Describing BLOOM99 with regard to UML
Semantics

Alberto Abell6 and M. Elena Rodriguez

U. Politécnica de Catalunya (UPC). Dept. de Llenguatges 1 Sistemes Informatics
e-mail: {aabello.malena}@lsi.upc.es

Abstract. In this paper, we describe the BLOOM metaclasses with
regard to the Unified Modeling Language (UML) semantics. We con-
centrate essentially on the Generalization/Specialization and Aggrega-
tion/Decomposition dimensions. because they are used to guide the inte-
gration process BLOOM was intended for. Here we focus on conceptual
data modeling constructs that UML offers. In spite of UML provides
much more abstractions than BLOOM, we will show that BLOOM still
has some abstractions that UML does not. For some of these abstractions,
we will sketch how UML can be extended to deal with this semantics that
BLOOM adds.

Key words: Semantics, Conceptual data modeling, Schema integration

1 Introduction

The growing need to share information among several autonomous and heteroge-
neous DataBases (DBs) has became an active research area. A possible solution
to satisfy this need of cooperation is providing integrated access through a Fed-
erated Information System (FIS). In order to provide this integrated access, as
explained in [SR99], it is necessary to overcome semantic heterogeneities, and
represent related concepts. This is accomplished through an integration process
in which a Canonical Data Model (CDM) plays a central role.

Once argued the desirable characteristics of a suitable CDM in [SCGS91],
and after stating that existing models did not satisfy these characteristics, the
BLOOM model (BarceLona Object Oriented Model) was progressively defined
in [CKSGS94], and [GSSC95] among others. It results in an extension of an
object oriented model with a semantically rich set of abstractions.

The main objective of the BLOOM model is to facilitate the integration of the
schemas of different DataBases (DBs) that have decided to cooperate through
a FIS. Basically, the goal of the integration process is to identify similarities
among classes of different DBs. Our integration approach uses the BLOOM ab-
stractions to achieve this goal by acting at two levels. The first level uses the
Generalization /Specialization dimension to decide which group of classes should
be compared at each moment; while the second level is guided by Aggrega-
tion/Decomposition dimension, and it determines the order of pairwise compar-
isons between classes in each group.

V Jornadas de Ingenieria de Software y Bases de Datos JISBD 2000
Valladolid, 8, 9 y 10 de noviembre de 2000 LS.BN.: 84-8448-065-8

308

The need of revising the BLOOM model outcropped during the design process
of the directory of the FIS. It is essential to have such storage system because
of the amount of needed information in building and operating a FIS. Thus. the
model had to be fixed in order to store schemas and mappings (see [SL90]) in a
structured manner. This revision gave rise to the BLOOM99 metaclass hierarchy
presented in [AORS99b].

This paper is structured as follows: section 2 explains BLOOM9Y met aclasses
hierarchy: section 3 compares BLOOM99 semantics with UML, mainly attend-
ing to the Generalization/Specialization and Aggregation /Decomposition dimen-
sions: section 4 presents some conclusions, and work in progress.

2 The BLOOM99 model

We take the position that the CDM needs a high degree of “representation
ability”, because the difficult process of “schema integration™ requires as much
semantics as possible. A previous process, called “semantic enrichment”, dis-
covers semantics in the schemas, extensions, application programs, ... of each
component database, and expresses it in the CDM. This semantic enrichment
is also of use to migrating from one Database Management System (DBMS) to
another, and, in general, to better understand the contents of a DB. About its
usefulness in the context of Data Mining/Knowledge Discovery you can read
[SM98].

As we said in previous section, the schema integration process is driven
through the Generalization/Specialization and the Aggregation/Decomposition
dimensions. In [AORS99b]. the BLOOM model itself has been used as meta-
model to describe not only its own Generalization/Specialization dimension, as
was previously done, but also part of its Aggregation/Decomposition dimension.
Both dimensions include metaclasses that form a semi-lattice. In figure 1 (see
[AORS99a] for the BLOOM syntax used in this paper, shorten in the rectangle
at the right side of the figure), we can see the sub-hierarchy corresponding to the
Generalization /Specialization dimension, while figure 2 shows the sub-hierarchy
associated to the Aggregation/Decomposition dimension.

Figure 1 shows how the Specialization metaclass constitutes the top meta-
class in the Generalization/Specialization dimension. Every Specialization is
composed by a superclass, subclass, and criterion used in the specialization of
the superclass into the subcldss. The Specialization metaclass is specialized de-
pending on its complementariness and disjointness. So, a specialization can be
complementary or not whether every object in the superclass is at least in a
subclass., and disjoint or not whether every object in the superclass is at most
in a subclass. These specializations in the metaclass give rise to four differ-
ent kinds of specialization corresponding to the Cartesian product of the sub-
classes obtained at both specializations of Specialization: complementary (i.e.
Complementaryx Overlapping), disjoint (i.e. Non complementary x Disjoint), al-
ternative (i.e. Complementaryx Disjoint). and general (i.e. Non complemen-
taryx Querlapping). Moreover, in the figure, we can see that complementary

Descrsbing BLOOM99 with regard to UML Semantics 309

S | R
Specatizaion “@ r
=& S aneon | charscenia . s e
) = o ‘ . = | 5 disjomnt specialization
- N o \ I =y
<‘ at_wbd-.w P ({\\ :l_nh:im’“ /\ {
[How i Commplementary “ Dhsgoing H Overlapping [@ sticrmmtie speciaitamion
L 71 —R [|
/ smnm,mm >) e - conrgsitin i
\
e p—
e II ’ I .::.,, = denvated composinon

Fig. 1. Generalization metaclasses

and alternative specializations will have two different kinds of delete effect. since
in both cases it is not allowed an instance to be member of the superclass if
it is not member of any of its subclasses. If an instance of a complementary or
alternafive specialization is deleted, it can be propagated to the superclass, or
blocked until the object is also removed from the superclass by other means.

P

&
¥

Fig. 2. Aggregation metaclasses

Figure 2 shows the metaclasses that appear along the Aggregation/Decom-
position dimension; this dimension allows that several objects can be aggregated
into a new and complex one. The Aggregating metaclass is the top metaclass in
this dimension and it is composed by a deseribed (i.e. the class that aggregates
objects from other classes). a descriptor (i.e. the class which objects should be
aggregated in the described class) and a player (i.e. the role that the descriptor
class plays in the described one).

The Aggregating metaclass is specialized depending on the existence of de-
pendencies between the described and descriptor classes into Simple_withoui_de-
pendency and With_Dependency metaclasses. If existence dependencies exist, the

310

existence of an object in a class relies on the existence of objects in other class.
So, when they do not appear, objects in the descriptor class can be seen as
simple properties (or attributes) in the described class, giving rise to the sim-
ple aggregation abstraction. The Simple_withoul_dependency metaclass can be
alternative specialized by means of two criterions, Number_of values and Eris-
tence_of_values, stating that attributes in a class can be monovalued or multi-
valued, and obligatory or not.

When dependencies exist (see With_dependency metaclass in figure 2) dif-
ferent orthogonal criterions can be applied giving rise to different specialized
metaclasses. Again. as in the Generalization/Specialization dimension, these sub-
classes can be successively combined through the Cartesian product. Firstly, ac-
cording to the Strength criterion we can distinguish two alternative specialized
metaclasses, i.e. Composition metaclass and Simple_with_dependency metaclass.
The Composition metaclass corresponds to the composition aggregation abstrac-
tion. It allows to model classes of objects (the composed classes) as the aggrega-
tion of objects that belong to different classes (the component classes), so that
the existence of the composed objects has no sense without the existence of the
component, objects. When the existence of complex objects can be conceived
without the existence of some component object, the semantics embodied in the
Simple_with_dependency metaclass is applied.

Direct and Inverse metaclasses indicate the direction of the dependency with
regard to the aggregation. That is, it indicates whether the described is the
dependent and the descriptor the dependor, or vice-versa. Notice that in case
of composition this is not necessary, because the composed object is always the
dependent, and the component is always the dependor. These three metaclasses
(i.e Direct, Inverse, and Composition) define two new derivated attributes (i.e.
dependent, and dependor) from the described and descriptor ones, depending
on the direction of the dependency. For instance, Composition metaclass defines
dependent as described, and dependor as descriptor. For the sake of simplicity.
it is not shown in the figure.

Both metaclasses (Composition and Simple_with_dependency) will have dif-
ferent kinds of dependor delete effects. In case of composition, only two delete
effects can be applied. i.e. propagate or block. The former propagates the deletion
of an object (the dependor) to all those depending on it (the dependents). The
other blocks the deletion of dependor objects when dependent objects exist. The
Simple_with_dependency metaclass allows to specify a third kind of delete effect
called relaxed delete effect; if it is applied, dependor objects will be deleted inde-
pendently of the existence of dependent objects depending on them. Therefore,
the relaxed delete effect just allows to break the dependency among dependor
and dependent objects, which has no sense in a composition relationship.

As it was said before, other specialization criterions can be applied to the
With_dependency metaclass. The Number_of_dependors criterion states whether
objects of dependent class rely on the existence of only one object of the dependor
class (i.e. Ezclusive metaclass) or more (i.e. Multiple metaclass). Furthermore,
when objects of the dependent class depend on the existence of a set of objects

Describing BLOOM99 with regard ro UML Semantics 311

of the dependor class, we must express if this set of objects is fixed or variable.
If variable is applied, the existence of objects of the dependent class depends on
the existence of at least one object from among a variable set of objects of the
dependor class. Conversely, if it is defined as fixed, the dependent class depends
on the existence of all the elements in a given set of dependors. In figure 2, this
semantics is embodied in the alternative specialization of Multiple metaclass into
the Variable and Fized metaclasses according to the Variability of dependors
criterion.

Finally, attending to the participation of dependors in objects of the depen-
dent class, the With_dependency metaclass can be specialized in the Non_covering
and Covering metaclasses (according to Coverage_of dependors criterion) and in
the Disjoint and Quverlapping metaclasses (according to the Disjointness_of de-
pendors criterion). So, the participation of objects of the dependor class in ob-
jects of the dependent class can be covering or not whether every object in the
dependor class must be related to at least one object in the dependent class,
and disjoint or not whether each object in the dependor class can be related to
at most one object in the dependent class. Moreover, in the figure we can see
that Covering metaclass can be specialized in the Propagate and Block meta-
classes depending on the Dependent_delete_effect criterion. Dependent delete ef-
fect propagate implies the deletion of an object of the dependent class will entail
the deletion of the object of the dependor class if it is the last one depending
on it. When block delete effect is applied, the deletion of one object of the de-
pendent class will be rejected if it is the last one depending on an object of the
dependor class which should have at least one object depending on it.

In previous paragraphs we have described the Aggregation/Decomposition
dimension in BLOOM., and the simple aggregation abstraction and the composi-
tion aggregation abstraction have been shown. The last one, includes both Cover
aggregation (see [HM78]) and Cartesian aggregation abstractions (see [SST7]).
The Cover aggregation abstraction means that objects of the composed class
consist of a collection of objects of the component class. It allows to treat each
collection of objects as a single one. If we examine carefully figure 2, we can
deduce that Cover aggregations are compositions with a multiple and variable
number of dependors.

Fig. 3. Top metaclasses and BLOOM99 syntax

312

Finally, the BLOOMY99 metaclasses. along the Generalization/Specialization
dimension. form a semi-lattice. The Generalization/Specialization dimension and
the Aggregation/Decomposition dimension should be generalized into a com-
mon superclass. In figure 3, we can see the top metaclasses of that semi-lattice.
All_abstractions represents every element in a BLOOM schema, and is specialized
by mieans of an alternative specialization depending on the kind_of abstraction in
All_classes, All_nexus, and All_characteristics. All_classes is the metaclass con-
taining all the classes in a schema. All_characteristics represents the concepts
used to link two different classes. Finally, All_nexus represents any relationship
{called nexus from now on) between two classes.

Every nexus is composed by two related classes and a characteristic showing
the reason why they are related. All three monovalued attributes form the key of
the All_nexus class, univocally identifying each nexus. Besides, All_classes meta-
class has a general participation in the from and to components of the nexus,
meaning they have neither a covering nor a disjoint participation. However. the
deletion of a class is always propagated to all the nexus it is involved in. so they
are automatically removed. Moreover. with regards to the participation of char-
acteristics in the nexus, its relationship is covering, meaning that a characteristic
must be tagging a nexus to be of interest in the schema. This means we have
to define a delete effect to be used whether the last nexus where a characteris-
tic is used in is deleted from the schema. If that is the case, the characteristic
will be removed as well (propagate delete effect). In the other way, if somebody
would like to remove a characteristic still being used to tag a nexus, it would be
blocked.

If we specialize the All_nezus metaclass depending on the dimension the
nexus appears in (i.e. Generalization/Specialization. or Aggregation/Decompo-
sition), it gives rise to a disjoint specialization into Specialization, and Aggre-
gating metaclasses. It is a disjoint specialization because we could find nexus
along other dimensions in the Object-Oriented (O-O) paradigm (i.e Classifica-
tion/Instantiation, Behavioural, Dynamicity, or Derivability), as explained in
[Sal96]. Therefore, in this case, every instance of the superclass belongs to, at
most, one of both subclasses.

Since both, Specialization and Aggregating. are a specialization of All_necrus,
they are composed by two classes and one characteristic. However, the role played
by those components changes. While a Specialization is composed by a superclass,
subclass, and crilerion; an aggregating is composed by a described, descriptor,
and player (as it can be seen Th figures | and 2 respectively).

3 Comparing BLOOM and UML

The Unified Modeling Language is specified in [Obj99]. It is not a data model
but a language conceived to specify and design systems. It tries to embrace all
the steps in any O-O software engineering methodology. allowing to document
the whole process in a standard manner by means of its constructs. Therefore,
since data modeling is an important part of the software engineering process,

Describing BLOOM99 with regard to UML Semantics 313

data modeling notation and semantics is an important part of the UML, as well
(see [KER99]). In this section, we try to compare BLOOM with regard to UML
conceptual modeling semantics. outlying what we miss at each one.

From here on, we are going to show how UML should be extended by adding
new metaclasses or stereotypes to be able to capture BLOOMYY semantics. An
important limitation of UML to perform this extension is it allows neither mul-
tiple classification, nor the usage of more than one stereotype in a given element.
Therefore, it forces to define all possible combinations of BLOOM99 metaclasses
as specific stereotypes. This is not done in this paper because it seems a me-
chanical work which would not bring any new information. On the contrary, it
would confuse the readers. On defining BLOOM99 metaclasses, orthogonal spe-
cializations were found and moved up in the metaclass hierarchy to simplify it
and avoid generating unnecessary mixing classes. Thus, generating the Carte-
sian product of these specializations would undo the work. although there is no
problem on doing it. Therefore, it is assumed that the differences found between
UML and BLOOM99 will generate a new set of stereotypes to represent any
combination of BLOOMY9Y semantics missing.

3.1 In general

The first thing that catches someone’s eye is that UML is much more general
than BLOOM. As it was said before, UML is conceived to be used along the
whole software engineering process of any system. On the other hand, BLOOM
was defined only to represent data schemas to be integrated in the construc-
tion process of a FIS. Therefore, due to this reason. UML provides much more
abstractions than BLOOM. However. surprisingly, BLOOM still provides some
abstractions that UML does not, as we will see below.

One of the main differences found at first glance, when comparing BLOOM
and UML, is the existence of DataTypes. While UML distinguishes between
object types (i.e. classes), and data types whose instances do not have Object
Identifiers (OIDs), BLOOM considers that everything is an object and, thus, has
an OID. We consider that each thing or concept should have an OID, and the
numbers. strings of characters. boolean values, ... are nothing else than concepts.
Avoiding unnecessary distinctions simplifies the model. Probably, at the imple-
mentation phase. it is much easier to consider that some basic types are already
provided. However, it is also possible to have basic standard classes defined. It
is absolutely correct to define the operations on data types by means of meth-
ods in the corresponding classes. Therefore, there is no reason to have different
metaclasses for classes and data types. Having one metaclass (i.e. All_classes in
BLOOM. or Class in UML) should be enough. Maybe, the OID of a number will
spend unnecessary extra space, but that is an implementation issue we are not
going to discuss here.

3.2 Generalization/Specialization dimension

The nexus in this dimension relate two classes (or metaclasses). One of those
classes has a more specific meaning than the other. The more general class
is called “superclass”™ with regard to the specific one, referred as “subclass™.
As a consequence of this kind of nexus, we obtain inheritance. That is, the
subclass inherits the properties and methods of its superclass (or superclasses).
Besides, replaceability is also obtained (i.e. where an instance of the a superclass
is required, any instance of a subclass could be used). BLOOM as well as UML
provide similar abstractions to represent this kind of relationships.

Both provide a discriminated specialization. The UML Generalization meta-
class has a disecriminator attribute, and the equivalent BLOOM Specialization
metaclass has a eriterion attribute. These attributes allow to classify the in-
stances of a superclass into its subclasses, being used as discriminator or deci-
sion criterion. Moreover, both consider the nexus in this dimension as binary
relationships, while group them by the value of that attribute (all nexus sharing
superclass and criterion must be instance of the same metaclasses). For instance.
in the BLOOM metaclasses hierarchy (figure 3), we can see two disjoint spe-
cialization nexus: All_nerus is specialized into Specialization, and All_nexus is
specialized into Aggregating. Therefore, we can say that All_nexus is disjointly
specialized into either Specialization or Aggregating, because they share the same
criterion. Thus, depending on the dimension a nexus is in, it will be instance of
one of both metaclasses.

context Disjoint inv:
sell.superclass.all Instances—forAll(x| Specialization.allInstances—
—select(n|n.superclass=self.superclass and n.criterion=self.criterion
and n.subclass.alllnstances exists(x)).size<1)
context Complementary inv:
self.superclass.allInstances—forAll(x| Specialization.alllnstances—
—sselect(n|n.superclass=self.superclass and n.criterion=self.criterion
and n.subclass.alllnstances.exists(x)).size>1)
context AllNexus::InstanceOf::delete(c: AllClasses, o: AllObjects)
pre specializationBlockDeleteEffect: Specialization::Complementary:: Block.all-
Instances—forAll(n; | n,.subclass=c implies (deleting(n; .superclass,o) or
AllClasses.alllnstances—exists(cz | ¢2 # ¢ and e».alllnstances—includes(o) and
Specialization::Complementary::Block. alllnstances—exists(na | ns.subclass=e,
and ns.superclass=n, .superclass and ns.criterion=n; .criterion))))
post specializationPropagateDeleteEffect: Specialization::Complementary::Propa-
gate.alllnstances—forAll(n; | n; .subclass=c implies (toBeDeleted(n; .superclass,
o) or AllClasses.alllnstances—exists(cz | c2 #c and cz.alllnstances—includes(o)
and Specialization::Complementary::Propagate.alllnstances—exists(ns | ns.sub-
class=cs and ns.superclass=n, superclass and ns.criterion=n; .criterion})))

Table 1. Specialization/Generalization rules

However, there are also some differences in this dimension between BLOOM
and UML about metaclass representation, nomenclature, etc. On the first hand,

Describing BLOOM99 with regard to UML Semantecs 315

as it was explained above, BLOOM has a metaclass (i.e. Specialization) which
is specialized by two different criterions (two pairs of two metaclasses) giving
rise to the four kinds of specialization. Meanwhile, UML also has a metaclass
(i.e. Geeneralization), but it uses four “standard” constraints to define the appro-
priate behaviour (i.e. complete, disjoint, incomplete, and overlapping). In UML
specification, probably, the applicability and relationship between constraints is
not clear enough, but it seems obvious that they exactly match the four corre-
sponding BLOOM metaclasses (i.e. respectively Complementary, Disjoint, Non
complementary. and Overlapping). In table 1, the constraints associated to ev-
ery BLOOM specialization metaclass are expressed by means of OCL (Object
Constraint Language). Notice that Non_complementary and Overlapping do not
impose any constraint.

The real difference in the kinds of specialization between UML and BLOOM
is in that while BLOOM has two subclasses of Complementary depending on the
associated delete effect, UML does not have the corresponding “subconstraints™
of complete. In a complementary specialization, every instance of the superclass
must be classified in at least one of the subclasses. Therefore, the effect of the
“unclassification™ of an object from one of the subclasses should be defined.
BLOOM considers two different possibilities. The first one, corresponding to the
UML behaviour, implies the object is automatically removed from the superclass
at the same time it is removed from the subclass (i.e. Propagate metaclass).
The second possibility is to forbid the deletion of an object from the subclass
until it is deleted from the superclass (i.e. Block metaclass). Both rules are also
shown in table 1. It seems that UML assumes a propagate delete effect since a
generalization being complete means the superclass is “abstract™ (i.e. it is not
allowed to have instances). However. this point is meaningless in UML because
it does not consider dynamic classification.

3.3 Aggregation/Decomposition dimension

It is possible to aggregate different objects to obtain a new complex one. This
gives rise to aggregation nexus between classes. BLOOM distinguishes different
kinds of aggregation. One of them is used to define the simple properties or
attributes of a class. In this case. the object is not generally perceived as being
the result of the aggregation of these attributes, they are just its properties.
An attribute takes values in a given domain, and since BLOOM does not have
data types. the domain has to correspond to an objects class. Therefore, every
attribute defines a relationship between two classes. In this sense. the Aggregat-
ing metaclass provides a means for specifying the attributes of a class besides
other kinds of relationships. This is one of the main differences with UML, which
provides two different metaclasses (i.e. Attribute, and Association). However, it
still considers the named associations as “pseudo-attributes”™. We think that the
information represented in the data schema should be accessible to the user,
and thus kept in the database (in software engineering this might not be true).
Besides, the association ends should have names in order to be used by users in
the navigation paths. Under this assumptions, there are no differences between

316

attributes and associations but in their representation in the schema. The re-
lationships with other classes are also properties of a class. I'urthermore. if we
identify both representations as a unique concept. there is nothing that avoids
choosing the drawing (i.e. an arrow, or a text line in the class rectangle) at user
will.

If the simple aggregation does not have any existence dependency (explained
in next section). it offers two different characteristics to the attributes whether
they are multivalued or not. obligatory or not. Both are represented at once
by UML. It is done by the multiplicity attribute at every AssociationEnd or
Attribute. The lower level in the multiplicity being zero implies optionality, while
the upper level being one implies that the attribute is monovalued. BLOOM does
not offer the possibility of fixing an specific multiplicity in the aggregation nexus,
because it was not of interest to the integration process.

By means of an attribute (i.e. aggregation) in the AssociationEnd metaclass.
UML considers three different subtypes of association (i.e. ordinary association.
composilte aggregate, and shared aggregate). The first one. as well as the attribute
metaclass, would be identified with the BLOOM Simple aggregation explained
above. The others correspond to a stronger kind of aggregation represented by
the Composition metaclass in BLOOM. This stronger aggregation does represent
a true “Whole/Part™ relationship, where the aggregate is conceived as the sum of
the parts, and cannot exist without one of them (they are not simple properties).
As it will be explained below. there is an existence dependency implicit in a
composition.

Existence dependencies Probably, one of the most important (at the same
time that confusing) points in BLOOM is its existence dependencies. UML also
defines the Dependency metaclass. However. its meaning is absolutely different.
The UML dependency allows to show an existence relationship between two
model elements (at any model in the software engineering process), outlying the
importance of one (i.e. supplier) for another (i.e. client). It is not subclass of As-
soctation, but of the more general metaclass Relationship, and its subclasses are
Binding, Usage, Abstraction. and Permission. On the other hand, BLOOM exis-
tence dependencies reflect the necessity of the existence of some class instances
(i.e. dependors) for the existence of others (i.e. dependents). lts metaclass (i.e.
With_dependency) is subclass of Aggregating. so that an existence dependency is
a kind of aggregation nexus. &

If we are talking about a BLOOM composition nexus (corresponding to com-
position aggregate as well as shared aggregate in UML), it has an implicit exis-
tence dependency associated. That is. the described (whole, or composed object)
depends on the existence of the descriptors (parts, or components). A simple ag-
gregation could also have an associated existence dependency. However, in this
case. the direction of the dependency is not forced. either the described. or de-
scriptor can play the dependor role. That comes from the nexus being instance
of Direct (as it is in the composition. the described is the dependent. and the
descriptor is the dependor). or Inverse (the described is the dependor. and the

Describing BLOOM99 with regard 1o UML Semantics 317

descriptor is the dependent) metaclass. UML composite or shared aggregate also
have implicit existence dependencies. However, UML does not allow to associate
an existence dependency to a simple aggregation (i.e. ordinary association in
UML). so that there is no way to explicit this kind of dependencies.

context Lrclusive inv:
self.dependent.alllnstances—forAll(x|self.dependor.allInstances—
—select(y|sell.alllnstances—exists(n|n.dependent=x and n.dependor=y)).size=1)
context Multiple inv:
self.dependent.allinstances—forAll(x|sell.dependor.allInstances—
—select(y|self.allnstances—exists(n|n.dependent=x and n.dependor=y)).size>1)
context AllNerus::Instance Of::delete(c: AllClasses. o: AllObjects)
pre dependorDeleteEffect Block: Aggregating::With_dependency::Block.alllnstan-
ces—forAll(n; | ny.dependor=c implies not n;.alllnstances—exists(ni|ni.depen-
dor=o0 and tied(ni)))
post dependorDeleteEffect Propagate: Aggregating:: With_dependency::Propagate.
alllnstances—forAll(n; | n;.dependor=c implies (n;.alllnstances—forAll(ni|ni.
dependor0))) and all dependents have been removed from their respective
dependent class
post dependorDeleteEffect Relaxed: Aggregating:: With_dependency::Propagate.all-
Instances—forAll(n; | n;.dependor=c implies (n;.alllnstances—forAll{ni|ni.de-

pendor#o)))
Table 2. Dependency rules

Table 2 shows rules about BLOOM existence dependencies. Firstly, they can
be exclusive (an object depends on exactly one object) or multiple (if the exis-
tence of an object depends on more than one object). This could also be shown
in UML by the multiplicity attribute in the Association metaclass. Besides this
attribute, UML offers the changeability one. which allows three different val-
ues (i.e. changeable. frozen. or addOnly). An addOnly attribute or association
is not considered in BLOOM. Moreover. exclusive existence dependencies are
always “frozen” (the dependor cannot change). Nevertheless, the BLOOM mul-
tiple dependency (i.e. Multiple metaclass) is specialized into Fized or Variable
attending to the variability of its dependors (that is, it can be respectively frozen
or changeable). In BLOOM, Different kinds of changeability are not taken into
account out of the scope of existence dependencies.

Although exclusive and multiple fixed dependencies forbid changes in values.
a relaxed delete effect allows to remove the dependor so that a new one can be
assigned. Meanwhile, the other delete effects (i.e. block, and propagate) provide
a similar behaviour to that described for the Generalization/Specialization di-
mension. The propagate delete effect means that the deletion of the dependor
entails that of the dependent. while the block one means that the deletion of
a dependor is blocked until it does not have any object depending on it. UML
does not consider different kinds of delete effect (propagate delete effect seems
always implicit).

318

Coverage and disjointness As it is in the Generalization/Specialization di-
mension, the coverage and disjointness participation of objects in existence de-
pendencies should also be taken into account. In this sense, UML distinguishes
between composite and shared aggregate. The former implies a component can
only take part in an aggregation (which means having a disjoint participation),
while the other means that the same object can be aggregated in more than one
composition (i.e. overlapping).

On its part, BLOOM99 (as it does for specializations) offers four different
kinds of existence dependency attending to the participation of the dependors
(which rules are similar to those stated in tables 2 and 1). Thus, aggregating
nexus with dependency can be specialized into Covering or Non_covering, and
Disjoint or Querlapping giving rise to the four mentioned possibilities. As it
happened for the complementary specialization, a covering existence dependency
offers two different delete effects (i.e. block. and propagate).

4 Conclusions and future work

Along this paper we have described the BLOOM model and discussed about its
differences and similarities with regard to UML. On the first hand, it serves to
fix BLOOM semantics with regard to a standard language. On the other hand.
this paper can help to better understand UML semantics. As noted in [KER99],
the paper “Semantics of UML™ in [Obj99] actually does not cope with semantics.
Thus, further interpretation and explanation is needed.

Surprisingly. leaving out names and nomenclature issues, similarities between
BLOOM and UML prevail over differences. General differences include the ab-
sence of predefined data types in BLOOM (present in UML) as well as the
possibility of multiple classification (not allowed in UML). In the Generaliza-
tion /Specialization dimension minor differences appear. Basically, differences are
related to the delete effects that BLOOM defines and UML does not: in fact, dis-
cussion about this matter can be also applied to the Aggregation/Decomposition
dimension.

Besides that of the delete effects, related to the Aggregation/Decomposition
dimension. major differences appear between BLOOM and UML. A significant
difference is related to the fact that BLOOM allows to explicitly specify existence
dependencies, while in UML they are inherent to the composite and shared
aggregate associations. .

It is important to note that all the previous concepts that BLOOM explicitly
takes into account, could be expressed in UML for every specific class in an ad-
hoc manner. if desired. We have shown how this could be done by means of OCL.
In this sense, we found difficulties expressing conditions that involve transitions
between different states of the DB.

Our work in progress is intended to make BLOOMY9 operative on a central-
ized DBMS as well as a FIS. With this objective in mind we are working on
a Graphical User Interface Tool, which allows graphical design, definition and
display of valid BLOOMYY database schemas; and a precompiler for BLOOM39Y,

Describing BLOOM99 with regard to UML Semantics 319

which will allow the automatic generation of the DBMS/C++ code that has to
be associated to the different user classes to simulate BLOOMY99 on an OODBMS
as well as on a RDBMS.

Acknowledgements

This work has been partially supported by the Spanish Research Program PRON-
TIC (TIC99-1078-C02-01). and the Generalitat de Catalunya (1998F1-00228).

References

[AORS99a] A. Abellé, M. Oliva. E. Rodriguez. and F. Saltor. The syntax of BLOOM99
schemas. Technical Report LSI-99-34-R, Dept. LSI (UPC), 1999.

[AORS99b] A. Abells, M. Oliva, E. Rodriguez. and F. Saltor. The BLOOM Model
Revised: An Evolution Proposal. In ECOOP 99 Workshops Reader (Poster
Session), pages 376-378, Lisbon (Portugal), June 1999. Springer.

[CKSGS94] M. Castellanos. Th. Kudrass. F. Saltor, and M. Garcia-Solaco. Inter-
database Existence Dependencies: A Metaclass Approach. In Proc. of the
Third International Conference on Parallel and Distributed Information
Systems 1994, pages 213-216. [EEE-CS Press, 1994.

[GSSC95] M. Garcia-Solaco, F. Saltor, and M. Castellanos. Semantic Heterogeneity
in Multidatabases. In Bukhres and Elmagarmid, editors, Object Oriented
Multidatabases. Prentice-Hall, 1995. Invited chapter.

[HMT78] Michael Hammer and Dennis McLeod. The semantic data model: A mod-
elling mechanism for data base applications. In Eugene l. Lowenthal and
Nell B. Dale, editors, Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, pages 26-36, Austin (TX), June 1978.

[KER99] Stuart Kent, Andy Evans, and Bernhard Rumpe. UML Semantics FAQ.
In ECOOP’99 Workshops Reader (LNCS 17/3). pages 33-56. Springer,
Lisbon (Portugal), June 1999.

[Obj99] Object Management Group. OMG [Unified Modeling Language Specifica-
tion, June 1999. version 1.3.

[Salo6] F. Saltor. Semantica de datos. In Panorama Informdtico, pages 39-64.
Federacion Espanola de Sociedades de Informatica (FESI). 1996.

[SCGS91] F. Saltor, M. Castellanos, and M. Garcia-Solaco. Suitability of Data Models
as Canonical Models for Federated DBs. ACM SIGMOD Record, 20{4):44-
48, 1991.

[SLO0] A_P. Sheth and J.A. Larson. lederated Database Systems for Managing
Distributed. Heterogeneous. and Autonomous Databases. ACM Computing
Surveys, 22(3):183-236. September 1990.

[SM98] Spaccapietra and Maryanski. Searching for Semantics: Data Mining and
Reverse Engineering. Kluwer, 1998.

[SR99] F. Saltor and E. Rodriguez. On Semantic Issues in Federated Information
Systems (Extended abstract). In S. Conrad, W. Hasselbring, and G. Saake,
editors. Proc. of the 2nd Workshop on Engineering Federated Information
Systems, pages 1-4, Khlungsborn, Germany, May 1999. Infix-Verlag.

[SS77 J. Smith and D. Smith. Database abstractions: Aggregation. Communica-
tions of the ACM, 20(6):405-413, June 1977.

	img1 (156)
	img1 (157)
	img1 (158)
	img1 (159)
	img1 (160)
	img1 (161)
	img1 (162)

