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Abstract

In this work we propose stabilized finite element methodsStokes’, Maxwell’s
and Darcy’s problems that accommodate any interpolatiorlaicities and pres-
sures. We briefly review the formulations we have proposethiese three prob-
lems independently in a unified manner, stressing the adgastof our approach.
In particular, for Darcy’s problem we are able to design iiteddl methods that
yield optimal convergence both for the primal and the duabfgms. In the case
of Maxwell’s problem, the formulation we propose allows doeaise continuous
finite element interpolations that converge optimally te tontinuous solution
even if it is non-smooth. Once the formulation is presentedlie three model
problems independently, we also show how it can be used faotdgm that com-
bines all the operators of the independent problems. 8iahild convergence is
achieved regardless of the fact that any of these operabongndtes the others, a
feature not possible for the methods of which we are aware.

Keywords: Stabilized finite elements, compatible approximationsnpland
dual problems, singular solutions, nodal interpolations.

1. Introduction

The numerical approximation of partial differential eqaas (PDES) in gen-
eral geometries can be performed by using finite element {&&niques. The
standard approach to the problem consists of considermgvdak form of the
PDE, and replace the infinite dimensional functional sp&oethe solution and
test functions by finite dimensional ones. Those finite dism@mal spaces are
constructed using FE functions over a partition of the domai
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PDEs defined by coercive differential operators can be aqpeted by the
Galerkin FE technique, provided that the correspondingddees can approximate
functions in the continuous functional space; coercivitthe continuous problem
is inherited by the discrete one. However, PDEs that exhisaddle-point struc-
ture, and so stability is attained via a (less demanding3upf condition, cannot
be straightforwardly approximated by only looking at th@m@gximability prop-
erties of the FE space. The reason is quite simple: inf-sagitions satisfied by
the continuous problem are not inherited (in general) by tiiscrete versions.
Therefore, FE spaces are not only required to exhibit ancapability property,
but also a discrete inf-sup condition.

Saddle-point problems include the primal unknown and tred doe, the La-
grange multiplier. FE pairs for these unknowns have to b#& buch that they
satisfy a discrete inf-sup condition (see, e.g., [8]). Egbas of linear PDEs with
this structure are Stokes’ problem, Darcy’s problem and Weks problem. Ev-
ery problem involves a different differential operatordatheir well-posedness
relies on different inf-sup conditions. It is not surprigithat stable FE approxi-
mations (called inf-sup stable) are different from one pgobto the other. Using
inf-sup stable FE methods, e.g. the Stokes problem coulp@zaimated by the
Crouzeix-Raviart element [15], Darcy’s problem (in duainiy would be solved
by using the Raviart-Thomas FE [23], whereas Maxwell’s pgobwould be dis-
cretized by using Nédélec elements [21, 22]. More regemf-sup stable FEs
for these problems have been nicely casted in the frame ohdenRsequences;
see [1, 2] for details. Even though this approach can be #ipgeshen we want
to solve one of these problems alone, it is not suitable foltiphysics simu-
lations that couple different operators. The FE spacesvienyesub-problem are
different, and the unknowns are evaluated in different waig®@mplicates the im-
plementation, mainly the data-structure and the integmatf the coupling terms.
Furthermore, when these operators are combined with cbougerms, like the
Navier-Stokes equations, Galerkin FE techniques exhilstiabilities in the sin-
gular limit of dominant convection.

Alternatively, we can consider stabilized FE methods. Tdeaiis to intro-
duce additional terms to those obtained from the Galerkohrigue that will
provide the desired stability without the need to satisfyistréte inf-sup con-
dition. Obviously, we want these methods not to spoil theveagence of the
Galerkin technique; this is usually attained by the intrtchn of residual-based
terms that also make the final system consistent. Howevecawelso consider
non-consistent but optimal techniques. Stabilized FE odshwere originally
motivated for the stabilization of the convection-diffoisiequation in the convec-
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tion dominant regime [9]. Some time later, these techniquexe proved to be
effective also for the stabilization of the pressure in thek8s problem, allowing
to avoid the satisfaction of the inf-sup condition (see J1®any years later, these
ideas were extended to the Darcy problem in primal form ir}.[2Ben, a stabi-
lized FE technique for the dual Darcy problem that exhiliiessgame convergence
rates as inf-sup stable FEs was proposed in [4, 5]. Very thcenstabilized FE
formulation for the Maxwell problems that allows to use Lagge finite element
methods and converge also to singular solutions has beemddsn [3]. Using
the stabilized FE approach, all the unknowns for all theeblpms can be approx-
imated via Lagrangian (nodal) FE spaces. This approackeaslglwell-suited for
multiphysics, since we can consider a simple data structiveentegration of all
the terms involve the same FE spaces, and all the unknowrdeéireed in the
same way. Further, it allows to use computationally efficiemdal FEs. The
aim of this work is to show for the first time that the StokesxWall and Darcy
problems can be treated in a unified way. As a result, we casid@nnumer-
ical methods for the combined Stokes-Maxwell-Darcy problehose stability
is independent of the physical parameters, something #ratat be attained by
inf-sup stable finite elements satisfying a discrete de Réaguence, since every
problem requires a different discretization.

2. Model problems

In this section we present the finite element approximatienpnopose for
the Stokes, the Maxwell and the Darcy probleseparately After stating the
problems, we discuss their functional framework, which tiasct consequences
on the numerical approximation. The Galerkin approxinmat®presented then,
and the stabilized formulations we propose follow. Our oty is to show which
is the stabilization mechanism in each case.

2.1. Boundary value problems

LetQ c R%, d = 2,3 be the domain where the problem needs to be solved.
The problems we are interested in consist in finding a veatd fi : O — R?
and a scalar fielg : QO — R such that

Stokes’ problem.
—vAu+Vp=f in Q,
Vau=0 in Q,
u=20 onof).



Maxwell’s problem.

AVxVxu+Vp=Ff in Q,
Vau=0 in Q,
nxu=0 on of).

Darcy’s problem.

cu+Vp=f in Q,
Vu=g in Q,
n-u=>0 on o).

In these equationsf is the vectors of body forceg, is a given mass flow,
andv, A ando are physical parameters. In general, for the Stokes and laxw
problemsy is considered zero. This is the case considered above andavize
lyzing every sub-problem separately. We will pay speci@rgton to the design of
methods that account for limit values (zero or infinity) of fbhysical parameters,
particularly when dealing with combined problems.

It is observed that the three problems share a saddle pothematical struc-
ture. They all can be written as

Lx(u)+Vp=f in Q, (1)
Vu=g in €, (2)
Fx(u) =0 on os. (3)

where the differential operatdry is given by

Ls(u) := —vAu for the Stokes problem
Lx(u) =< Ly(u) := AV x V xu forthe Maxwell problem  (4)
Lp(u) :==ou for the Darcy problem

and the boundary operatéiy is given by

Fs(u) :=u for the Stokes problem
Fx(u) = < Fy(u) :=n xu for the Maxwell problem (5)
Fp(u) :=mn-u  forthe Darcy problem
In the case of Maxwell’s problemy is usually assumed to be divergence free,

which together with the boundary conditipn= 0 on 02 that needs to be added
to (3), yieldsp = 0 everywhere.



2.2. Variational form and functional setting

Let Vx x @ the functional spaces where the plair p| is sought for each of
the problems introduced earlier. These spaces will be itestm what follows,
but first we may formally obtain the weak form of problem (B)-( Testing (1)
with a functionv which satisfiesF'y(v) = 0 on 92 and denoting by, -) the
integral of the functions in the two argumentsinwhenever it makes sense, we
get

(v, Lxyu) = ax(u,v),

where
as(u,v) :=v(Vu, Vo) for the Stokes problem
ax(u,v) =< ay(u,v) = AV xu,V xv) forthe Maxwell problem (6)
ap(u,v) = o(u,v) for the Darcy problem

These bilinear forms are bounded (and therefore continubus € Vs :=
H}(Q)? in the Stokes case, #f € H(curl; Q) for the Maxwell problem and if
v € L*(Q)¢ for the Darcy problem. Here and below we will make use of the
spacedd (div; 2) and H (curl; 2), defined as usual as

H(div; Q) := {v € L*(Q)* such thatv - v € L*(Q) },
H(curl; Q) := {v € L*(Q)? such thatV x v € L*(Q)"} .

A subscript O will be added to denote the subspace of fungBach thaf'y (v) =
0 onof2, with X eitherM or D.

Spaced’y and(@ x are determined by requiring that the tefWp, v), obtained
by testingVp by v is well defined under the minimum regularity conditions. In
the Stokes case, sineec H}(Q)? we may integrate this term by parts and get
(Vp,v) = —(p,V - v), so that the spac€s must beL(Q) (square integrable
functions with zero mean ovél).

The situation is different in the case of Maxwell's and D& gyroblem, since
in these cases there is an alternative for the choi¢gofStarting with the former,
on the one hand, if we do not integrate by parts we have tojakeH!(2) to
guarantee thatVp, v) is bounded. Moreover, to ensure that the solution of the
problem isp = 0 for a solenoidalf, we may in fact take € H}(Q2). On the other
hand, if we do integrate by parts and takép, v) = —(p, V - v), then we need to
require thap € L2(Q) andv € H(div; Q).
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Table 1: Functional setting for Stokes’, Maxwell’s and Des@roblems

Vx Qx Bx ([u,p], [v,q])
Stokes Vs = Hy () Qs =L§(Q) | as(u,v) = (p,V - v) +(¢,V  u)
Maxwell Vi = Ho(curl; Q) Qu = HY Q) | an(u,v) + (Vp,v) — (Vg,u)
Ve = Van N H(div; Q) | Quz = L§(Q?) | anm(u,v) = (p,V - v) + (¢, V - u)
Darcy Vp1 = L*(Q)¢ Qp1=H'(Q) | ap(u,v)+(Vp,v) - (Vq,u)
Vb2 = Ho(div; ©2) Qp2=L§(Q) | ap(u,v) — (p,V-v) +(¢,V - u)

For Darcy’'s problem something similar happens. If we do nt¢grate by
parts we have to takee H'(2), and if we do, we need to require that L?(Q)
andv € H(div;Q). The former leads to the so callgdimal formulation of
Darcy’s problem, whereas the latter leads todhal formulation.

In all cases we need to assume thAtv) is bounded. To simplify a little the
discussion we may consider thate L2(Q2)¢ andg € L*(Q2). Likewise, boundary
conditions have a different interpretation depending @xtioice of the space for
p in Maxwell’'s and Darcy’s problems.

The summary of the choices described is presented in TalWote that for
the primal formulation of Darcy'’s probleiiVx x Qx = Vp; x @ p1) the boundary
conditionFx (u) = 0 is in fact a Neumann-type boundary condition for

When equation (2) is tested by a test functipre () x the result has to be
treated according to the spa@g: chosen. If the result is added to the weak form
of (1), the final problem to be solved can be written as folloisd [u,p] €
Vx x Qx such that

Bx([u,pl,[v,q]) = (f,v) +(9,9)  V[v,q] € Vx x Qx, (7)

where the bilinear fornBy defined on(Vy x Qx) x (Vx x Qx) is also given
in Table 1. As mentioned above, we will take= 0 for Maxwell’s and Stokes’
problems.

Let us discuss now the appropriate working norms. In the &tqgicoblem,
there is no alternative in the choice of the functional spada order to work
with a norm that scales correctly and that accounts for thgegeof the physical



parameter, we define

[vllvs = Vo, lallas = llall;

where|| - || stands for the standadc?-norm overQ). The norm inVs x Qs is then
defined as

1 1
v, dllls = v2llvllvs + v lalles-

In spite of the fact that all problems discussed are well gaseall functional
settings presented (see below), the choice of this funatifoamework in the case
of Maxwell’'s and Darcy’s problems has important practicah®equences. Let us
start considering Maxwell's problem. The choigg; x Q,;; in Table 1 leads to
the so called curl formulation, whereas the chdigge x Q- leads to the curl-div
formulation. Let us explicitly write these two formulatisn

curl formulation. Findw € Hy(curl; Q) andp € H} () such that
AVxu, Vxv) + (Vp,v) = (f,v), Vv € Hy(curl; Q),  (8)
—(Vg,u) =0, Vg € Hy(92). 9)

curl-div formulation I. Findu € Hy(curl; Q) N H(div; Q) andp € L3(2) such
that

MV xu,Vxv)— (p,Vw) = (f,v), Vv e Hy(curl; Q)N H(div; ), (10)
(¢, V-u) =0, Vg € L*(Q). (11)

In any case, the solution to the problenpis- 0 providedV - f = 0. This curl-div
formulation admits an alternative statement in which thedasg is eliminated:

curl-div formulation Il. Findu € Hy(curl; Q) N H(div; §2) such that
AMVxu, Vxv)+ AV-u, Vo) =(f,v), VYve Hy(curl; Q)N H(div; Q).
(12)

Even though both the curl and the curl-div formulation ardl wesed, the
latter has an important drawback when considering the fel@ment approxima-
tion which will be described in the following subsection.ig s why we will be
mainly interested in the curl formulation. The norms to basidered in/,;; and

Q1 are

1 1
[ollvar, == —lloll + V>l ldllgw, == 7l + 1Vall,
LO LO



whereL, is a length scale that depends on the donmaiits choice is in principle
arbitrary, but it will play a major role in the approximatiofDarcy’s problem.
The norm associated to the product splge x Q1 will be denoted by

1 _1
v, glllar = A2 {[vllvas, + LoA™2llqll@an -

It is important to remark that the solution to the problemss@sV-u = 0, but
the norm|||[w, p||||» provides no control on the divergencewf

Let us finally consider Darcy’s problem. In this case, botictional settings
indicated in Table 1 can be approximated numerically. Thelting problems
are:

Primal problem. Findu € L?(2)? andp € H'() such that

o(u,v) + (Vp,v) = (f,v), Yo € L2(Q)?
—(Vq,u) = (9,9), Vg € H'(Q).
Dual problem.Findu € Hy(div; Q) andp € L3(2) such that
o(u,v) — (p, Vo) = (f,v), Yo € Hy(div; Q)
(¢, V-u) = (g, 9), Vg € L3(Q).

The norms to be considered for the primal problem are
1

lollvo, = llvll, llallen, = 7-llall + [[Vall,
0

1 1
v, glllp1 = o2 {[vllvi, + o2 l4ll@p,

whereas for the dual problem we will take
1
[ollvo, = lloll + Lol V-vll,llallen, = 7-lldll;

1 1
v, gl o2 == o [[vllvp, + 02 ll¢ll@p.-

The norms introduced for all problems are collected in TableNote that
they are all dimensionally consistent and, in fact, all teenis have the same
dimensions when units are accounted for.

All problems considered are well poseddow of the choices of the functional
spaces. This well-posedness can be written in terms of freumcondition

inf sup Bx(lu,pl. [0, 4) >C > 0. (13)

[u,p]€Vx xQx\{0,0} [v,q]eVx xQ x\{0,0} |H [u,p] |HX|H [Uv Q] |HX

Here and below(’ denotes a positive constant, which may take different wétie
different appearances.




Table 2: Working norms for Stokes’, Maxwell's and Darcy'®plems

v, qlllx
Stokes v, glllls = v (| Vo] + v~ |q|
Maxwell | [l[v, gllla = AV xw]| + 32wl + A~ [lg]l + A~ Lo|| V]
Darcy, primal lI[v. gllllpr = o2 ||v]| + o~ ||Vq|
Darcy, dual v, alllos = o o]l + o3 Lol V-0 ]| + = g

2.3. Galerkin finite element approximation

The Galerkin finite element approximation of the problentsoiduced above
is well understood. Here we will consider only conformingtérelement approx-
imations. Thus, ifVx, andQx ; are finite element spaces to approximéie
and Qx, respectively, the discrete problem consists in seekinge Vx; and
pr € Qx  such that

Bx([wn, pr), [vn, an]) = (F,vn) + (9,a0)  V[vn, @) € Van X Qxn,  (14)

which is the Galerkin version of (7). As itis well known, thi&idulty to construct
the finite element spacés, , and(Q) x 5 is to meet the discrete counterpart of (13)
in order to have a stable problem. Each of the model probleral/zed in this
work has its own particular difficulties to satisfy this catmh, as explained next.
For the sake of simplicity, only continuous finite elementmpolations will be
considered.

2.3.1. Stokes’ problem

In this case, the bilinear forms(u, v) defined in Table 1 is coercive in the
kernel of the operatoB defined agq, V-v) = (¢, Bv). Itis known that in this
case the satisfaction of the discrete version of (13) resltece

inf  sup M >C > 0. (15)

ah€Qs,n v EVs HQhHQsthHVs N

Different finite element interpolations satisfying thisndition are known, al-
though the convenient equal order interpolation is nowadid. If (15) is satisfied,
the Galerkin approximation can be shown to be stable andhafiti accurate.
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2.3.2. Maxwell’'s problem

The Galerkin finite element approximation of the Maxwell lgeam is much
more delicate than that of the Stokes problems. Supposethatish to approxi-
mate spaceg), (eitherV,,; or Vy0) andQ@,, (either@ ;1 or Q,2) by nodal finite
element interpolations, defined as

Ni(Q) = {,Uh € C°(Q) such that vy |k € Pr(K) VK € 77L} ; (16)

whereT,, is a triangulation of the domain.

The crucial point in the approximation of Maxwell’s problesthe difficulty
to use the curl-div formulation (12), which consists of fimglie, € V)9, Such
that

/\(VX’U,h, VX’Uh) + )\(V-uh, V-’Uh) = (f, ’Uh), Yu,, € VMQ’]—L,

whereV), , is a finite element subspace 6f;». Finite dimensional spaces made
of nodal based (or Lagrangian) finite elementsiteconforming. These approx-
imations encounter the so calledrner paradoxwhich relies on the following
result:

Lemmal. If Q is not convex,Vy, N HY(Q)? is a closed proper subspace of
Hy(curl; Q) N H(div; Q).

We also refer to the works [13, 17, 14] for a further discussibhus, the solution
of the continuous problerm might be outside7!(Q)? if 2 is not convex. As a
conseqguence, we have that

Corallary 1. If ©2 is not convex and the finite element solutiepsare uniformly
bounded inif!(Q2)? then

}ILILI%) Hu - uhHVMQ 7& 07

in general.

This result is a serious drawback for nodal based finite emesrpolations, and
in fact excludes their use when is not convexand the curl-div formulation is
employedunless a regularization as proposed in [14] is used). Bras because
of the well known fact that

If up € Hl(Q)d = HVuhH S HVX’LL}L” + ”V’U,hH
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Here and in the following the symbg] is used to denote upper bounds up to con-
stants £ will be used to denote lower bounds up to constants). Sireeuh-div
formulation will allow us to bound the right-hand-side (RH# this inequality (as

it is trivially checked) and nodal approximations d#é (2)?-conforming, the fi-
nite element solution will be uniformly boundedif' (2)¢ and therefore it will be
unable to approximate the so callgdgular solutiongthose belonging t®,;but

not to H1(92)9). In general, what can be shown is that (see e.qg. [13]):

Lo Hullaroy S NIV xu| + [Voull, r>1/2.

From this discussion it is sometimes said th&t2)? conforming finite ele-
ment spaces cannot approximatg, if 2 is not convex unless a weighted reg-
ularization is used (cf. [6], see also references therairalk@rnatives). This is
a wrong conclusion, since the correct one, in view of theltestiated, is thaif
|V-uy|| is uniformly boundedf ! (©2)¢-conforming finite element spaces cannot
approximaté/, . Thus, nodal interpolations are excludaay when the curl-div
form of the problem (12) is being approximated (see [3]).

Let us consider now the curl formulation given by (8)-(9) eldiscrete version
consists in findinge;, € Vi, andpy, € Qar, such that

a'M(uha 'Uh) + (Vpha 'Uh) = (f7 vh)a \V/'Uh S VMl,h7
—(Van, up) =0, Van € Qupe

The discrete counterpart of (13) needs to hold in order teehawvell posed
problem. As for the Stokes problem, convenient equal-omterpolations us-
ing nodal approximations are excluded. A possible way tagtes compatible
pair Va1, X Qanp IS to constructVy,, , using Nédeélec’s elements aiigh 5,
using a Lagrangian nodal interpolation (and thereforeinaous).

2.3.3. Darcy’s problem

The primal and the dual formulations of Darcy’s problem haeenpletely
different stability requirements. For the former, it is aws thatap(u, v) is
coercive inL?(2)¢ and thus the stability condition can be expressed in the form
of the inf-sup condition

. (VQfH 'Uh)
inf sup
gh€QD1,h v, EVD1n ||qh||QD1||vh||VDl

>C > 0. a7)

This condition is trivially satisfied i), , is made of continuous functions and
Vb1, is made of the gradients of functions@, . In fact, in this caser, can
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be eliminated and the resulting problem fgris nothing but the discrete version
of the Poisson equation. Other choiced/®f ;, and@ ., require the satisfaction
of (17).

The dual problem is often considered more interesting f@lieations that
require an accurate approximationdg. The difficulty in this case stems from
the fact thatup(u, v) is not coercive ind (div; €2), because of the lack of control
on the L?*(Q2)-norm of the divergence of functions i¥i,. To ensure stability,
Q@ p2., should be such thatp(uy, v,,) is H(div; §2)-coercive in the kernel of the
discrete operatoB;, defined through the identityy,, V-v,) = (qx, Brv,) and,
furthermore,

. (qh7 V"Uh)
inf sup
an€Qp2,n v,EVpan HQhHQDz”UhHVDQ

>C > 0. (18)

This condition is analogous to (15), but the problem is tlmampatible interpola-
tions for the Stokes problem fail to yield the coercivitywf(u, v,) in the kernel
of By, just mentioned. This is why stable palfs, ;, x )p2,, are different to those
used for the Stokes problem. An example of finite elementtpairsatisfies (18)
is the Raviart-Thomas’ finite element farp.

2.4. Stabilized finite element approximation

The Galerkin finite element approximation of the model peaid we consider
is obviously feasible, but not convenient from the pointiefiwof implementation
ease. However, the situation worsens when combined pretdeaconsidered, as
discussed in Section 3.

The simplest compatible interpolations that satisfy thprapriate inf-sup
conditions (in 2D) for the model problems we consider areiated in Fig. 1.
If the formulations we describe in the following are useds ipossible in partic-
ular to use equal interpolation for both, andp,, which greatly simplifies the
implementation of the methods.

We will not present here the motivation of the stabilizedhiatations we de-
scribe, which may be found elsewhere. Our intention is toreanee their main
properties, with the objective to propose in Section 3 a fdation for a combined
problem that inherits these properties in the limit when tkthe three physical
parameters vanish.

In the following, K denotes a generic element of the finite element partition
Tn. To simplify the notation, we will assume th&t is quasi-uniform, although
all our results extend to non-degenerate finite elemenitipat. This assumption
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Stokes Maxwell Darcy

Inf-sup stable

Stabilized

Figure 1: Low order compatible elements in 2D. Degrees @&doen foru,;, are depicted in black,
whereas interpolation nodes fpf, are depicted in red. Top left’; continuousu; enriched
with a bubble function; continuousp;, (mini-element); top-centerP; Nédélec interpolation
for uy, Py continuousy,; top-right: P, / Py Raviart-Thomas element. Bottorf; / P, continuous
interpolations fors;, andpy,.

will allow us to identify ash the characteristic element size of the subdomains in
Th-

The integral of the product of two functions oviris denoted by(-, ). The
L?-norm in K will be identified with the appropriate subscript.

2.4.1. Stokes’ problem

Let Vs, andQg, be the finite element spaces to approximate the velocity and
the pressure, respectively. The methods to be analyzedecamitben as follows:
find [uh,ph] € VS,h X QS,h such that

Bg n([un, pal; [Vn, qn]) = Lsn([vn, qn)),

for all [y, qn] € Vs x Qs n, Where the bilinear fornBg , and the linear forni g ;,

depend on the stabilized method to be considered as dedanilige following.
The first two methods that we consider are consistent. Thadtésned by

introducing stabilization terms based on the magnitudéefésidual.
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Algebraic subgrid scale (ASGS) methaothe formsBg ), andLg, are given by:

Bsu([wn, prl, [vn, an]) = Bs([wn, pul, [vr, au]) + 7 Z (V-up, Voy) i

K
—+ Tu Z <—1/A’U,h + Vph, l/A’Uh —+ VQh>K7 (19)

K
Lsn([vn, @) = (£,0) + 7 > (f,vAv, + Vau)x, (20)

K

wherer, andr, are the so calledtabilization parameterghat we compute as
T, =c1v, T, = (cv) th? (22)

with ¢; an algorithmic constant. The stabilization parametershaesame for the
three methods presented.

Skew symmetric weighting (SSW) meth®de formsBg;, andLg, are given by:

Bs([wn, prl; [Vn, an]) = Bs([wn, prl, [V, ar]) + 7 Z (Vouy, Vo) i

K
+7u Y (—vAu, + Vi, Van) i (22)
Lon([vn an)) = (F,vn) + 7 Y (£, Van)k, (23)

K

The difference between ASGS and SSW methods relies in thatopehat is
applied over the test functions in the stabilization termhanéas ASGS uses the
adjoint of the spatial differential operator (see, e€.g8],LSSW only introduces
the skew-symmetric part (see [19]). Therefore, using ASKESfinal formula-
tion keeps the symmetry of the problem, whereas the SSW mdtuses this
symmetry. The analysis of these two methods is almost ic&nti

Finally, we consider a third stabilization technique, oraly introduced for
the Stokes problem in [11].
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Orthogonal subscales (OSS) methddhe bilinear formBg , and the linear form
Lg inthe OSS method are given by

Bs n([wn, prl, [Vn, n]) = Bs([wn, prl, [vn, qn))

+ 7 > (P (Vew), B (Vo))
K
+ 70 Y AP (—vAw, + Vpy), B (vAvy + Vi) i

Lsn([vn, qn]) = (£, vn),

whereP+ = I — P,, P, being the projection onto the finite element space (for
implementation issues of this projection, see [12]). Aladively, we could con-
sider an SSW-type OSS method, i.e. to consider only the sygametric part

of the spatial differential operator in the stabilizatienrh. In this case, the vis-
cous terms can be dropped without altering consistencythancesulting method
would be symmetric (see [10]).

Analysis. The ASGS, SSW and OSS methods have the same stability andreonv
gence properties, even though their numerical behaviorfo®d mesh is differ-
ent. Let us define the mesh dependent norm:

1 h?
lon @Iz, = vIVonl® + Sl +— 3 IVali-  (@24)
K

In fact, the last term is unnecessary, since the first twoleeady those that appear
in the norm of the continuous problem. However, stabilityhia first and the last
term is in fact what the method provides, and the second tanrbe recovered
a posteriori (see [19]). Because of this, and to clarify tkeagalization to be
introduced in Section 3, we have decided to keep the wholeeegn (24).

We also define the error function

B(h) = vel () + <30, (25)

wheree;(-) denotes the interpolation error in thé'(Q)-seminorm. It can be
proved that (24) and (25) are the norm and error function efABGS and the
OSS methods for the Stokes problem. This is what the follgwasults state, that
have been proved in [19] for SSW and in [11] for OSS:
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Theorem 1 (Stability). Suppose that the constantis large enough. Then, there
exists a constan’ > 0 such that

B
uf sup sa([wns prl, [Vn, anl) >C>0.
[uh 7ph]€VS,h XQS,h\{Ovo} [vhth}eVS,h XQS’}L\{O,O} ||| [Uh, ph] |||S7h||| [UI'H Qh] |||S’h

Theorem 2 (Convergence). Let [u, p] be the solution of the continuous problem
and [uy, p| the solution of the discrete one. Suppose as beforecthistlarge
enough. Then

Il = wn,p = pillls,, S Es(h).

2.4.2. Maxwell’'s problem

The stabilized finite element method we propose has recbkaéy introduced
in [3], with slight modifications. In the original articlehe pressure stabilization
makes use of the fact that= 0 for a solenoidalf, by stating the problem in
a novel augmented formulation that provides pressurelgyaldn the following
we will motivate the method as a residual-based stabilizetefelement method,
and we will also design a new OSS technique for the problemaatih This
reinterpretation allows us to couple the resulting redidbased stabilized method
with those developed for Stokes’ and Darcy’s problems.

In the following, we assume th&t, = Vi, andQ )y, = Qa1, defined in Table
1; we only consider the curl functional setting that allowsedo approximate
singular solutions. LeV,,; and @, be finite element approximations &f,
and@,, respectively. We can now state the ASGS and OSS stabiligeditdms
for Maxwell’s problem as follows: findwy,, pi] € Vasn x Qs n Such that

BM,h([Umph], [’Uh, Qh]) = LM,h([’Um Qh])u

for all [vy, qn] € Varn X Qarn, Where

Bun([un, prl, [vn, @) = Bar([wn, o), [, @) + 7(P(V - up), V - vy)

+ ) POV XVxuy, + Vi), AV X VX0, + V) i, (26)
K
Larn([on.an]) = (£:00) + Y 7u(P(£), ~AVXV Xy, + Vai) ., (27)
K
and the stabilization parameters read:
TPZCQAZ—;, Ty = %g.
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Apart from the definition of., ¢, is the algorithmic constant on which the for-
mulation depends. The projectidhcan be either the identity or the projection
orthogonal to the finite element spafg, getting the ASGS and OSS formula-
tions, respectively.

When taking the test functions equal to the unknowns to pstadaility we get

Burn([wn, pul, [un, pal) = MV xun||* = LEX| P(V XV xup) |
2

L2 - h2
+ 2 P(Vpn)|I? + oA | P(V-w) ||
A L2

The problem is the control of the second term. Wiiee: I, this control could be
achieved using an inverse inequality, but for thgtshould behave as, and this
would not allow us to approximate singular solutions (ség FBor these reasons,
the previous algorithm is discarded.

Skew symmetric weighting methddstead we can consider an SSW-type formu-
lation, in which the bilinear form of the problem is given by

BMh([uhaph] [Vn, qn]) = Bu([wn, prl, [Vh, qnl)

h?
+Z . AVxquh+Vph,thK+ZCQ)\

L2 V “Up, V- vh)K- (28)

Since) . (A\VxVxu,, Vg,)k = 0, this term can be cancelled out, recovering
the same method as in [3]:

By h([umph] [Vn, qn]) = Bur([wn, prl; [Vn; qn))

h?
+ Z S (7 pn, Vs + Z 2\ 3 (Vo Vovi)ic, (29)

Lyip([vn, an]) = (F, v +Z f Van) k

We stress the fact that this SSW stabilization ends up bgimgreetric. Note that
the last term vanishes jf is solenoidal.

Orthogonal subscales methoWhen P = P, the term P;-(AV xV xuy,) in
(26)-(27) can be omitted without sacrificing accuracy. 1tis done, the bilinear
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form of the problem is
BMh([uhaph] [Vn, qn)) = Bar([wn, pal, [vn, qn])

h?
+Z . Ph (Vpn), PE(Va)) K+202/\ 2 (PH(Vuy), PH(V-vp)) k.

(30)

Analysis. We will not analyze in detail the formulations determined(B9) and
(30), but the following discussion will be useful in Secti®rio design the com-
bined problem. Let us state the stability and convergermdtsewe have proved
for problem (29) in [3]. First, let us define the mesh-dependerm:

1 1 h L
vn, gulllarn = AZ[[V xvn]| + AQL—OHV"U/hH + )\—gHVPhH- (31)

As for the Stokes problem, this is the norm for which the mdghmvides stability
in a straightforward manner. Indeed, it is easy to checkttatSSW method is
coercive with respect to this norm. For OSS, we immediatety g

L? h?
Bas([wn, pals [wn, pa]) = AV xwn* + =2 Py (Von)[* + oA [ Vownl
0

The problem is now to obtain control on the component;ah the finite element
space, that is to say2,(Vpy). To this end, we may take as test function, =
?Ph(Vph), ¢ being a length scale to be determined. Using an inverse @liggu
we then have

B ([wh, prl, [Vn0,0])
2

14
2 =CIVxunl[[VxPu(Von) | + S I1Pu(Vn) I

€2h2
||V wp||||V-Pro(Vps) ||

1 4 2
2 ——>\||V><Uh||2 - Q—&WIIPh(Vph)IIQ + XHPh(Vph)HQ
1 A

By AR2
-2 a5 P I,

T IVl -

which holds for arbitrary3;, 5, > 0. The optimal situation would be to take
¢ = Ly, but then we cannot control the second term of the last bolimde able
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to achieve this control, we must take= h. On the other hand, full stability over
V - u, is attained taking as test functigp, = AL—h;Ph(V -uy), getting:
0

Barn([wn, prl, [0, gn o))

Ah?
2 TPV - wn) [P = [IVpul W[V Pa(V - )|
0
Ah? L2 Ah?

for an arbitrarys; > 0. After combining these results, it is not difficult to seettha
the formulation obtained using the bilinear form (30) isoét(in the form of an
inf-sup condition) in the norm

1 1 h L
ITvrs gnllllarn = Az [V xvnl| + AEL—OHV'uhH + A—SHP#(VJ%)H
2

h
+ gHPh(Vph)H,

which is weaker than (31). It is worthy to note that controltba last term can
also be obtained for a Galerkin formulation.
In the following, we list some results proved in [3]:

Lemma 2 (Stability in the mesh dependent norm). The bilinear form in (29),
By Ve X Qun X Varn X Quen — R, is coercive with respect to the mesh-
dependent norm (31).

However, once stability is proved in this norm, it can alsgb&ved in the norm
defined in Table 2 for the Maxwell problem:

Lemma 3 (Norm equivalence). The solutionwy, ay] € Vs, X Qarp Of the dis-
crete problem

Ban(Wh, an; On, qn) = (F,on) +(9,qn), Y (Vn, qr) € Varn X Qs
for f € V' andg € (), satisfies:
lwn, anllan S llwn, anlllar S lwn, anlllas + gl

The idea to prove this result is to recover th&(2)-control onu andp from the
control on the divergence ef and the gradient gf, respectively. To this end, the
continuous inf-sup condition is crucial. Note that in thése we have considered
an arbitrary functiory. This allows us to obtain the target stability result:
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Corollary 2 (Natural stability). The solutioruy, p,] of the problem satisfies

ITeen, prlllar < I1F1)-

When restricted to the discrete finite element spaces, tiveedi form of our
method is continuous:

Corollary 3 (Natural continuity). The stabilized bilinear form in (29)3,, :
Viarn X Qun X Varn X Qun — R, is continuous with respect to the nofim ||| ;.

These results allow us to prove a convergence result in iglstfarward way.
The error function of the method is given by

Ey(h)i= inf [l = wpp =iy

[wh,Th]EVAL, L X Q0,1
1 h 9 3
X e = wilison)
K

We have left the last term, which shows the additional emtroduced by our
method compared to what could be expected from a Galerkiroapp. Never-
theless, this last term behaves in an optimal way. We have:

Theorem 3 (Convergence). The solutiorjuy,, p,] of the discrete problem satisfies

wn — w, pn = ol S Ear(h).

In Maxwell’s problem it is important to clearly state how timethod converges
when the solutions are smooth and when they are not, singalamsolutions are
common in non-convex domains. In general, we have the faligunterpolation
estimates:

inf ||'v—wh||Hs(w) Sht_SH’UHHt(w), 0<s<t<k+1,

wrREVM K

inf g = rallie) S A lalleo, 0<s<t<I+l,

Th€Q M, K

for any bounded set C ).
When the solution is smooth we have, from the last convegémorem:

Corollary 4 (Convergence to smooth solutions). If w € H"(Q)¢, with» > 1,
the solutionu,,, p,] satisfies:

Il — . p = pullar S A2hY[wl ey, ¢ = min{r, k + 1},
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This is clearly an optimal result. For singular solutions hee to make use of
the following result:

Lemma 4 (Decomposition of singular solutions). The solutionu € Vy,NH (div; Q)
of the problem can be decomposed into a regular part and aumgart as fol-
lows:

u = ug+ Vo,

wherew, € H"(Q)? N Hy(curl;Q), ¢ € HH(Q) N HF(Q) for some real
numberr > 1.

In order to prove convergence to non-singular solutionshae toassume
that the finite element partition is able to approximate theedmgnt part of this
solution. This assumption is common to other numerical fdations and can be
stated as follows:

Assumption 1. There exists a finite element spagg defined ovef7, such that,
forany ¢, € Gy, Vo, € Vi, Furthermore, this space satisfies

inf [|¢ — ¢

PhEGH

o) S TNl e w)
forgp € H(w)and0 < s <t <1+k.

Assumption 1 is known to hold for interpolation ordérs> 4 in dimension
2 without any assumption on the mesh typology. In this cagecan take’),
as the finite element space obtained for the Argyris triangte & > 2, GG}, can
be constructed by using the Bogner-Fox-Schmidt trianglerder to do this, the
triangulation7;, should admit a coarser mesh of macroelements. We refer jo [14
for a detailed discusion.

The discrete space recently introduced in [25], based omeRe5abin inter-
polant (see Figure 2 right), makes true Assumption 1for 1, both in two and
three dimensions. Furthermore, we have observed from ncahexperiments
that a mesh with the crossed-box typology (see Figure 2 &3t satisfies this
assumption. In a numerical code, it implies to perform a phae&-processing
of the original mesh. Given any original triangular meste, Bowell-Sabin mesh
is obtained by introducing additional nodes on the mid-fsoof the edges and
the element barycentes, and re-connecting the nodes properthe other hand,
crossed-box meshes are obtained from a quadrilateral nygslading a node on
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Figure 2: Crossed-box (left) and Powell-Sabin (right) neaelement typologies.

its center, and creating four triangles; in fact, the add#i node can be con-
densed.

If Assumption 1 holds, we are able to prove the following quatimal error
estimate [3]:

Corollary 5 (Convergenceto singular solutions). Under Assumption 1, the so-
lution [uy,, ps] Of the discrete problem satisfies

1

A2

Lol—E

1 —€
e — wn, p — pallar S X2 0w ive) + ANl mivea),

for anye €]0,¢ — 1/2[ and fort = min{r, k}, wherer is defined in Lemma 4.

This result is based on the embeddingi#f(9K) in H<"2(K) for any element
domaink, and therefore the bound explodesas 0.

2.4.3. Darcy’s problem

The formulation of the method we propose and its analysi®focy’s prob-
lem follows exactly the same lines as for the Stokes probleehVy, , andQp ,
be the finite element spaces to approximate the velocity lm@ressure, respec-
tively. The methods to be analyzed can be written as follofived [w),, p,] €
VD,h X QD,h such that

Bp n([wn, Prl;s [V, an)) = Lpp([Vr, 1)),

for all [v,, gn] € Vpi x @Qp . Once again, the bilinear and linear forms of the
problem are defined depending on the stabilization methodhesed.
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Algebraic subgrid scale methodhe formsBp , andLp, 5, are given by:

Bp ([wn, pals [on, an)) = Bo([wn, pul, [on, aa]) +7 Y (Voun, V-vi) i

K
+ 70 Y {oun + Vpn, —ovy, + Vau) k.,
K
LD,h([’Uha Qh]) - (f7 vh) + (ga Qh) + Tp Z <ga V"Uh>l(
K
+ Tu Z (f,—ovn+Van)k.
K
The stabilization parameters are computed as
7, = c30l?, T, = (c30l*) 7 h?, (33)

with ¢3 an algorithmic constant anta length scale to be determined. This length
scale turns out to be crucial to be able to approximate etteeprimal or the
dual form of the problem. It can be taken &g h or (Lyh)/2. Its introduction
can be motivated by scaling arguments. In fact, the lengdlesa 7, could be
different from that inr,,, but we have taken them equal to simplify the discussion.
Using an approximate Fourier analysis as in [5], the stzddilbn parameters are
found, now depending on scaling coefficieptsand 1,. In turn, these scaling
coefficients depend on a length scale of the problem that reagken ad,, or h.
This is what determines the choice forThe same expression of the stabilization
parameters is used for SSW and OSS algorithms presented next

Skew symmetric weighting methothe formsBp, , andLp ;, are given by:

Bp ([wn, pal, [on, an)) = B([wn, pa], [, an]) + 7 Y (Ve Vo)

+ T Z (oup + Vpr, Van) i,

K

Lpn([vn, qn)) = (f,vn) + (9,q0) + 7 Z (9, V-vp) i

K

+ Tuz (f,Van) k.

K

This formulation is non-symmetric but introduces all thabglization needed for
the discrete problem to be well-posed.
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Orthogonal subscales metho@he bilinear formBp, 5, and the linear fornLp
in the OSS method are given by

Bp n([wn, pal, [V, qn]) = Bp([wn, prl, [vh, qn))
+ 7> (B (Voun), B (Vovn))k + 7 Y (B (Von), P (Van))
Lp n([vn; qn]) = (f,vn) + (9, qn)-

Analysis. As for the Stokes problem, all the methods have the samdistaind
convergence properties. Let us define the mesh dependent nor

1 h?
low @il = ollonl? + o1V - wull* + —llanll + 25 3 [ Vanlli, (34
0 K

as well as the error function

2

Ep(h) = ol*(h™%cg(u) + ei(w)) + oeg(u) + %(h_%%(p) +ei(p).  (35)

The following results can be summarized by saying that tlaesghe norm and
error function of the methods introduced:

Theorem 4 (Stability). Suppose that the constang in (33) is large enough.
Then, there exists a constafitsuch that

B
uf sup p.a([Wn, Drl, V1, qn)) > C > 0.
[u}uph}eVD,h XQD,h\{Ovo} [vh7Qh]€VD,hXQD,h\{070} m [Uh, ph] H‘D,hm [vh? Qh] |HD,h

Theorem 5 (Convergence). Let [u, p] be the solution of the continuous problem
and [u,, p,| the solution of the discrete one. Suppose as beforecthist large
enough. Then

ITee = wn,p = pulllp s S En(h).

We refer to [4, 5] for the proof of these results. Let us disahe implications
of the choice off in view of the working norm in (34) and the error function in
(35). On the one hand, if = h (up to constants), we do not have control on the
velocity divergence, but pressure gradients are conttollehus, (34) coincides
with the norm of theprimal formulation of Darcy’s problem in Table 2, and the
error function (35) (with/ = h) is consistent with this fact. On the other hand,
if £ = Ly (34) is the discrete counterpart of the norm of thel formulation of
Darcy’s problem in Table 2 and, as in the previous case, ttug &nction (35)
(with ¢ = L) is consistent with this fact.
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3. Combined problem

3.1. Boundary value problem

In this section we consider the problem that combines alivibdel problems
discussed heretofore. It consists of findimgand p solution of the differential
equations posed in a domdin

—vAu+ ANV XV xu+ou+ Vp=Ff, (36)

together with appropriate boundary conditions on the nband tangential com-
ponents ofu and, ifv = 0, also onp on 052 (possible ifc > 0, needed i = 0).
The problem has obviously the structure (1)-(3), with

Lx(u) = Ls(u) + Ly(u) + Lp(u).

If v > 0, the problem is in principle posed in the functional settoighe
Stokes problem. However, at the numerical levdloesmatter whether is small
or not compared to the rest of physical parameters. ThusGdlarkin method is
used which is stable for the Stokes problems, results asbylik be very poor i
is small. Likewise, in the case = 0 it is not clear which is the interpolation that
will lead to a stable method, since it is different for Maxigeproblem (A > 0,

o = 0) and for Darcy’s problemX = 0, 0 > 0).

Our goal is therefore to propose an approximation of the dagnvalue prob-

lem (36)-(37) (plus boundary conditions) able to deal wité limits

v—0, o—0, or A—0.

Concerning the physical interest of (36)-(37), the case 0 is known as the
Brinkman problem, and models the flow of viscous fluids in peranedia. The
casev = 0 is relevant to the analysis of eigenvalues of the Maxwelratoe. We
are not aware of any situation involving> 0 and\ > 0, but nevertheless being
able to deal with it highlights the robustness of a numeffmahulation.

3.2. Variational form and functional setting

The weak form of problem (36)-(37), with the homogeneousiolawy condi-
tions used in the model problems, is straightforward. Itsists of finding[u, p)
such that

Bsup([w,p], [v,q]) = (f,v) + (9,9), (38)
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for all [v, ¢] in the appropriate functional spagéex @, which is discussed next.
The bilinear formBgyp in (38) is given by

Bsup ([w, pl, [v,q]) = v(Vu, Vo) + A(Vxu, Vxv) + o(u, v)
+(Vp,v) + (¢, V - u).

The functional setting is a delicate issfiere want to encompass all possible
situations discussed previously for the model probléms define the norm

[olly =Ly w2 |[v]| + v || Vol + A2 | Vxo| + &2V -2, (39)
with
_ )\ L2 _ E% )\E?\/f 62
K=V+ A+ 0ly, K/Z—Vﬁ"_ ﬁ—l—al),
0 0

and wherés, ¢,; and/, arecharacteristic lengthscaldsr the Stokes, the Maxwell
and the Darcy problems, respectively, which malileer L, or 0. In fact, for the
Stokes problem only the cage = L, makes sense, as we will see immediately.
We also denote bjf - ||y~ the corresponding dual norm.

This, in turn, allows us to define the following norm:

lallg = sup V42 (40)
S ol

This is the crucial ingredient we need to define the follownogm:

Ilv, dlllx == llvllv + llglle- (41)

Finally, we definel” x @ as the closure af3°(Q)¢ x Cs°() with respect to this
norm.

Let us discuss how (41) behaves in particular cases. Frot(B3seen that
whenv > 0, (39) behaves as thE'(2)-norm and (40) as th& —*(Q2)-norm for
Vg, the regularity we may require fovq in the Stokes problem. Suppose that
v = 0 and thatr = 0. If £,; = 0 then (39) is thef{ (curl; 2)-norm of v. From
the inf-sup condition betweeH (curl; 2) and H}(2) (see e.g. [24]) it follows
from (40) that||q||¢ is equivalent to the;(Q2)-norm of q. This allows us to
conclude that,; = 0 corresponds to thé/(curl; ) x H'(Q) formulation of
Maxwell’s problem. Analogously, it is easy to see tigt = L, corresponds to
the H(curl; Q) N H(div; Q) x L*(Q) formulation. A similar discussion leads to
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conclude that, in the Darcy case£ 0, A = 0), £, = 0 corresponds to the mixed
primal problem and, = L, to the mixed dual problem.

The limiting cases provided by the norm (41) are summariaédble 3. The
norms of the particular cases have some redundant termsarthaevertheless
required to encompass all possible situations. The olgeofia unified functional
framework for the combined problem being analyzed is thgsmaplished.

Let us proof that problem (38) is stable in the norm (41), iitglbeing ex-
pressed in the form of an inf-sup condition, as usual. We défir B as the set
of functions that belong to the functional spdcesuch thatV¢, v) = 0 for any
q € Q. Finally, X =V x Q andX, = KerB x Q.

Theorem 6. The following inf-sup condition holds:

inf sup BSMD([u7p]7 ['U, Q]) > C,

[.p]€Xo\{0,0} [v glex\{0,0} I[Pl lI[v,dlllx —

with C' > 0 a positive constant.

Proof. First, let us takév, ¢| = [u, p| € X, in the combined problem. We easily
obtain:

BSMD([uap]a [uap]) Z H’U’H%h

where the divergence stability terms come from the fact thst solenoidal. On
the other hand, by the definition of the nofim||, there always exists a function
v, € V such that|v,|lv = [[pllq and(Vp, v,) = |p[%. So, we have that:

Bswn([w, p); [u+ av,, p]) 2 [ulli + allpllg + asup (u, avy),

whereagyp (u, v) = v(Vu, Vo) + A(V X u,V X v) + o(u,v). Now, noting
thatagyp is continuous with respect to- ||y, we can prove the theorem taking
a > 0 small enough in the previous expression together with Caadiwarz
and Young’s inequalities. O

The previous inf-sup condition, iker B, is enough to prove the well-posedness
of the problem (see, e.g., [16, Theorem 2.34.]).

3.3. Stabilized finite element approximation

The stabilized finite element formulation of problem (38)pvepose is a gen-
eralization of the one presented for the three independedehproblems, keep-
ing in mind the reformulation of the approximation of Max¥seproblem as a
residual based stabilized finite element method.
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Table 3: Unified norm in the particular cases of Stokes’, Malkezand Darcy’s problems

v, dlll x
Stokes/s = Lo vE||Vol| + %HUH +v 2 gll +v3||V - vl + Lov % | Vgl
Maxwell, curl: £, = 0 A2 || Vxol|| + %H’UH + A2 |gl| + A2 Lo | V||
Masxwell, curl-div: (3 = Lo | A} [V xw] + 22 o]l + A~ F g + A}V - o]l + A~ F Lo | Vo]l s
Darcy, primal:{p = 0 o2 v + ”;f lgll + o2 ||Vq|
Darcy, dual:p = Lg o2 v + ";f lgll + o2 Lo ||V-v|| + 02| Vq]| -1

If V}, x Qy, is afinite element space to approximéte (), the discrete problem
reads: finduy, p] € Vi x Q) such that

Bsnp n([w, pl; [v, q]) = Lsvp n([v, )), (42)

for all [vy, qn] € Vi x Qn, WhereBgyp , and Lgyip 5, are the forms in the stabi-
lized finite element formulation. Stokes’ and Darcy’s peahk allow one the use
of ASGS, OSS and SSW techniques. However, Maxwell’s prolaeiy allows
the SSW formulation or an OSS formulation with a weakenehil#ta For this
reason, when considering a unified treatment of all the prablat hand, we only
use the SSW and OSS methods.

Skew symmetric weighting methobhe forms for the unified Stokes-Maxwell-
Darcy problem approximated via a SSW finite element discaigon read as fol-
lows:

Bsyp w([@nh, pr), [Vh, @n]) = Bsvp([wh, prl, Uk, ai]) + 7 Z (Veouy, Vo) i
K

—l—TuZ (—yAuh+auh—|—Vph,th>K, (43)
K

Lon([vn an)) = (frvn) + 7 Y (£, Van) ik + (9, )

K

+7_]3Z<gav'vh>l(-

K
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Let us stress the fact that the curl-curl term in the stadiiian term weighted with
7. has been cancelled out, as commented above for the Maxwéligon. A crit-
ical issue is the calculation of the stabilization paramwsetg, 7, which are the
same in (43) and in (49) below. They have to behave as the péeesnof the
model problems when the appropriate physical parametadsttezero. In the
case of Maxwell's and Darcy’s problems, they also have tovwathne to encom-
pass the two functional settings we have discussed for datiese problems. It
is immediately checked that both goals are achieved if we tak
2 2
T, = 1V + 02/\624—3’}1 + 0306%7,1, Ty = %.

The values of;;, and/, ;, may be eithef. or L, corresponding to the values of
¢y and?p of 0 and Ly, respectively. Note that, for stability reasofg,, and/p ;,
cannotbe O.

For the SSW formulation in (43), the stability and error sa can be under-
taken in the mesh dependent norm:

llwn, anll’x, :==Lo*sllonll® + v Vou ] + AV <o

+ 1 Veunl* + 7 1Vl (44)
K

From this norm it is readily seen that we have all the contxplkeeted. In particu-
lar, in the applications the most interesting situatiorestae curl formulation for
the Maxwell problem and the dual formulation for the Darcglgem. If we take
Uy = Lo andlp , = h, these will be precisely the limiting cases wher- 0,
o — 0andv — 0, A — 0, respectively.

The following theorem proves that the SSW is stable. To atextinicalities,
we present this stability result in the form of a bound for timknowns in terms
of the data rather than as an inf-sup condition.

Theorem 7. The solutionuy,, p,] of problem (42) satisfies the stability bound:

[, pr] |||X,h S Cra

whereC},, is used to denote a generic constant that depends on the rfatime o
data (but is independent @). Moreover

Ipnlle S Cryg-
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Proof. The stabilized problem is coercive for the whole mesh-ddpehnorm,
except for the)|u,|* term, and therefore all terms ifus, ps|l ,, €xcept this
one will be bounded by the appropriate norm of the data. kgr = Lo, this
result is straightforward from the fact that

Lo Huall S 1V xuall + [V - ]l

For ¢y, = h, this term can still be bounded by using the technical raaJls,

Lemma 3], that gives:
_ h? _
Lo Mlwnll® S MV xun|* + A5 1V - anl* + LEA[pall*. (45)
0

Then, multiplying the previous inequality against

AL
T2
T ALT? = Lo <1
v 01V+CQ)\Z—§ —|—030'€%’h ~
we get
h2
_ 2
Lo A|un® : S AV xup|? + 7|V - wnl* + 7ullpall?,

v+ CQAZ—% + c30l3 ),
(46)

where the right-hand side is bounded in terms of the data., WNewse the already
known stability bounds oveli;? (o L2 + v)||us||?. We have that:

h2
T2
LO
2

v+ oAk

Ly *Mual®
p + C3U£%),h

+ Lo *(0lp + v)llunl* < Cyg.

Using the relation
a2

a < +b

a+b

foranya, b > 0in the previous equation, we easily get the bound dyen||uy,||>.
With regard to the pressure, we can always fing, & X such that

lpalle = (Vpn, vp)

and ||v,|lv = |lpnllg. by the definition of the norm. On the other hand, let us
consider an optimal projection af, onto the finite element space, denoted by
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v, (See, e.g., [7]), e.g. the Scott-Zhang projection. Invgkime problem solved
by the solutioruy, p,|, we have
Ip6ll5 = (Vpn, vy — Op ) — asup (n, Dpp)

7> (Vewn, V)i + (£, Bp)- (47)

K

The first term is bounded as follows:

<Vph7 Up — 'ﬁp,h>

< h? 2 B2 -3
V >
- <V+WL02+ah2) IVe <V+)\h2L02+ah2) For =Bl

h? 2
& (V + AR2LG? —|—ah2) IVpall[[vpllv, (48)
0

where we have used the interpolation properties and dtabflthe Scott-Zhang
projector. The rest of the terms in (47) are easily bounde@rnms of the data
using the bounds already proved ftu,, pul|l x - O

Orthogonal subscales metho8or the combined problem we can also consider
the following unified formulation:

Bsyip n([wn, Pul, [V, qn]) = Bsap ([ws, prl, [vs, gn))
+ 7,3 (BH(Veuy), B (Voon))k

K

+7 Y (B (Vo) B (Van) ke, (49)

Lsn([vn, qn]) = (£, vn) + (9, n),

when using the OSS formulation. However, in this case thenn@4) has to
be weakened for the OSS method (49) in what concerns conirtiie@pressure
gradient projected onto the finite element space, as exguaan the end of sub-
section 2.4.2.

We omit the details of the convergence analysis for the féaitrans presented,
which follow along the same lines as those of the individuabgems.
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4. Conclusions

The purpose of this paper has been twofold. On the one sidbawe sum-
marized in a unified manner the formulation and the analysi&ad presented in
[5, 4, 3]. We have shown that the stabilized formulations wappse are able not
only to allowarbitrary interpolations ofu andp, but also to resort to the appro-
priate functional setting of the problem with a proper desif the stabilization
parameters (curl or curl-div formulations for Maxwell'sgimem, primal or dual
formulations for Darcy’s problem). Stability and optimarwvergence results in
fully meaningful norms have been presented.

On the other hand, we have also proposed a formulation fomdiced prob-
lem able to reduce correctly to the model problems when tlysipal parameters
tend to zero. A stabilized formulation has also been intoedufor this unified
problem. Let us just remark the difficulty encountered tarfolate this method as
residual based because of the lack of control of the doubl®tuw if ¢,,; = L,
the case of interest if singular solutions need to be appratad.

References

[1] D.N. Arnold, P.B. Bochev, R.B. Lehoucqg, R.A. Nicolaidesand
M. Shashkov, editorsCompatible Spatial DiscretizationsThe IMA Vol-
umes in Mathematics and its Applications. Springer, 2006.

[2] D.N. Arnold, R.S. Falk, and R. Winther. Finite elementexior calculus,
homological techniques, and applicatioAsta Numerical5:1-155, 2006.

[3] S. Badia and R. Codina. A nodal-based finite element appration of the
Maxwell problem suitable for singular solutiorSubmitted

[4] S. Badia and R. Codina. Unified stabilized finite elemeanmtrfulations for
the Stokes and the Darcy problentSlAM Journal on Numerical Analysis
47(3):1977-2000, 2009.

[5] S. Badia and R. Codina. Stabilized continuous and digcoaus Galerkin
techniques for Darcy flow.Computer Methods in Applied Mechanics and
Engineering 199:1654-1667, 2010.

[6] S.C. Brenner, F. Li, and L.-Y. Sung A Locally DivergenEeee Interior
Penalty Method for Two-Dimensional Curl-Curl ProblenSIAM Journal
on Numerical Analysis46:1190-1211, 2008

32



[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

S.C. Brenner and L.R. ScotfThe Mathematical Theory of Finite Element
Methods Springer—\Verlag, 1994.

F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methads
Springer Verlag, 1991.

A.N. Brooks and T.J.R. Hughes. Streamline upwind / Retéalerkin for-
mulations for convection dominated flows with particulargrasis on the
incompressible Navier-Stokes equati@@omputer Methods in Applied Me-
chanics and Engineerin@2:199-259, 1982.

R. Codina. Analysis of a stabilized finite element apg@mation of the Os-
een equations using orthogonal subscafgmplied Numerical Mathematics
58:264—283, 2008.

R. Codina and J. Blasco. A finite element formulationtfoe Stokes prob-
lem allowing equal velocity-pressure interpolatioBomputer Methods in
Applied Mechanics and Engineerint43:373-391, 1997.

R. Codina and J. Blasco and G.C. Buscaglia and A. Hudrtgplementa-
tion of a stabilized finite element formulation for the inqorassible Navier-
Stokes equations based on a pressure gradient projelctiemational Jour-
nal for Numerical Methods in Fluid$87:419-444, 2001.

M. Costabel. A coercive bilinear form for Maxwell’s egfions. Journal of
Mathematical Analysis and Applicationks7(2):527-541, 1991.

M. Costabel and M. Dauge. Weighted regularization ofxMaell equations
in polyhedral domainsNumerische MathematiR3(2):239-277, 2002.

M. Crouzeix and P. A. Raviart. Conforming and nonconorg finite el-
ement methods for solving the stationary Stokes equati®lRO Anal.
Numer, 3:33-75, 1973.

[16] A. Ern and J.L. Guermond. Theory and Practice of Finite Elements

[17]

Springer—\Verlag, 2004.

C. Hazard. Numerical simulation of corner singul@sti a paradox in
Maxwell-like problems.Comptes Rendus-&g¢anique 330(1):57-68, 2002.

33



[18] T.J.R. Hughes. Multiscale phenomena: Green’s fungtibe Dirichlet-to-
Neumann formulation, subgrid scale models, bubbles andrias of sta-
bilized formulations. Computer Methods in Applied Mechanics and Engi-
neering 127:387-401, 1995.

[19] T.J.R. Hughes, L.P. Franca, and M. Balestra. A new fieieanent formu-
lation for computational fluid dynamics: V. Circumventinget BabuSka-
Brezzi condition: a stable Petrov-Galerkin formulation flee Stokes prob-
lem accommodating equal-order interpolatio@®mputer Methods in Ap-
plied Mechanics and Engineerin§9:85-99, 1986.

[20] A. Masud and T. J. R. Hughes. A stabilized mixed finitengd@t method
for Darcy flow. Computer Methods in Applied Mechanics and Engineering
191:4341-4370, 2002.

[21] J. C. Nedelec. Mixed finite elements R*. Numer. Meth. 35:119-136,
1980.

[22] J. C. Nedelec. A new family of mixed finite elementsiA. Numer. Meth.
50:57-81, 1986.

[23] P. A. Raviart and J. M. Thoma# mixed-finite element method for second
order elliptic problemsvolume Mathematical aspects of the finite element
method, Lecture Notes in Methematics. Springer, New Yo#k,71

[24] D. Schotzau. Mixed finite element methods for statrgriacompressible
magneto-hydrodynamicdlumer. Meth.96:771-800, 2004.

[25] T. Sorokina and A.J. Worsey A multivariate Powell-Salniterpolant Ad-
vances in Computational Mathemati@9:71-89, 2008

34



