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Abstract
Derived from simplifications of the Saint-Venant equations, the kinematic wave model has 
the ability to describe the behavior of surface runoff in watersheds. This paper aims to 
obtain the numerical simulation of the flow routing in a natural watershed, by using lattice 
Boltzmann method. In the computational model, the surface of the basin will be 
represented by a V-shaped segmented in two lateral planes and one main channel. The 
simulation considers the effective precipitation flowing on the watershed per unit of width 
at the exit of each of the planes that represent the surface of the basin. The water flowing 
from the planes enters the main channel in the form of lateral contribution. Hydrograms of 
two rain events are obtained, which present the volume drained in the outlet corresponding 
to the whole basin in each event. Two equilibrium distribution functions were developed by 
Chapmann-Enskog expansion at time scales and model D1Q3, one suitable for flow on the 
basin surface and another for the main channel, in order to obtain the variables of interest 
in each case. The numerical results obtained were compared with the KINEROS2 
hydrological model. 
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1 Introduction
The use of numerical methods in hydrodynamics problems 
enables simulating the runoff behavior of a fluid, obtaining 
results that are sufficiently close to those observed. The 
phenomena related to fluid movement may be very complex. 
Besides theoretical analyses and experimental methods, a third 
alternative to analyze fluid dynamics is numerical simulation [1]. 
In this sense, LBM is effective and flexible to simulate flows, 
especially when they are complex geometries The method is 
characterized by involving simple calculations, it presents 
intrinsic characteristics of parallel processing and is easily 
applied to boundary conditions. Originating in cellular 
automata, of the type with a gas network (LGCA- Lattice Gas 
Cellular Automata), the method describes the microscopic 
movement of particles and, at the macroscopic level it gives a 
correct average description of a fluid [2]. LBM takes a different 
approach compared to traditional numerical methods (finite 
volumes [3], finite differences [4], method of characteristics [5], 
finite elements [6]), LBM is an indirect way to solve the 
governing equations of the runoff. LBM does not use 
discretization of the macroscopic equations, it is based on 
microscopic models and equations that govern kinetics at a 
mesoscopic level. In LBM the macrosocopic dynamic of a fluid is 
the result of the collective behavior of microscopic articles and 
does not change with the underlying details referring to 
molecular interactions of fluid [7]. In recent years, the method 
has been studied by many researchers and became a field of 

research with a great potential for computer fluid dynamics. 
Runoffs involving shallow waters and the kinematic wave model 
were covered by LBM and the simulations presented good 
results [8,9,10,11,12,13,14,15].

Runoff on a free surface is governed by the Saint-Venant 
equations. However, elaborate numerical techniques and a 
large amount of hydraulic information are necessary to solve 
them. In an attempt to reduce the quantity of data needed and 
the numerical difficulty in solving the differential equations, 
simplifications of the Saint Venant equations are used, such as 
the kinematic wave model which is also called hydraulic model 
of flood wave routing [16].

The kinematic wave model is applied to describe surface runoffs 
in river basins and natural watercourses. The focus of interest in 
this work, river basins are a natural system that requires 
monitoring to forecast their behavior in actions such as extreme 
precipitations, floods, droughts and others. Analyzing these 
events, it is possible to manage the water and energy 
resources, avoid soil degradation, thus offering adequate 
planning for the rural, urban and industrial space [17].

LBM is used to simulate surface runoff in a natural river basin 
that is governed by the equations of the kinematic wave model. 
The contribution of the present paper lies in the use of two 
equilibrium functions, one appropriate to runoff on planes that 
represent the surface of the basin, and the other for the 
channel segment that represents the main channel. Each 
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equilibrium distribution function was constructed in such a way 
as to recover the equations of the kinematic wave model 
adapted to flow in the channel and on the planes, and they were 
obtained by means of a Chapmann-Enskog expansion on time 
scales. The boundary conditions are established in such a way 
that initially there is no runoff in the basin. After precipitation 
begins, the water that runs off on the lateral planes generates 
hydrographs that are used for the lateral inflow of water to the 
main channel.

The work is structured as follows. Section 2 presents the 
equations governing runoff. Then in section 3, is the numerical 
method that will be used to simulate the case study presented 
in section 4. The numerical simulations are detailed in section 5 
and the conclusions are in section 6.

2 Runoff Equations

The Saint-Venant equations govern runoff where there is a free 
surface, under the assumption that the vertical and cross-
sectional component of runoff velocity can be neglected 
regarding the longitudinal components [18]. This description is 
appropriate for long wave systems, in which the length of the 
wave is much greater than the depth. The one-dimensional 
Saint Venant equations form a system of non-linear equations 
composed by the continuity equations 1 and quantity of 
momentum 2,
 

∂Q
∂x + ∂A

∂t = 0 (1)

∂Q
∂t + ∂

∂x ( Q2

A ) + gA ∂h
∂x = gA (So − Sf ), (2)

where Q  is discharge, A  is the cross-section area, g  is the 
acceleration of gravity, t  is time, x  is the spatial coordinate, S0 is 
the bottom slope and Sf  represents the energy line slope.

A large quantity of hydraulic data and elaborate numerical 
techniques are required to solve complete Saint-Venant 
equations, especially if they are applied to surface runoff in river 
basins or in natural rivers [16].

In flow in river basins, the kinematic wave model is used as a 
simplification of the Saint Venant equations. This model 
considers the continuity equation and the equation of quantity 
of momentum, neglecting the terms of pressure and inertia. 
This results in the equation of quantity of momentum [19],

S0 = Sf . (3)

The kinematic wave model is based mainly on the continuity 
equation, and there is an approach to the equation of quantity 
of momentum using a uniform flow formula. Defining the slope 
of the energy line Sf , with a uniform flow formula, equation 3 
can be represented for runoff in a channel or surface runoff 
using a relationship of power of the form [20],

Q = βAm , (4)

in which β  and m  are coefficients determined by the flow 
characteristics. This non-linear model considers the variability of 
the parameters according to flow. Thus flow in reaches of the 
basin channels is given by the equations,

∂A
∂t + ∂Q

∂x = ql

Q = βc A
mc ,

(5)

where ql  is the lateral contribution, βc  e mc  are parameters to 
be determined.

The inital and boundary conditions in the channels are 
determined by flow hydrographs resulting from runoff on the 
surface and in channel reaches upstream.

The basin surface is approached by planes. Thus, considering 
that the continuity equation 1 describes runoff in a prismatic 
and rectangular channel, the runoff equations for the planes 
that describe the basin surface are,

∂h
∂t + ∂q

∂x = ie

q = βs h
ms ,

(6)

where q  is discharge per unit of width, h  is depth, ie  is the 
effective precipitation, βs  and ms  are parameters to be 
determined.

The initial and boundary conditions are represented by,

h (0, t ) = 0 t > 0
h (x , 0) = 0 0 ≤ x ≤ L

,
(7)

where L  is slope length.

Applying the kinematic wave model in surface runoff is different 
from applying it in rivers only as regards the medium where 
runoff occurs. As to roughness, Manning's hydraulic resistance 
is used. In the case of equation (6), βs = S0/n  and ms = 5/3, 
where S0 is surface slope and n  is Manning's roughness 
coefficient.

3 Lattice Boltzmann Method
LBM considers molecular dynamics of fictitious particles in 
which space, time and velocities are discrete. The fictitious 
particles travel from point to point in the grid in discrete times, 
and meet at these points at the end of each time step and 
exchange quantities of movement and energy. As regards the 
velocity modules, they assume continuous values. On the other 
hand LBM can be seen as a simplified form of the Boltzmann 
kinetic equation in which only the essential molecular details to 
recover correct macroscopic behavior are maintained [21].

Four main elements characterize LBM: the governing equation, 
the collision operator, the lattice and the equilibrium 
distribution function [8].

3.1 LBM Equation and BGK Operator

Initially the governing equation of LBM (8) is presented with a 
BGK collision operator. This form for the collision operator had 
already been used by Bhatnagar, Gross and Krook [22] to 
simplify the Boltzmann kinetic equation. Equation (8) has two 
phases: transmission and collision. During the transmission 
phase, the particles move from a node in the mesh to one of the 
neighboring nodes, and the direction is given by velocity. 
During the collision phase the particles which arrive at the same 
node interact with each other and change their directions 
according to the guidelines of the collision operator [23],

fα ( x→ + e→ α Δt , t + Δt ) − fα ( x→ , t )

= − 1
τ ( fα ( x→ , t ) − fα

eq ( x→ , t ) ) + (Δt )2gα ( x→ , t )
,

(8)
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where fα  is the distribution function of particles and represents 
the probability of a particle going in a given direction, fα

eq  is the 
equilibrium distribution function, x→  is the position of the node 
in the mesh, t  is the instant in time, Δx  is the mesh spacing, Δt  
is the increment in time, eα

→  are the possible directions of 
movement in the mesh, (Δt )2gα  is the force term, Ωα  is the 
collision term and τ  is the relaxation parameter.

3.2 Lattice D1Q3

In LBM the lattice has the function of repesenting the points on 
the mesh and determining the directions of particle movement. 
The finite directions and those determined for the movement of 
the particles define a microscopic model for molecular 
dynamics. When choosing the lattice to be used, it is essential to 
observe its symmetry. The lattice must be able to represent the 
macroscopic equations [8].

In the work by Qian et al. [24], a family of lattices can be found 
called DnQm , where n  indicates the n -dimensional space and 
m  the directions of movement of the particle distributions.

According to Liu et al. [13], model D1Q3 has a one-dimensional 
structure with a null velocity and two velocities in opposite 
directions; it has two directions for the movement of fluid 
particles, which move to the neighboring nodes to the left or to 
the right. The figure 1 shows the D1Q3 lattice with velocities 

e→ 0 = 0, e→ 1 = − e  and e→ 2 = e , where e = Δx /Δt  is the velocity 
in the lattice.

Figure 1: Lattice D1Q3.

3.3 C. Multi-scale Expansion

A multi-scale expansion must be applied to make the 
connection between mesoscopic scale, in which LBM is inserted, 
and the macroscopic scale of the governing equations. The 
expansion most used is the Chapmann-Enskog expansion [25], 
which considers time and space scales so that the governing 
equation of runoff will be derived from the LBE.

In order not to have negative distribution functions associated 
with the kinematic wave equation, which is against the laws of 
physics, only the time coordinate should be attributed to multi-
scale expansion [11]. Thus, applying three scales to the time 
coordinate, the differential forms for the space and time 
coordinate are as follows,

∂
∂t = ∂

∂t0
+ ε ∂

∂t1
+ ε2 ∂

∂t2
+ O (ε3)

∂
∂x = ∂

∂x + O (ε ),

(9)

where t0, t1 e t2 are time scales and ε  is the Knudsen number. 
The Knudsen number is a non-dimensional measure defined as 
the ratio between the molecular mean free path length and a 
physically representative scale of length.

Expanding fα  around the equilibrium distribution function fα
eq  

with a small ε  we have,

fα = fα
(0) + ε fα

(1) + ε2fα
(2) + O (ε3), (10)

where fα
(0) = fα

eq  and fα
neq = ε fα

(1) + ε2fα
(2) + O (ε3) is the non-

equilibrium distribution function.

The expansion fα ( x→ + e→ α Δt , t + Δt ) in equation 8 in a second 
order Taylor series, and considering Δt = ε , results in,

εΔfα + ε2

2 Δ2fα = − 1
τ ( fα − fα

eq ) + ε2gα ,
(11)

where,

Δ ≡ ( ∂
∂t + e→ α ∂

∂x ) . (12)

Based on the time scales and on the expansion fα , equations 9 
and 10, respectively, and comparing all orders of ε , lattice 
Boltzmann equations are determined with different orders of 
magnitude
  

O (ε0): fα
(0) = fα

eq , (13)

O (ε1):Δ fα
(0) = − 1

τ fα
(1), (14)

O (ε2): ∂fα
(0)

∂t1
+ ( 1

2 − τ )Δ2fα
(0) = − 1

τ fα
(2) + gα .

(15)

Equations 13, 14 and 15 will be used to obtain the moments of 
the equilibrium distribution function.

3.4 Equilibrium Distribution Function

The equilibrium distribution function, together with the Lattice 
Boltzmann equation 8 perform an essential role which is to 
recover the macroscopic equation of fluid. Then the one-
dimensional kinematic wave equation 5 is recovered and its 
equilibrium distribution function is determined. All calculations 
will be presented to obtain the equilibrium distribution function 
for the channel. The calculations for obtaining the equilibrium 
distribution function for the plane are analogous.

Assuming that the distribution function fα  is close to equilibrium 
in the local sphere, we have that,

∑
α

fα = ∑
α

fα
(0) = ∑

α
fα
eq ,

(16)

in this way, applying the sum total on both sides of the equation 
10 and considering 16, we obtain,

∑
α

fα
(1) = ∑

α
fα
(2) = 0.

(17)

Substituting equation 14 into equation 15 results in,

∂fα
(0)

∂t1
+ ( 1

2 − τ ) ×

[− 1
τ

∂fα
(1)

∂t0
+ ∂

∂x ( e→ α Δfα
(0) ) ] = − 1

τ fα
(2) + gα .

(18)

Taking the sum on the directions of the lattice in equations 14 
and 18 we have, respectively,
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∂∑
α

fα
(0)

∂t0
+

∂∑
α

e→ α fα
(0)

∂x = 0,

(19)

∂∑
α

fα
(0)

∂t1
+ ( 1

2 − τ ) ×

[ ∂
∂x (∑α e→ α Δfα

(0)) ] = ∑
α

gα .

(20)

The kinematic wave equation is a special case of Burgers' 
equation. Burgers' equation is a non-linear convection-diffusion 
equation [26]. It is an important equation in fluid mechanics 
which represents phenomena described by and equilibrium 
between the evaluation of time, the non-linearity and the 
diffusion, and it appears in various physical problems.

The one-dimensional Burgers' equation can be written as 
follows [26,11],

∂u
∂t + ∂

∂x (βum ) = γ ∂2u
∂x2 + F ,

(21)

where u (x , t ) is a function that may represent a real quantity, 
such as height, flow or cross-section area, γ  is the diffusion 
coefficient, β  and m  are the parameters to be determined, and 
F  represents the external effect or external force.

Comparing equation 19 to equation 21 we have,

∑
α

fα
(0) = u ,

(22)

∑
α

e→ α fα
(0) = βum .

(23)

The substitution of equations 22 and 23, respectively into 19 
and 20 results in,

∂u
∂t0

+ ∂
∂x (βum ) = 0,

(24)

∂u
∂t1

+ ( 1
2 − τ ) ×

[ ∂
∂x ( ∂(βum )

∂t0
+

∂∑
α

e→ α
2 fα

(0)

∂x ) ] = ∑
α

gα .

(25)

By substituting equation 24 into equation 25 and comparing the 
modified equation 25 with equation 21 we have,

∑
α

e→ α
2 fα

(0) = β2m2 u2m −1

2m − 1 − γu
1/2 − τ

.
(26)

Burgers' equation with the force term 21 is recovered restoring 
the time scales t0, t1 and t2 for the time scale t . For this we have 
14 + ε  15,

∂∑
α

fα
(0)

∂t +
∂∑

α
e→ α fα

(0)

∂x

+ ε ( 1
2 − τ )∑

α
Δ2fα

(0) = ε∑
α

gα + O (ε2) .

(27)

Substituting equations 19, 23, 24 and 25 into equation 27 and 
organizing the terms, we obtain,

∂u
∂t + ∂(βum )

∂x = ε ∂2 (γu )
∂x2 + ε∑

α
gα + O (ε2) .

(28)

Comparing equation 28 with 21, the force term is determined,

F = ε∑
α

gα .
(29)

Taking the mean value gα = F /3ε  in each direction of velocity of 
lattice D1Q3, the force term F  is recovered,

ε∑
α

gα = ε (g0 + g1 + g2 ) = ε (3 F
3ε ) = F .

(30)

Assuming that the external force is the liquid rate of inflow per 
unit width of the channel, we obtain,

gα ( x→ , t ) =
ql ( x→ , t )

3ε , α = 0, 1, 2.
(31)

Equation 28 is also different from equation 21 because of the 
multiplication of ε  in ∂2 (γu ) /∂x2. In order to eliminate ε  
equation 26 is altered to the form,

∑
α

e→ α
2 fα

(0) = β2m2 u2m −1

2m − 1 + kγu ,
(32)

in which,

k = 1
ε (τ − 1/2)

. (33)

Thus, Burgers' equation 21 with a second order truncation error 
is recovered.

Assuming that γ = 0 in Burgers' equation, we have the 
kinematic wave equation since in the kinematic wave model 
there is no diffusion. The equilibrium distribution function is 
determined by the resolution of the system of equations formed 
by moments 22, 23 and 32. Taking into account the velocity 
directions of model D1Q3, and substituting u  by the channel 
cross-section area A , the equilibrium distribution function 
associated with equation 5 is obtained,

f1
eq = 1

2e2 ( βc
2mc

2

2mc − 1 A
2mc −1

− e βc A
mc )

f0
eq = 1

e2 ( −βc
2mc

2

2mc − 1 A
2mc −1

+ e2A )
(34)

f2
eq = 1

2e2 ( βc
2mc

2

2mc − 1 A
2mc −1

+ e βc A
mc ) .

The same development can be applied to determining the 
equilibrium distribution function for equation 6 of the basin 
surface and external force [11],
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f1
eq = 1

2e2 ( βs
2ms

2

2ms − 1 h
2ms −1

− e βs h
ms )

f0
eq = 1

e2 ( −βs
2ms

2

2ms − 1 h
2ms −1

+ e2h )
(35)

f2
eq = 1

2e2 ( βs
2ms

2

2ms − 1 h
2ms −1

+ e βs h
ms ) ,

gα ( x→ , t ) = ie ( x→ , t )
3ε , α = 0, 1, 2.

(36)

3.5 Boundary Conditions

The adequate representation of the physical characteristics of 
the problem, by means of initial and contour conditions, is a 
crucial factor for simulation stability and precision. Figure 2 
illustrates a mesh to discretize the problem domain, which 
defines the entry and exit from a channel and the lattice velocity 
directions.

Figure 2: Computational mesh

The macroscopic boundary conditions for both surface flow and 
channel flow are known at the left border but unknown at the 
right border. The macroscopic behavior at the borders is 
achieved by the correct application of the particle distribution 
functions. For this purpose, the equilibrium distribution 
functions are determined by extrapolation [11]. The distribution 
functions in the left border nodes are given by,

f0̄̄(0) = f0
eq (0)

f1̄̄(0) = f1
eq (0) (37)

f2̄̄(0) = u∗ − f0̄̄(0) − f1̄̄(0),

and, para os for the right border nodes we have,

f0̄̄(N ) = f̄ 0(N )

f2̄̄(N ) = f̄ 2(N ) (38)

f1̄̄(N ) = 2f1̄̄(N − 1) − f1̄̄(N − 2),

where f̄̄  is the velocity distribution function of the particles after 
transmission, f̄  is the velocity distribution function of the 
particles before transmission, u∗ is the macroscopic variable at 
the border, which may be substituted by h  or A  and N  
represents the node of the computational mesh at the right 
border.

3.6 Estability

According to Sterling and Chen [27], it is not possible to ensure 
the stability of LBM and this is due to the large quantity of 
parameters that prevent its complete characterization. 
However, Zhou [8] states that for flows governed by the 
equations of Saint-Venant, in general, the LBM is stable if the 
following conditions are satisfied.

In the LBM, the kinematic viscosity ν , is related to the relaxation 
parameter τ  by the equation,

Δt
Δx2 = 2τ − 1

6ν .
(39)

The kinematic viscosity is a property of the fluid with positive 
value, so the relaxation parameter must satisfy,

τ > 1
2 . (40)

The magnitude of the physical velocity resulting from the fluid 
must be smaller than the velocity in the lattice,

|u |
e < 1.

(41)

For celerity c , it is restricted,

c
e < 1. (42)

Finally, the LBM is applicable to subcritical flows, which can be 
expressed by the inequality,

Fr < 1, (43)

where Fr  is the number of Froude.

Because the kinematic wave model is a simplification of the 
Saint-Venant equations, the presented stability conditions were 
also fulfilled in the simulation of flow in the watershed. The only 
change made was for celerity, since while in the flow in channels 
with the equations of Saint-Venant the celerity is represented by 
c = gh , in the flow in rectangular channel by the kinematic 
wave model, with the Manning's formula, the celerity is 
described by [16],

c =
S0 b2/233

n ( h2/3(5b + 6h )
3(b + 2h )5/3 ) .

(44)

4 Case Study: Flow in a Natural Watershed

The watershed consists of a well-defined area that is a 
catchment for water from precipitation that makes flows 
converge to a watercourse. In the river basin, flow is divided 
into surface runoff and channel flow. In surface runoff the water 
runs on the river basin surface until it finds a watercourse. This 
displacement occurs as the result of precipitated water that was 
not intercepted by the plant cover and by the part that did not 
infiltrate into the soil. Due to the great spatial heterogeneity, 
the river basin surface is represented by planes where shallow 
surface runoff takes place. The lateral contribution to the 
channels is given mainly by precipitation that occurs over each 
plane [19].

This study looks at the natural basin shown in Figure 3 with a 
0.834 km2 area. The main watercourse is 1, 350 m  long and 
divides the basin more or less in half. There are other smaller 
waterways but most of the catchment flow is formed by the 
surface runoff that reaches the main channel. In this way, the 
basin is approached by a V-shaped and segmented by two 
equally sized planes and a channel segment, as illustrated in 
Figure 4. The Manning's coefficients, slopes and dimensions of 
the segments are listed in Table 1.
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Figure 3: Natural watershed

Figure 4: Watershed segmentation

Table. 1 Physical characteristics of the watershed

Segment Lenght L(m) Width b(m) Manning's n (m /s1/3) Slope So (m /m )

Plane 1 308.9 1,350 0.15 0.05

Plane 2 308.9 1,350 0.15 0.05

Channel 1,350 3 0.15 0.012

Two rainfall events, called event 1 and event 2 were considered 
to simulate the surface runoff in a river basin using LBM. For 
this records of excess precipitation that occurred in the river 
basin shown in Figure 3 at an interval of five years of 
measurements were utilized. These data are presented by 
Stephenson and Meadows [28]. In the first event only rainfall 
intensity is used, 12.7 mm /h  with a time duration of 1.2 h , 
which is the same event described by Stephenson and Meadows 

[28], in which the authors apply graphic methods to obtain the 
hydrographs at the outlet of the river basin. In the second event 
data of four intervals of excess precipitation are used. These 
values are shown in Table 2.

Table. 2 Excess rainfall intensity

Event Rainfall duration (h ) Excess rainfall (mm /h )

1 1.2 12.70

1.0 13.99

2 0.6 17.55

1.2 12.70

1.4 11.63

5 Results and Discussion
In both the rainfall events, the parameters used in LBM are the 
same and are summarized in Table 3, N  being the number of 
lattices that discretize each plan and the channel segment.

Table. 3 Simulation parameters in LBM

Segment L (m ) N e (m /s ) τ Δx (m ) Δt (s )

Plane 1 308.9 62 5 0.95 5 1

Plane 2 308.9 62 5 0.95 5 1

Channel 1,350 270

The number of iterations performed in event 1 was 25, 200, 
which corresponds to a time of 7 hours. For event 2 the number 
of iterations performed was 36, 000,  corresponding to a time of 
10 hours. Compiler GNU Fortran (GCC) 5.3.0 was used in a 
computer with a i7 2.2 GHz , processor and 16 GB  of RAM 
memory, and the operational system Windows 10. The 
processing time used for each event was less than 1 minute.

The results obtained by LBM are compared to the KINEROS2 
model (Kinematic Runoff and Erosion Model) which was 
developed at the end of the 1960s by the USDA (United States 
Department of Agriculture). KINEROS2 is a distributed kinematic 
rainfall-runoff-erosion model with a physical base that can be 
applied to river basins where surface runoff is predominant. The 
basin is represented by a cascade of planes and channels on 
which the flow is routed from top to bottom using a solution of 
finite differences of the one-dimensional kinematic wave 
equations [29].

The hydrographs in Figure 5 and Figure 6 show the volume of 
outflow corresponding to the entire basin at each event 
simulated. The results obtained by LBM and KINEROS2 (KIN) are 
illutrated in Table 4, which supplies, for each event (E ), the 
values of the peak discharge (Pv ) and the time when the peak 
occurs (tp ), the expected discharge (Vex ) and the discharge 
calculated at the outlet (Vcx ), and the relative error (Er ) among 
these flows.
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Figure 5: Hidrograph of event 1.

Figure 6: Hidrograph of event 2.

Table. 4 Comparison of LBM × KINEROS2

E Model Pv (m3/s ) tp (min ) Vex (m3) Vcx (m3) Er (%)

1 LBM 2.61 82.93 12710.17 12340.93 2.99

KIN 2.59 83.92 12710.17 12162.45 4.50

2 LBM 3.76 108.20 46739.04 46169.90 1.23

KIN 3.78 109.17 46739.04 46174.68 1.22

The peak flow values shown in Table 4 corresponding to event 1 
are smaller than that calculated by Stephenson and Meadows 
[28] which is 2.70 m3/s . This difference is attributed to the fact 
that the authors use graphic methods to calculate the 
hydrograph.

The hydrographs shown in figures 5 and 6 and the results listed 
in Table 4 show that LBM and KINEROS present excellent 
concordance in the simulation of the surface runoff in the river 
basin shown in this paper.

6 Conclusion
A model based on LBM was proposed, in which two equilibrium 
distribution functions are used, one appropriate for runoff on 
planes that represent the basin surface, and the other for the 
channel segment that represents the main channel. Each 
equilibrium distribution function was constructed so as to 
recover the equations of the kinematic wave model adapted to 
flow in the channel and on the planes, and they were obtained 
by means of a Chapmann-Enskog expansion in time scales. The 
equilibrium distribution function constructed for the channel 
allowed obtaining the area of the cross-section of the channel 
and, based on the area the flow Q  was obtained by equation 5 
with the Manning's formula. The equilibrium distribution 
function constructed for the planes supplied water depth and, 
based on depth, flow per unit of width q  was obtained by 
equation 6, also with Manning's formula. As a result, we have 
the hydrograph of a hydrographic basin for the two events 
chosen.

The simulations obtained from the model proposed in this 
paper show excellent concordance with the hydrological model 
KINEROS2 as to peak flow, the temporal distribution of the flows 
and also the total volume of outflow. Therefore, the model 
proposed proved adequate and precise to simulate surface 
runoff in a river basin. It is observed that the calculated values 
of the volume at watershed outlet are less than the volume 
expected. This is due to the numerical diffusion present in 
simulation. The study performed in this paper can be extended 
to larger basins and it is necessary to consider a larger quantity 
of segments of planes and channels in order to improve the 

representation of the basin characteristics.
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