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Abstract

Measurement-Based Probabilistic Timing Analysis (MBPTA) facilitates the analysis of complex software
running on hardware comprising high-performance features. MBPTA also aims at preventing additional
analysis costs for timing analysis techniques and preserving the confidence on derived WCET estimates.
Cache behavior has a deep influence on WCET estimates and hence on “the amount of software” that can
be consolidated onto a single hardware platform. Deterministic replacement policies such as LRU (Least
Recently Used) and NMRU (Non-Most Recently Used) have systematic pathological cases that may lead to
high execution times and WCET estimates. Instead, random replacement (RR) decreases pathological cases
probability, at the cost of temporal locality.

We present two new MBPTA-amenable replacement policies that completely remove the presented patho-
logical cases. The first policy, Random Permutations (RP) preserves higher temporal locality than RR; while
the second, NMRU Random Permutations (NMRURP), also protects the Most Recently Used line from evic-
tion. Both proposed policies build upon restricted random replacement choices. Our simulation evaluation
(validated against a real prototype) using the Malardalen benchmarks and a case study shows that RP and
NMRURP deliver both high average performance (within 1% of LRUs and NRMU performance) and tight
WCET estimates 11% and 24% lower than those of RR.

1. Introduction

1 The increased level of automation in critical
real-time embedded systems (CRTES) and the ad-
vent of autonomous vehicles across different CRTES
domains call for higher levels of performance than5

those provided by simple microcontrollers used
nowadays [2, 3]. Such performance can only be
achieved using powerful processors implementing
high-performance features including cache memo-
ries. Unfortunately, caches challenge the estimation10

of Worst-Case Execution Time (WCET), a funda-
mental step for timing validation and verification
and hence for assessing the correct timing behavior
of CRTES [4].
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1This work is based on the work previously published in
SAC [1]

In this work, we build upon measurement-15

based probabilistic timing analysis (MBPTA) [5, 6].
MBPTA is a mature technology that has been suc-
cessfully assessed with case studies in the automo-
tive, railway, space, and avionics domains [7][8].
MBPTA builds on the underlying (complex) plat-20

form having certain properties in its timing behav-
ior as a means to facilitate the analysis of soft-
ware timing. In particular, MBPTA requires the
sources of execution time variability (jitter) to be
either upper-bounded (during analysis) or time-25

randomized (during both analysis and operation).
For instance, latencies due to values operated in
variable-latency units are typically upper-bounded,
and cache placement is typically randomized. By
applying these techniques to the different sources30

of jitter of the processor, MBPTA relieves the user
from controlling during the test campaign low level
aspects of those resources causing jitter, for which
the end user may lack means to determine and en-
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force their worst timing behavior at analysis.35

The jitter that caches cause on programs’ exe-
cution time challenges the tightness of the bounds
derived by timing analysis techniques since mem-
ory placement (and so cache placement) changes
across software integrations [9]. If these effects are40

not properly leveraged – which is in general quite
challenging – WCET estimates obtained for a given
software unit are no longer valid when incremen-
tally integrated with other software units (even if
they share no data or instructions) as part of the45

regular software development process. This oc-
curs because small changes in the memory place-
ment modify cache layouts and hence, cache perfor-
mance [9]. With random placement, which varies
across runs, and replacement caches [10][11] the50

space of potential cache mappings is naturally and
randomly explored as the number of program runs
(tests) performed is increased. By preserving ran-
dom placement and replacement during operation,
the timing behavior of caches matches probabilisti-55

cally that explored at analysis, effectively relieving
the end user from controlling whether bad cache
mapping scenarios are captured during experiments
carried out at analysis.

MBPTA’s requirements on cache memories can60

be achieved either with software or hardware
means. Software solutions have been implemented
as a pass of the LLVM compiler [10] and as a source-
to-source compiler [12], with different implications
on the interpretation of WCET estimates. Hard-65

ware solutions (the focus of this work), while re-
quiring specific implementations provide in general
higher performance. Cache hardware randomiza-
tion techniques have been progressively assessed
in performance simulators [13] and higher-maturity70

solutions at RTL level on LEON-based platforms
(widely deployed in the space domain) that are now
offered as a commercial product [14].

The impact of caches on execution time is highly
program-dependent. For instance, some programs75

barely exploit cache space. In the context of
CRTES, programs may be produced by means of
automatic code generation tools (e.g. SCADE [15]),
typically leading to programs with few thousands
of instructions. For these programs, random re-80

placement (RR) may produce a first pathological
scenario (ps1) in which few cache lines fitting in a
cache set, randomly evict each other on each miss
despite there are some available lines in that set.
This occurs because nothing prevents unfortunate85

replacement choices whose probability decreases,

but still must be accounted for with WCET esti-
mates, which may be relatively high. RR can also
cause a second pathological scenario (ps2) result-
ing in the replacement of cache lines that have been90

just accessed, losing some temporal locality. Both
effects have the same root cause: cache lines re-
cently fetched can be randomly evicted shortly af-
ter fetched. In order to tackle this challenge, we
make the following contributions:95

1. We make an in-depth analysis of pathological
behavior of RR in terms of probability of each
pathological scenario and its potential impact
on performance.

2. We propose Random Permutations (RP) and100

Non-Most Recently Used Random Permuta-
tion (NMRURP) that restrict random choices
to prevent pathological cases. RP evicts all
lines in a set, yet in a random order, before
it starts evicting occupied lines, whereas NM-105

RURP additionally prevents the last cache line
accessed from being replaced. Both techniques
reduce the number of evictions that can occur
before all lines are placed in a cache set (ps1)
and increase temporal locality (ps2) by reduc-110

ing the chance of evicting recently accessed
lines.

3. We perform a detailed analysis of the suit-
ability of the presented replacement policies,
both deterministic policies and their random115

counter-parts, with respect to the properties
needed by MBPTA.

4. Finally, we assess RP and NMRURP complex-
ity and benefits with the Mälardalen bench-
marks as well as a railway case study, providing120

evidence of their feasibility and gains in terms
of WCET reduction.

The rest of the paper is organized as follows. Sec-
tions 2 and 3 respectively introduce MBPTA and
existing replacement policies. RP and NMRURP125

are presented in Section 4. Section 5 reviews the
MBPTA compliance of the different replacement
policies. RP and NMRURP are evaluated in Sec-
tion 6. Section 7 describes some related work. Fi-
nally, conclusions are drawn in Section 8.130

2. Background on MBPTA

Safety standards require deriving WCET esti-
mates for software units as basic building block
for assessing the overall timing of the software.
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Figure 1: MBPTA application example to an execution time
sample with 1,000 measurements. The red dashed line is to
the empirical CCDF of the execution time sample. The blue
solid line is the EVT-derived pWCET distribution.

WCET estimates need to be as tight as possi-135

ble and be consistent with safety-related require-
ments (goals). A common misconception is that a
WCET estimate overrun necessarily causes a sys-
tem level failure. This, however, is not true since
safety mechanisms factor in the impact that over-140

runs can have on the safety goals. Following the
probabilistic approach used to handle random hard-
ware faults [16][17], MBPTA reasons on WCET as
a distribution, aka probabilistic WCET (pWCET)
curve [18, 19], describing the maximum probabil-145

ity with which a WCET estimate can be exceeded.
This approach has been assessed in case studies in
railway, space, aerospace and automotive [7][8]; and
shown fit safety standards [20]. We refer the reader
to those works for more details on MBPTA.150

MBPTA builds on a set of execution time mea-
surements taken during system analysis phase,
whose Complementary Cumulative Distribution
Function (CCDF) is shown with a dashed red line in
Figure 1. Those measurements are passed as input155

to Extreme Value Theory (EVT) [21], a statistical
tool to estimate an upper-bound distribution for
high execution times. MBPTA controls how execu-
tion time measurements are collected so they cap-
ture those conditions that lead to higher or equal160

execution times than those during system opera-
tion. EVT requires that the execution times meet
several statistical properties related to the degree of
independence and identical distribution of the ran-
dom variable (execution times) modeled [22, 23].165

Also whether execution times can be modeled with
an exponential tail, which is the most convenient
distribution for pWCET estimates of real-time pro-
grams [5, 6].

MBPTA delivers a pWCET distribution, often170

depicted as a CCDF, so that for each particular ex-
ecution time value we obtain an upper-bound prob-
ability with which it can be exceeded (see blue solid
line in Figure 1). Therefore, the pWCET estimate
is the value such that its upper-bound exceedance175

probability can be regarded as irrelevant in rela-
tion to acceptable failure rates in the correspond-
ing safety standards (e.g. ISO26262 in automo-
tive [16]). For instance, as shown in Figure 1, the
probability of the program to take 22,000 cycles or180

longer is below an exceedance probability of 10−12

per run.
Interestingly, EVT is able to predict the prob-

abilities for combinations of events that have not
occurred simultaneously in any of the observations185

in the sample. For instance, if those observations
correspond to the execution time when experiencing
between 10 and 20 cache misses, EVT can predict
the probabilities for execution times caused by a
larger number of misses (e.g. caused by 50, 100 or190

1,000 misses) [24].

3. Analysis of replacement policies

Several replacement policies have been proposed
over the years. We classify them into two main
categories: those with a fully deterministic behavior195

and those with a randomized behavior.

3.1. Deterministic replacement policies

We analyze LRU, NMRU and BT replacement
policies as a representative of deterministic poli-
cies. It is noted that the latter two have been pro-200

posed to reduce the hardware requirements of the
former [25]. Our analysis shows that all of them
have systematic pathological cases, i.e. addresses
sequences for which they result in evictions that
occur systematically.205

LRU keeps the order in which lines in the set
have been last accessed, from the most recently used
(MRU) to the least recently used (LRU). Upon a
cache hit, the cache line accessed is promoted to the
top of the list (MRU). Upon a cache miss, the cache210

line in the botton of the list (LRU) is replaced and
used to store the newly fetched cache line, which is
then promoted to the first position in the list.

NMRU can be seen as a simplified version of
LRU. Keeping the full order of cache lines in a set is215

increasingly costly for high associative cache memo-
ries: for an N-way cache, LRU requires keeping the
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Figure 2: Schematic of BT operation. Dark thick lines indi-
cate candidates for replacement.

full order across the N elements. NMRU instead
only prevents the MRU line from being evicted,
without imposing any particular order on the other220

cache lines. This can be achieved, for instance,
with a single pointer indicating the next line to be
evicted in the set (e.g. in a round-robin fashion)
skipping the MRU line if it is selected for eviction.
In general, such a solution may not preserve tem-225

poral locality as much as LRU, since the 2nd MRU
line could be evicted instead of the LRU line on a
miss. On the positive end, NMRU scales to arbi-
trarily highly associative caches with limited cost: a
pointer to the next line to be evicted (incremented230

upon an eviction) and another pointer to the MRU
line to protect it from being evicted.

BT protects the MRU line, as NMRU does, but
also keeps some partial order on the remaining lines.
Hence, BT lays in-between LRU and NMRU in235

terms of ability to preserve temporal locality and
complexity. In particular, BT partitions cache lines
in a set into two halves (left and right) recursively
indicating in each partition the side from where to
select the line to be evicted. This is illustrated in240

Figure 2 for an 8-way cache set. In the figure, cache
line 2 is the candidate to be replaced. Upon an
access, all arrows in the path to the cache line ac-

cessed are changed to point to the other element.
For instance, as shown in the figure, on a miss all245

arrows pointing to 2 are changed, thus pointing now
to 4. Then, upon a hit on cache line 0, only the ar-
row pointing to the pair 0-1 is changed to point
to the pair 2-3. Note that within the pair 2-3,
the corresponding arrow points to 3, thus providing250

some temporal locality protection for 2, which has
been accessed recently. While such protection does
not guarantee full order as in the case of LRU, it
provides some further temporal locality protection
than in the case of NMRU. BT has a logarithmic255

cost on the associativity, thus limiting the overhead
w.r.t. LRU, although it is slightly higher than that
of NMRU. In particular, it requires 1 bit for each
left/right choice. Hence, N-1 bits are needed per
set for an N-way cache.260

Pathological cases. All deterministic policies
have, at least, one pathological case for which ac-
cesses systematically result in misses. One such
cases for all deterministic policies above is an access
sequence with N+1 different addresses accessed in265

a round-robin fashion.
For instance, for a 4-way cache, a pathological

case would be repeating the sequence ABCDE an
arbitrary number of times.

• LRU: after the first 4 accesses, A is the LRU270

line, so E evicts A. Then we access A, which
is a miss and evicts B. Then access B results
in a miss that evicts C, and so on and so forth.

• For NMRU it can be seen that 5 different ad-
dresses are enough to evict cache lines in the 4275

sets in a round-robin fashion. In this particular
example we never try to evict the MRU line,
so the behavior is analogous to a FIFO policy.

• In the case of BT, although less obvious, after
4 misses, the tree points to the first line fetched280

out of those for replacement systematically, so
E evicts A, A evicts B, B evicts C and so on
and so forth, analogously to the case of LRU
and NMRU.

While our analysis is limited to a subset of re-285

placement policies, it serves the purpose of illus-
trating that systematic pathological cases exist for
deterministic policies due to their intrinsic deter-
ministic nature. Such systematic cases can only be
broken, in general, by means of some form of ran-290

dom choice. For instance, this is the case of ran-
dom replacement (RR), which randomly selects the
cache line to be evicted in the set upon a miss.
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3.2. Random replacement

Cache memories achieving MBPTA compliance295

via hardware implement random placement and re-
placement [10, 11]. Random placement [10] pro-
duces random and independent address mappings
across sets so that two arbitrary addresses (not in
the same cache line) are mapped to the same set300

with a probability 1/S, where S is the number of
sets. Random replacement (RR), makes random
eviction choices so that, in the event of a miss in
a given set, for a cache with W ways, the proba-
bility of a line in that set to be evicted is 1/W .305

RR builds on a pseudo-random number genera-
tor (PRNG) with sufficient quality to allow cache
conflicts to be truly random. These low-cost and
MBPTA-amenable probabilistic properties of such
PRNGs have already shown elsewhere [26].310

RR evicts a specific cache line with a probability
of 1/N for an N-way cache. Hence, the probabil-
ity of a line surviving an eviction is (N-1)/N, and
hence, there is a non-null probability of survival
for cache lines for any access sequence. In particu-315

lar, for the systematic pathological case above for
deterministic replacement policies, RR provides a

survival (hit) probability of
(
3
4

)4
= 0.316.

On the other hand, if we consider a sequence with
N addresses instead of N+1, then we realize that320

all deterministic policies would lead to all-hit se-
quences except for cold misses. Instead RR has
non-null probability of evicting some cache lines
before (randomly) placing all addresses in distinct
physical cache lines so that all remaining accesses325

become hits. This occurs because RR is unaware
of temporal locality since it does not preserve any
history.

Since pWCET estimates with MBPTA need to
account for the worst case that can occur with non-330

negligible probability, the pathological cases of de-
terministic policies need to be accounted. In the
case of RR, some low-probability high-execution
time eviction scenarios need to be accounted for,
but those scenarios will not include the absolute335

worst case, which is the actual case for deterministic
policies under systematic pathological cases. Still,
the fact that these eviction sequences can occur un-
der RR may lead to high pWCET estimates, which
relates to the fact that RR is a locality-unaware340

replacement policy. This is illustrated with the fol-
lowing examples.

3.2.1. The number of objects mapped to a cache line
is smaller than or equal to W

Let us consider a fully-associative data cache345

with 4 ways (W = 4) and a program accessing alter-
natively addresses A and B, which belong to differ-
ent cache lines, 20 times each. First, A is placed in
a random line. Then, B will be placed in a random
line, with a probability of 3/4 of not replacing A350

and 1/4 of replacing it. If B replaces A, then A has
a 1/4 probability of replacing B again. And they
can keep replacing each other with probability 1/4.
Overall, this program experiences M + 2 misses (2
cold misses are always experienced), where M ≥ 0,355

with a probability:

P (M) =

(
1

4

)M

× 3

4
(1)

For instance, P (4) (the probability of having 4 +
2 = 6 misses) is ∼ 0.003, P (10) ≈ 7 · 10−7 and
P (20) ≈ 7 · 10−13 (see blue line in the top chart of360

Figure 3). Assuming 10 cycles per miss and 1 cycle
per hit, and considering only the impact of cache
in execution time, the pWCET at an exceedance
threshold of 10−12 per run can only be at least 238
cycles to account for 22 misses and 18 hits, since365

the probability of having at least 22 misses (the
accumulated probability of [22,40] misses) is ∼ 9 ·
10−13, see blue line in the bottom chart of Figure 3.

3.2.2. The number of objects mapped to a cache line
exceeds W370

Another pathological case arises when the num-
ber of objects mapped to the same set exceeds W .
In this case, RR can lead to the loss of temporal lo-
cality, since random eviction patterns can make re-
cently touched objects (i.e. cache lines) be evicted375

from cache on a miss, whereas old-standing (un-
likely to be reused) objects remain in cache. For in-
stance, in the repeating sequence ABACADAE...,
where A is continuously interleaved with accesses to
addresses that lead to a cold miss, RR may evict A380

sometimes. Conversely, deterministic policies pre-
sented in previous section would always protect A
from eviction since it is the MRU line upon the
access to any other address. As the number of ob-
jects mapped per set increases, cold and capacity385

(unavoidable2) misses become the main contribu-

2They could only be avoided prefetching cache lines, but
still prefetch requests would need to fetch data from upper
memory levels.
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Figure 3: pWCET and probabilistic miss count curves.

tors to miss rates, naturally reducing the benefit of
any replacement policy.

4. Locality-aware random replacement

In this section we introduce our proposed (tempo-390

ral) locality-aware random replacement policies. In
particular, we propose Random Permutations (RP)
and NMRU Random Permutations (NMRURP),
which aim at avoiding systematic pathological cases
such as those of deterministic policies as well as pre-395

serving higher levels of temporal locality than RR,
thus improving RR.

4.1. Random Permutations (RP)

RP limits pathological random replacement sce-
narios by increasing temporal reuse and enforcing400

random evictions to occur across all cache ways.

• When accessed data fits in a cache set, they will
eventually be placed in different cache lines,
thus avoiding potentially long mutual evictions
by construction. This would result in a sin-405

gle replacement for the previous example, thus
leading to a maximum execution time of 67
cycles (3 misses and 37 hits), see red lines in
Figure 3.

• When the number of accessed lines exceeds the410

size of a set, RP effects are also positive in-
creasing reuse, though the impact of replace-
ment naturally reduces.

To reach its goals, RP leverages the concept of
Random Permutations [27], which we first intro-415

duce and then explain how can be used and imple-
mented in RP. We finally show how the resulting
RP limits pathological eviction patterns.

4.1.1. Logic behind Random Permutations

Random Permutations avoid potentially infinite420

starvation in the arbitration for shared resources,
where one requester (unluckily) loses all arbitra-
tions with decreasing probabilities. This occurs
with standard random (lottery) arbitration [28],
with which on every arbitration round the grant425

is randomly given to one of the requesters without
taking into account how long requests have been
waiting. Hence, while each of the Nr requesters is
granted access 1/Nr of the times in the long run,
one requester could suffer long starvation periods.430

Instead, Random Permutations generates in ev-
ery arbitration (or permutation) window a random
permutation of all potential requesters. While the
particular requester that is granted access in each
arbitration round is random, each of the Nr re-435

questers is granted access exactly once every arbi-
tration window. For instance, for a resource shared
across Nr = 3 requesters (r1, r2 and r3) each re-
quester has 1/3 chances to be granted access first.
If r2 is granted access, then r1 and r3 have 1/2440

chances to be granted access second, whereas r2
cannot be granted access second. If r3 is granted
access second, then r1 is automatically granted ac-
cess third.

RP is implemented by creating a list where each445

requester appears once and sorting it randomly.
Note that a requester could request access to the
shared resource at any point in time w.r.t. the cur-
rent arbitration window. Thus, the worst case oc-
curs when, for instance, r2 arrives in the second slot450

of the current arbitration window, r2 was the first
one in the window (so it just missed its opportu-
nity), and has to wait for its slot in the next win-
dow, which, potentially, can be the last one. Recall-
ing the example before, we could have the following455

arbitration windows: < r2, r3, r1 >, < r3, r1, r2 >,
and r2 could arrive right after its slot in the first
window has elapsed. Overall, in general the maxi-
mum number of slots a requester may have to wait
is 2 · (Nr − 1). This limits how long a request waits460

to be granted access.
RP can be applied with the same logic to the re-

placement policy. Instead of randomly choosing the
way within the cache set that will be evicted next,
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Figure 4: RP operation and an example for a 4-way cache.

RP generates a random permutation window per465

set in which the number of elements matches the
number of cache ways W . Whether a line is evicted
next is a random event (each line can be evicted
with 1/W probability), but the eviction choices,
though random, are not independent among them.470

In other words, each different permutation has the
same probability to be created, each way number is
in each of the W positions of the NPerm different
permutations NPerm/W times and permutations
are chosen (generated) randomly. However, given475

that each permutation contains each way number
exactly once, it is impossible that a way is not se-
lected for more than 2 · (W − 1) evictions, and a
particular way can be evicted at most twice consec-
utively (if it is the last in one permutation and the480

first in the following one).

4.1.2. Implementing RP

For a W -way cache the total number of poten-
tial permutations of cache ways is Nperm = W !. At
hardware level, implementing such an ideal solution485

could require W ! ·dlog2(W )e·W bits for the permu-
tations table, dlog2(W !)e bits per set for the pointer
that selects the permutation, and dlog2(W )e bits for
selecting the current permutation entry, plus the
control logic for such an implementation. For a490

4-way cache this would mean 192 bits for the ta-
ble and 7 (5+2) bits per set. In an 8-way cache
or higher this number significantly increases. In
this section we implement a low-complexity solu-
tion that limits the number of potential permuta-495

tions while preserving the properties of the ideal
solution, and matching its average and WCET per-
formance. We use area and logic as main metrics
to assess the hardware feasibility of our approach.

Registers area: We implement RP by adding500

a bit vector per cache set, similar to that needed
for Least-Recently Used (LRU) replacement. In the

vector each way number is represented exactly once.
Given a cache with W ways, this vector requires
W fields with dlog2W e bits each, plus a pointer of505

dlog2W e bits to point to the current position in
the vector. Thus, a 2-way cache requires 2+1 (vec-
tor+pointer) bits, a 4-way cache 8+2 bits and a
8-way cache 24+3 bits. For comparison purposes,
LRU requires the same number of vector bits per510

set to keep the eviction order. Hence RP has sim-
ilar area requirements in terms of bits to keep the
replacement state as LRU, and only adds the bits
of the pointer indicating the current position in the
permutation.515

Additional logic: The vector part of RP for a
4-way cache is depicted in Figure 4 (left). We de-
note the id assigned to cache ways as w1, w2, w3
and w4 respectively. Whenever the pointer wraps
up, a new random permutation is generated. This520

is done, as shown in the picture, swapping different
parts of the vector based on some random bits: R1,
R2 and R3. R1 determines whether the first two el-
ements are (randomly) swapped or not. R2 does the
same for the last two elements. Finally, R3 deter-525

mines whether the first pair of elements is swapped
or not with the second pair. This simple imple-
mentation allows to generate a new permutation
quickly and efficiently. LRU, instead, needs being
able to extract any element from the list, place it530

at the beginning and shift all leftmost elements one
position (dlog2W e bits) right. Thus, multiplexers
(as for RP) and expensive parametric shifters are
needed for LRU which compromises its scalability.

Random bits can be easily generated with a single535

low-cost linear feedback shift register [26, 29], which
meets the requirements of MBPTA. Although each
cache set has its own random permutation, the
number of new permutations needed in one cycle
in the cache is, at most, as many as cache ports ex-540

ist since, in the worst case, all simultaneous accesses
could produce a miss that requires a new random
permutation in their respective cache sets. This
would require 3 random bits per cache port simulta-
neously. The PRNG used has been proven capable545

to produce at least 32 bits per cycle if needed, thus
making a PRNG able to feed multiple caches. On
average, however, each cache port will require one
new permutation every W cache misses, which oc-
cur seldom. Thus, usual random bit requirements550

per cycle are very low and a single PRNG could fit
all caches in one or several cores.

One feature of our implementation is that it gen-
erates a subset of all potential permutations (8 of
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Figure 5: Hardware implementation cost for a 64-set cache
of RP for different design choices.

the possible 24 in a 4-way cache). For instance,555

w1 and w2 can never be in separate pairs. This
means that permutation < w1, w3, w2, w4 > can
never be produced. Yet our implementation still
preserves the properties needed by MBPTA on ran-
dom replacement: a given way occupies each posi-560

tion in the permutation with identical probabilities
and where they are allocated is a purely random
choice. The right side of Figure 4 shows an ex-
ample of the generation of a new random permu-
tation for the replacement of one cache set. Ini-565

tially, we have the permutation < w1, w2, w3, w4 >.
Given that random bit R1 = 1, w1 and w2 are
swapped. Since R2 = 0, w3 and w4 are not
swapped. Finally, R3 = 1, so < w2, w1 > and
< w3, w4 > are swapped, leading to the new per-570

mutation < w3, w4, w2, w1 >.
In Figure 5 we compare the implementation costs

of the fully randomized design and our cost efficient
one of RP. For caches with 2 or 4 ways, the imple-
mentation cost is roughly the same. However, from575

8 ways to 32 the cost of the ideal solution requires a
million to 1037 bits respectively, while the efficient
solution only needs 2,000 to 10,000 bits.

4.1.3. Controlling pathological scenarios

RP controls the pathological scenarios drawn for580

RR, i.e. ps1 and ps2, as presented next.
ps1: when W or fewer lines are (randomly)

placed in the same set, they can replace each other
a limited number of times. Let us recall the ex-
ample in Section 3 where addresses A and B are585

accessed repeatedly. With RP two scenarios can
occur (illustrated in Figure 6):

1. A and B are granted access with the same per-
mutation window to take eviction decisions. In
this case, A and B will be placed in different590

random ways.

0 1 01

A B

0 1 01

A B

A & B use the same
permutation window

A & B use different
permutation windows

Figure 6: Example of the two different scenarios that can
occur in ps1 with RP.

2. A evicts a line using the last element of one
permutation window and B uses the first ele-
ment of a new permutation window. In this
case, again, two scenarios can occur. Firstly,595

A and B use different ways. And second, A
and B are randomly mapped to the same way.
In the latter case, B evicts A, but next time
that A is fetched will necessarily use the same
permutation window as B, so it will be placed600

in a different way. Thus, at most one mutual
eviction will occur.

Overall, when 2 different addresses compete for
the space in a given cache set, at most 1 mutual
eviction will occur. In the general case, if K dif-605

ferent addresses are accessed, where K ≤ W , the
worst case occurs when K − 1 addresses use the
last elements of a permutation and the last address
uses another permutation so that it evicts one of
the other K−1 addresses which, in turn, evicts an-610

other and so on and so forth. However, eventually
the K addresses produce K consecutive evictions
using elements of the same permutation, thus being
placed in different cache ways and avoiding patho-
logical evictions. Thus, the maximum number of615

pathological evictions can be expressed as:

Nmaxevict ≤ K − 1,∀K ≤W (2)

ps2: when the number of addresses mapped to
a set exceeds the number of ways, i.e. K > W
compete for the same cache set, on every miss, RR620

can randomly evict recently touched lines hence de-
creasing temporal reuse. To show this we run an
experiment in which we access a given number of
addresses K in a sequence of size 2 × K in which
the addresses are randomly selected. We assume625

that all addresses are mapped to the same set and
analyze the average hit rate of RR and RP when
processing the same random sequence 1,000 times.
Figure 7 shows the hit rate, for a 4-way cache (e.g.
DL1-like) and a 8-way cache (e.g. L2-like), of RR630

and RP as K varies from W + 1 to W ∗ 3. We
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(a) DL1 (W = 4)
.

(b) L2 (W = 8)

Figure 7: Miss rate as a function of the number of accessed
addresses for cache sizes similar to L1 and L2 respectively.

see that RP consistently lowers miss rates for both
setups, with the benefit decreasing as the number
of addresses increases w.r.t. the way size W since
the overall miss rate naturally equalizes for high635

address counts, i.e. K >> W , when cache set ca-
pacity is largely exceeded.

4.2. Non-Most Recently Used Random Permuta-
tions (NMRURP)

NMRURP, similar to RP, limits pathological ran-640

dom replacement scenarios by increasing tempo-
ral reuse and enforcing random evictions to occur
across all cache ways, but additionally, it guaran-
tees that the MRU line cannot be evicted. In partic-
ular, it avoids potentially long mutual evictions by645

construction, thus behaving as RP in the example
in Figure 3. Whenever the number of cache lines
exceeds the space of the corresponding cache set,
NMRURP has still some positive effects on reuse,
but obviously the impact of replacement policies di-650

minish as the set capacity is increasingly exceeded.

In order to introduce NMRURP, we build upon
our other proposed randomized replacement policy,
RP. First, we show how in specific cases RP may not
favor locality sufficiently, and then how NMRURP655

improves over RP.

4.2.1. Locality awareness of RP

RP improves locality over RR by avoiding the re-
placement of a given cache line within a permuta-
tion (window). Hence, cache lines recently fetched660

cannot be evicted before crossing the boundary to
the next window. However, there are two scenarios
where RP may fail to preserve locality:

1. RP places no constraint across arbitration win-
dow boundaries. Hence, potentially, the same665

physical cache line could be evicted twice con-
secutively, which would allow the MRU line to
be evicted. This occurs whenever a cache line
is the last in a window and the first in the fol-
lowing window.670

2. Also, RP does not keep any history on whether
cache lines have been hit recently. Hence, if a
given cache line can be the candidate for re-
placement according to RP, be hit, and then be
evicted immediately due to a miss, thus caus-675

ing an eviction of the MRU line.

Next, we illustrate those two scenarios with spe-
cific examples that serve the purpose to motivate
the introduction of NMRURP.

RP example 1: window boundaries. Let680

us assume a 4-way cache whose current and next
arbitration windows are < w1, w2, w3, w4 > and
< w4, w2, w3, w1 > respectively. Let us further
assume that the next eviction is dictated by the
last slot of the current window (w4 in the first win-685

dow), and w4 in the cache set contains cache line
A. The sequence B1A1B2, where the subscript only
indicates access ordering to a given address, would
cause 3 misses. First, B1 would miss and would
evict the line in w4, so address A. The pointer in690

the arbitration window would move to the first po-
sition in the next permutation, which is w4 again.
Then A1 would also miss, thus evicting B. Finally,
B2 would also miss and would replace the address
in w2.695

As shown, RP allows evicting the MRU cache
line even if it has just been fetched when crossing
arbitration window boundaries if the last slot of one
window and the first slot of the following window
randomly point to the same cache way, which oc-700

curs with probability 1/W , where W is the number
of cache ways.

RP example 2: MRU hit. Let us assume the
same example, so the current arbitration window
is < w1, w2, w3, w4 >, the candidate for eviction is705

w4, and A is stored in w4. In this case, the sequence
A1B1A2 would produce 2 misses since A1 is a hit,
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Figure 8: Additional logic for NMRURP w.r.t. RP.

thus becoming w4 (so A) the MRU line, B1 is a
miss and evicts A, and then A2 also misses.

As shown, on a hit there are 1/W chances that710

the candidate for eviction is the cache line recently
hit, so a subsequent cache miss may evict the MRU
cache line with a non-negligible probability.

4.2.2. NMRURP replacement policy

NMRURP is a hybrid policy between NMRU and715

RP. In particular, it works as RP but, whenever the
cache line to be evicted is the MRU, the following
candidate in the arbitration window (or the first
one in the next window if window boundaries are
exceeded) is selected for eviction. This prevents, by720

construction, the eviction of the MRU cache line.
Let us recall RP example 1 above. In this case,

B1 would evict A from w4, but A2 would not be
allowed to evict B since B is stored in the MRU
way (w4). Hence, w2 would be replaced instead and725

access B2 would hit. In the case of RP example
2, the behavior is similar. A1 hits in w4, B1 is
not allowed to evict w4 and evicts w2, and A2 is
therefore a hit.

Overall, NMRURP increases locality w.r.t. RP730

in both cases, whenever the MRU was either hit or
fetched due to a miss.

4.2.3. Implementing NMRURP

The implementation costs of NMRURP are
slightly higher than those for RP. In particular, it735

requires a register of dlog2W e bits to store the iden-
tifier of the MRU cache line, two comparators to
compare the current and next candidates for evic-
tion with the MRU, and a priority decoder to select
the appropriate candidate for eviction. Note that740

the output of the comparisons drive both, the prior-
ity decoder and the pointer shift in the arbitration
windows to select the following eviction candidate.
A schematic of the additional logic w.r.t. RP is
depicted in Figure 8 for illustration purposes. As745

shown, only two slots need to be compared with the
MRU since at most two consecutive slots may point

to the same cache way given that each way has only
one occurrence per window, and thus they can only
repeat once across window boundaries. Thus, up to750

two slots may need to be bypassed, as it would be
the case in RP example 2 above.

Overall, the additional hardware cost is small
and increasingly associative caches only require a
slightly larger MRU pointer, thus justifying the755

scalability of this replacement policy.

5. MBPTA compliance

MBPTA requires that execution time distribu-
tions occurring during operation match or are
upper-bounded by those enforced at analysis. This760

is achieved by means of time randomization or time
upper-bounding [30]. In the particular case of re-
placement policies, this needs to be enforced too. In
this section we review the MBPTA compliance of
the different replacement policies discussed in this765

paper, namely LRU, NMRU, BT, RR, RP and NM-
RURP.

5.1. Cache controllability

In general, it is unaffordable predicting the cache
state before running a program during operation,770

unless all accesses since the last flush are being
tracked, which requires an unrealistic level of con-
trollability. An explicit flush command could be is-
sued before each software unit, however this would
incur in a significant execution time and energy775

cost. Hence, cache flushing often occurs only across
time partitions for the sake of memory consistency,
but not across software units runs within a given
time partition [7].

In this context, the most convenient solution to780

ensure worst-case cache effects are properly cap-
tured consists of enforcing an initial cache state
at analysis time that leads to equal or higher ex-
ecution times than any potential initial cache state
that may occur during operation. In general, one785

would expect that the empty cache state provides
this behavior, since no data is reused from previous
runs and, consequently, more accesses should miss
in cache. However, as shown in this section, this is
not always the case for all replacement policies.790

5.2. LRU

The LRU policy keeps the order in which the
cache lines in a set have been last accessed. There-
fore, two setups starting from different initial cache
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states will reach the same state for a given cache795

set after W accesses to different cache lines in that
cache set, where W stands for the number of cache
ways.

This occurs because, whenever a cache line is ac-
cessed, whether it is a hit or a miss, it is promoted800

to the MRU position, and the remaining cache lines
are shifted as needed to the LRU position to make
room for this line be the MRU. If the access is a
miss, all lines are shifted one position closer to the
LRU position, and the LRU line is evicted. Con-805

versely if the access is a hit, only those lines closer
to the MRU position than the one hit are shifted
towards the LRU position.

The only difference across two different initial
cache (set) states with LRU relates to whether the810

first access to each of the first W different addresses
accessed is a hit or a miss, which depends on the
initial state.

Therefore, we can upper-bound the behavior dur-
ing operation by doing one of the following things815

at analysis:

• Flush the cache before each run at analysis.
This ensures that the first w accesses to differ-
ent addresses in each set miss, and after those
accesses the cache state is the same as that820

during operation regardless of the initial state
during operation.

• Add the latency of w misses per set to the
WCET estimate, which upper-bounds the gain
obtained between the best and the worst ini-825

tial cache states. This method could result in
a more pessimistic outcome since we could be
accounting for some gains that do not occur in
practice because the program could also miss
in the first w accesses to different addresses in830

each set.

If either of these two approaches is followed, the
execution times of the program at analysis with the
LRU replacement policy upper-bound those dur-
ing operation and hence, LRU is MBPTA compli-835

ant. Note, however, that despite LRU its compli-
ance with MBPTA requirements, it may still ex-
hibit systematic pathological cases that, neverthe-
less, would already be captured, in the absence of
timing anomalies, during the test campaign at anal-840

ysis.

5.3. NMRU
NMRU policy selects the replacement based on

a round-robin mechanism but protecting the MRU

a b c c b a

>

c b a
>

>>a  b  c

d b c c d a

>>
d

b
d b c c d b

>>

d

d b c c d b

>>

a
d a c a d b

>>

c
d a c a c b

>>

c0 c1

Figure 9: NMRU. Sequence that has more hits in the empty
cache than in the one initialized.

cache line in a set. Given two initial cache states,845

the MRU value in a specific set will be the same
after just one access. The rest of the addresses,
however, will depend on the initial state and the
access sequence.

The example in Figure 9 shows the same set for850

two different initial cache states c0 and c1. c0 cor-
responds to the empty state, whereas c1 has some
contents. The pointer in each set indicates the next
element to be replaced (following a round-robin pol-
icy). The bold cache line indicates the MRU line,855

so the one protected from eviction.

In this example, first, we make three accesses to
fill the empty cache: a, b and c. Afterwards, we ac-
cess a new cache line d that misses in both caches.
Since c0 and c1 have different pointers and orders,860

they will evict different lines. c0 will evict line
a, whereas c1 will evict line b, since the eviction
pointer points to c that is protected (MRU line).
The next access is to line c, which hits in c0 and
misses in c1. After two more accesses that hit and865

then miss in both caches, the same case arises: an
access to line c that hits in c0 and misses in c1.

As shown in this example, there is no guarantee
that an empty initial cache state upper-bounds the
execution time of a non-empty cache, and the exe-870

cution time difference can be arbitrarily large since
both initial states may not converge to the same
state. Hence, we can claim that the empty cache
state is not an acceptable initial state for analy-
sis runs since it does not upper-bound all initial875
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a c b d
> > >

> >

b d
> > > >

> >

b da

> > > >

> >

c

> > > >

> >

e

> > > >

> >

b

> > > >

> >

e

a c

b c d a c

b da b c d a c

e de b c d a c

e de b c d b c

e de b c d b c

c0 c1

Figure 10: BT. Sequence that has more hits in the empty
cache than in the one initialized.

cache states and access sequences. Moreover, our
example already illustrates that specific access se-
quences may make any given initial state perform
worse than another given state without converg-
ing to the same state, thus indicating that MBPTA880

compliance is not achieved for NMRU.
Only if we could enforce the same initial cache

state at analysis and during operation, NMRU
could be made MBPTA compliant. However, as
explained before, the initial cache state during op-885

eration may not be controlled (e.g. flushed) in many
cases.

5.4. BT

The Binary Tree (BT) replacement policy has an
auxiliary tree structure that defines the state of the890

replacement algorithm for each cache set. The fact
that cache lines are already stored in a particular
location and such location, together with the ac-
cess sequence, determines the replacement order,
can lead to a pathological scenario where some ac-895

cesses always miss. This can easily be seen with an
example.

The example in Figure 10 shows a set of two dif-
ferent initial cache (set) states c0 and c1, one empty
and one initialized respectively. The first 4 accesses,900

namely a, c, b and d are performed in both caches.

In this example, the arrows point to the cache line
to be replaced. Since the cache has 4 ways, we need
2 levels of arrows. The first level indicates the pair
to be replaced first, and the second level what cache905

line inside the pair must be replaced. After these 4
accesses c0 is filled (4 misses) and c1 maintains its
state (4 hits).

Another access to c occurs and hits in both
caches. Then, we make a sequence of 3 accesses910

to cache lines e, b and e (all mapped to the same
set). The first access misses on both caches, and
the last hits on both. However, the second access
(b) hits on the empty initial cache state, whereas
it misses on the already initialized cache. The final915

state is equivalent to the third state shown in the
example (after accessing c), but with the following
conversions: a′ = e, b′ = c, c′ = b, d′ = a, e′ = c,
where the prime mark indicates the new state. This
means that a sequence a′, c′, a′ would again result920

in the same behavior: miss for both, then a hit for
c0 and a miss for c1, and finally a hit for both. This
pattern (shown in a box for illustration purposes),
with the appropriate addresses, could repeat an ar-
bitrarily long number of times, thus making the925

empty initial cache state lead to arbitrarily lower
execution times than the non-empty state.

As for NMRU, given any initial cache state, we
can devise an access sequence that makes a differ-
ent initial cache state lead to systematically lower930

execution times. Hence, an initial state that upper-
bounds all others does not exist. This implies that,
measurements collected on an empty initial cache
state do not upper-bound operation-time behav-
ior, and differences across initial states cannot be935

upper-bounded in general. Because of this, we re-
gard this cache policy as non MBPTA compliant.

5.5. RR

Random replacement (RR) policy chooses where
to allocate a new cache line randomly. Hence, it940

does not keep any state on replacement order. With
RR we cannot determine how many accesses to dif-
ferent addresses will make two different initial cache
states reach the same state. However, since eviction
choices are random and have uniform probabilities945

across lines, we can claim that whether accesses
hit or miss does not alter cache replacement state
(which is none for RR). Thus, any non-empty state
leads, probabilistically, to equal or lower miss rates
that an empty initial state.950

This behavior can already be inferred from the
work in [31]. In particular, authors prove that with
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RR, given an initial cache state, causing random
evictions can only lead to a probabilistically worse
execution time. In our case, by causing an infi-955

nite number of evictions, we would reach the empty
cache state that, therefore, would lead to a prob-
abilistically worse execution time than any other
initial state.

Hence, on a non-empty initial cache state dur-960

ing operation, we may experience additional hits
and thus, lower execution times than those experi-
enced at analysis with an empty cache state. We
can conclude, therefore, that RR is MBPTA com-
pliant with an empty initial cache state at analysis.965

5.6. RP

RP generates a permutation that will replace all
cache lines in a cache set in w replacements. How-
ever, a program can start its execution in the mid-
dle of a permutation, so there can be a scenario970

where we need to perform (2 · w)− 1 replacements
before all cache lines in the set have been replaced.
This occurs when a given cache line is in the first
slot of a window and in the last of the next win-
dow, and initially we start replacing the cache in975

the second slot. For instance, given the permuta-
tions < w1, w2, w3, w4 > and < w4, w2, w3, w1 >,
if the eviction pointer is in the second slot of the
first permutation, we need 7 evictions to evict the
line in w1, whereas if we are at the beginning of a980

permutation, we only need w replacements to evict
all lines.

Let us build our argument on the MBPTA com-
pliance of RP in two steps. First, we show that the
difference between two empty initial cache states985

with different window alignment is up to w − 1
misses. Then, we show that for a non-empty cache
state exists an empty cache state that upper-bounds
the non-empty state. Such empty cache state is, by
construction, up to w − 1 misses better than the990

worst empty cache state. Hence, at analysis we can
enforce an empty initial cache state, where window
alignment per set can be any, and increase WCET
estimates w − 1 misses per set.

Difference across empty initial states. With995

RP there is a dependence between the position of
the eviction slot of the current window and miss
probabilities. In particular, given two initial empty
cache states with different permutation window
alignment, it may take up to w − 1 evictions until1000

their eviction probabilities match (e.g. both align
at the beginning of the permutation window), and
from that point onwards, eviction probabilities are

identical. Whether those up to w− 1 replacements
lead an additional hit or miss each, depends on the1005

access sequence. Hence, if we increase the WCET
estimate by the impact of w − 1 misses per set, we
can claim that RP is MBPTA compliant.

This can be better illustrated comparing RP with
NMRU. Since MRU protection is a subcase of LRU,1010

which is MBPTA compliant, let us consider only the
round-robin part of NMRU for the sake of this dis-
cussion. NMRU fails to be MBPTA compliant be-
cause the eviction order of addresses is fixed (round-
robin). Hence, the particular location of the pointer1015

in the sets determines evictions. In the case of RP,
evictions occur randomly and uniformly distributed
across cache ways within a permutation window.
Once two initial cache states reach the same window
alignment, eviction probabilities are random and1020

follow the same distribution across both states, thus
having similar properties to those of RR. Hence,
reaching such identical alignment (e.g. between the
current window alignment and the worst potential
alignment for the program under analysis) requires1025

up to w − 1 evictions.
Difference between empty and non-empty

states. Note that since cache hits do not alter
RP state, a non-empty initial cache state c1 can
only lead to lower execution times that, at least,1030

an empty initial cache state c0. In particular, given
an access a hitting in a preexisting line in c1 and
missing in c0, the likelihood of a being evicted in
c0 is lower since the pointer moves to the following
slot in the window. Eventually, this may make that1035

a access to a is a hit in c0 and a miss in c1, thus
producing the opposite effect. However, such extra
miss in the non-empty cache state can only occur
after an extra miss in the empty cache state, which
guarantees that the empty cache state is probabilis-1040

tically worse than the non-empty one.
Need for padding WCET estimates. So far

we have shown that, theoretically, we may need to
account for up to w− 1 extra misses per set. How-
ever, this holds under the assumption that the ini-1045

tial alignment is deterministic. However, we can
break such dependence by randomizing the initial
alignment with the permutation window both at
analysis and during operation. We can enforce the
flush process to choose randomly the window align-1050

ment in each set. At analysis, such flush is per-
formed before each run. During operation, it is
only needed at boot time. After that, the ran-
dom alignment is modified by random choices for
replacement, thus leading to a random alignment1055
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before running the program under analysis, even
if the number of evictions before its execution is
deterministic (e.g. programs performing only cold
misses). Therefore, RP provides MBPTA compli-
ance by simply starting from an empty cache state1060

with random window alignments in each set.

5.7. NMRURP

The case of NMRURP is analogous to that of RP,
with the difference that the MRU line is protected.
Hence, the difference in terms of permutation win-1065

dow alignments is up to w − 2 lines. However, the
MRU pointer may also differ across different initial
states, so the maximum difference across empty ini-
tial cache states is again w − 1 misses per set, as
for RP. Also, the same reasoning that applies for1070

empty and non-empty cache states for RP, applies
for NMRURP, as well as the concept of enforcing a
random window alignment on a cache flush.

Overall, by using an empty initial cache state and
enforcing random window alignment in each set on1075

a cache flush (flush must be used at boot time dur-
ing operation), NMRURP can also be regarded as
MBPTA compliant.

6. Evaluation

In this section, we evaluate RP and NMRURP1080

in terms of average execution time and pWCET
estimates, and compare them against LRU, NMRU,
BT (average performance) and RR, LRU (average
performance and pWCET).

6.1. Framework1085

Processor model. We model a 4-core multicore pro-
cessor with pipelined in-order cores with a cycle-
accurate performance simulator based on the So-
CLib simulation framework [32]. Our measure-
ments are collected on one of the cores, while the re-1090

maining cores are idle. However, our setup is made
MBPTA compliant as described in [30], thus mean-
ing that arbitration on shared resources always oc-
curs across all cores during our analysis, as if the
remaining cores had pending requests. If another1095

core is granted access to any shared resource in
this analysis phase, the resource is kept busy for
the maximum request duration. This way the con-
tention considered during our analysis matches or
upper-bounds that during operation regardless of1100

what programs run in the other cores in practice.

The simulator has been configured to model the
LEON4 multicore processor [33], against which it
was assessed showing performance variations of
around 1-3% only [34]. Each core includes L1 in-1105

struction (IL1) and data (DL1) caches, being DL1
write-through and write-allocate. Both caches are
16KB 4-way with 16B/line. A shared – yet parti-
tioned – 512KB 4-way L2 cache is included so that
each core has effectively a 128KB 1-way L2 cache,1110

thus matching the setup of the LEON4 multicore
processor. DL1 and IL1 hit and miss latencies are
1 cycle. On a miss, the shared bus is accessed with
4-cycles latency and then L2 latency is 2 cycles for
both hits and misses. On a L2 miss, memory is1115

accessed, whose latency is 16 cycles.

L1 caches implement random modulo place-
ment [11], whereas L2 cache implements hash-based
random placement [10], given that this has been
shown a very convenient setup [11] for MBPTA.1120

Note that, since we build upon a randomized place-
ment policy, execution times change across runs,
even if the replacement policy is deterministic as,
for instance, in the case of LRU. By choosing a
randomized placement policy, we enable MBPTA1125

compliance for all those replacement policies also
MBPTA compliant, and have a fair comparison
across replacement policies since all of them build
upon the same placement policy. In fact, we enforce
the same set of random placements (e.g. the same1130

set of 1,000 random placements for each of the 1,000
runs) across replacement policies so that the only
source of variation across setups is the replacement
policy. For average performance evaluation we con-
sider that all caches use the same replacement pol-1135

icy, which can be either LRU, NMRU, BT, RR, RP
or NMRURP. The L2 has no replacement policy
since each core has a single L2 way, thus requir-
ing no replacement policy. For pWCET estima-
tion purposes, we compare our proposals, namely1140

RP and NMRURP, with the existing MBPTA com-
pliant replacement policies, namely RR and LRU.
Note that, despite considering a multicore, evalua-
tion is performed for programs in isolation since we
focus on cache replacement effects.1145

Applications. We make a solid evaluation of our
proposal with three different application setups.

• For illustration purposes, we consider a syn-
thetic benchmark traversing a configurable
number of times a vector with varying sizes1150

ranging from 4KB to 40KB in 4KB steps, on a
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(a) LRU/NMRU/BT (b) RR (c) RP/NMRURP

Figure 11: L1 data hit rate for the synthetic benchmark when varying the number of cache lines and iterations.

Table 1: Average results for the 10,000 executions and the worst 100 (1%) for the Mälardalen benchmarks.

All Worst 1%
LRU NMRU BT RR RP NMRURP LRU NMRU BT RR RP NMRURP

Cycles 45,522 45,036 44,776 46,076 44,998 44,989 46,472 45,428 45,218 46,991 45,357 45,358

IL1 m.r. 0.017 0.017 0.017 0.018 0.017 0.017 0.018 0.018 0.018 0.019 0.018 0.018

DL1 m.r. 0.133 0.133 0.128 0.135 0.132 0.131 0.134 0.137 0.132 0.138 0.136 0.136

L2 m.r. 0.465 0.460 0.478 0.459 0.464 0.465 0.424 0.400 0.405 0.416 0.401 0.401

setup with modulo placement, so that we ac-
cess in a round-robin fashion between 1 and
10 different lines in the same set. This allows
us illustrating the different timing behavior for1155

each replacement policy.

• We use a representative subset of the well-
known Mälardalen Benchmark Suite [35]. We
use 28 out of the 36 Mälardalen benchmarks,
since we could not manage to run the remain-1160

ing 8 in our simulation infrastructure.

• We also use a real railway application imple-
menting a critical real-time function from the
European Train Control System (ETCS) refer-
ence architecture. This application is in charge1165

of controlling the safety functions related to
the supervision of the train distance and speed.
We use the 10 different input sets regarded as
relevant by the end user (provider of the appli-
cation), numbered from 0 to 9.1170

WCET estimation. We use MBPTA to derive
pWCET estimates [6]. As cutoff probability for the
pWCET estimates, we use 10−12 per run, so that a
program executing up to 10,000 times per hour does
not exceed a deadline miss rate of 10−8 per hour.1175

Other cutoff probabilities show analogous trends.
All the statistical tests required for MBPTA ap-

plicability (i.e. independence and identical distri-

bution tests [6]) were passed for all benchmarks,
providing evidence that RP and NMRURP do not1180

change the MBPTA compatibility of the underlying
configuration.

6.2. Average performance

For these experiments, we use the same random
seeds (and so, the same placements) for all configu-1185

rations so that differences are produced due to the
replacement policy. Miss rates as well as average
execution time are obtained as the mean across all
measurements for each input set and replacement
policy.1190

6.2.1. Synthetic benchmark

Figure 11 analyzes the hit rate (y-axis) of the syn-
thetic benchmark varying the number of cache lines
accessed in round-robin (x-axis) and the number of
iterations of the loop (z-axis).1195

• Figure 11(a) shows the matching results results
for LRU, NMRU and BT replacement. We ob-
serve that a very high hit rate is obtained for
up to 4 addresses accessed, which matches DL1
associativity. Above that point, all addresses1200

are evicted systematically before being reused.

• In the case of RR (Figure 11(b)), we observe
that it obtains decreasing hit rates as the num-
ber of addresses increases, but they are never
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Table 2: Average results for the 10,000 executions and the worst 100 (1%) for the railway case study.

All Worst 1%
LRU NMRU BT RR RP NMRURP LRU NMRU BT RR RP NMRURP

Cycles 3299 3288 3288 3311 3288 3289 3389 3306 3299 3408 3305 3306

IL1 m.r. 0.151 0.151 0.151 0.152 0.151 0.151 0.151 0.151 0.151 0.153 0.151 0.151

DL1 m.r. 0.302 0.302 0.302 0.305 0.302 0.302 0.303 0.314 0.307 0.312 0.315 0.314

L2 m.r. 0.781 0.781 0.781 0.776 0.781 0.781 0.794 0.772 0.776 0.783 0.772 0.772

zero. However, we also observe that hit rates1205

slowly increase with the number of iterations
for 4 addresses due to the cases where lines
evict each other despite fitting in cache. A sim-
ilar trend occurs for 2 and 3 addresses, but it
is omitted in the plot since visually it is not so1210

obvious.

• Finally, Figure 11(c) shows the matching re-
sults for RP and NMRURP. We observe that
the hit rate grows rapidly with the number of
iterations for 4 addresses. It also grows faster1215

than RR for 2 and 3 addresses. However, for
larger address counts the hit rate decreases
faster than for RR being zero for 8 addresses.
However, in that case the real problem is not
the replacement policy, but the fact that cache1220

capacity has been largely exceeded.

6.2.2. Mälardalen

Table 1 shows the average number of cycles and
miss rates for IL1, DL1 and L2 for the 10,000
executions performed for each replacement policy.1225

For the MBPTA compliant replacement policies, we
also show the average of the 1% of simulations that
had the highest execution times. The worst 1%
runs for RP and NMRURP perform as good as the
average of all runs for LRU and the other determin-1230

istic policies. As shown, for the highest 1% execu-
tion times, the gap between RR and RP/NMRURP
increases due to the bounded pathological evic-
tions with RP/NMRURP. Also, there is a signifi-
cant gap with LRU, which also triggers some patho-1235

logical cases in some sets for some placements,
thus showing that RP and NMRURP are the best
MBPTA compliant replacement policies. LRU only
performs slightly better than RR but worse than
RP/NMRURP. This occurs because it preserves1240

temporal locality better than RR, but its patholog-
ical cases make it worse than RP/NMRURP. Note
that L2 miss rates are lower for the worst 1% than
on average for all runs. This relates to the fact that

DL1 accesses dominate execution time, and higher1245

execution times occur for higher DL1 miss rates.
Thus, although the number of L2 misses remains
barely constant for the worst 1%, the number of
accesses increases and hence, the L2 miss rate de-
creases.1250

Differences between RP and NMRURP in terms
of average performance are marginal for the eval-
uated benchmarks. While differences among them
exist and may be relevant in some specific cases,
most programs do not exhibit often those specific1255

cases where NMRURP is superior to RP and hence,
their average performance is roughly identical. Al-
though NMRU and BT are not compatible with
MBPTA, as discussed before, we also include them
in this evaluation, showing that their performance,1260

both across all measurements and across the worst
1%, is roughly identical to that of RP and NM-
RURP, which, however, attain MBPTA compli-
ance.

For the sake of completeness, we have also con-1265

sidered 8-way caches, despite the target processor
(LEON4 multicore) only implements 4-way caches.
However, other embedded processors also imple-
ment 8-way L1 caches. Since the L1D cache has
shown to be the most sensitive cache to the re-1270

placement policy used for this benchmark suite, we
have only varied L1D cache set-associativity (us-
ing 8 instead of 4 ways). Results across all bench-
marks barely changed, showing less than 1% vari-
ation w.r.t. the 4-way setup in terms of execution1275

time. For instance, results for NMRURP with an 8-
way DL1 are 44,789 cycles on average, and 45,071
cycles for the worst 1%. Since no further insight
was observed, detailed results have been omitted.

6.2.3. Railway case study1280

For the railway case study, average results across
input sets are shown in Table 2. As shown, RP and
NMRURP provide small gains w.r.t. RR in terms of
cycles, DL1 and IL1 miss rates. RP and NMRURP
are slightly worse in terms of L2 miss rate. When1285

compared against LRU and the other determinis-
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Figure 12: pWCET reduction (p = 10−12) for the Mälardalen benchmarks w.r.t. RR.

Figure 13: pWCET for jfdc-tint Mälardalen Benchmark
for all MBPTA compliant replacement policies.
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Figure 14: pWCET reduction (p = 10−12) for the rail case
study for all MBPTA compliant replacement policies.

tic policies, we also observe negligible differences.
However, if we keep only the highest 100 measure-
ments (the worst 1% of them), we observe that
differences increase, evidencing that RR may pro-1290

duce pathological scenarios ps1 and ps2, as we have
further verified inspecting the sequences of events
for the worst RR runs. Conversely, RP and NM-
RURP limit the maximum number of evictions so
that its worst case is better than that of RR. As for1295

Mälardalen, LRU performs slightly better than RR
but worse than RP/NMRURP since LRU produces
sporadic but significant pathological cases.

Figure 15: pWCET curve for input 9 of the railway case
study w.r.t. RR.

Analogously to the case of Mälardalen bench-
marks, differences between RP and NMRURP in1300

terms of average performance for the railway case
study are marginal, and NMRU and BT, which are
not MBPTA compliant, perform roughly as RP and
NMRURP.

6.3. Worst-case performance1305

As shown in the previous section, the differences
between RR/LRU and RP/NMRURP grow at the
tail of the distribution (i.e. for the highest values):
for instance, average execution time for RP is 1%
lower than for RR and 3% lower for the 1% highest1310

execution times of RR. The latter translates into
tighter pWCET estimates for RP/NMRURP.

6.3.1. Mälardalen

For Mälardalen benchmarks, in Figure 12 we
present the reduction of pWCET estimates at 10−121315

w.r.t. those of RR. We observe that RP and NM-
RURP are consistently better than those for RR.
The improvement ranges from 1% to 86%, being
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24% on average for RP and NMRURP. This signifi-
cant reduction in pWCET evidences the advantage1320

of using RP or NMRURP instead of RR or LRU.
LRU is on average 1% better than RR, performing
a better on some cases and worse in others.

While discrepancies between RP and NMRURP
are larger in terms of pWCET estimates than in1325

terms of average performance, they are low across
individual benchmarks and marginal on average. In
fact, if we consider confidence intervals of 95% for
pWCET estimates, intervals overlap for RP and
NMRURP, thus indicating that differences are not1330

statistically significant. Part of our future work
consists of investigating whether specific patterns
causing different behavior between RP and NM-
RURP exist to a sufficient extent in some industrial
programs so that a better selection among RP and1335

NMRURP replacement policies can be performed.
Figure 13 shows the pWCET distribution when

using RR, LRU, RP and NMRURP for the
jfdctint Mälardalen Benchmark. Red dotted lines
and black straight lines represent the CCDF for1340

the measured data and the pWCET curves re-
spectively. RP and NMRURP provide increasingly
higher gains as the exceedance threshold decreases
due to the fact that RP and NMRURP avoid patho-
logical evictions by construction. Since RR can1345

produce some such pathological evictions with rel-
evant probability, MBPTA accounts for that by
smoothening the shape of the curve and shifting it
to the right. Analogously, LRU can produce some
pathological cases, which has also some significant1350

impact on pWCET estimates.

6.3.2. Railway case study

For the rail application Figure 14 shows the
pWCET estimates at 10−12 w.r.t. those of RR. We
observe that the pWCET estimates of RP and NM-1355

RURP are consistently better than those for RR
, while LRU is sometimes better and sometimes
worse, although on average LRU performs worse
since its pathological cases can occur systematically
as opposed to those of RR, which occur with de-1360

creasing probabilities. RP pWCET reduction w.r.t.
RR is 11% on average, reaching 22.6% for input set
7.

For illustration purposes, Figures 15 shows the
pWCET distribution when using LRU, RR, NM-1365

RURP and RP for the railway case study (in-
put set 9). Observed trends are similar to for
Mälardalen benchmarks: the lower the exceedance
probability considered, the larger the gap between

RP/NMRURP and RR/LRU. Moreover, in this1370

particular case, we observe that LRU is significantly
worse than RR (almost 20% worse) due to the sys-
tematic nature of its pathological cases.

Overall, RP and NMRURP provide slightly bet-
ter average performance than RR, and similar per-1375

formance as deterministic policies. However, in
terms of pWCET estimates, our proposed replace-
ment policies, RP and NMRURP, are consistently
better than RR and LRU by preserving locality and
avoiding pathological cases by construction.1380

7. Related work

Literature on timing analysis is abundant and it
is not the purpose of this work describing the dif-
ferent existing approaches. Instead, we refer the
interested reader to a detailed survey describing1385

pros and cons of static, measurement-based and hy-
brid timing analysis approaches [4]. Recently, exist-
ing timing analysis approaches together with those
based on probabilistic analysis have also been com-
pared taking into account their potential sources of1390

unreliability [36].
Research on replacement policies is abundant,

but often targets either improving average per-
formance or achieving deterministic predictability.
Among those we find FIFO and LRU replacement1395

policies as well as enhanced versions of them such
as protected LRU [37] and pseudo-LRU, which
has already been deployed in some IBM proces-
sors [38]. A performance comparison of these re-
placement policies including also NMRU is pre-1400

sented in [39]. Also, an oracle replacement policy
has been defined as a reference but not made im-
plementable [40]. Work on optimizing replacement
policies for second (L2) and third level (L3) caches
is abundant [41, 42, 43, 44, 45]. Those works, ei-1405

ther for uniform [41, 42, 43] or non-uniform [44, 45]
cache access architectures, leverage the fact that L1
caches filter many accesses, so that access patterns
in L2 and L3 caches differ noticeably from those
in L1 caches. In general, those cache policies have1410

systematic pathological cases due to their determin-
istic nature, thus being unfriendly for MBPTA, as
it is the case for LRU.

Random replacement (RR) policies have already
been used in some COTS processors such as the1415

ARM Cortex R4 [46] and the PowerPC 7450 [47].
These policies, however, have not been shown
to meet the degree of randomness needed by
MBPTA since they usually build upon low-quality
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PRNGs. Instead, a LEON-based multicore pro-1420

cessor adapted to be MBPTA-compliant employs
a high-quality PRNG, thus meeting MBPTA re-
quirements [8]. However, those conventional ran-
dom replacement policies, as shown in this paper,
may lead to unbounded pathological eviction sce-1425

narios with decreasing probabilities, which impact
pWCET estimates. Therefore, RP, by removing by
construction those pathological scenarios, provides
a significant advantage in terms of pWCET esti-
mates in the context of MBPTA. In this work we1430

have analysed replacement policies in the context
of MBPTA. Other works [48, 49] analyse them for
Static Timing Analysis.

8. Conclusions

MBPTA has been proven to be a powerful tim-1435

ing analysis approach enabling WCET estimation
for complex software running on complex hard-
ware. In particular MBPTA enables the use of
arbitrarily complex cache hierarchies and place-
ment/replacement policies. In this work we ana-1440

lyze the impact of cache replacement policies show-
ing that deterministic ones can cause systematic
pathological cases, thus degrading the quality of the
WCET estimates. Conversely, random replacement
makes pathological cases non systematic, but they1445

can still occur with decreasing probabilities. This
ultimately enforces MBPTA to account for some
unfortunate cases with large number of random re-
placements.

We, then, propose two new randomized replace-1450

ment policies, RP and NMRURP. We show that
they completely remove pathological cases by pre-
serving cache locality to some extent. This al-
lows avoiding pathological cases and hence, im-
proving WCET estimates drastically. Our evalu-1455

ation on a set of benchmarks and a railway case
study show that both policies largely outperform
random replacement in terms of WCET estimates,
despite average performance gains are rather mod-
est. Whether one of the two randomized replace-1460

ment policies proposed in this paper, namely RP
and NMRURP, is superior to the other remains to
be proven since differences among them in our eval-
uation cannot be regarded as statistically signifi-
cant. Thus, as part of our future work we plan1465

to verify whether large discrepancies among both
policies can be found in other applications, as well
as extend this analysis to more recently proposed
replacement techniques [41, 43].
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[25] K. Kedzierski, M. Moretó, F. J. Cazorla, M. Valero,
Adapting cache partitioning algorithms to pseudo-lru1560

replacement policies, in: 24th IEEE International Sym-
posium on Parallel and Distributed Processing, IPDPS
2010, Atlanta, Georgia, USA, 19-23 April 2010 - Confer-
ence Proceedings, 2010, pp. 1–12. doi:10.1109/IPDPS.
2010.5470352.1565

URL https://doi.org/10.1109/IPDPS.2010.5470352

[26] I. Agirre et al., IEC-61508 SIL 3 compliant pseudo-
random number generators for probabilistic timing
analysis, in: DSD, 2015.

[27] J. Jalle et al., Bus designs for time-probabilistic multi-1570

core processors, in: DATE, 2014.
[28] K. Lahiri, A. Raghunathan, G. Lakshminarayana,

LOTTERYBUS: a new high-performance communica-
tion architecture for system-on-chip designs, in: Pro-
ceedings of the 38th annual Design Automation Con-1575

ference, DAC ’01, 2001, pp. 15–20.
[29] P. Alfke, Efficient Shift Registers, LFSR Counters,

and Long Pseudo-Random Sequence Generators, Xil-
inx (1996).

[30] L. Kosmidis et al., Fitting processor architectures for1580

measurement-based probabilistic timing analysis, El-
sevier Journal of Microprocessors and Microsystems
47 (B) (2016) 287–302.

[31] L. Kosmidis, E. Quiones, J. Abella, T. Var-
danega, F. J. Cazorla, Achieving timing compos-1585

ability with measurement-based probabilistic timing
analysis, in: 16th IEEE International Symposium
on Object/component/service-oriented Real-time dis-
tributed Computing (ISORC 2013), 2013, pp. 1–8. doi:
10.1109/ISORC.2013.6913193.1590

[32] SoCLib, -, http://www.soclib.fr/trac/dev (2003-2012).
[33] Cobham Gaisler, Quad Core LEON4 SPARC V8 Pro-

cessor - LEON4-NGMP-DRAFT - Data Sheet and
Users Manual (2011).

[34] J. Jalle et al., Validating a timing simulator for the1595

NGMP multicore processor, in: DASIA, 2016.
[35] J. Gustafsson et al., The Mälardalen WCET

benchmarks-past, present and future, in: WCET Work-
shop, 2010.

[36] J. Abella et al., WCET analysis methods: Pitfalls and1600

challenges on their trustworthiness, in: SIES, 2015.
[37] R. Karedla, J. S. Love, B. G. Wherry, Caching strategies

to improve disk system performance, Computer 27 (3)
(1994) 38–46.

[38] T. Chen, P. Liu, K. Stelzer, Implementation of a1605

pseudo-LRU algorithm in a partitioned cache, uS
Patent number 7,069,390 (2006).

[39] H. Al-Zoubi, A. Milenkovic, M. Milenkovic, Perfor-
mance evaluation of cache replacement policies for the
spec cpu2000 benchmark suite, in: Proceedings of the1610

42Nd Annual Southeast Regional Conference, ACM-SE
42, ACM, New York, NY, USA, 2004, pp. 267–272.
doi:10.1145/986537.986601.
URL http://doi.acm.org/10.1145/986537.986601

[40] L. A. Belady, A study of replacement algorithms for a1615

virtual-storage computer, IBM Systems Journal 5 (2)
(1966) 78–101.

[41] M. Qureshi et al., Adaptive insertion policies for high
performance caching, in: ISCA, 2007.

[42] M. Chaudhuri, Pseudo-LIFO: The foundation of a new1620

family of replacement policies for last-level caches, in:
MICRO, 2009.

[43] A. Jaleel et al., High performance cache replacement
using re-reference interval prediction (RRIP), in: ISCA,
2010.1625

[44] S. Bartolini, P. Foglia, C. A. Prete, Exploring the re-
lationship between architectures and management poli-
cies in the design of NUCA-based chip multicore sys-
tems, in: Future Generation Computer Systems, 2018.

[45] A. Scolari, D. B. Bartolini, M. C. Santambrogio, A1630

Software Cache Partitioning System for Hash-Based
Caches, in: ACM Transactions on Architecture and
Code Optimization (TACO), 2018.

[46] ARM, Cortex-R4 and Cortex-R4F Technical Reference
Manual (2006).1635

[47] Freescale Semiconductor, MPC7450 RISC Microproces-
sor Family Reference Manual. Rev. 5, Freescale Semi-
conductor (2005).

[48] J. Reineke, Randomized caches considered harm-
ful in hard real[hyphen]time systems, Leibniz1640

Transactions on Embedded Systems 1 (1) (2014)
03:1[HYPHEN]03:13. doi:10.4230/LITES[HYPHEN]

v001[HYPHEN]i001[HYPHEN]a003.
URL http://ojs.dagstuhl.de/index.php/

lites/article/view/LITES[HYPHEN]v001[HYPHEN]1645

i001[HYPHEN]a003

[49] S. Hahn, D. Grund, Relational cache analysis for
static timing analysis, in: Real[HYPHEN]Time Sys-
tems (ECRTS), 2012 24th Euromicro Conference on,
IEEE, 2012, p. 102[HYPHEN][HYPHEN]111.1650

20

http://dx.doi.org/10.1109/RTSS.2017.00028
http://dx.doi.org/10.1109/RTSS.2017.00028
http://dx.doi.org/10.1109/RTSS.2017.00028
http://dx.doi.org/10.1109/ECRTS.2016.20
http://dx.doi.org/10.1109/ECRTS.2016.20
http://dx.doi.org/10.1109/ECRTS.2016.20
https://doi.org/10.1109/IPDPS.2010.5470352
https://doi.org/10.1109/IPDPS.2010.5470352
https://doi.org/10.1109/IPDPS.2010.5470352
http://dx.doi.org/10.1109/IPDPS.2010.5470352
http://dx.doi.org/10.1109/IPDPS.2010.5470352
http://dx.doi.org/10.1109/IPDPS.2010.5470352
https://doi.org/10.1109/IPDPS.2010.5470352
http://dx.doi.org/10.1109/ISORC.2013.6913193
http://dx.doi.org/10.1109/ISORC.2013.6913193
http://dx.doi.org/10.1109/ISORC.2013.6913193
http://doi.acm.org/10.1145/986537.986601
http://doi.acm.org/10.1145/986537.986601
http://doi.acm.org/10.1145/986537.986601
http://doi.acm.org/10.1145/986537.986601
http://doi.acm.org/10.1145/986537.986601
http://dx.doi.org/10.1145/986537.986601
http://doi.acm.org/10.1145/986537.986601
http://ojs.dagstuhl.de/index.php/lites/article/view/LITES[HYPHEN]v001[HYPHEN]i001[HYPHEN]a003
http://ojs.dagstuhl.de/index.php/lites/article/view/LITES[HYPHEN]v001[HYPHEN]i001[HYPHEN]a003
http://ojs.dagstuhl.de/index.php/lites/article/view/LITES[HYPHEN]v001[HYPHEN]i001[HYPHEN]a003
http://dx.doi.org/10.4230/LITES[HYPHEN]v001[HYPHEN]i001[HYPHEN]a003
http://dx.doi.org/10.4230/LITES[HYPHEN]v001[HYPHEN]i001[HYPHEN]a003
http://dx.doi.org/10.4230/LITES[HYPHEN]v001[HYPHEN]i001[HYPHEN]a003
http://ojs.dagstuhl.de/index.php/lites/article/view/LITES[HYPHEN]v001[HYPHEN]i001[HYPHEN]a003
http://ojs.dagstuhl.de/index.php/lites/article/view/LITES[HYPHEN]v001[HYPHEN]i001[HYPHEN]a003
http://ojs.dagstuhl.de/index.php/lites/article/view/LITES[HYPHEN]v001[HYPHEN]i001[HYPHEN]a003
http://ojs.dagstuhl.de/index.php/lites/article/view/LITES[HYPHEN]v001[HYPHEN]i001[HYPHEN]a003
http://ojs.dagstuhl.de/index.php/lites/article/view/LITES[HYPHEN]v001[HYPHEN]i001[HYPHEN]a003

	Introduction
	Background on MBPTA
	Analysis of replacement policies
	Deterministic replacement policies
	Random replacement
	The number of objects mapped to a cache line is smaller than or equal to W
	The number of objects mapped to a cache line exceeds W


	Locality-aware random replacement
	Random Permutations (RP)
	Logic behind Random Permutations
	Implementing RP
	Controlling pathological scenarios

	Non-Most Recently Used Random Permutations (NMRURP)
	Locality awareness of RP
	NMRURP replacement policy
	Implementing NMRURP


	MBPTA compliance
	Cache controllability
	LRU
	NMRU
	BT
	RR
	RP
	NMRURP

	Evaluation
	Framework
	Average performance
	Synthetic benchmark
	Mälardalen
	Railway case study

	Worst-case performance
	Mälardalen
	Railway case study


	Related work
	Conclusions

