Pl EURONOISE
Prague 2012

Sound transmission through double walls:
statistical and deterministic models

Cristina Diaz-Cereceda, Jordi Poblet-Puig and Antonio Rodriguez-Ferran
Laboratori de Calcul Numeéric, Universitat Politécnica de Catalunya, Barcelona, Spain

Summary

Double walls are increasingly used in construction. Due to this, there is interest in reliable models of
their sound insulation for the frequency range required in regulations (50 - 5000 Hz). These models
can be either statistical or deterministic. In this work, the finite layer method (FLM) is presented
as a numerical technique for solving the problem in a deterministic way. It is used for discretising
the Helmholtz equation in the cavity and combines a finite element method (FEM) discretisation in
the direction perpendicular to the wall with trigonometric functions in the two in-plane directions.
The FLM exploits the simple geometry of the double wall and accounts for all its boundary and
interface conditions with a reasonable computational cost. The statistical energy analysis (SEA) is a
more suitable framework of analysis for vibroacoustic problems in large domains such as buildings.
However, the best SEA approach for modelling double walls is not clear in the literature. The cavity
is considered as a subsystem or treated as a connecting device between the two leaves depending on
the author. The finite layer method is used to evaluate the performance of these two approaches,
concluding that both considerations have to be taken into account together to reproduce the real
behaviour. Finally, the FLM is used to define a combined deterministic-energy based approach to

deal with this kind of problems.

PACS no. 02.60.Cb, 43.55.Ti, 43.40.Rj

1. Introduction

Double walls are structural elements consisting of two
leaves with an air cavity (which may be totally or par-
tially filled with absorbing material) between them
(see Figure 1). They cheaply provide load-bearing
configurations with good acoustic properties and a
minimal mass. The increasing use of these elements
leads to the interest in reliable models of their sound
insulation. These models should cover a wide fre-
quency range (50 to 5000 Hz) in order to evaluate
the outputs defined in regulations [1, 2].

Models of the sound transmission through double
walls couple the structural vibration of the leaves with
the sound propagation through the cavity. To do so,
there are different approaches: on the one hand, deter-
ministic models can be used. They consist on solving
the structural dynamics equation for the leaves and
the Helmholtz equation for the cavity. These equa-
tions are expressed in the frequency domain and can
be solved either numerically [3, 4] or analytically with
the help of assumptions and simplifications [5, 6]. On
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Figure 1. Sketches of the double wall and its parts.

the other hand, energy-based formulations such as
Statistical Energy Analysis (SEA) [7] can be used.
Deterministic computations at the higher frequen-
cies required by regulations have a large computa-
tional cost when dealing with large domains as those
used in building design. SEA seems to be the best
alternative for this kind of problems. However, some
parameters required by this technique, such as the
coupling loss factor, are not straightforward to obtain
for certain configurations. Either experiments or sim-
ulations have to be performed for fitting their values.
In this work, the finite layer method (FLM) is pre-
sented as a good technique for discretising the pres-
sure field when modelling double walls deterministi-
cally. However, for studying the sound transmission in
a building, the best choice is to use SEA. The FLM
is used to provide the SEA coupling loss factors as-
sociated to the double wall. The goal is to solve large
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vibroacoustic problems with SEA, using the data ob-
tained from small vibroacoustic problems solved de-
terministically.

An outline of the paper follows. The bases of the
finite layer method are explained in Section 2 and
particularised for modelling the sound reduction in-
dex of double walls. In Section 3, different approaches
to the sound transmission through double walls with
statistical energy analysis are shown: on the one hand
existing analytical expressions of the coupling loss fac-
tors involved and on the other hand the technique
for estimating these parameters numerically. Section 4
shows some validation examples for the different mod-
els of the sound transmission through double walls
presented in this work. The conclusions of Section 5
close the paper.

2. The finite layer method

2.1. Method

The FLM is a discretisation technique that has been
used for modelling layered problems such as the vi-
bration of thick plates [8] or certain groundwater flow
problems [9]. In this work it is used for discretising
the pressure field in the cavity of the double wall. This
technique combines a FEM-like discretisation in the
direction perpendicular to the wall with trigonomet-
ric functions in the two in-plane directions. It leads
to less computational cost than the FEM but is still
detailed enough to enforce the interface conditions be-
tween fluid and structure. Thus, it is specially suitable
for computing the noise transmission through layered
configurations of finite dimensions.

The pressure field is modelled with the Helmholtz
equation

V2p(x) + k?*p(x) = 0, (1)

where k is the wave number and p(x) is the pres-
sure field, which is interpolated by means of layer
functions. These can be understood as standard
FEM interpolation functions [10] in the z direction
N; (z), multiplied by appropriate interpolation func-
tions @, (x,y) in the zy plane (see Figure 2)

Nay Nz

p(X) - Z ijs Nj (Z) Dy (:c,y) . (2)

s=1j=1

In equation (2), n, is the number of nodes in the z
direction as shown in Figure 2, ng, is the number
of interpolation functions considered in the xy plane
and pj, is the pressure phasor value at node j for the
interpolation function @, (z,y). In this case, P, (z,y)
is chosen such as to fulfill the reflecting condition

Vp-n=0 (3)

Nz Ly

L«

Figure 2. Sketch and notation used in the finite layer
method.

at the cavity contour:

P, (x,y) = cos <Sz7;z> Ccos (—Si;y>
Sz,8y =0,1,2,... (4)

2.2. Modelling the sound transmission

through double walls with FLM

The leaves of the double wall are considered to be
simply supported. They are modelled with the thin
plate equation expressed in the frequency domain

DV4u(:c, y) — w2psu(507 y) = q(z,y), (5)

where D = Eh3/12 (1 — v?) is the bending stiffness
of the leaf (with h, E and v the thickness, Young’s
modulus and Poisson’s ratio of the leaf respectively),
ps its mass per unit surface, w = 27f (with f the
frequency of vibration) and u(x,y) the displacement
of the leaf.

The displacement field is expressed in terms of the
eigenfunctions ¢, of a simply supported plate as

Mmodes

u(xay): Z Qr d)r(z,y) (6)

r=1

where nyodes 18 the number of modal functions used in
the interpolation, a, is the phasor modal contribution
of mode ¢, and

rwary:132a"' (7)

The discretised vibration and pressure fields are re-
placed in the weak form of equations (5) for the leaves
and (1) for the cavity, respectively. They are coupled
imposing weakly the force equilibrium and the conti-
nuity of normal velocity at the cavity-leaf interfaces.
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Figure 3. Angles defining the incident pressure wave.

2.3. The sound reduction index

The sound transmission through the double wall is
measured in this work with the sound reduction in-
dex R between two rooms. This value is computed in
terms of the incident and radiated powers, I}, and
11,4, of the structure.

The computation of this value requires the excita-
tion to be a pressure wave impinging on one of the
leaves, modelled as

plx) = poe b otk ®)
where k, = ksinpcosf, k, = ksingsinf and k. =
k cos .

This wave may have several orientations, defined by
angles ¢ and ¢ as shown in Figure 3. Four different
values of 0, equispaced between § = 0 and § = 45°
due to the symmetry of the problem, are considered.
If the leaf was rectangular instead of square, this limit
would be 90°. Also ten different values of ¢ have been
considered, equispaced between ¢ = 0 and ¢y, = 90°.

The final value of the sound reduction index is com-
puted as

1
R =10log,, <_> ¥
Td
where
f045° 0900 7 cos fsin § cos @ sin ¢ dp dd (10)
Td = o ©
f045 090 cos fsin 6 cos p sin p dp df
and
Hrad (97 90)
7(0,0) = !

In equation (11), I1..q(0,¢) is obtained from the
vibration field with the technique described in [11]
and

P2o) Lo
i (0, ) = < RMS>p . Cycow, (12)
alr

where (P3,s) is the mean square pressure exciting
the leaf and p,;; and ¢ are the density and the speed
of sound in the air respectively.
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Figure 4. Sketch of a SEA model where the cavity is con-
sidered as a connecting device.

3. Statistical energy analysis for dou-
ble walls

3.1. Existing approaches

Different SEA references [12, 13] do not coincide in
the optimal way to deal with double walls. Neither
the coupling loss factor expressions nor the identifica-
tion of subsystems is clear. The two leaves should be
considered as separated subsystems but there is not
a unified criterion about the treatment recommended
for the cavity. Here, two of the suggested techniques
for this kind of problems are shown.

The first one consists on considering the air cavity
as a connection between the leaves (see Figure 4), in
particular as a spring with stiffness K., = pairc? /H
where H is the thickness of the cavity. The coupling
loss factor 7;; between leaf ¢ and leaf j is obtained
with the electrical circuit analogy used by Hopkins
[12]

Re{Y;}
milYi + Y + Yo

Nij = (13)

where
1
8V D;ps;

and m; are the point mobility and the mass of leaf i
respectively and

Y, = (14)

iw
Y. = — 15
- (15)
is the mobility of the spring.
The other option is to consider the cavity as an
SEA subsystem itself [13] (see Figure 5), and obtain
its own modal density

J— 47Tf2‘/CdV 27TfScav LC&V (16)
’ c3 4c2 8¢
and internal loss factor
cauScay
i = S 17
T R Ve (1)

where V., is the cavity volume, S.,y is the surface of
the cavity boundary, L,y is the sum of the length of
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Figure 5. Sketch of a SEA model where the cavity is con-
sidered as a subsystem.

all the cavity edges and « is the absorbing factor at
the cavity boundary.

Then, the coupling loss factors between leaves and
cavity are obtained

paircgfc
o PairZJe 18
Mg 47 f2p, (18)
where f,. is the coincidence frequency between the leaf
and the air and o is the radiation efficiency of the leaf,
computed with the expressions defined in [14].

3.2. Proposed technique

The technique proposed in this work consists on esti-
mating the coupling loss factors of the energetic anal-
ysis from the numerical solution of deterministic prob-
lems. In particular, for a double wall, the cavity is con-
sidered as a connection between the two leaves and the
coupling loss factor between them is estimated from
the numerical simulation of the deterministic prob-
lem, computed with the FLM as described in Section
2.2.

The coupling loss factor (CLF) estimation requires
the computation of the averaged energy of each leaf.
Once the displacement field u(z,y) in a leaf is known,
the velocity of the leaf is obtained as wv(z,y) =
iwu(x,y), where i = y/—1. Then, the averaged en-
ergy of the leaf is computed as

E =m (vis) (19)

where m is the mass of the leaf and (v%,,q) is the
spatial mean square value of the velocity in that leaf.

The calculation of the coupling loss factor between
the two leaves is based on the SEA formulation for
the 2-subsystem case with only the first subsystem
excited

" /w _|mitm2 —n2 Ey (20)
0 —m2  M21 + 722 Es

and the consistency relationship

Nigni = 1jiTyg, (21)

where E; is the energy of subsystem i and II" is the
external power applied to leaf 1.

Once the numerical simulation is performed and the
energies of the leaves are known, the coupling loss

12 T)23 g T34
1. 2[er3 1 "4

ROOM LEAF LEAF ROOM

Figure 6. SEA sketch for the room-double wall-room sys-
tem.

factor can be isolated from the second equation of the
SEA system as

122

e 22
By - 2B, (22)

Tz =

In this work, the sound reduction between two
rooms separated by a double wall is computed. To
do so, not only the coupling loss factor between the
two leaves forming the double wall must be computed,
but also the coupling loss factor between each leaf of
the wall and its adjacent room (see Figure 6). This
factor is obtained from the SEA system consisting of
two subsystems: the room and its adjacent leaf. The
problem with an excitation in the leaf is solved numer-
ically and the coupling loss factor is obtained from the
energies computed for the leaf and the room.

These estimated factors are applied later in the
SEA analysis of the whole room-double wall-room sys-
tem and the sound reduction index is obtained from
the resulting energies of the rooms. The other required
parameters such as the internal loss factors are ob-
tained with the analytical expressions available in the
literature [13].

The main idea of the proposed technique is to solve
every small deterministic problem once and to use the
estimated factors to model large vibroacoustic prob-
lems based on repetitions of the same elements, as
happens with buildings. The small deterministic prob-
lems usually consist only of two of the susbystems
forming the global system (i.e. room and leaf). There-
fore, they can be approached deterministically with a
reasonable computational cost.

4. Examples and comparisons

4.1. Comparison of analytical CLF expres-
sions with the numerical estimations

The SEA approaches described in Section 3.1 are
checked here. The coupling loss factor between the
two leaves of a double wall provided by the analytical
expressions is compared with the CLF computed from
numerical simulations in Figure 7. Also an alternative
technique resulting from combining the two analytical
expressions is included in the comparison.

The basic properties of the leaves of the double wall
used for the comparison are summarised in Table I.

For comparing the approach that considers the cav-
ity as a third subsystem, an equivalent coupling loss
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Table I. The assumed properties for a GN plasterboard
leaf, used for all analyses.

Variable Symbol Value

Leaf length in x L, 24m

Leaf length in y Ly 24m

Thickness h 0.013m

Young’s modulus E 2.5 x 10°N m~2
Density p 692.3kg m >
Poisson’s ratio v 0.3

Loss factor 7 3%
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Figure 7. Comparison of the 712 estimations and analytical
expressions for the cavity in double walls.

factor between the leaves is obtained. Considering the
cavity as subsystem 3, then

equi 732113

= 23
Thz N33 + M31 + N32 (23)

Leaving the low-frequency discrepancies aside, the
estimated CLF law shows two main features: on the
one hand, the importance of the equivalent stiffness
of the air, specially at mid frequencies; on the other
hand, the coincidence phenomenon that takes place
at 2500 Hz. This phenomenon is only considered by
SEA when the cavity is treated as a subsystem. In
fact, SEA overestimates the transmission at the coin-
cidence frequency. Figure 7 shows that the two ana-
lytical expressions for computing the CLF miss some
physical information if used separately. The fourth
curve shows a more complex SEA model, which con-
siders the cavity both as a connecting device and as
a subsystem (see Figure 8). The SEA system with
three subsystems is solved, including altogether the
coupling loss factor between the two leaves defined
in equation (13) and the coupling loss factors be-
tween leaves and cavity described in equation (18).
Another option would be to choose one behaviour
or the other depending on the frequency but the ap-
propriateness of considering both behaviours together

7)21

T)s2 5
3. 2

CAVITY LEAF

LEAF

7)12

Figure 8. SEA sketch for the combination of the two tech-
niques.

Table II. Properties of the double glazing.

Variable Symbol Value

Leaf length in x L, 1.2 m

Leaf length in y L, 1.2 m

Thickness h 0.004 m

Young’s modulus Fleat 7.2 %10 N m~?
Density Pleat 2500 kg m 3
Poisson’s ratio v 0.22

Loss factor n 4%

along the whole frequency range becomes evident in
Figure 7.

4.2. Comparison of the combination of SEA
and estimated CLFs with experimental
values

The technique described in Section 3.2 for computing
the sound reduction index of a double wall with SEA
is tested by comparing it with available experimental
data. In [15], Tadeu et al. show the sound reduction
index measured in the lab for a double glazing. In
Table IT the properties of the glass leaves are shown.
The cavity between them is 0.012 m thick.

The experimental results in [15] are depicted aver-
aged in 1/10 octave bands. For the comparison, their
sound energies have been averaged in order to pro-
vide the sound reduction index law in one-third octave
bands

1 n
(R) = 101log,, [ﬁ > 100'”"41 : (24)
1=1

To obtain the curve corresponding to the analysis
with SEA, the CLF between the two leaves of the
double wall has been computed with the technique
described in Section 3.2. The small numerical prob-
lem has been solved with the finite layer method as
described in Section 2.2. Moreover, the CLF between
each room and its adjacent leaf has also been com-
puted numerically solving a small problem based on
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Figure 9. Comparison of the sound reduction index com-
puted numerically and experimental measurements.

the sound propagation between one leaf and a room
in contact with it.

Despite the discrepancies at low frequencies, where
the SEA hypotheses are not fulfilled, the experiment
is well reproduced. The room-double wall-room sys-
tem is modelled in an uncoupled way, which allows
reaching the whole frequency range with an afford-
able computational cost.

The main conclusion is that, once the coupling loss
factors are computed, large vibroacoustic systems can
be solved with few degrees of freedom. The system of
two rooms separated by a double wall has four subsys-
tems (the two rooms and the two leaves of the wall)
and, therefore, 4 degrees of freedom if approached
with SEA. However, the deterministic problem has
more than 100 000 degrees of freedom at high frequen-
cies if approached numerically. Besides, the estimation
of coupling loss factors from numerical results is per-
formed without any additional physical simplification
than those included in the deterministic model. No
assumptions on the dominant transmission path are
done and therefore the estimated coupling loss factor
accounts for all the transmission phenomena involved
in the vibroacoustic problem.

5. Conclusions

e The finite layer method is a reliable technique to
discretise the pressure field when modelling the
sound transmission through double walls. It re-
duces the computational cost of the finite element
method but is complete enough to respect the in-
terface conditions between layers.

e Results show the main deficiencies of the standard
techniques used in SEA for estimating the coupling
loss factor associated to double walls. A numeri-
cal estimation of the coupling loss factor in these
situations allows to take into account all the trans-
mission phenomena involved in the problem. It also
allows to detect that considering the two analytical

expressions for the CLF together provides a good
model of the real behaviour.

e The combination of numerical and statistical meth-
ods is useful to solve realistic vibroacoustic prob-
lems. It allows reaching the whole frequency range
required by regulations with a reasonable compu-
tational cost for large domains based on the repe-
titions of smaller elements.
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