
1. Introduction 
 
A vibratory or oscillatory behavior, functionally noticeable, is commonly found in mechanical systems due to the inertia and stiffness of the 
components. During their normal operation, transient excitations may occur because of external forces or the movement of internal inertias, 
which normally raise this vibratory reaction. The intended function of the mechanism may be compromised because the vibrations generated 
usually remain in the system after the end of the transient excitation. Motion control has been one of the main areas of focus for the development 
of residual vibration reduction. Much work has been carried out with methods based on command generation techniques applied to discrete 
linear systems 1,2. Most of them were developed by focusing on the optimization of the transient time. However, in the short duration time range, 
between 1 and 1.5 periods of the system natural frequency, the resultant shapes of the generated input functions are not optimal in terms of 
minimum-acceleration-switch condition, with peak values that are far from the average intended value. Therefore, the amplitude of the system 
response is usually noticeable, although it depends on the unshaped command used. 
 
Assume that the inputs of the Figure 1 are velocity profiles ( )y t that define a point-to-point maneuver. The number of acceleration switches is 
one (optimal condition), two and three for the indicated curves. In this context, unwanted dynamics, such as high order modes, can be excited by 
transmission backlashes, mechanical plays or electronic hysteresis, when the input function alternates between positive and negative values of 
acceleration. Furthermore, such condition can also imply a premature wear of contact surfaces and fatigue of mechanical parts. 
 

 
 
Fig. 1 Point-to-point velocity profiles with different acceleration-switch condition 
 
In this way, the signal generation based on the definition of transient excitations through trigonometric series expansion of functions present 
rippled profiles, because the series used were truncated and the terms related with the system natural frequency were not included 3–5. 
 
The zero-vibration (ZV) input shapers 6,7 and their extensions zero-vibration and derivative (ZVD) and extra insensitive (EI) shapers, which 
provide robustness against variation of system parameters, were obtained by convolution of an unshaped signal by a sequence of impulses. These 
methods do not, in general, satisfy the minimum-acceleration-switch condition. Other approaches of this technique included: i) phasorial 
diagrams to reduce numerical calculations 8,9; ii) negative impulses to reduce the transient time 10; iii) an optimal trade-off between performance, 
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This paper presents a time-domain technique to generate command inputs for the reduction of residual vibrations in 
mechanical systems. The technique is based on the generation of motion profiles with zero-crossing points in their frequency 
spectra at the system resonances in the same way as the zero-vibration (ZV) command generation methods. By including an 
appropriate negative exponential time function, which contains the system natural frequency and the damping ratio, the 
resultant input can be applied to damped systems with a result of zero residual vibration. The signals synthesized can be used 
as a generic physical magnitude in vibratory systems. However, they were particularized for mechanical systems and 
engineering metrics were used. Compared to other ZV methods, for a short duration input range, the signals obtained have 
better performance in terms of minimum-acceleration-switch shape which is translated to a smoother motion profile. The 
development includes the application to single-mode and multiple-mode mechanical systems and the possibility of handling 
two functional requirements or constraints in the desired application. The analyzed systems are those that can be modeled as 
discrete linear ones with several vibratory degrees of freedom and can be described with constant parameter motion 
equations. Experimental results show the efficacy of the method developed with its application to a damped pendulum test 
platform. 
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measured in terms of residual vibration and speed, and robustness 11; iv) the cancellation of a so-called pseudo-mode with lower frequency than 
any of the system component modes 12, v) the reduction of the system response during the transient 13,14. All these methods obtained the desired 
command input through the impulse shaping as well, presenting a non minimum-acceleration-switch condition. 
 
Conventional command filtering was studied to eliminate the frequency content at the system resonance from the input 15. In this case, the 
resultant signals usually show a minimum-acceleration-switch condition in all time ranges. However this technique is not considered an 
analytically proven ZV method: Although it is demonstrated that reducing the frequency content at the system resonance is equivalent to 
reducing the residual vibration 16, the lower effectiveness of the filtering methods can be justified because this statement is only valid for 
undamped systems. Therefore, those methods do not give a total residual vibration reduction in damped systems. 
 
Methods involving discrete filters were also developed. The zero-placement technique 17 was extended to the discrete domain by constructing the 
impulse sequences in the z-plane 18. The Optimal Arbitrary Time-delay Filter (OATF) 19, where its time-domain representation is a set of positive 
and negative impulses with variable time-delay. In these techniques, the desired signal is generated again by convolving an unshaped command 
with a sequence of impulses. In the time range indicated, the non minimum-acceleration-switch condition of the resultant inputs is noticeable as 
well.  
 
The main objective of the present work is to provide input functions with analytically proven null residual vibration (ZV), which present a 
minimum-acceleration-switch condition during the transient, compared to other literature methods. The main contribution is the development of 
a zero vibration method for n degree-of-freedom damped linear systems to generate those command inputs. It involves the time-domain rescaling 
of an arbitrary base function to locate the zero-crossing points of its frequency spectrum at the system damped frequencies, and the later product 
of this base signal with an appropriate negative exponential time function. Unlike the previously presented input shaping methods, this approach 
cannot be implemented in real time. The entire command must be computed before the motion is initiated. 
 
The rest of this paper is organized as follows. In Section 2, the mathematical analysis is introduced, which derives in the frequency domain the 
necessary and sufficient condition that an input should meet to eliminate residual vibrations in a damped system. The design method and two 
strategies to fix two functional constraints are explained. In section 3, the extension to multiple-mode systems is detailed and it is proven that the 
time-derivatives or integrals of the formulated profiles are also useful to reduce residual vibrations. In Section 4, a comparative simulation with 
the main ZV techniques is presented 6,10,19. Next, in Section 5, some experimental results are shown by using a pendulum-carriage test bed that is 
essentially a crane. In such systems, the input shaping has been commonly applied 20–23. Finally, in Section 6, conclusions are drawn, pointing out 
the benefits of the method developed. 
 
2. Input Design Method 
 
The development carried out in this paper can be extended to any vibratory system assuming that y(t) and x(t) are time functions of physical 
magnitudes (force, position, velocity, acceleration, voltage, current…) which can be considered as the input and the response of this system, 
respectively. However, to clarify the development, it is particularized to the mechanical system in Figure 2, assuming that the input is the 
absolute coordinate of the base y, and the output is the relative coordinate of the mass x. 
 

 
 
Fig. 2 Generic single-mode discrete linear system 
 
2.1 Necessary and sufficient condition 
 
The necessary and sufficient condition for zero residual vibration is that the Laplace transform (LT) of the time-bounded control input y(t) has 
zero magnitude at the system poles. This condition was proven previously by other authors 12,17,24 . In this section, we introduce the necessary and 
sufficient condition for zero residual vibration, but explained through the Fourier transform (FT) in which is based the new method developed. 
 
The motion equation of the system of the Figure 2 is given by 
 

 ( )m x c x k x m y t       (1) 

 
this expression can be rewritten as 
 

 2
0 02 (2π ) (2π ) ( )x f x f x y t       (2) 

 

where 0 /(2π)f k m  is the system natural frequency and /(2 )c mk   is the damping ratio. 

 

Assuming a vibratory behavior (ζ<1), the system poles are 1,2 0 d2π j2πs f f   where 2
d 0 1f f   is the oscillation frequency or damped 

PO
ST

PR
IN

T



frequency. Therefore, the stated necessary and sufficient condition yields 
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To switch from the necessary and sufficient condition described through the LT to the one described through the FT, we introduce 

02π( ) ( )e f tg t y t   in (3) and the resultant expression (4) is compared to the development of the FT of g(t) evaluated at fd in expression (5).  
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The integrals of Expression (4) and (5) are the same. Therefore, to say that the LT of the time-bounded control input y(t) has zero magnitude at 

the system poles is equivalent to say that the Fourier transform of the function 02π( )e f ty t  has zero magnitude at the oscillation frequency fd. 

 
2.2 Design method 
 
Figure 3 shows the flow diagram of the proposed design method. The extension to multiple mode systems is explained in 3.2. 
 
The command input obtained is described by the Expression (6), where ub(t) is a rescaled base transient function, which contains any zero-
crossing point located at fd in its frequency spectrum, and A is a constant amplitude scale factor to be determined to accomplish one functional 
requirement. 

 02π
b( ) ( )e f ty t Au t   (6) 

 
Example: Assume that an acceleration input ( )y t is desired and a rectangular pulse, defined between t0=0 and tf, is selected as the base function. 
If the duration of the rectangular pulse is rescaled by fixing tf at 1/fd, the magnitude of its frequency spectrum is given by Expression (7) and is 
null at fd, 2 fd, 3 fd, …, . 
 

 
 d d
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  (7) 

 

By multiplying the rescaled pulse by 02πe f tA  , we obtain ( )y t , which final shape is shown in Figure 4. 

 

 
 
Fig. 3 Flow diagram of the design method for a single-mode system 
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Fig. 4 Example of the input ( )y t , the result of the product of a rescaled pulse ub(t) and an exponential time-function with an exponent 02π tf  

 
The method described requires base functions ub(t) with zero-crossing points in their frequency spectra. The use of symmetric transient signals is 
recommended because most of them present zero content at some determined frequencies. In the case of a real even base function ub(t), its FT is 
also real and even and is given by next expression. 
 
 

 
b b

b b b

( ) FT[ ( )]

( )cos(2 ) d for ( ) ( ) 

U f u t

u t f t t u t u t t




 

   
+
-

 (8) 

 
 
The frequency content is null at fd when b d( ) 0U f  . An analogous reasoning can be followed when the signal is odd. Nevertheless, the null 

frequency content at fd for a non-symmetric function can be described by 
 

 b d b d d( ) ( )(cos(2 ) jsin(2 )) d 0U f u t f t f t t
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In this case, the null condition is more restricting because the real and imaginary terms must be zero at the same time. Although classical 
symmetric functions like pulse, trapezium, versine, double harmonic, etcetera have zero-crossing points within their frequency spectra, symmetry 
is not a sufficient condition to have this property because there are some unusual symmetric functions that do not present this condition. 
 
2.3 Fixing two functional constraints 
 
In some motion control applications, the input functions should be capable of achieving two functional requirements or constraints at the same 
time, such as transient duration, distance to move, velocity increment, etc. In a general case, there is a transient movement of an inertia when a 
finite variation of one of its kinematic magnitudes (acceleration, velocity or position) occurs in a finite time and, out of this time, this magnitude 
remains constant. According to this statement, it seems logical that the motion profile includes the finite variation of the motion magnitude (first 
functional requirement) in a fixed time (second functional requirement). Although the second functional requirement is usually the duration of 
the command input, in some applications the displacement is used as well. 
 
1- Command generation: 
 
To handle two constraints, two types of inputs are proposed. The resultant shapes can be significantly different between them, depending on the 
functions used. 
 
Input i) 

   02π
b a( ) ( ) ( ) e f ty t A u t u t    (11) 

 
where ua(t) has a duration ta and is the so-called unshaped command or function. The convolution theorem of the FT states that, under suitable 
conditions, b a b aFT[ ( ) ( )] ( ) ( )u t u t U f U f   . If the base function ub(t) has zero-crossing points in its frequency spectrum, b a( ) ( )u t u t has 

them as well. Therefore y(t) follows the scheme described in the expression (6) as well. 
 
The base transient function ub(t) is described in section 2.2. The unshaped function ua(t) should be a positive function, defined in a finite time 
range, with a minimum-switch-acceleration condition. Functions that can be used as unshaped commands are, for example, versine, double 
harmonic or trapezium.     
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Input ii) 

 02π
b a( ) ( )e ( )f ty t A u t u t     (12) 

 

where ua(t) is an unshaped function like the one defined in the former case. Suppose that 02π
b( )e f tAu t  is an input function designed following 

Expression (6) and x1(t) is the system response to this input. The oscillatory term of x1(t) has the same duration of the input because the input 
has been designed to avoid residual vibrations. If h(t) is the impulse response of the system, x1(t) can be described 

by 02π
1 b( ) ( )e ( )f tx t A u t h t    . If 02π

b( )e f tAu t  is now convolved with a function ua(t) with a duration ta, the system response x2(t) can be 

obtained by 

  02π
2 b a( ) ( )e ( ) ( )f tx t A u t u t h t      (13) 

 
Taking advantage of the associative and commutative properties of the convolution integral, x2(t) can be rewritten as 
 

  02π
2 b a 1 a( ) ( )e ( ) ( ) ( ) ( )f tx t A u t h t u t x t u t        (14) 

 
Therefore, the duration of the oscillation term of x2(t) is the same as the input, which is the duration of the oscillatory term of x1(t) added to ta and, 
hence, there is no residual vibration as well. 
 
2- Algorithms: 
 
The command amplitude A and the duration of the unshaped function ta are two parameters to be set to handle the desired constraints. The 
algorithms presented below describe how to calculate these parameters, considering the two standard cases indicated. 
 
i) Generation of a velocity command ( )y t : Consider that the input is defined between t0=0 and tf. Assume that tf and the displacement y are the 
constraints to be fixed. Figure 5 presents the flow diagram to set the parameters A and ta to achieve those requirements.   
 
ii) Generation of an acceleration command ( )y t : Consider again that the input is defined between t0=0 and tf, and now, the velocity 

increment y and the displacement y are the constraints to be fixed. Figure 6 presents the flow diagram to set the parameters A and ta, to 
achieve those requirements. The implicit system referred in this figure is given by the expressions (15), (16) and (17). 
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Fig. 5 Flow diagram to generate a velocity command ( )y t when tf and y are functional requirements 
 
Although it is it is possible to include more than two functional constraints in a command by including unknown parameters in the unshaped 
function ua(t), the influence on the shape of the resultant profile is very small for short duration motion profiles. Therefore, to find these 
unknowns for a set of more than two constraints will not be possible in many cases. 
 
Example: An acceleration command ( )y t must be designed with the overall time tf and the velocity increment y as functional constraints. Thus, 
the flow diagram of the Figure 5 can be used because it is an analogous case. Assume that ub(t) is a pulse with a duration tb=1/fd. A versine 
function is selected as unshaped function ua(t) The parameters A and ta are given by 
 

 a f d1/t t f   (18) 

 

 
f

02π
b a0

[ ( ) ( )]e d
t f t
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u t u t t







 (19) 

 
Figure 7 shows the resultant function ( )y t where the final input is obtained by multiplying the exponential time function indicated by the result of 

the convolution b a( ) ( )u t u t . The same figure shows the function obtained by scaling the unshaped function alone. 
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Fig. 6 Flow diagram to generate an acceleration command ( )y t when y and y are functional requirements 
    

 
 
Fig. 7 Fixing two functional constraints with a versine as an unshaped function ua(t) 
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3. Extensions of the method 
 
3.1 Using the derivative or integral to obtain a new input function 
 
The derivatives or integrals of the functions obtained with the proposed method also satisfy the condition of null residual vibrations. The time 
derivative of Expression (6) is given by 
 

 0 02π 2π
b 0 b( ) ( )e 2π ( )ef t f ty t Au t A f u t      (20) 

 
The second addend of the right term of Expression (20) is the original y(t) multiplied by the constant 02π f and, hence, this term does not 

excite any residual vibration. The first addend contains the derivative of the base function ub(t). The properties of the FT state that 
if b b( ) FT[ ( )]U f u t then b bFT[d ( ) / d ] j2π ( )u t t f U f  (provided that bd ( ) / du t t exists). Therefore, the points where the frequency content is 

null in ub(t) remain invariable in bd ( ) / du t t . Thus, the first term of this expression does not excite residual vibrations either. Analogous reasoning 

can be followed with the integrals of the input defined by Expression (6). 
 
3.2 Multiple-mode systems 
 
To cancel multiple mode vibration, several single mode profiles are convolved following the procedure stated by other authors7,25. The 
development described below introduces a time-domain approach. 
 
For a damped n-mode linear system with vibratory behavior, according to the modal decomposition theory, the i-th coordinate output xi(t) can be 
described by a sum of weighted and phase-adjusted responses of n single-mode systems, which characterize the natural modes. The oscillatory 
term of an impulse response hoi(t) for the coordinate xi, assuming a displacement output, is given by the form 
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o d
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h t C f t q t
  

 
      (21) 

 
where Cik and φik are constants that depend on the system parameters and f0k, fdk and ζk are, respectively, the natural frequency, the oscillation 
frequency and the damping ratio of the mode k-th. 
 
By using the convolution integral, the function that describes the oscillatory term of the displacement for the i-th coordinate xi(t), and for a given 
input y(t) defined between t0 and tf, is 
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 (22) 

 
Suppose that for every k-th natural mode a transient signal yk(t) is defined following the method explained for single-mode systems. The 
approach proposed in this study for multiple-mode systems is to construct the input y(t) by convolving the n functions yk(t):  
 

 1 2( ) ( ) ( ) ... ( ) ... ( )k ny t y t y t y t y t       (23) 

 
To prove that the input y(t) does not excite any residual vibration in any natural mode, it is sufficient to demonstrate that the oscillatory term of 
any coordinate output xi(t) has the same duration as the input y(t). Substituting Expression (23) into (22) gives 
 

 
 

   

1

1 2
1

1 2
1

( ) ( ) ( )

( ) ( ) ( ) ... ( ) ... ( )

( ) ( ) ( ) ( ) ... ( )

1,...,

n

i i k
k

n

i k k n
k

n

i k k n
k

x t q t y t

q t y t y t y t y t

q t y t y t y t y t

i n







    

        

      









 (24) 

 
The resultant signal given by ( ) ( )i k kq t y t has the same duration as yk(t), because yk(t) has been designed to cancel the residual vibrations of the 

k-th natural mode. Thus, the duration of the addend k-th (k=1, ..., n) of Expression (24) is the sum of the durations of y1(t), y2(t), …, yk(t), …yn(t), 
which is equal to the total duration of y(t). Therefore, the i-th oscillatory response of xi(t) has the same duration as the input y(t), which means 
that there is no residual vibration. 
 
Figure 8 shows an example of an input generated to avoid residual vibrations in a three-mode system. A rectangular pulse is the base function 
used in this example. The individual functions yk(t) designed for each mode according to this pattern are given by Expression (25). 
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Fig. 8 Input generated to avoid residual vibrations in a three-mode system 
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The final shape of the input y(t), obtained by convolving yk(t) k=1,…,3, is also shown in the figure. One constraint can be adjusted through its 
amplitude. To fix a second constraint, a convolution with an unshaped function would be required (refer to 2.3). 
 
4. Simulation results 
 
Consider the system of the Figure 2. This section presents a comparison between different techniques regarding the acceleration-switch condition 
of the generated input y(t) and the amplitude of the system response x(t). The following are the specifications of the simulations performed. 
 
1- Techniques compared by simulation: Within the methods described in Section 1, some of the commonly used that give null residual vibration 
for damped systems were chosen to compare with the current proposal: i) Positive ZV shaper 6, ii) Negative ZV shaper with positive and negative 
impulses 10 (P=1) and iii) the OAT filtering algorithm 19, with a time-delay of T=0.2T0. This value was chosen to maintain approximately the 
duration of the impulse shaper to a similar value than the one obtained by the other compared methods, and to limit the magnitude of the 
impulses generated around the unit (similar to the other methods as well) which is interesting to avoid high amplitudes of the command input. 
For the new method, a pulse was used as a base function ub(t), and the second procedure in 2.3 was followed. 
 
2- Unshaped functions: Versine, double harmonic (Expressions (26) and (27), respectively) and trapezium functions were used. First two 
present the advantage of having a minimum C1 continuity degree at both ends relative to the rest condition, to provide smooth transitions when 
convolved with shapers. The second is defined as a fast function (slopes duration 0.04 s). 
 

 a ( ) 1 cos(2π ) [0,1]u s s s    (26) 

 

    a
1

( ) 1 cos(2π ) 1 cos(4π ) [0,1]
4

u s s s s      (27) 

 
3- System: The simulations were performed assuming a natural frequency f0=1 Hz and damping ratios of ζ=0 and ζ=0.2 in the system in 
Figure 2. 
 
4- Command generation criteria: Two criteria were used to generate the command inputs: i) The duration of the unshaped function was fixed 
between 0.2 and 1.0 seconds to see the relative effect of the method regarding the amplitude of the system response, without the influence of this 
unshaped function, and ii) The duration of the overall input was fixed between 1.1 and 2.0 seconds to evaluate the performance in terms of 
system response and acceleration switch condition. In both criteria, the resultant inputs were used as displacement, velocity and acceleration 
profiles and their integral value between t0 and tf was fixed to the unity at the end of the transient, assuming null initial conditions. 
To reduce the graphical extension of this section, the velocity profiles were chosen to explain the metrics used and the results obtained, and the 
rest are described in several summary tables. 
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4.1 Velocity profiles 
 
Criterion i): Figure 9 is a graphic sample of the comparison done following the indicated command generation criterion, for a system with a 
damping ratio of ζ=0.2 and a versine as the unshaped command. 
 

 
 
Fig. 9 Velocity inputs and displacement responses for the indicated methods. Criterion i) fixed unshaped function duration 
 
The modulus of the maximum amplitude of the system response during the transient, maxx , versus the unshaped command duration is indicated 

in Figure 10. The proposed technique provides lower maximum amplitudes for all the time range indicated. For ta=0.2 s, the maximum 
amplitudes of the compared methods are in between 0.48 m and 1.11 m, while it is 0.17 m for the proposed one. For ta=1.0 s, these amplitudes 
are in between 0.12 m and 0.15 m, while it is 0.09 m for the new method. 

 
 
Fig. 10 System response maximum amplitudes versus unshaped command duration: positive ZV shaper (dashed); negative ZV shaper (dotted); 
OAT filter (dash dotted); proposed method (solid) 
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Fig. 11 Velocity inputs and displacement responses for the indicated methods. Criterion ii) fixed overall duration 
 
Criterion ii): Figure 11 is a graphic sample of the comparison done with the indicated criterion. The system has a damping ratio of ζ=0.2 and a 
versine is used as the unshaped command as well. 
 
The modulus of the maximum amplitude of the system response during the transient, maxx , versus the total duration of the input is indicated in 

Figure 12. In this case, the proposed method provides lower maximum amplitudes up to 1.23 s or 1.33 s of total duration, depending on the 
method compared. As shown, for an input duration of 1.1 s, the maximum amplitudes of the compared techniques are in between 0.22 m and 
0.24 m, while it is 0.18 m for the proposed one. 
 
Although the acceleration motion profiles are not displayed, the number of alternations between positive and negative values can be deduced 
easily in Figure 11. The positive and negative ZV shapers and the OAT filter present three sign changes for shorter durations, while a sign change 
occurs once with the proposed method. 
 

 
Fig. 12 System response maximum amplitudes versus total input duration: positive ZV shaper (dashed); negative ZV shaper (dotted); OAT filter 
(dash dotted); proposed method (solid) 
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4.2 Summarized results 
 
Criterion i):  Table 1 is a summary table that includes the system response maximum amplitude for ta=0.2 s (unshaped command duration). The 
lower amplitudes are marked in grey background. 
 
In all the simulations performed, the maximum amplitudes obtained for the current proposal are lower than for other techniques. The tendencies 
are analogous to the ones showed in Figure 10.  
 
Criterion ii): Three summary tables that include the relevant results of the simulations made when the generated signal was used as a 
displacement (Table 2), velocity (Table 3) and acceleration input (Table 4). The best results are marked in grey background. 
 
Table 1 Simulation results. System response maximum amplitude [m] 
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Displac. 
Versine 4.73 24.0 8.43 0.97 
Double harm. 6.45 31.6 10.0 0.98 
Trapezium 3.11 17.2 6.6 0.95 

Velocity 
Versine 0.43 1.31 0.62 0.16 
Double harm. 0.45 1.58 0.65 0.16 
Trapezium 0.40 0.92 0.6 0.15 

Acceleration 
Versine 0.08 0.13 0.10 0.05 
Double harm. 0.08 0.14 0.10 0.05 
Trapezium 0.08 0.12 0.10 0.05 

0.2 

Displac. 
Versine 5.55 18.1 8.57 1.18 
Double harm. 7.76 25.5 10.9 1.29 
Trapezium 3.74 16.4 7.27 1.03 

Velocity 
Versine 0.48 1.11 0.68 0.17 
Double harm. 0.52 1.39 0.73 0.17 
Trapezium 0.43 0.74 0.61 0.17 

Acceleration 
Versine 0.08 0.11 0.10 0.05 
Double harm. 0.08 0.12 0.10 0.05 
Trapezium 0.08 0.11 0.10 0.05 

 
Table 2 Simulation results for displacement profiles 

ζ Metric 
Unshaped 
command 
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m
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0 

Acceleration 
# sign 
changes 

Versine 4 4 4 2 
Double harm. 4 4 4 2 
Trapezium 6 6 6 2 

xmax [m] 
Versine 2.26 1.68 2.16 0.99 
Double harm. 2.70 3.75 3.82 1.00 
Trapezium 0.88 2.58 1.09 0.99 

Proposed 
method has 
lower xmax 
up to # [s] 

Versine 

 

1.29 
Double harm. 1.74 

Trapezium - 

0.2 

Acceleration 
# sign 
changes 

Versine 6 6 6 4 
Double harm. 4 4 4 4 
Trapezium 6 6 6 4 

xmax [m] 
Versine 2.25 1.76 2.16 1.50 
Double harm. 2.72 3.68 3.86 1.55 
Trapezium 1.13 2.87 1.32 1.46 

Proposed 
method has 
lower xmax 
up to # [s] 

Versine 

 

1.24 
Double harm. 1.75 

Trapezium - 

 
The proposed method shows an optimum number of alternations between positive and negative values of acceleration except for the damped 
displacement profiles where shows the minimum relative to other methods, but not the optimal. The positive ZV shaper also gives the optimal 
number of sign changes for the acceleration profiles. 
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Regarding the amplitude of the system response during the transient, the proposed technique shows the minimum values, when the versine and 
double harmonic are used, while the positive ZV shaper presents them as well, when the trapezium is used. 
Among the simulated unshaped commands, the double harmonic shows the most severe condition regarding the amplitude of the system 
response during the transient, while the trapezium has the better performance. 
 
Table 3 Simulation results for velocity profiles 

ζ Metric 
Unshaped 
command 
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ho
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0 

Acceleration 
# sign 
changes 

Versine 3 3 3 1 
Double harm. 3 3 3 1 
Trapezium 1 5 5 1 

xmax [m]·10-1  
Versine 2.35 2.16 2.41 1.58 
Double harm. 2.94 3.37 3.37 1.59 
Trapezium 1.42 1.94 1.63 1.58 

Proposed 
method has 
lower xmax 
up to # [s] 

Versine 

 

1.29 
Double harm. 1.68 

Trapezium - 

0.2 

Acceleration 
# sign 
changes 

Versine 3 3 3 1 
Double harm. 3 3 3 1 
Trapezium 1 5 5 1 

xmax [m]·10-1  
Versine 2.41 2.20 2.42 1.77 
Double harm. 3.08 3.32 3.42 1.77 
Trapezium 1.44 1.64 1.64 1.77 

Proposed 
method has 
lower xmax 
up to # [s] 

Versine 

 

1.23 
Double harm. 1.60 

Trapezium - 

 
Table 4 Simulation results for acceleration profiles 

ζ Metric 
Unshaped 
command 
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m
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ho

d 

0 

Acceleration 
# sign 
changes 

Versine 0 0 0 0 
Double harm. 0 2 2 0 
Trapezium 0 2 0 0 

xmax [m]·10-2  
Versine 6.28 5.92 6.29 5.04 
Double harm. 6.89 7.48 7.48 5.05 
Trapezium 4.52 3.31 3.84 5.03 

Proposed 
method has 
lower xmax 
up to # [s] 

Versine 

 

1.29 
Double harm. 1.72 

Trapezium - 

0.2 

Acceleration 
# sign 
changes 

Versine 0 0 0 0 
Double harm. 0 2 2 0 
Trapezium 0 2 0 0 

xmax [m]·10-2  
Versine 6.28 5.99 6.30 5.02 
Double harm. 6.86 7.42 7.49 5.03 
Trapezium 4.61 3.42 3.84 5.02 

Proposed 
method has 
lower xmax 
up to # [s] 

Versine 

 

1.30 
Double harm. 1.73 

Trapezium - 

 
4.3 Limitations 
 
The proposed method obtains command inputs with a minimum-acceleration-switch condition and limited amplitude maximum values with good 
efficiency in vibration reduction. Four known limitations are described compared with the positive ZV method: 
 
1- Minimum command total duration: For single-mode systems, the minimum command total duration with the current proposal is 1/fd when 
using a rectangular pulse as ub(t). This limit is 1/(2fd) for the positive ZV shaper. 
 
2- Velocity and distance possible values when an acceleration command ( )y t is used: The velocity and the distance achieved during the transient 
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are two of the possible functional requirements to be fixed when an acceleration command is used. However, not all the values desired can be 
obtained. To evaluate these limits, an ideal case was analyzed by using an impulse as unshaped command ua(t) to be convolved with the 
correspondent shaper. The proposed method is compared with the positive ZV shaper in a single-mode system. Assume also that ( )y t is defined 

between t0=0 and tf with null velocity and displacement initial conditions, i.e., y(t0)=0 and 0( ) 0y t  . For the positive ZV shaper, the 

acceleration command is given by 
 

 
0

d

1
2π

2
d

d

( ) ( ) 0

( ) ( )e 1 (2 )

0
( ) 0

1 (2 )

f
f

y t A t t

y t A t t f

y t t
f








 

 


   









 (28) 

 
where δ(t) describes a unitary impulse. The velocity at tf=1/(2fd)+ (+ means just after the impulse) is given by 
 

 0 d2π / 2
f( ) (1 e )f fy t A    (29) 

 
and displacement at tf is 
  

 f
d

( )
2

A
y t

f
  (30) 

 
By modifying the parameter A, different values of velocity and displacement are obtained. The relation between them is given by the 

Expression (31) and is the line indicated in Figure 13 (a). 
 

 
2π / 12

f 0 f( ) 2 1 (1 e ) ( )y t f y t       (31) 

 
If the positive ZV shaper is now convolved with a feasible unshaped function, by modifying the total command amplitude and the unshaped 
function duration, the user will be able to choose two independent values of velocity and distance within the grey area of Figure 13 (a). 
 
If the proposed method is used, assuming a rectangular pulse as ub(t), the acceleration command can be described by 
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The velocity at tf=1/fd is given by 
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The displacement at tf is 
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As stated before, by modifying the parameter A different values of velocity and displacement are obtained. The relation between them is given by 
the expression (35) and is the line indicated in Figure 13 (b). 
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If the proposed method is now convolved with a feasible unshaped function, following a similar reasoning to that of the former method, the user 
will be able to choose two independent values of velocity and distance within the grey area of Figure 13 (b), which is smaller than for the 
positive ZV shaper. PO
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Fig. 13 Comparative space of velocity-distance solutions between positive ZV shaper (a) and the proposed method (b) 
 
3- Maximum command acceleration when a velocity command ( )y t is used: With the proposed method, higher initial command accelerations 

can be observed when the generated signal is used as a velocity command ( )y t . However, the forces required from the actuator are not 
necessarily higher than other methods, because the command input does not directly describe the acceleration of the inertia of the system. In fact, 
the amplitude of the system response for the proposed method is lower in several cases, compared to the other techniques, as shown in Figure 11. 
 
4- Computation complexity: The algorithm used by the proposed method requires more computation complexity compared to the ZV shaper, 
because it includes a convolution operation. By using a 3 GHz processor, a sampling frequency of 1 kHz, and considering that the profile has an 
overall duration of 2s, the computing time for the proposed method is around 10% higher. 
 
5. Experimental results 
 
A carriage-pendulum test bed was built to check the goodness of the method proposed. The system has two degrees of freedom: one defined by 
the pendulum rotation, which has a free oscillatory behavior, and the other defined by the carriage movement, which is forced with the desired 
motion law. As shown in Figures 14 and 15, the pendulum of mass m, inertia I and length l was assembled on a carriage through a commercial 
rotary damper, which provided the required damping c. The carriage displacement is defined by the coordinate y and follows a command input 
driven with a PI control, a DC motor and a belt-pulley transmission. The feedback for this control is provided by an incremental encoder, which 
measures the carriage displacement directly. The angular coordinate of the pendulum is defined by θ, and its angular velocity is measured by 
means of a gyroscope integrated circuit assembled on the rod near the pendulum rotary axis. The table 4 shows a summary of the values and 
devices used for this test bed. 
 

 
 
Fig. 14 Carriage-pendulum test bed schematics and coordinates 
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Fig. 15 Carriage-pendulum test bed: 1) pendulum, 2) rotary damper, 3) gyroscope, 4) carriage 
 
The motion equation of this pendulum test bed is described by 
 

 2( ) g sin ( ) cosml I c m l m y t l           (36) 

 
Although it is a non-linear system, this type of mechanism was chosen because of its simplicity. To minimize the non-linear effects, the inputs 
were adjusted to work in a small angular range. In this case, angular nonlinearity effects can be neglected below a range of 20º   . The rotary 
damper assembled on this mechanism can be identified as another source of non-linearity, according to the information delivered from the 
supplier. However, by using it in a low angular velocity range there is a small effect on the overall results, so an ideal linear damping c can be 
assumed. By linearizing the motion equation around θ=0 assuming small oscillations during and after the transient around this position, the 
motion equation can be described by Expression (37) which follows the Expression (1) of the system in Figure 2. 
 

 2( ) g ( )ml I c m l m y t l          (37) 

 
Table 4 Test bed parameters and specifications 
 
Parameter / device Value / specification 
m 36.20·10-3 kg 
I 2.82·10-6 kg·m2 
l 110 mm 
c 1.30·10-3 Nm/(rad/s) 
Motor Permanent magnet DC brushed 
Encoder Linear, 150 lines/inch 2ch output 
Gyroscope ADXRS300, ±300º/s, 5mV/( º/s) 
Power supply DC 15V, 4A 
Power electronics Galil Motion Control MSA12-80 
Control electronics NI PCI-6036E 
Control software Matlab Simulink® 
 
The test-bed setup gives a measured oscillation frequency of fd=1.42 Hz and a damping ratio of ζ=0.15. Therefore, the system natural frequency 
obtained by calculation is f0=1.44 Hz. The bandwidths of the motor and the electronics should cover the natural frequency of the system with an 
adequate margin to avoid the filtering effect on the command input around this frequency. The motor-carriage inertia used in this application 
shows a measured frequency bandwidth of 14 Hz, and the electronics gives a frequency bandwidth of 2.5 kHz, according to the supplier 
specifications. Thus, both devices have values far from the system resonance.  
 
Two sets of tests were performed. The first one compares the benefits of including in the desired input the product of the base function with a 
negative exponential time function (which takes into account the system damping ratio), relative to the use of the base function alone. The second 
compares the proposed method with the positive and negative ZV shapers and the OAT filter. In both examples, point-to-point movements 
described through velocity command ( )y t were carried out. 

The first test compares two command inputs ( )y t (Figure 16) with the transient time fixed at 0.9 seconds and the distance fixed at 220 mm. The 

first one is a trapezoidal input designed by convolving a pulse of 1/fd duration with a pulse of d0.9 1/ f  and omitting the system damping ratio 

(ζ=0). It is given by 
 

  1 1 b a( ) ( ) ( )y t A u t u t   (38) 

 
The design of the second motion law includes the system damping ratio ζ in the former case and is described by 
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   02π
2 2 b a( ) ( ) ( ) e f ty t A u t u t    (39) 

 
The constants A1 and A2 were calculated to handle a 220 mm distance. The displacement profiles are also shown in the figure. A relevant 
difference in terms of residual vibration can be observed in the system output θ(t). While the amplitude of the oscillation during the transient is 
higher for the motion law defined with the proposed method, the result in terms of residual vibrations is almost zero in this case. 
 

The system output θ(t) appears to be free from measurement noise because of the integration of the measured angular velocity ( )t from the 
gyroscope, which is equivalent to a low pass filtering process. The delay between the beginning of the input and the beginning of the output is 
considered to be normal and is caused by the integral effect of the PI control system. 
 

 
 
Fig. 16 Experimental results of the proposed method: command inputs (with associated displacements in dashed lines) and system responses. 
Residual vibration when the damping ratio is omitted 
 
The results of the second test are presented in Figure 17. Four command inputs ( )y t designed with the indicated techniques are compared. The 
transient time was fixed to 1.1/f0=0.76 s, the distance was fixed at 160 mm and a versine was used as unshaped command. For the proposed 
method, the input designed is described by 
 

 02π
2 2 b a( ) ( )e ( )f ty t A u t u t     (40) 

 
In terms of residual vibration, no significant differences are revealed in the output signals θ(t), which is almost zero in all the cases. With regard 
to the maximum amplitude of the system response, the positive and negative ZV shapers, and the OAT filter present 38%, 29% and 43% higher 
amplitudes than the proposed method, respectively. Finally, the number of sign changes of the acceleration profiles follows what was expected by 
simulation. 

PO
ST

PR
IN

T



 
 
Fig. 17 Experimental results: Velocity inputs (with associated displacements in dashed line) and system responses for the indicated methods 
 
6. Conclusions 
 
A time-domain method to design command inputs to reduce residual vibration in damped linear systems was developed. The technique is based 
on the generation of input commands with zero-crossing points in their frequency spectra at the system resonances and is extended to damped 
systems by including an appropriate negative exponential time function related to the damping ratio and the natural frequency of the system. By 
convolving this command input with any unshaped one, a minimum of two functional requirements or constraints can be fixed. This approach is 
extended to multiple-mode systems, any of them characterized by their oscillation frequency and damping ratio. In this case, the final input is 
obtained by convolving each of the individual inputs designed for each system mode. Compared to other ZV methods, for short duration input 
range the signals obtained have better performance in terms of minimum-acceleration-switch condition, which can be translated to smoother 
shapes of the motion profiles. Finally, a damped pendulum test bed was used to conduct some experiments, confirming the effectiveness and 
usefulness of the method. 
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