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Abstract It is well known that neuronal networks are capa-1

ble of transmitting complex spatiotemporal information in2

the form of precise sequences of neuronal discharges char-3

acterized by recurrent patterns. At the same time, the syn-4

chronized activity of large ensembles produces local field5

potentials (LFPs) that propagate through highly dynamic os-6

cillatory waves, such that, at the whole brain scale, complex7

spatiotemporal dynamics of electroencephalographic (EEG)8

signals may be associated to sensorimotor decision making9

processes. Despite these experimental evidences, the link10

between highly temporally organized input patterns and EEG11

waves has not been studied in detail. Here, we use a neu-12

ral mass model to investigate to what extent precise tem-13

poral information, carried by deterministic nonlinear attrac-14

tor mappings, is filtered and transformed into fluctuations in15

phase, frequency and amplitude of oscillatory brain activity.16

The phase shift that we observe, when we drive the neural17

mass model with specific chaotic inputs, shows that the lo-18

cal field potential amplitude peak appears in less than one19

full cycle, thus allowing traveling waves to encode temporal20

information. After converting phase and amplitude changes21

obtained into point processes, we quantify input-output sim-22

ilarity following a threshold-filtering algorithm onto the am-23

plitude wave peaks. Our analysis shows that the neural mass24

model has the capacity for gating the input signal and prop-25

agate selected temporal features of that signal. Finally, we26

discuss the effect of local excitatory/inhibitory balance on27

these results and how excitability in cortical columns, con-28

trolled by neuromodulatory innervation of the cerebral cor-29
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tex, may contribute to set a fine tuning and gating of the30

information fed to the cortex.31

Keywords Nonlinear time series analysis · deterministic32

nonlinear dynamics · information processing · neural mass33

model · brain dynamics34

Introduction35

The analysis of many brain signals ranging from the micro-36

scopic scale of single neurons (Celletti et al. 1999; Segundo37

2003) to the mesoscale of large neuronal populations within,38

e.g., cortical columns (Stam 2005; Myers and Kozma 2018)39

has reinforced the hypothesis of a nonlinear source of com-40

plexity in brain dynamics (Korn and Faure 2003). Single41

neuron experimental recordings show that precise neuronal42

discharges can be arranged in sequences of spikes that ap-43

pear much more often than expected by chance (Abeles and44

Gerstein 1988; Tetko and Villa 2001; Reinoso et al. 2016).45

The relationship between subsequent action potentials forms46

complex patterns typically associated with nontrivial dynam-47

ics and fractal dimensionality (Longtin 1993; Iglesias et al.48

2007; Fukushima et al. 2007; Iglesias and Villa 2010). At the49

scale of neuronal dynamics, it has been hypothesized that50

complex information can be transmitted through neural net-51

works (Asai et al. 2008), even in the presence of noise (Asai52

and Villa 2008), thanks to their sensitivity to the temporal53

precision in sequences of spikes.54

Following the general encoding principle that neurons55

that are more strongly depolarized are going to fire earlier56

than the neurons that are less optimally stimulated (von der57

Malsburg and Schneider 1986; Singer 1993; Fries et al. 2008),58

synchronized inputs received by selected cell assemblies are59

able to generate waves of depolarization following the com-60

plex dynamics (Makarenko and Llinás 1998; Gollo et al.61
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2010; Qu et al. 2014) introduced by the input. Thus, sub-62

cortical inputs may ignite the activity producing oscillatory63

activity in a wide range of frequencies that may propagate64

throughout the cerebral cortex (Nunez 1995; Buzsáki et al.65

2012). Neuronal oscillations suggest that the synchroniza-66

tion relationships between brain signals may be a sign for67

computation and communication (Singer 1999; Brette 2012;68

Malagarriga et al. 2015b,a). Experimental observations in69

electroencephalography (EEG) and magnetoencephalogra-70

phy (MEG) have revealed that event-related oscillations can71

be robust to perturbations and fluctuations in wave ampli-72

tude becoming markers of cognitive processing (Rubino et al.73

2006; Gross et al. 2013; Tal and Abeles 2018; Tewarie et al.74

2018). These studies suggest that amplitude and latency mod-75

ulation of oscillations may be coupled to functional connec-76

tivity because increased amplitude would necessarily mean77

increased synchrony in the depolarization of the cell assem-78

blies. In this way, functional brain networks should be able79

to reorganize and coordinate cortical activity at a high tem-80

poral resolution (Tal and Abeles 2018).81

We analyze here the phase-amplitude responses of a cor-82

tical column, simulated by a neural mass model (Jansen et al.83

1993), receiving a discrete time series of pulsed inputs. Us-84

ing a mean-field approach, we investigate to what extent85

precise temporal information, carried by deterministic non-86

linear attractor mappings, is filtered and transformed into87

fluctuations in phase, frequency and amplitude of oscilla-88

tory brain activity. We explore the hypotheses that different89

classes of amplitude output wave peaks may form multiple90

point processes capable of transmitting dynamical features91

of the input time series and that amplitude threshold-filtering92

alone may also produce relevant point processes associated93

with the input dynamics. We show that the output activity94

produced by the neuronal mass model is highly dependent95

on the internal dynamics of the input point process and no96

same threshold or same amplitude criteria can be applied97

to the input dynamics. On the basis of our results, we sug-98

gest that local excitatory/inhibitory balance and excitability99

of cortical columns may contribute to set a fine tuning and100

gating of the ascending information in the cerebral cortex.101

Methods102

Neural Mass Model103

We consider here the Jansen-Rit model, a neural mass model104

(NMM) corresponding to a cortical column (Jansen et al.105

1993; Jansen and Rit 1995). This model considers three in-106

terconnected neural populations formed by long projecting107

pyramidal neurons (population P), and two classes of local108

projecting neurons (interneurons) characterized by their ex-109

citatory (population E) and inhibitory (population I) feed-110

back loops within the column. The E population projects to111

the P population, the I population projects to the P popula-112

tion, and in turn the P population sends projections to both113

E and I populations (Fig. 1). All values of the parameters114

chosen for the dynamical equations of this study are based115

on previous analyses (Malagarriga et al. 2014, 2015b).116

The dynamics of a single NMM is based on a mean field117

approximation (Malagarriga et al. 2015b). Each excitatory118

coupling is described by a second-order differential opera-119

tor L(yn(t);a) transforming the mean input firing rate, p j
m(t)120

from all j afferences, to a mean membrane potential yn(t):121

L(yn(t);a) =
d2yn

dt2 +2a
dyn

dt
+a2yn = Aa{∑

j
p j

m(t)}, (1)122

where the subscript n refers to either excitatory populations123

P and E. Constant terms A and a are referred to excitatory124

couplings, with A = 3.25 mV corresponding to the maxi-125

mum value of the excitatory postsynaptic potential and con-126

stant term a = 100 s−1 associated with the membrane time127

constants and dendritic delays. The mean input firing rate128

p j
m(t) is computed by a sigmoidal transfer function S of the129

net average membrane potential m j(t) of all j afferences,130

that is p j
m(t)=Ci=1...4S[m j(t)]. Coefficients C1 = 133.5, C2 =131

0.8C1, C3 = 0.25C1 and C4 = 0.25C1) weight the synaptic132

efficiency. The sigmoidal transformation is such that133

S[m j(t)] =
2e0

1+ er(ν0−m j(t))
, (2)134

where e0 = 2.5 s−1 is a value corresponding to the maximum135

firing rate of the neural population, ν0 = 6 mV is a voltage136

reference associated with 50% of the firing rate, and r =137

0.56 mV−1 is the steepness of this sigmoidal transformation.138

We can similarly define L(yn(t);b), with subscript n re-139

ferred to the population I of local inhibitory cells, and con-140

stant terms B = 22 mV and b = 50 s−1 referred to inhibitory141

couplings transforming the mean input firing rate pk
m(t) to a142

mean membrane potential yn(t):143

L(yn(t);b) =
d2yn

dt2 +2b
dyn

dt
+b2yn = Bb{∑

k
pk

m(t)}, (3)144

with pk
m(t)=Ci=1...4S[mk(t)] and mk(t) the net average mem-145

brane potential of all k afferences to I.146

In the absence of external inputs we consider that each147

column receives an excitatory input p̄ = 155 s−1 produced148

by a constant background mean firing rate. With all these149

elements, the equations of the model read:150

d2yP

dt2 +2a
dyP

dt
+a2yP = Aa{S[yE − yI ]}, (4)151

d2yE

dt2 +2a
dyE

dt
+a2yE = Aa{C2S[C1yP]+ p̄}, (5)152

d2yI

dt2 +2b
dyI

dt
+b2yI = Bb{C4S[C3yP]} (6)153

This model produces an internal oscillatory activity in the154

NMM centered on 10.8 Hz, which is a frequency that fits155

the alpha range of the EEG and LFP.156
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External inputs157

In order to test the capacity of transmitting precise complex158

temporal information through cortical columns modeled by159

NMM, we have considered time series xn of external pulses160

generated by the Chen and Ueta, Hénon, and Zaslavsky dy-161

namical systems calculated in addition to the constant back-162

ground frequency input. These dynamical systems were cho-163

sen on the basis of our previous studies at the neuronal scale164

dynamics (Asai and Villa 2008).165

The Chen and Ueta (referred to as ChenUeta) system166

equations (Chen and Ueta 1999) can be writen as:167

dx
dt

= aCU (y− x)168

dy
dt

= (cCU −aCU )x− xz+ cCU y (7)169

dz
dt

= xy−bCU z,170

where aCU = 35.0, bCU = 3.0 and cCU = 28.0 and with initial171

conditions x(0) = 3.0 and y(0) = 3.0. We considered the172

Poincaré map defined by dz/dt = 0, with a tracking of x(t),173

whose discrete form provides the time series xn.174

The Hénon mapping (Hénon 1976) is defined by:175

xn+1 = 1−aHx2
n + yn176

yn+1 = bHxn, (8)177

where aH = 1.15 and bH = 0.3. Iterations of the map allow178

to obtain the values of the point processes, corresponding to179

discrete time series xn.180

The equations for the Zaslavsky map (Zaslavsky 1978)181

are:182

xn+1 = xn + v(1+µyn)+ εvµ cos(xn) (mod.2π),183

yn+1 = e−γ(yn + ε cos(xn)−n), (9)184

where x,y ∈ R, µ = 1−e−γ

γ
, v = 400/3, γ = 3.0 and ε = 0.1.185

The initial conditions are x0 = 0.3 and y0 = 0.3. Iterations of186

the map allow to obtain the values of the discrete time series187

xn.188

For each dynamical system, we transform the informa-189

tion contained in the Poincaré sections (Parker and Chua190

1989) defined by the 2D projection of the points xn, xn+1191

of the dynamical systems into a new time series ωn derived192

to avoid negative values, as follows:193

ωn = xn+1− xn +K, (10)194

where K is a constant to make all values positive, i.e., K =195

min(xn+1− xn)+0.1. The time series ωn corresponds to the196

Inter-Pulse Interval (IPI) of the external input. Hence, from197

ωn we derive the time series tk, corresponding to the abso-198

lute times of occurrence of the external pulses. The time se-199

ries tk is used to transform the external input into the series200

of Gaussian-shaped pulses, Each cortical column receives a201

E

P

I

I(t)

y(t)=yE(t)-yI(t)Local Field Potential

background activity

external input
carrying temporal information (ext)

Fig. 1 Representation of a cortical column (modeled as a NMM) re-
ceiving an input I(t) formed by a pulsed background input p̄ and an
external train of pulsed stimuli pT (t) carrying temporal information.
The integration of these inputs with the intra-columnar dynamics pro-
duces an output signal y(t), representing a mean Local Field Potential.

time dependent excitatory input I(t) = p̄+ pT (t), where p̄202

is the mean background activity and pT (t) is a mean spike203

density of Gaussian-shaped pulses described by204

pT (t) = ∑
k

ξ e(
t−tk
2δ

)2
, (11)205

where ξ = 2 Hz is a constant frequency, δ = 500 ms is a206

time constant, and tk corresponding to the timing of a spe-207

cific train of external input pulses. The LFP generated by208

the NMM is y = yE(t)− yI(t), which is the signal that is209

analyzed further throughout this study (Fig. 1).210

Computational analysis211

The external input time series were generated with a time212

step resolution of 0.1 ms. All events falling within the inter-213

val 0−1 ms were ignored. The simulation of the model had214

an integration time step of 1 ms. We used Heun’s method215

to integrate the NMM model equations (Garcı́a-Ojalvo and216

Sancho 1999) and a general purpose tool, called XPPAUT,217

for numerically solving and analyzing dynamical systems218

(Ermentrout 2002, 2012) to extract the Poincaré maps. De-219

lay embeddings were constructed with a time delay of τ =220

10 ms. Different initial conditions were randomly set when221
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performing multiple runs of the simulation. An initial pe-222

riod of 60 s was omitted, unless stated otherwise, to obtain223

stationary data and avoid any transient effect appearing at224

the begining of the simulation. Coding-related material and225

scripts may be requested via email to to “daniel.malagarriga@gmail.com”.226

The version used here uses several libraries publicly avail-227

able and it is necessary to set carefully the operating system228

dependent environment.229

Results230

We consider the hypothesis that the LFP generated by the231

NMM filters external contributions and the output activity232

has wiped out much of the temporal information carried by233

the external inputs. Firstly, we examine some features of the234

external input pulse trains and the dependence on the phase235

delay with respect to intrinsic NMM dynamics. Secondly,236

we analyze the features of the distribution of the amplitudes237

of LFP peaks and the dynamics of the corresponding point238

processes. Thirdly, we analyze the dynamics of the output239

point processes generated by the sequences of LFP peaks240

filtered according to an amplitude thresholding operation.241

Frequency and phase-related filtering242

The three different dynamical systems were tuned in order243

to generate pulse trains with approximately the same pulse244

density. Input frequencies were computed over all inter-pulse245

intervals lasting at least 40 ms (i.e., corresponding to an in-246

stantaneous input frequency of 25 pulses/s) as shown in247

Figure 2. The actual average (median) external input fre-248

quencies were equal to 4.09 (4.24), 4.74 (3.32), and 4.03249

(2.53) pulses/s for ChenUeta, Hénon, and Zaslavsky maps,250

respectively.251

The dynamics of the external Zaslavsky (Z.inp), Hénon252

(H.inp), and ChenUeta (C.inp) pulsed inputs are illustrated253

by the return maps in the interval 0−800 ms in Figure 3a,c,e.254

These signals are processed and integrated with the internal255

dynamics of the NMM. The dynamics of the corresponding256

output signals, analog to LFPs, is shown by the delay em-257

bedding trajectories and selected Poincaré sections using a258

time delay of τ = 10 ms (Figure 3b,d,f). Notice the similar-259

ities in the Poincaré sections that suggest a strong filtering260

effect played by the intrinsic activity of the NMM, that is261

characterized by an oscillation at a frequency of 10.8 Hz.262

We investigate the effect of applying external pulses with263

respect to specific phase delays of the NMM oscillatory pe-264

riod (Fig. 4a). Two consecutive pulses were applied at char-265

acteristic phase delays (π/2, π , 3π/2, 2π , e.g. Fig. 4b,c).266

The output response was characterized by peaks with la-267

tencies translated into phase delays. Figure 4d shows the268

input-output phase difference for all combinations of first269

(IP1) and second (IP2) inter-pulse intervals. We observed270

that high amplitude peaks in the output signals were associ-271

ated with pulsed inputs, whereas low amplitude peaks fol-272

lowed the internal dynamics of NMM. These results suggest273

that the output signals may peak at times that reliably follow274

the input dynamics, despite a filtering effect produced by the275

NMM internal dynamics.276

Distribution of LFP Peak Amplitudes277

We analyzed the peak amplitudes of the LFP signals gener-278

ated by NMM and their distributions for the three dynami-279

cal system inputs and a control distribution represented by a280

Poissonian pulsed input train with a similar intensity of the281

other time series. Figure 5 shows that in all cases the internal282

dynamics of NMM generates a multimodal distribution of283

the LFP peaks. No LFP with amplitudes comprised between284

4.75 and 7.25 mV were observed, irrespective of the external285

input time series. The three highest modes for each kind of286

pulse inputs, and their labels, are indicated on the probability287

density curves in Figure 5, by Z1, Z2, Z3 for Zaslavky, and288

H1, H2 H3 for Hénon, and so on for ChenUeta and Poisson.289

All modes characterized by density higher than 0.07 in the290

probability density curves are presented in Table 1. In this291

Table it is interesting to notice that all most relevant modes292

(i.e. Z1, H1, C1 and P1) correspond to an LFP amplitude293

near 12.12 mV, irrespective of the dynamics of the external294

pulses. Notice that both modes Z2 and H2 correspond to the295

same amplitude near 11.12 mV (Figure 5ab). Modes C2 and296

C3 in ChenUeta and mode P2 in Poisson correspond to very297

low amplitudes of LFP, below 4 mV, in a range that is likely298

ChenUeta
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c

Fig. 2 Histograms of the input frequencies calculated over inter-pulse
intervals lasting at least 40 ms for (a) Zaslavsky, n = 14319 intervals;
(b) Hénon, n = 15680; and (c) ChenUeta, n = 16835, mappings.
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Fig. 3 Return map (a) of the external Zaslavsky pulsed input time se-
ries (Z.inp) fed to the NMM, in the interval 0−800 ms. The dynamics
of the corresponding mean field LFP generated by the NMM (b) is il-
lustrated by the time delay embeddings of the τ = 10 ms and selected
Poincaré section. Same graphics for Hénon (c-d) and ChenUeta (e-f)
attractor maps. Notice that the intrinsic dynamics of the NMM deter-
mines the similarity between all Poincaré sections.

Table 1 Most relevant modes of the LFP amplitudes and correspond-
ing density, computed on the probability density curves (Figure 5).

Zaslavsky Hénon ChenUeta Poisson

Mode density Mode density Mode density Mode density

Z1 12.12 0.67 H1 12.11 0.58 C1 12.12 0.35 P1 12.12 0.45
Z2 11.12 0.55 H2 11.13 0.14 C2 3.34 0.24 P2 1.42 0.42
Z3 10.34 0.32 H3 10.04 0.13 C3 2.55 0.13 P3 20.12 0.07

9.73 0.10 3.95 0.12 1.52 0.09
9.95 0.09 9.66 0.12 20.23 0.08
2.22 0.09 10.58 0.10 13.54 0.07
3.66 0.08 13.47 0.07
3.83 0.08

10.67 0.07

dominated by the background inputs rather than by external299

pulsed time series (Figure 5c).300

The finding that pulsed inputs from different time series301

were characterized by similar LFP amplitude modes raised302

the question whether those LFP waves were also character-303

ized by a similar time distribution. Then, we have generated304

discrete point processes corresponding to the timings of all305

LFP waves having a peak amplitude falling within the in-306

terval [mode− 0.15,mode+ 0.15], which means three time307

series for the processes corresponding to modes Z1, Z2, Z3308

and so on for the other input pulsed distributions. Figure 6309

shows the superimposed autocorrelograms for such point310

processes. Processes Z1 and Z3 (Figure 6a) show curves311

peaking at regularly spaced intervals corresponding to the312

average frequency of the input pulses (period ∼ 250 ms, i.e.313
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Fig. 4 (a) Pulsed inputs are introduced at specific phase delays with
respect to intrinsic NMM oscillatory activity. For example, the first
inter-pulse interval (IP1) at delay π/2 and the second inter-pulse inter-
val (IP2) at additional delay π . (b) Example of two consecutive external
pulses occurring at delays π/2 and π/2. (c) Example of two consecu-
tive external pulses occurring at delays π and π . (d) Input-output phase
difference of the peaks corresponding to IP1 (solid line, red) and IP2
(dashed line, green) with all combinations of phase relations.

∼ 4 pulses/s, see Figure 2). This pattern is very similar to the314

control condition represented by the Poissonian input pulse315

train (Figure 6d) with all three P1, P2, and P3 point pro-316

cesses showing autocorrelogram peaks associated with the317

mean intensity of the process. Modes H1 and C1 were char-318

acterized by the same LFP amplitude of the other principal319

modes Z1 and P1. On the contrary to the expectations, their320

autocorrelogram showed limited (in case of H1) or almost321

no sign of period ∼ 250 ms, but periods of 374 and 380 ms322

in H1 (Figure 6b) and ∼ 385 ms in C1 (Figure 6c) were323

observed. It is also interesting to notice that modes Z2 and324

H2, although characterized by the same amplitude (Table 1),325

show a very different pattern of their autocorrelogram.326

The differences among the various LFP modes is fur-327

ther illustrated by the return maps of the corresponding point328

processes in Figure 7. The regular pattern observed for Pois-329

sonian inputs shows, in this case, that NMM filters out any330

time related information and retains only the mean inten-331

sity of the process. In the cases of Zaslavsky and ChenUeta332

pulsed inputs, the regular patterns appear to some extent in333

the return maps, in agreement with the observation made334

with the autocorrelograms. In case of Hénon input, even the335

point process derived from the principal mode of LFP shows336

less regularity. To this respect, it is interesting to compare337

the panels of the return maps corresponding to modes P1,338

Z1, H1, and C1 (Figure 7 upper row) and observe the differ-339

ences, despite the fact that these point processes correspond340

to LFPs characterized by the same amplitude. This analysis341

shows that selected LFPs according to the amplitudes carry342

different temporal information. The principal mode retains343

always an information associated with the mean intensity344
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of the input process and additional information which is re-345

lated to the time-dependent organization of the specific input346

pulsed train.347

LFP Peak Thresholding348

Figure 5 has shown that the distributions of the LFP ampli-349

tudes show multimodal curves with commonalities and char-350
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Fig. 7 Return maps of the inter-pulse intervals (IPI) in the interval
0−3000 ms. For each panel, the black dots show the return map of the
plain external input pulse train (P.inp, Z.inp, H.inp, C.inp). The red dots
show the return map of the IPIs of the point process generated by the
timings of the LFPs corresponding to the principal modes of amplitude
(Figure 5), noted in the legend of each panel. Notice that main modes
P1, Z1, H1, and C1 are characterized by LFPs with the same amplitude,
∼ 12.12 mV.

acteristic features for each input time series. We consider351

that an hypothetical threshold T may be set at the output352

channel of a NMM in order to filter the overall activity and353

transmit only selected output activity elsewhere in the brain.354
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Fig. 8 Illustration of the procedure to obtain a threshold-filtered out-
put point process and its corresponding surrogate time series, by shuf-
fling inter-pulse intervals. In this example it is supposed that all mean
field LFPs with an amplitude higher than a threshold T , here set
T = 18.5 to exemplify, contribute to the output point process.

The thresholding operation is illustrated by Figure 8. The355

outcome of this operation is a threshold-filtered point pro-356

cess (oft), labeled Z.oft, H.oft, C.oft and P.oft for Zaslavsky,357

Hénon, ChenUeta, and Poisson input pulsed trains. In or-358

der to determine whether the oft point processes retained359

temporal information of the corresponding input time series360

inp we generated a surrogate time series, as a control, by361

shuffling randomly the inter-pulse intervals of oft and pro-362

ducing a point process labeled sft, with the same first-order363

time statistics and totally scrambled higher-order timing re-364

lations.365

We analyzed the return maps of oft and sft output point366

processes as a function of increasing threshold values. In367

addition, we considered the output activity following the ex-368

ternal input driven by the Poisson pulse train—i.e., P.oft—as369

a control point process for the nonlinear deterministic map-370

pings. Each row of Figure 9 shows the return maps, in the371

interval between 0 and 800 ms, of the point processes corre-372

sponding to the peaks of the output signals (big dots in red)373

filtered by the threshold value indicated on the left of the leg-374

end, for selected values of T ∈ [9.0,11.0,12.0,12.5,13.0,15.0].375

The small black points for each panel of Figure 9 correspond376

to the input point process, as indicated in the heading of the377

columns. If an output point process follows the dynamics378

of the input point process, the red dots should overlap, to a379

large extent, the black points. Notice that for threshold val-380

ues up to T = 12.0 there is a majority of return intervals less381

than 400 ms for all time series, with little, if any, correspon-382

dence between input and output point processes. Threshold383

values from 12.0 to 13.0 show an increase in the overlap of384

the return maps between Z.inp vs. Z.oft, H.inp vs. H.oft, and385

C.inp vs. C.oft.386

Figure 9 shows also that the surrogate point processes387

Z.sft, H.sft, and C.sft show very limited with the correspond-388

ing input time series Z.inp, H.inp, and C.inp, but the overlap389

of several points suggest that 0-order time domain statis-390

tics might retain some information carried by the external391

pulses. The general picture offered by the return maps of the392

surrogate filtered point processes rather emphasizes the bias393

introduced by the internal dynamics of the NMM. The com-394

parison between the Poisson output filtered point process395

P.oft and the nonlinear dynamical mappings Z.inp, H.inp,396

and C.inp shows that the overlap is almost null. On the con-397

trary, Figure 9 shows similarities between Z.sft, H.sft, C.sft398

with P.oft for threshold values T ≥ 12.5, as a consequence399

of the drive due to the internal dynamics of the NMM.400

We introduce an index to measure the distance, within401

a delimited area in the return map space, between an out-402

put activity filtered point process and a reference input point403

process. Let us consider an input point process including404

N + 1 events and si denotes the time interval between the405

ith event and the (i+1)th one. In a 2-dimensional Euclidean406

space we consider the return map formed by points Si de-407

fined by coordinates si and si+1, Si = (si,si+1). Let us con-408

sider the output activity point process X(T ), filtered by thresh-409

old T and including K + 1 events. Let us denote x(T ) j the410

time interval between the jth event and the ( j + 1)th one.411

The return map of the threshold-filtered output activity point412

process is formed by points X(T ) j = (x(T ) j,x(T ) j+1). We413

compute the distance dX(T )
j for any point j of the output414

activity map X(T ) j as its Euclidian distance to the closest415

point of the reference map Si, that is416

dX(T )
j =

N
min
i=1

( 2
√

(x(T ) j− si)2 +(x(T ) j+1− si+1)2). (12)417

Then, we compute the distance418

DT
X =

K

∑
j=1

dX(T )
j . (13)419

The distance of the threshold-filtered point process (oft)420

from the input point process should always be smaller than421

the distance computed for the corresponding shuffled-filtered422

point process (sft), if temporal information is retained in423

the interpulse intervals. Hence, for any threshold T a nor-424

malized index for the ChenUeta input point process is de-425

fined as 〈DT
C〉 = DT

C.s f t/DT
C.o f t and, in a similar way, the in-426

dexes 〈DT
H〉, 〈DT

Z 〉 for Hénon and Zaslavsky input point pro-427

cesses, respectively. In addition, the distance computed for428

oft should also be smaller than the output activity if the in-429

put were triggered by a Poissonian process given the same430

threshold T , i.e. compared to P.oft. On this basis, we de-431

fined another distance index 〈D̃T
C〉 = DT

P.o f t/DT
C.o f t for the432

ChenUeta input point process, and indexes 〈D̃T
H〉, 〈D̃T

Z 〉 for433

Hénon and Zaslavsky input point processes, respectively.434

We have run the simulations in order to get 10 real-435

izations of each output threshold-filtered point process (oft)436

and for each one we have produced 10 independent shuffled437

point processes (sft). For each value of T , between T = 7438

and T = 19, by steps of 0.5, we have rerun the simulations439
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Fig. 9 Return maps of the the inter-pulse intervals (IPI) in the interval 0− 800 ms. For each panel, the black dots show the return map of the
external input pulse train (P.inp, Z.inp, H.inp, C.inp) for Poisson, Zaslavsky, Hénon, and ChenUeta inputs, respectively. The red dots show the
return map of the output generated point processes, labeled P.x, Z.x, H.x, and C.x with reference to Poisson, Zaslavsky, Hénon, and ChenUeta point
processes, respectively. Labels x.oft, x.sft refer to output threshold-filtered (oft) and shuffled-filtered (sft) point processes (see Figure 8). Each row
shows the return maps for a specific value of the threshold T , from T = 9.0 (uppermost row) to T = 15.0 (lowermost row). For Zaslavsky, Hénon,
and ChenUeta we show also a panel superimposing the return map of the inp IPIs and the corresponding Poisson triggered output threshold-filtered
(P.oft) point process.

and computed the average normalized distances 〈DT
X 〉 and440

〈D̃T
X 〉. Then, we computed the distances for any point X(T ) j441

with coordinates x(T ) j ≤ 700 ms and x(T ) j+1 ≤ 700 ms.442

For each value of T we computed the confidence intervals443

of the mean distance and estimated independently whether444

〈DT
X 〉 < 1 and 〈D̃T

X 〉 < 1. The rationale is that both normal-445

ized distance indexes should be significantly lower than 1446

if the oft point process retains some initial time information447

and is closer to the input nonlinear dynamic mapping than448

the sft and Poissonian P.oft point processes, given the same449

value of threshold.450

Figure 10 shows the curves of the normalized distance451

indexes for all input dynamics as a function of threshold T . It452

is interesting to notice that in case of Zaslavsky Z.oft tended453

to retain some temporal structure for values 10 ≤ T ≤ 17.5454

(Figure 10a). We considered three levels of significance for455

these curves. The highest level, labeled (***), is reached if456

prob(〈DT
X 〉 < 1) ≥ 0.99 and prob(〈D̃T

X 〉 < 1) ≥ 0.99. The457

second level, labeled (**), is reached if prob(〈DT
X 〉 < 1 or458

〈D̃T
X 〉< 1)≥ 0.99 and prob(〈DT

X 〉< 1 or 〈D̃T
X 〉< 1)≥ 0.95.459

The third level of significance is lower than the previous460

two and is labeled (*): this level is reached if prob(〈DT
X 〉 <461

1) ≥ 0.95 and prob(〈D̃T
X 〉 < 1) ≥ 0.95. According to the462

above criterion we considered as critical threshold levels463

only those values of T with both normalized distance in-464

dexes being significantly below 1. In case of Hénon map-465

ping the critical values of T were observed in the interval466

15.5—17.5 mV (Figure 10b) and only from 18 to 19 mV467

for ChenUeta (Figure 10c). These results show that NMM468

internal dynamics filtered the temporal structure of the input469

point process in a selective way, such that different thresh-470

olds should be applied to different input point processes in471

order to recover the temporal structure of interpulse intervals472

(IPIs).473

Discussion474

In this study we show, for the first time, that time-coded in-475

formation, in the form of input pulses associated with non-476

linear deterministic time series generated by chaotic map-477

pings, can be reliably transmitted through LFP dynamics478

despite a complex gating and filtering operated by a NMM479

of cortical column (Jansen and Rit 1995; Wennekers 2008).480
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Fig. 10 Normalized distance indexes as a function of threshold val-
ues for output point processes generated by (a) Zaslavsky, (b) Hénon,
and (c) ChenUeta attractor maps (see Figure 8). An index between 1
and 0 means that the output threshold-filtered point process X.oft is
characterized by a return map closer to the X input point process of
stimulation pulses than the corresponding shuffled-filtered point pro-
cess X.sft, for index 〈DT

X 〉 (continuos lines), and closer than the control
Poisson threshold-filtered point process P.oft, for index 〈D̃T

X 〉 (dashed
lines). Indexes greater than 1 (shaded area) mean that surrogate pro-
vide better results than actual time series. See text for the definition of
the normalized indexes and for the explanation regarding the levels of
significance represented by (***), (**), (*).

This NMM is characterized by rhythmic activity when there481

is a constant input onto the system and may exhibit quasi-482

periodic or low dimensional chaotic behavior in the pres-483

ence of oscillatory (Malagarriga et al. 2015b,a) or pulse-484

like periodic inputs (Spiegler et al. 2010). The frequency485

of oscillations is determined by the kinetics of the ensu-486

ing population dynamics and it was shown that the whole487

spectrum of EEG/MEG signals can be reproduced within488

the oscillatory regime of the NMM by simply changing the489

population kinetics (David and Friston 2003). We purposely490

avoided gamma-band frequencies after observing that the491

studied NMM filtered high frequency bands and no infor-492

mation could be retrieved from its output. The intrinsic dy-493

namics of the NMM influences its capacity to transmit time-494

coded information because of a resolution limit due to the495

internal oscillatory dynamics and the resonant interaction496

with the input. The response of the system becomes highly497

irregular and highly dependent on the input pulse frequency498

(Spiegler et al. 2010). Time scales, in the range of the mil-499

lisecond, imply pulse frequencies of about 10 pulses/s, which500

is in the range of the NMM dynamics (∼ 10 Hz).501

It has been shown that stochasticity or chaos in oscilla-502

tory elements may play an important role in helping the sys-503

tems explore small basins of attractor in the vicinity of their504

local dynamics (Rabinovich and Varona 2011). EEG record-505

ings of healthy volunteers also have shown evidences of506

chaotic dynamics (Theiler and Rapp 1996; Andrzejak et al.507

2001; Gao et al. 2011) with larger complexity than patients508

with brain dysfunction, such as Alzheimer’s disease (Deng509

et al. 2017; Nobukawa et al. 2019) or individuals with al-510

tered states of consciousness (Mateos et al. 2018). Mean-511

field approaches to NMM dynamics allow to find condi-512

tions for the emergence of deterministic chaos, and relate513

it to the properties of lumped parameters (Malagarriga et al.514

2015b; Montbrió et al. 2015). Nevertheless, the role of ir-515

regular, chaotic-like dynamics in the brain is not yet clar-516

ified. We raise the hypothesis that such dynamics may be517

ignited by a nonlinear deterministic series of subcortical in-518

puts fed to cortical columns. Complex spatiotemporal firing519

patterns have been described experimentally (Abeles 1982a;520

Villa and Abeles 1990; Villa and Fuster 1992; Abeles et al.521

1993; Tetko and Villa 2001; Tal and Abeles 2016) and it was522

demonstrated that they can propagate with high accuracy523

in feed-forward networks (Asai et al. 2008; Asai and Villa524

2012). Here, we have shown that pulsed inputs associated525

with Chen and Ueta (Chen and Ueta 1999), Hénon, (Hénon526

1976) and Zaslavsky (Zaslavsky 1978) dynamical systems527

can be processed by a Jansen and Rit oscillator (Jansen and528

Rit 1995) generating a LFP whose phase pattern and wave529

amplitude—i.e., the dynamic oscillation signature—carry in-530

formation contained in the original time series of input pulses.531

In some cases, we have observed that point processes532

associated with selected wave amplitudes could be mainly533

determined by the internal dynamics of the NMM. For in-534

stance, we observed that the most frequent wave amplitudes535

produced by the Zaslavsky input followed a time distribu-536

tion very similar to a stochastic (Poissonian) input with the537

same frequency (see Z1 and P1 in Figure 6a,d). This find-538

ing indicates that the process operated by the NMM may be539

dominated by the internal dynamics and the NMM acts as an540

active filter of the temporal information embedded in the se-541

quence of pulsed inputs. However, despite being character-542

ized by the same amplitude (see Table 1), the most frequent543

wave amplitudes produced by ChenUeta and Hénon inputs544

displayed a much more complex temporal pattern of distri-545

bution (Figure 6b,c). The physiological interpretation of this546

finding could be associated with the effect of synaptic plas-547

ticity, given the assumption that wave amplitudes scale with548

the intensity of the depolarization of selected targeted cell549

assemblies. Studies on memory formation and synaptic plas-550

ticity have demonstrated the importance of precise timing551

relations between the firings of interconnected neurons for552

use dependent synaptic modifications (Markram et al. 1997;553

Vogt and Hofmann 2012). Then, the most frequent wave am-554

plitudes would be the best candidate to reinforce synaptic555

links through spike-timing dependent plasticity mechanisms556

(Guyonneau et al. 2005; Feldman 2012).557
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Virtual microcircuits with asynchronous communication558

protocols can be encoded into symbolic expressions that may559

give rise to cognitive processes (Bonzon 2017). Accurate se-560

lective transmission of population-coded information can be561

achieved after switching from an asynchronous to an oscil-562

latory state (Akam and Kullmann 2010; Qu et al. 2014). The563

information can be extracted by means of band-pass filtering564

implemented with sparsely synchronized network oscilla-565

tions and temporal filtering by feed-forward inhibition. It is566

interesting that the facilitation by homeostatic mechanisms567

that can dynamically regulate the Excitatory/Inhibitory (E/I)568

balance of brain networks on the basis of inhibitory synaptic569

plasticity has recently been proposed as a possible explana-570

tion of robust information extraction over long timescales571

(Abeysuriya et al. 2018). This view is also in agreement572

with the gating hypothesis of multiple signals in cortical net-573

works, where locally evoked inhibition would cancel incom-574

ing excitatory signals as a function of fine tuning of the E/I575

balance by modulating excitatory and inhibitory gains (Vo-576

gels and Abbott 2009; Vogt and Hofmann 2012). Indeed,577

several studies suggest that regulation of the activity and578

firing dynamics of inhibitory neurons expressing Calcium579

binding proteins—e.g., parvalbumin (PV), calretinin, calbindin—580

by monaminergic and cholinergic inputs, from the brain-581

stem and basal forebrain, is likely to be the main source of582

regulation of the E/I balance (Parnavelas and Papadopoulos583

1989; Benes et al. 2000; Caillard et al. 2000; Reynolds et al.584

2004; Schwaller et al. 2004; Manseau et al. 2010; Cutsuridis585

2012; Furth et al. 2013). In particular, the GABAergic (PV)-586

positive neurons play a key role in regulating synchronous587

activity observed in the thalamocortical circuit (Carlén et al.588

2012; Albéri et al. 2013; Lintas et al. 2013; Gruart et al.589

2016). Long-range projecting GABAergic PV-expressing neu-590

rons in the neocortex (Lee et al. 2014) and hypothalamus591

(Lintas 2014) further emphasize inhibitory synaptic plastic-592

ity as an attractive candidate mechanism for controlling the593

dynamic state of cortical networks involved in gating transi-594

tions of awareness and non-conscious perception.595

These evidences can be reconciled with an another find-596

ing presented in this study, that is the gating obtained by597

band-pass threshold-filtering. The state of local networks598

could be changed by neuromodulatory inputs with sufficient599

spatial and cellular selectivity to operate a fine tuning of600

the E/I balance. Such gain modulation can be achieved by601

flexible routing of neural signals and network oscillations602

(Akam and Kullmann 2010; Zylberberg et al. 2010). We ob-603

served that Zaslavsky inputs processed by the NMM pro-604

duced output waves with any amplitude roughly between 10605

and 17 mV with a dynamics sufficiently close to the original606

input time series (Figure 10a). Conversely, the output ac-607

tivity after the Hénon input could be reliably retrieved for608

wave amplitudes falling into a narrower range, i.e. 15.5–609

17.5 mV (Figure 10b), and above 18 mV after ChenUeta610

input (Figure 10c). A parallel channel for information trans-611

mission that is minimally affected by asynchronous distract-612

ing inputs occur if the pattern of firing rates is reproduced in613

the pattern of oscillation amplitudes (Akam and Kullmann614

2010). We have already reported that the internal dynamics615

of the NMM produces a resonance phenomenon that does616

not wipe out the entire temporal information of the pulsed617

input dynamical system time series. This phenomenon, akin618

of spontaneous oscillations generated by interneuron net-619

works (Brunel and Hakim 1999; Whittington and Traub 2003),620

may convey sensitivity to modulated input patterns such to621

switch to an asynchronous state following the level of noise622

or heterogeneity in the temporal pattern of the input sig-623

nal (Brunel and Hansel 2006). Modulated threshold-filtering624

gating may offer as a form of multiplexing for neural codes,625

when multiple inputs are oscillating in different amplitude626

bands and filtering at the appropriate amplitude can be used627

to extract selected information from the input pattern.628

The gating mechanism we have suggested might also be629

interpreted as a kind of temporal multiplexing because it can630

be used to encode and transmit multiple attributes of the in-631

put pattern at different timescales. In this way it appears con-632

ceptually similar to the multiplexing encoding mechanism633

described for frequency band filtering, where stimuli that634

vary relatively slowly relative to the oscillation frequency635

can route signals with high accuracy (Akam and Kullmann636

2010). Temporal multiplexing was also suggested to play637

a key role to enable disambiguation of stimuli that cannot638

be discriminated at a single response timescale and to al-639

low the transmission of information in a stable and reliable640

way in presence of noise and variability (Myers and Kozma641

2018; Panzeri et al. 2010). An interrelation between EEG642

signals and neural firing beyond simple amplitude covari-643

ations in both signals provided evidence for a neural basis644

for stimulus selective and entrained EEG phase patterns (Ng645

et al. 2013). Motor output and behavioral expression would646

come up with a state-dependency of temporal multiplexing647

determined by local interactions and regulatory mechanisms648

driven by neuromodulatory pathways (Abeles 2014; Vogt649

and Hofmann 2012).650

A further important question posed by our results is how651

a network of cortical columns, with externally fed driving652

pulses associated to precise temporal features, can shape653

complex oscillatory activity in the brain. Oscillations in brain654

dynamics can travel along brain networks at multiple scales,655

transiently modulating spiking and excitability as they pass656

(Schroeder and Lakatos 2009; Ozaki et al. 2012; Muller et al.657

2018). Traveling waves may save processing time via dis-658

tributed information processing through networks of inter-659

connected NMMs and serve a variety of other functions rang-660

ing from memory consolidation to binding activity across661

distributed brain areas (Brama et al. 2015; Tal and Abeles662

2016). This feature may result into a mechanism of dynamic663
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network formation in mesoscopic neural populations, where664

extracted complex spatiotemporal patterns may be a sign for665

an oscillation based coding paradigm. The next step will666

consist to study how accurate can be the transmission of dy-667

namical system generated point processes fed to a NMM and668

transmitted to various topologies of interconnected cortical669

columns.670
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Parker TS, Chua LO (1989) Poincaré Maps, Springer New York, New874

York, NY, pp 31–56875

Parnavelas JG, Papadopoulos GC (1989) The monoaminergic innerva-876

tion of the cerebral cortex is not diffuse and nonspecific. Trends877

Neurosci 12(9):315–9878

Qu J, Wang R, Yan C, Du Y (2014) Oscillations and synchrony in a879

cortical neural network. Cogn Neurodyn 8(2):157–66880

Rabinovich MI, Varona P (2011) Robust transient dynamics and brain881

functions. Front Comput Neurosci 5:24882

Reinoso JA, Torrent MC, Masoller C (2016) Emergence of spike corre-883

lations in periodically forced excitable systems. Phys Rev E 94(3-884

1):032218885

Reynolds GP, Abdul-Monim Z, Neill JC, Zhang ZJ (2004) Calcium886

binding protein markers of GABA deficits in schizophrenia–887

postmortem studies and animal models. Neurotox Res 6(1):57–61888

Rubino D, Robbins KA, Hatsopoulos NG (2006) Propagating waves889

mediate information transfer in the motor cortex. Nat Neurosci890

9(12):1549–57891

Schroeder CE, Lakatos P (2009) Low-frequency neuronal oscillations892

as instruments of sensory selection. Trends Neurosci 32(1):9–18893

Schwaller B, Tetko IV, Tandon P, Silveira DC, Vreugdenhil M, Henzi894

T, Potier MC, Celio MR, Villa AEP (2004) Parvalbumin deficiency895

affects network properties resulting in increased susceptibility to896

epileptic seizures. Mol Cell Neurosci 25(4):650–663897

Segundo JP (2003) Nonlinear dynamics of point process systems and898

data. Int J Bifurcat Chaos 13(08):2035–2116899

Singer W (1993) Synchronization of cortical activity and its putative900

role in information processing and learning. Annu Rev Physiol901

55:349–74902

Singer W (1999) Neuronal synchrony: a versatile code for the defini-903

tion of relations? Neuron 24(1):49–65904

Spiegler A, Kiebel SJ, Atay FM, Knösche TR (2010) Bifurcation anal-905
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