de México (ITAM)

Mexico City, Mexico

Abstract
CASE Technology was thought as the solution of many problems of the Software Engi-
neering. Time has shown although such technology is a condition to support Software
Development Process, it is not the unique solution. In the last years, interest in the world
of CASE Technology has been declining notably. This could be clearly seen in the de-
creasing number of research groups, magazines and conferences about the topic. Despite
this fact, we think CASE Technology has not died, rather it has been applied on the auto-
mation and management of the software development phases. In this article we present
how traditional CASE Technology has evolved to Process Technology, dealing with more
issues like interoperation, human collaboration, project management, and so on. So
CASE Technology has not disappeared, it has been principally applied on automating

and managing the Software Process.

Keywords: Software Engineering, CASE, Software Process

1. Introduction

Probably, the term Computer Aided/Assisted Software/System Engineering (CASE) became popular
after the publication of an article in the Wall Street Journal the 24 September 1986 [PD95], but the
idea of using tools and environments to support different phases of Software Development Process’

comes from late 1970’s. For example, such kinds of early tools were compilers, or software to support

" Supported by CONACyT, Mexico. This work has been partially supported by the project OBJECTFLOW. E-
mail: cocampo@lsi.upc.es

* Visiting Professor at Departament de Llenguatges i Sistemes Informatics, Universitat Politécnica de Catalunya.
E-mail: albizuri@lamport.rhon.itam.mx

 E-mail: botella@lsi. upc.es

127

the design and validation of data flow diagrams. Moreover, some authors [Fugg93] consider that the

first CASE tools could be assemblers used in 1960’s.

At the beginning of the 1990’s the popularity and interest on CASE Technology” start decreasing no-
tably. Some conferences on the topic changed the subject (e.g., the International Workshop on CASE
has changed to become the Software Technology and Engineering Practice). Several authors
([INCR91], [GS94], and [Somm92a]) mention some of the reasons because CASE did not accomplish
all user expectations. The aim of this article is to analyse the State of the Art of the CASE by the end
of 1990’s and mentioning our viewpoint of trends and challenges for the next years of CASE sup-

porting the Software Process.

The structure of the article is as follows. At the Background Section we start reviewing briefly con-
cepts and classifications about CASE. We are interested, in Section 2; in to know how this technology
was before the Process Technology concept appeared. Such analysis will allow us understand the
natural transition from CASE to Process Technology. This takes us, in Section 3, to see the state of art
in Process Technology, i.e., modelling, assessment, improvement and management of Software Proc-
ess. Finally, we expose our point of view about trends and new improvements related to CASE that

should take place in next years.

2. Background

We can find several CASE definitions in the literature. McClure [McCI89] defines computer-aided
Software Engineering simply as the automation of Software Process. A CASE definition based only
into the Production-process Technology was given by Sodhi: “Computer-Aided Software Engineering
(CASE) encompasses a collection of automated tools and methods that assist Software engineering in
the phases of the software development life cycle” [Sodh91]. CASE definitions were changing be-
cause CASE has evolved. For example, Ghezzi et al. [GIM91], Norman et al. [NCR91], Sommerville
[Somm95], and Fuggetta [Fugg93] agree that the CASE is associated with the computer-aided support

offered to the entire Software Process.

The purpose of CASE is to support the“different phases of Software Process development under an
engineering approach by means of software. Traditionally, Software Engineering has put more atten-
tion on the product instead of the process itself. It is at the end of 1980's when some authors
([Broo87] or [Oste87]) start pointing at the necessity to be concerned about processes to achieve bet-

ter quality in software products. The introduction of Process Technology could led to divide more

“ In what follows we simply refer to Software Development Process as Software Process.
5 R 2 3 rrn
In what follows, we use just the word CASE to refer to CASE Technology.

128

clearly the Software Engineering in two large areas: Product Engineering and Process Engineering.

During the last decade several efforts have been done in developing a Process Technology [FKN94].

2.1 A taxonomy

Recent classifications of CASE tools of some authors, like Fuggetta [Fugg93] and Sommerville

[Somm95], consider CASE in a more broad sense than earlier taxonomies were, as it can be noticed

with the definitions provided in the previous section. Such CASE tool categories are:

b

Tools. They are the simplest types of CASE tools to support a specific activity of the Soft-
ware Process, e.g., editing, programming, verification and validation, configuration manage-
ment, and testing. They are used independently because they were designed with not integra-
tion assistance at all.

Workbenches. An extensive set of integrated software tools called the CASE Workbench
supports specific Software Process activities. Such tools automate tasks as business planning
and modelling, analysis and design, user interface development, programming, verification

and validation, maintenance and reverse engineering, configuration, and project management.

. Environments. They are collections of tools and workbenches to support the Software Proc-

ess. Fuggetta considers five classes of environments depending on the integration degree
among the component tools: toolkits, languages-centred, integrated, fourth generation, and

process-centred.

2.2 CASE before Process Technology

Through the time, the idea of CASE has evolved from a product-centred point of view to a more gen-

cral approach, covering both product and process support. Figure 1 shows the evolution suffered
through the time by CASE.

| | : : o

60’s 70°s 80’s 90’s
assemblers
compilers
tools environments
workbenches process environments

Figure 1. CASE evolution

In the carly days of computing, Software Process consisted practically on writing code and no more

else. Programmers had some tools, such as compilers, linkers, and loaders. After that years, the neces-

129

sity to produce more complex and large programs led to the development of methods and tools to sup-

port new phases of the Software Process, e.g., analysis and verification.

In the early 1970's. some of the main reasons to create integrated collections of tools, i.e., work-
benches, were the increasing complexity of software. and that software practitioners realised the use
of tools might have a positive effect on both productivity of people involved and the quality of prod-
ucts being developed. Tools might help in several activities such as, supporting checking conformance

to standards. quantifying the degree of testing, supporting progress tracking, and so on.

Later, in the 1980's, the perception of software engineers was that productivity is improved with the
use of automated tools, as Norman and Nunamaker reported it in their study [NN89]. Software engi-
neers thought that, as better tools became available and, in particular, as better integration and mutual

tuning of tools were achieved, significant productivity could be gained.

Environments were created to achieve better productivity and quality in the Software Process. Early
environments supported all activities of the production process. Freeman [Free87] considers Software
Process itself as a system. Under control of certain rules this system transforms some input (the user's
requirements) into some output (an automated system). Within this development system, a number of
elements work together in a reasonably harmonious way: goals, rules, procedures, people, tools and

information. To make optimal use of environments, they have to fit the other system elements.

It is difficult to give precise and unambiguous environment taxonomy. Developments in this area
rapidly follow each other, as is apparent from the literature from this topic. We will sketch develop-
ments in this area following taxonomy given by Dart et al. [DEFHS7]. In this taxonomy four catego-
ries are distinguished. which based on trends that have a major impact on support environments:

1. Environments based on a specific programming language that contains tools specifically

suited for the support of Software Process in that language.

!J

Environments based on the structure of programming language contain tools aimed at ma-
nipulating program structures. These environments can be generated from a grammatical de-
scription of those program structures.

3. In toolkits we find tools that are generally not so well integrated. The support offered is inde-
pendent of a specific programming language. A toolkit merely offers a set of useful building
blocks. In particular, toolkits tend to contain tools that specifically support programming-in-

the-large.

130

4. Finally, environments may be based on certain techniques used in specific phases of the sofi-
ware life cycle, while integrated tool sets aim at supporting the full spectrum of the software

life cycle in a co-ordinated fashion.

Above categories encompass both environments created manually around some given programming
language, and environments generated from a grammatical description of the program structures being

manipulated. In both cases, the support offered mostly concerns to the individual programmer.

We cannot identify in the time when exactly CASE appeared, because that depends on what we un-
derstand for it, i.e., which CASE definition we consider. As we have mentioned, last definitions and
classifications tend to consider CASE in a more general sense, i.c., it is any technology that supports
the Software Process. The acronym CASE appeared at the beginning of 1980, in fact the term CASE
was coined by J. Manley in 1981 who was the head of the Software Engincering Institute at Carnergie
Mellon University [Russ89]. On the other hand, according Fuggetta’s classification, CASE has ex-

isted since 1960's, with the creation of first assemblers.

By 1980’s, several authors reported that some benefits of using CASE are helping to reduce the time
used for the development systems, minimising the maintenance cost, and increasing the quality of the
systems ([Perr88] and [Orli88]). Chikofsky [Chik87] thought CASE tools allow the analyst to create
the documentation and the information system model from the requirements definition to the design
and the implementation. Under Suydam [Suyd87] point of view, the documentation is an automatic
approach from the effort of system development. They noticed that one of the greatest CASE advan-

tages was the introduction of engineering as a discipline in the process of systems developments.

Although, CASE has provided several benefits, there were many organisations that had problems to
implement them. Some obstacles found were their high cost. the resistance manifested by the systems

designers to use it, and a learning curve few acceptable [Your89].

One common problem with CASE tools was that they did not provide guidance to the user about
methods to be used to create models. For example, a user of a CASE tool had to know previously the

technique in which it was based.

An important point we want to notice, is that before using structured methods and CASE it was neces-
sary to have a previous training. In a study performed by Zagorsky [Zago90] was observed that the
training for tools, e.g., code generators, data dictionary, and tools for screen reports prototyping, was

rare times offered in the organisations.

131

Another important CASE problem was its focusing on a single reduced part of the Software Process,
when the ideal situation would be that it included all activities of the process in an integral way
[Suyd87]. Such problem lead to significant difficulties, e.g., when users try to link the different soft-
ware life cycle phases. One solution proposed by Orlikowksi [Orli88] was to have CASE tools with a

shared central data repository to make easier the transition between one phase to another.

In December 1990, at the 14th International Workshop on CASE. Norman et al. [NCR91] collected
450 issues about the state of art of CASE. In this paper they point out problems concerning CASE.
The most important are:
e It was not used in research on modelling the technology transfer process.
« CASE was often understood as just tools, isolating it from process, environments, meth-
ods, management, cultural changes, technology, and people.
« [t did not provide adequate support for software reuse in terms of classification, selection.

understanding, modification, and adaptability.

In the same way, Gilles and Smith [GS94] report a survey to quantify the usage of CASE in several
organisations in UK. They concluded that the main reasons of CASE usage problems were:

e Lack of multi-user facilities.

¢ Poor documentation.

e Poor user interface.

¢ Deficiencies on the complete support of methods.

Sommer [Somm92a] also reports some reasons of the problems at companies using CASE:
¢ Development of prototypes with fourth generation languages was very popular in the par-
ticipant organisations at the Sommer's study. CASE did not enforce such kind of code
generation.
e Few of them provided an integrated set of tools and some of them generated poor quality
documentation.
e They did not reduce either time nor cost of system development and they did not help with

overdue work.

132

3. Process Technology

Because CASE problems we mentioned above, and next ones we indicate, the CASE focus starts
changing at the beginning of the 1990's. Then, the new way thinking about CASE led to the Process

Technology birth.

Since market pressure has revolutionised the way companies make business; organisations have been
viewed from a process perspective where agents co-operate to accomplish business objectives. Soft-
ware is a product which construction can also be modelled as a process. Authors. like Brooks
[Broo87], Osterweill [Oste87], and Ghezzi et al. [GIM91], have noticed the importance to model and
manage the Software Process to get products of better quality, finished in projected schedules and
done without over budget. From this perspective, we think Software Engineering could be divided in
two large areas: product engineering and process engineering, as it happened in other engineering

disciplines.

The software construction is not yet well understood and therefore a complete and universal process
does not exist. Hence, each organisation has to be able to define and evolve its process model ac-
cording to its needs, market and customers. Software industry has to track, record and learn about
their previous software project development experiences. Such learning is indispensable to achieve
better quality products and project success in time and costs. CASE is an enabling technology (o

automate those processes.

The early software life cycle models were the first attempts to describe process models, but they have
shortcomings in such goal. One problem is that those models are concerned only with the product. but
they do not deal with other issues of the process as agents or roles. Another problem is the granularity
of their description is too much coarse-grained, so they are not useful to provide full computer based

support to the process.

3.1 Software Process

During the 1990’s, important research [DWK97] has been done in modelling, assessment, improve-
ment and management of Software Process. Results of such work have been applied to the creation of

several environments and they have improved CASE [FKN 94].

A process can be described from different perspectives. Curtis et al. [CKO92] have mentioned most
common are functional, behavioural. organisational, and informational. Functional perspective repre-
sents how agents perform the process and which information is needed for them. Behavioural per-

spective describes when the agents perform their work, fulfilling a process element; and it represents

133

the process flow. Organisational perspective shows where and which agents are assigned to each pro-
cess element. Finally, informational perspective describes items produced or manipulated by agents in
each process element. These perspectives have relationships among them, and it is difficult (if not

impossible) to represent them with a single graphical language.

It was possible to create process models using CASE before Process Technology emerged. Although,
such models did not cover all perspectives mentioned above, i.e., they were incomplete representa-
tions of the real world. Generally, different views of the process were created without an explicit con-
nection among them. This situation provoked that changing a model presented many difficulties and it

would be almost impossible to reflect modifications of one diagram in the others affected.

Process Technology was an improvement of CASE to fully support Software Process. Conradi et al.
[CFI94] define Software Process as a partially ordered network ol interacting activities carried out by

human agents supported by tools, aiming at producing a software product.

Two sub-processes compose soltware Process: Production Process and Metaprocess [Conr92]. Pro-
duction Process is related to all activities, methods, tools, and organisational structures; used in
phases of analysis. design, implementation and delivering of software products. Metaprocess is the set

of activities that have to be performed to carry out the production.

CASE was only focused on the Production Process without considering Metaprocess. since eftorts in
Software Engineering were also interested on the product, instead ol improving the way software was

developed.

Besides providing comprehension about Software Process, more important, Software Process models
can be enacted in cnvironments. Process-Centred Software Engineering Environments (PSEE)
[FKN94| are such computer systems. PSEE support processes. enacling instances of a pre-defined

process model, based in the modelled perspectives and the state of relevant parts of such process.

L
The enacted process model is active since its state changes to reflect modifications in the actual proc-
ess being enacted. By the other hand, process evolves while is performed by participants in real world

and PSEE should manage this evolution.

As we have mentioned before, Software Process models created by mean of CASE had shortcomings
to reflect changes from a model view (e.g.. a dataflow diagram) to other ones. Besides such Process

Modelling issues, when traditional CASE tools have been used to support all the software develop-

134

ment activities (i.e., at the Software Process enactment), weakness also exist due the loosely integra-
tion of such tols. Productivity was not increased as it was expected because propagating a change
from a process step (o other ones was a tough matter, e.g., a change in a design item was hardly re-

flected to its corresponding pieces of code.

Earliest PSEE where constructed with the idea of containing in a single environment all the tools used
in the Software Process, e.g., editors, debuggers, schedulers, and so on. This idea presents a signifi-
cant problem: the complexity of those environments was tremendous and they finally could not to
deal with all the required components. The later is because the new generation of PSEEs are being
constructed like several autonomous components interoperating among them, and sharing information

among them.

3.2 Process Technology Trends

It is necessary to do interdisciplinary research to face all problems around Process Technology. as it
has been pointed by Sheth et al. [SGI+96]. CASE experience could be applied to areas like simula-

tion, prototyping, or monitoring. Such areas arc no totally addressed in existent PSEE.

Besides Software Process, Process Modelling and Automation, has been treated by other disciplines
like Workflow Management (WM) [SGI+96] and Transaction Management [WS97]. Similar research
work has been done in all of these arcas; e.g., Process Modelling Languages are present in environ-
ments to automate processes. Workflow Management Systems (WMS) are used to model and auto-
mate Business Processes, as well as PSEEs are used in Software Process. Unlike PSEEs, WMS have
existed as commercial environments since the late 1980’s. Nowadays there are more than two hundred
ol such software environments. They have a lot of shortcomings, but also they have generated a lot of
experience and successful applications. For these reasons, we think Workflow Technology could be

used to improve Software Process Technology and vice versa.

Recent developments (e.g., the widespread use of the Internet Technology) have increased the pres-
sure on software engineers to deliver their products faster. This requirement lead 1o larger develop-
ment teams that often will be globally distributed. The distributed development of software in (vir-
tual) enterprises is a great challenge for project management, and requires new techniques for project

co-ordination, document management and communication.

The number of tools involved in Software Process is enormous. It is quite difficult for one vendor to

produce an environment providing all these tools; so, it is more natural to think in different tools in-

teroperating in a common framework. Such frameworks and standards of interoperability are neces-

sary to facilitate the interoperation of tools from several vendors.

4. Conclusions
At the beginning, Software Process activities were not well defined and therefore tools that supported
them were simpler. The increasing detail in the definition of activities produced that only one tool

became insulficient to support them, and set of tools were constructed, and later integrated.

More attention and research have been put on process modelling than other arcas of Software Process.
We consider this area has to deal more than only process modelling, such as simulation, enactment,

deviation, and so on.

Main motivations to create CASE was the necessity to increase the productivity of large systems de-
velopment, to master the inherent complexity of software, to integrate tools and activities in common
frameworks easier to manage and administrate. We think CASE Technology has been applied princi-
pally in Process Modelling, but could be also applied to other areas of Software Process. Hence. the
advances achieved over the last years in CASE Technology has not been lost. We have shown in this
paper the way in which such advances have been applied to different phases of the Software Process,

and how they are the basis for a new generation of tools.

We want to mention that introducing new technology (like CASE) in the organisation it does not en-
sure successful projects or better performance achieving processes. It is necessary to take into account
another issues, like having an Information Technology Strategy. Such strategy provides a way to ana-
lyse and to plan the introduction of new technology and it prepares the organisation for future busi-
ness changes. More information about specific products and different kinds of CASE software can be

found, for instance, at hup://www.qucis.queensu.ca/Software-En gineering/tools.himl.

Ideas expressed in this paper are result of the experience acquired by the authors from the
OBJECTFLOW project [OB97], which consisted in the development of a Workflow Management
Tool. Such kind of software is used to automate and manage Business Processes, another kind of Pro-
cess Technology. Also, experience has been acquired from the research in other issues of Software

Process [FR97].

136

5. Acknowledgements

We want to thank Mario Piattini, from the University of Castilla-La Mancha, and Wilhelm Schiiefer.
from the University of Paderborn, for their constructive and invaluable comments on a draft version

of this paper.

6. References

[Broo87] F. Brooks. No Silver Bullets: essence and accidents of Software engineering, IEEE

Computer Magazines, pp. 10-19, 1987.

[CFF94] R. Conradi, C. Fernstrom, and A. Fuggetta. Concepis for Evolving Software Proc-
esses, In [FKN94], Chapter 2.

[Chik87] E. J. Chikofsky. Reliability Engineering for Information Systems: The Emerging
CASE Technology, Index Technology Corporation, Cambridge, Massachusetts, 1987.

[CKO92] B. Curtis, M. L. Kellner, and J. Over. Process Modeling, Communications of the
ACM. 35(9): 75-90. September 1992.

[Conr92] R. Conradi et al. Towards a Reference Framework of Process Concepts, In Proceed-
ings of" Second European Workshop on Software Process Technology. Springer

Verlag, Berlin, 1992,

[DEFHS87] S. A. Dart, R. I. Ellison, P. H. Feiller, and A. N. Habermann. Software development
environments, IEEE Computer 20, 11, 1987, pp. 18-28.

[DWK97] J. C. Demiane, B. Warboys, and A. B. Kaba. Software Process: Principles, Method-
ology, Technology. Provisional version, PROMOTER Group, to appear, 1997.

[FKN9%4| A. Finkelstein, J. Kramer, and B. Nuseibeh, editors. Software Process Modelling and

Technology, Research Studies Press Ltd., Taunton, Somerset, UK, 1994.
[Free87] P. Freeman. Software Perspectives, Addison-Wesley, 1987.

[FR97] X. Franch, and J. M. Rib6. Software Process Modelling as Relationships between

Tasks. In Proceedings of the 23rd. Euromicro, Budapest, September 1997,
[Fugg93] A. Fuggeta. A Classification of CASE Technology, IEEE Computer, December, 1993.

[GIMYI1] C. Ghezzi, M. Jazayeri, and D. Mandriolo. Fundamentals of Software Engineering.
Prentice-Hall, Englewood Cliffs, N. J., 1991.

[GS94] A. C. Gillies, and P. Smith. Managing Software Engineering. Case studies and solu-
tions, Chapman & Hall, London, 1994.

[McCI189]

[NCR91]

[NN89]

[OBY97]

[Orli88]

[Oste87]

[PDY5]

[Perr88]

[Russ89]

[SGJ+96]

[Sodh91]

[Somm9Y2a]

C. McClure. CASE is Software Automation, Prentice-Hall, Englewood Cliffs, New
Jersey, 1989.

R. J. Norman, E. I. Chikosfky. and B. L. Rubenstein. CASE at the Start of the 1990’s.
Proceedings of the 14th International Conference on Software Engineering, IEEE, pp.

128-139, Austin, Texas, May 13-17, 1991.

R. J. Norman, and J. F. Nunamaker, Jr. CASE productivity perceptions of Software

engineering professionals, Communications of the ACM, 32, 9, pp. 1102-1108, 1989.

C. Ocampo and P. Botella. OBJECTFLOW: A Modular Worktlow Management Sys-
tem. Internal Report LS1-97-5-R, Department of Software, Technical University of

Catalonia, January 1997.

W. 1. Orlikowksi. CASE Tools and the IS Workplace, In Proceedings of the 1998
ACM SIGCPR Conference on the Management of Information Systems Personnel, pp.
88-97. College Park, MD, April 7-8, 1988.

L. J. Osterweil. Software processes are Software too. In Proceedings of the Ninth In-
ternational Conference on Software Engineering. IEEE Computer Society, pp. 2-13,

Washington, DC, 1987.

M. G. Piattini and S. N. Daryanani, editors. Elementos y herramientas en el desarro-
llo de sistemas de informacién: una visién actual de la tecnologia CASE (in Spanish),

RA-MA editorial, Madrid, Spain, January, 1995.

G. Perrone. Primary Product in the Development Life Cycle, Software Magazine, pp.

35-41, 1988.

F. Russell. The Case of CASE. ICL Technical Journal, Vol. 6, issue 3, May, pp. 479-
495, 1989.

A. Sheth, D. Georgakopoulos, S. Joosten. M. Rusinkiewicz, W. Scacchi, J. Wileden,
and A. Wolf. Report from the NSF Workshop on Workflow and Process Automation in
Information Systems. Computer Science Department Technical Report, UGA-CS-TR-
96-003, University of Gedrgia, October 1996.

J. Sodhi. Software Engineering: Methods, Management, and CASE Tools, McGraw-

Hill, Blue Ridge Summit. Pa., 1991.

M. Sommer. The Impact of Computer-Assisted Engineering on Systems Development.

IFIP Transactions, K. E. Kendall et al.. editors. p.p. 43-60, 1992.

138

[SommY5]

[Suyd87]

[WS97]

[Your89]

[Zago90]

I. Sommerville. Software Engineering, Addison-Wesley, Reading, Mass., November,
1995.

W. Suydam. CASE Makes Strides Toward Automated Software Development, Com-
puter Design, 1987.

D. Worah and A. Sheth. Transactions in Transactional Workflows. In S. Jajodia and
L. Kerschberg, editors, Advanced Transaction Models and Architectures. Kluwer
Academic Publishers, 1997 (to appear).

Available in http:/lsdis.cs.uga.edw/publications/pub_ALL.html

E. Yourdon. Serious CASE in the 90's: What Do We Do When the Novelty Wears
Off?, Show CASE Conference TV, 1989.

C. Zagorsky. CASE Study: Managing the Change to CASE, Journal of Information

Systems Management, 1990.

139

	img1 (163)
	img1 (164)
	img1 (165)
	img1 (166)
	img1 (167)
	img1 (168)
	img1 (169)

