X1 Jomadas de Ingenieria del Software y Bases de Datos
JISBD 2006

José Riguelme - Pere Botella (Eds)

© CIMNE, Barcelona. 2006

INTENSIVE CROSSOVERS: IMPROVING QUALITY IN A
GENETIC QUERY OPTIMIZER

Victor Muntés Mulero', Josep Aguilar Saborit?,
Calisto Zuzarte? and Josep Lluis Larriba-Pey!

1: DAMA-UPC!
Universitat Politecnica de Catalunya (UPC)
C/Jordi Girona 1-3 08034 Barcelona
e-mail: {vinuntes, jaguilar, larri}@ac.upe.edu. web: http://www.dama.upc.edu

2: IBM Canada Ltd., IBM Toronto Lab
8200 Warden Ave, Markham, Ontario, Canada. L6G1C7
e-mail: calisto@ca.ibm.com

Key words: Large Join Query Optimization. Genetic Programming, Search Strategies

Abstract. Database schemas and user queries are continuously growing with the need
for storing and accessing large amounts of structured information. Among the several
proposals to deal with the Large Join Query Problem, genetic optimizers have been shown
to be a competifive approach.

We propose a new search strategy to improve the quality of genetic query optimizers.
We call our technique Intenswwe Crossovers (IC) and 1t shows that. in terms of quality of
the results. it is worthier to spend more time creating extra child plans locally in a crossover
operation than to focus on crossover operations on a lot of different execution plans. After
the first analysis of IC. we propose an improved technigue called Increasing Intensive
Crossovers (I1IC). The idea behind this improvement is to speed-up the convergence of IC.

All wn all, we show thal the search strateqy of choice 1s paramount to determine the
quality and convergence of a genetic query optimizer. opening a new line of research
ortented to unlink genetic optimizers from their dependency on the random effects of. both.
the initial population and the random decisions taken through the optimization process.

1 Introduction

Advanced applications like SAP often require to cowbine a large set of tables to recon-
struct complex business objects. For instance, the SAP schema may contain more than
20000 relations and may join more than 20 of these in a single SQL query. It is the task

~ 'Research supported by the IBM Toronto Lab Center for Advanced Studies and UPC Barcelona. The
anthors from UPC want to thank Generalitat de Catalunya for its support through grant GRE-00352.

132 XI JORNADAS DE INGENIERIA DEL SOFTWARE Y BASES DE DATOS

of the query optimizer to transform a SQL statement into a query execntion plan (QEP),
determining the cost of each alternative QEP and selecting the cheapest one.

State-of-the-art query optimizers. which typically employ dynamic programming [8]
usually fall back to greedy algorithms when the plan space requirement to store various
intermediate subplans is too large. Moreover. greedy algorithms or any other methods
using heuristic based planning do not consider the entire search space and may overlook
the optimal plan.

Randomized search techniques. like genetic programming. remedy the exponential ex-
plosion of dynamic programming techniques by iteratively exploring the search space and
converging to a nearly optimal solution. The Carquinyoli Genetic Optimizer (CGO) has
been presented recently as the first sound and complete genetic optimizer (5. To the
best of our knowledge. CGO is the only genetic optimizer studied and tested against a
comunercial optimizer, proving its competitiveness regarding speed and quality.

In this paper we propose a new search strategy that provides the means to improve
the quality of the plans obtained by genetic query optimizers. Our technique is called
Intensive Crossovers (IC) and it shows that spending more time locally creating extra
child plans in a crossover operation is wiser than, in opposition, focusing on what we call
ertensive crossovers, i.e. combining a lot of different execution plans in the population
generating a reduced mumber of children per crossover (typically 2 children). The results
show that we obtain. on average. after a certain amount of time, execution plans which
have a cost between 3 and 20 times lower than the best cost obtained by the original
execution of CGO.

However. IC does not converge fast. needing a warm-up period to outperform the origi-
nal CGO. In order to mitigate this effect. i.e. to improve the convergence of IC. we propose
a further improvement by dynamically increasing the number of internal crossovers during
the execution. We call this improvement Increasing Intensive Crossovers (11C).

The rest of this paper is organized as follows. In section 2. we introduce the reader to
the basic concepts of Genetic Programming. Section 3 presents a detailed description of
our new search strategy. Section 1 shows the improvements achieved by the application
of our technique and propose an enhancement in order to achieve better speed of conver-
gence. Section 5 references some related work. Finally. Section 6 presents the conclusions
extracted from our work.

2 Genetic Programming in Query Optimization

Genetic programming (GP) has been exhaustively explored since the publication of
Koza's book in 1992 [3]. The basic idea is to obtain a best fit solution. called program
originally. to solve a problem using evolutionary methods.

The basic behavior of this type of algorithms is as follows. An initial set of programs
is ereated [fom scratch. In this paper we represent programmes as tree structures, since
they are the most suitable approach given that QEPs in DBMSs are nsnally tree-shaped.
This set 1s also called the mital population.

X1 JORNADAS DE INGENIERIA DEL SOFTWARE Y BASES DE DATOS 133

Once the initial population is created, we iteratively apply a set of genetic transfor-
mations on the members in the population. The primary transformation operators are
crossover and mutation. The former works by changing two (or more) programs (or tree
structures) combining them in some manner: the latter by modifying a single tree struc-
ture. Each iteration of the algorithm is called a generation. At the end of each generation.
a third genetic operation called selection is applied in order to eliminate the worst fitted
members in the population.

After applyving these operations the algorithm obtains the next generation of members.
A stop condition ensures that the algorithm terminates. Once the stop criteria is met. we
take the best solution from the final population.

One of the typical applications for this type of algorithm is to solve optimal path search
problems. In these problems. each member in the population represents a path to achieve
a specific objective and has an associated cost.

Query optimization can be reduced to a search problem where the DBMS needs to find
the optimum QEP in a vast search space. Each execution plan can be considered as a
possible solution program for the problem of finding a good access path to retrieve the
required data. Therefore. in a geneitic optimazer. every member in the population is a
valid execution plan. Intuitively. as the population evolves. the average plan cost of the
members decreases.

3 Intensive Crossovers

A typical inherent problem in GP is the fact that. after some generations. the genetic
operations become very disruptive, tending to create new members with self lethal traits,
which are typically discarded in the next selection operation. In order to show the dis-
ruptive trends of crossover operations. we calculate the percentage of improvement using
equations (1) and (2) below where p,y and py» are the parent plans, p, is one of the children
generated by those plans in the crossover operation. and cost(z) is a function returning
the cost associated to x. where x is a QEP. The idea behind the equations is to calculate
whether the new plan is better than the average cost between both parent plans.

- 2 - cost(p.) (1)
T cost(pp) + cost(pg)
. - (1 - ,."Tlp) - 100 if Timp S 1 .
%e = { (G = 1) 100 if Ty > 1)

Figure 1 shows the average maximum and minimum efficiency for a crossover operation,
through several generations, execnted using 15 random queries involving 50 relations.
The plot clearly shows that the efficiency of crossover operations rapidly decays from
generation 25 up to generation 80. From generation 80 onwards, it can be observed that
gains are merely marginal. On the other hand. the disruptive effects of the operation are
noticeable, i.c. the probability of obtaining a bad QEP is higher than the probability of

134 X1 JORNADAS DE INGENIERIA DEL SOFTWARE Y BASES DE DATOS

obtaining a good plan. After generation 110, the algorithm has lost all the diversity in
the population. and crossovers are just crossing plans which are the same.

Crossover Efficiency for Single Crossover

%C

L]

&

E

Figure 1: Average maximmun and minimum crossover efficiency for 50 relations.

In order to increase the quality of genetic operations, we propose a new search strategy
for genetic query optimizers called Intensive Crossovers (IC'). IC' has the objective to
reduce the disruptive effects of crossover operations by intensifying the local search. This
way. as depicted in Figure 2. instead of applying single crossover operations as in the
original CGO, our strategy proceeds as follows:

1. Two individuals are randomly chosen from the population

2. Then. N random crossover operations are performed on the same parents. producing
2N offsprings. We call these operatious internal crossovers.

3. The associated cost. or fitness function. is calculated for every generated child and
only the best two QEPs are kept. The remaining are directly discarded.

Naturally. increasiug the amount of time spent for a single crossover operation, causes
an increase in the amount of time nsed for a generation, However, the leading idea behind
the algorithm is the fact that the reduction of the destructive effects of the crossover
operations compensate for the increase of execution time.

4 Analysis and Improvements

In the following subsections we study the behavior of our technigue. comparing it to
the original execution of CGO. The methods used to ereate random databases and queries
for the analysis are detailed in [6].

XI JORNADAS DE INGENIERIA DEL SOFTWARE Y BASES DE DATOS 135

Population

Parent Query . :
Execution Plans |

Figure 2; Intensive Crossover.

4.1 Intensive Crossovers

The basic idea of this section is to show that investing time using Intensive Crossovers,
thus elongating the time used for a genetic operation, has a positive impact in the quality
of the obtained QEP.

We have tested [C' using random large join queries which involved 30, 50 and 100
relations each. Due to a lack of space we only present the results for 50 joins unless
stated. however, our results show that conclusions can be extended to all the cases.

We have run CGO several times to experimentally decide the best values for the fol-
lowing parameters. We run the same test on 15 randomly created queries executed on 15
random databases. For each query we execute the original CGO and all the techniques 5
times and calculate the average best cost. We execute 50 crossover operations per gen-
eration. To better analyze the effects of 1C. mutations have been disabled in CGO. We
have fixed the execution time to 8 minutes.

For each query, we compare the original execution of CGO with the execution for the
same initial population using respectively 2, 4, 8, 16 and 32 internal crossovers.

In order to fairly compare results. we use the following formula to compute the scaled
Cost:

SecaledCost = { Corig/ Cncwtech 0T L i Corig 2 Crcwrech (3)
= Cnrnv'l'm-h /’(-'urzg if Cvny < ('nr,u'Trrh
where (7, represents the best cost obtained by the original implementation of CGO and
' urecn Tepresents the best cost achieved by the technique to be tested. In this way.
the sealed cost in formula (3) allows to obtain an average from the execution of different
queries and databases and it is centered in ().

Figure 3 shows the scaled best cost for different numbers of internal crossovers. We

consider the execution of the original CGO to be the baseline. Consequently, a positive

136 X1JORNADAS DE INGENIERIA DEL SOFTWARE Y BASES DE DATOS

value in the plot means that. on average. a certain technique improves over the original
after a specific amount of time, while a negative value means that the technique cannot
achieve a better cost after a specific amount of time.

The plot clearly shows that, independently from the mimber of internal crossovers. 1C
eventually improves the quality of the best obtained QEP with sealed costs ranging from
2.5 to 18 compared to the original CGO. However. the differences in the scaled costs are
conditioned by the number of internal crossovers. On the one hand. with a small number
of internal crossovers IC obtains similar results to the original CGO after 30 s. A larger
number of internal crossovers converge slower than a smaller number and need more time
to improve the original CGO. However, the quality of the execution plans obtained during
the execution is clearly superior with a large number of internal crossovers.

IC Performance for 50 Relations

Scaled Cost

Execution Time

Figure 3: Scaled best cost evolution for different internal crossover mumbers.

Figure 4 shows the actual number of generations executed on average. in 8 minutes, for
each specific number of internal crossovers for queries involving 30. 50 and 100 relations.
The objective of this plot is to show that. since IC increases the number of crossover opera-
tions per generation, the time needed to execute a generation is proportionally increased,
thus. the number of generations executed in a period of time is reduced. Specifically,
we can observe that the number of generations executed using 2 internal crossovers per
crossover operation is roughly half of the generations executed by the original. In general,
we observe that using N internal crossovers the number of generations executed is the
number of generations executed by the original divided by V. This effect is due to the
fact that. for each crossover operation, we are repeating the same operation N times,
thus multiplying the time by N. These results indicate that, although the number of
generations and the number of genetic operations have decreased significantly, improving
the efficiency of crossover operations. by reinforcing local search. helps the algorithm to
improve the fuality of results.

This observation implies that the use of IC reduces the disruptive effects of the crossover
operations. Figure 5 corroborates this idea by showing the average maximum and mini-

X1 JORNADAS DE INGENIERIA DEL SOFTWARE Y BASES DE DATOS 137

B3

Ere bk .usnni

Ong c2 L= c8 Cw X R R R RS E AT AR RN
Generation

Figure 4: Number of generations ex-
ecuted in eight minutes for different
number of internal crossovers rang-
ing from 2 to 32.

Figure 5: Average maximum and
minimum crossover efficiency for 50
relations using 1C (N = 16).

mum gain obtained in a crossover operation using equations (1) and (2) and 16 internal
crossovers per intensive crossover for queries involving 50 relations. Results show that. in
seneral, crossover operations in the context of IC do not introduce lethal properties into
the new offsprings.

4.1.1 Convergence of IC

IC' is unable to converge as fast as CGO during the first generations. In addition, the
slow convergence is even more noticeable as the number of internal crossovers increases.
The reason is explained in Figure 6 where we can see the average number of QEPs which,
although having a better cost than the average between the costs of their parents. are
discarded by the internal selection carried out during an intensive crossover. From the
results we see that IC spends a lot of time during the first generations creating good
execution QEPs which are discarded without having the chance to survive. For this
reason, as previously observed in Figure 3, IC does not achieve better results than CGO
during the first generations. The basic problem is that CGO also obtains good quality
when it employs crossover operations during the first generations. but in less time than
|C. However. as observed in Figure 1. after several generations the disruptive effects
in crossover operations for CGO are very notorious while, using IC. they are almost
climinated. Note that Figures | and 5 cannot be directly compared since each generation
using a number of internal crossovers equal to 16 is equivalent to 16 generations in the
original case.

4.2 Increasing Intensive Crossovers

We propose a further improvement on IC in order to soften the slow convergence of
the algorithm during the first generations of IC when using a large number of internal

138 XIJORNADAS DE INGENIERIA DEL SOFTWARE Y BASES DE DATOS

Improved Discarded Plans

Number of QEPs

Q
R - e

Generation Number

Figure 6i: Average number of plans discarded although their cost improves the average of their parent
QEPs using 1C-16

crossovers. The previous subsection shows that the effects of IC can only be noticed after
some generations because [C is wasting time during the first generations, discarding sood
QEPs. In this section we propose an enhanced version of [C called Increasing Intensive
Crossovers (IIC). As opposed to 1C, 1IC dynamically increases the number of internal
crossovers periodically after a fixed number of iterations.

For this experiment, I1C starts executing 2 crossovers per intensive crossover, which
15 mcreased expouentially every 5 generations. We have fixed the maximum number of
internal crossovers to 32 to avoid degradation due to excessively long intensive operations.

In Figure 7. we show the comparison between I1C and the previous results obtained
for IC-2 and 1C-16. We can make two major ohservations: first, I1C does not invest a lot
of time creating and discarding good QEPs during the first generations. thus it obtains
the same speed of convergence as 1C-2, Second. the quality of the results clearly improves
the quality of those cases with a small number of internal crossovers, like IC-2. Of course,
the results obtained by the increasing version cannot reach the quality of IC-16 since the
quality of the QEPs obtained during the first generations is worse for 11C.

5 Related Work

Several attempts have been carried out in order to diminish the Large Join Query
Problem. Randomized search techniques remedy the exponential explosion of dynamic
programming techniques by iteratively exploring the search space and converging to a
nearly optimal solution. Genetic algorithms are a randomized search technique [2] mod-
elling natural evolution over generations using crossover. mutation and selection Opera-
tions. Optimizing queries involving a large number of joins using genetic algorithms was
introduced 4y Bennet el al. [1] and tested later by Steinbrunn et al. [9] showing that
It is a very competitive approach. Genetic programming applied to query optimization
was first introduced in [10]. Stillger. based on these previous works. presents a genetic

X1JORNADAS DE INGENIERIA DEL SOFTWARE Y BASES DE DATOS 139

IIC Performance for 50 Relations

il

& -ic2 "
-G8 y

Scaled Cost

Execution Time

Figure 7: Comparison between L[C. IC-2 and IC-16.

programming-based optimizer that directly uses execution plans as the members in the
population. instead of using chromosomes. A first genetic optimizer prototype was cre-
ated for PostgreSQL [7]. but its search domain is reduced to left-deep trees and mutation
operations are deprecated, thus bounding the search to ouly those properties appearing
in the execution plans of the initial population. Later in [3]. the Carquinyoli Genetic
Optimizer (CGO), which is also based on GP is presented and tested. for the first time.
against a well-known commercial optimizer. Muntés et al. also present in [4] a study to
establish criteria in order to parameterize a genetic optimizer.

Tackett proposes a method called brood recombination in his thesis [11] in order to
rednce the disruptive effects of crossover operations. Brood recombination is based on
the observation of various animal species in nature which produce more offspring than
those expected to live.

6 Conclusions

In this paper, we show that Intensive Crossovers have an impact on the quality of
genetic query optimizers, by assuring intensive genetic operations. Our analysis shows
that. although intensive operations are unnecessary at the beginning of the optimization
process. they become increasingly more necessary along the time. Therefore, we show
that our new technique called Increasing IC improves quality compared to the original
CGO avoiding the problems of IC regarding the speed of convergence during the first
generations of plans,

Moreover. our achievements make a step further in the search of general techniques
that unlink genetic optimizers from their dependency on the random effects of, both. the
initial population and the random decisions taken through the optimization process.

All in all. our work shows that studying search strategies is still an open and fruitful
research line which may lead genetic query optimizers towards the solution of the Large
Join Query Problem.

140 X1 JORNADAS DE INGENIERIA DEL SOFTWARE Y BASES DE DATOS
REFERENCES
(1] Kristin Bennett. Michael C. Ferris. and Yannis E. loannidis. A genetic algorithm for
database query optimization. In Rick Belew and Lashon Booker. editors, Proceedings
of the Fourth International Conference on Genetic Algorithms. pages 100-107, San
Mateo. CA. 1991. Morgan Kaufman,
[2] J. Holland. Adaption in natural and artificial systems. The University of Michigan

=

8

9

[10]

[11]

Press. Ann Arbor, 1975.

John R. Koza. Genetic Programming: On the Programming of Computers by Natural
Selection. MIT press, Cambridge. MA. 1992.

V. Muntés-Mulero. J. Aguilar-Saborit. M. Prez-Casanyv. C. Zuzarte, and J.-L.
Larriba-Pey. Parameterizing a genetic optimizer. In Proceedings of the Interna-
tional Conference on Database and Ezpert System Applications (To be published).
September 2006.

V. Muntés-Mulero. J. Aguilar-Saborit. C. Zuzarte. and J-L. Larriba-Pey. Cgo: a
sound genetic optimizer for cyclic query graphs. In Proceedings of the International
Conference on Computer Science, pages 156-163, May 2006.

V. Muntés-Mulero, J. Aguilar-Saborit. C. Zuzarte. V. Markl, and .J -L. Larriba-Pey.
Genetic evolution in query optimization: a complete analysis of a genetic optimizer.
Technical Report UPC-DAC-RR-2005-21, Departament d’Arquitectura de Computa-
dors. Universitat Politecnica de Catalunya (http://www.dama.upe.edu). 2005.

PostgreSQL. http://www.postgresql.org/.

P. Griffiths Selinger. M. M. Astrahan. D. D. Chamberlin. R. A. Lorie. and T. G. Price.
Access path selection in a relational database management system. In Proceedings
of the 1979 ACM SIGMOD International Conference on the Management of Data,
pages 23-34. ACM Press. 1979.

Michael Steinbrunn, Guido Moerkotte. and Alfons Kemper. Heuristic and random-
ized optimization for the join ordering problem. VLDB Journal: Very Large Dala
Bases, 6(3):191-208, 1997.

Michael Stillger and Myra Spiliopoulou. Genetic programming in database query
optimization. In John R. Koza, David E. Goldberg, David B. Fogel, and Rick L. Riolo.
editors. Genetie Programming 1996: Proceedings of the First Annual Conference.
pages 388-393, Stanford University. CA. USA, 28-31 July 1996. MIT Press.

Walter Adden Tackett. Recombination, Selection, and the Genetic Construction of
Computer Programs. PhD thesis, University of Southern California, Department of
Electrical Engineering Svstems, USA, 1994.

	img1 (9)
	img1 (10)
	img1 (11)
	img1 (12)
	img1 (13)
	img1 (14)

