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Abstract

In this work we propose stabilized finite element methods forStokes’, Maxwell’s
and Darcy’s problems that accommodate any interpolation ofvelocities and pres-
sures. We briefly review the formulations we have proposed for these three prob-
lems independently in a unified manner, stressing the advantages of our approach.
In particular, for Darcy’s problem we are able to design stabilized methods that
yield optimal convergence both for the primal and the dual problems. In the case
of Maxwell’s problem, the formulation we propose allows oneto use continuous
finite element interpolations that converge optimally to the continuous solution
even if it is non-smooth. Once the formulation is presented for the three model
problems independently, we also show how it can be used for a problem that com-
bines all the operators of the independent problems. Stability and convergence is
achieved regardless of the fact that any of these operators dominates the others, a
feature not possible for the methods of which we are aware.

Keywords: Stabilized finite elements, compatible approximations, primal and
dual problems, singular solutions, nodal interpolations.

1. Introduction

The numerical approximation of partial differential equations (PDEs) in gen-
eral geometries can be performed by using finite element (FE)techniques. The
standard approach to the problem consists of considering the weak form of the
PDE, and replace the infinite dimensional functional spacesfor the solution and
test functions by finite dimensional ones. Those finite dimensional spaces are
constructed using FE functions over a partition of the domain.
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PDEs defined by coercive differential operators can be approximated by the
Galerkin FE technique, provided that the corresponding FE space can approximate
functions in the continuous functional space; coercivity of the continuous problem
is inherited by the discrete one. However, PDEs that exhibita saddle-point struc-
ture, and so stability is attained via a (less demanding) inf-sup condition, cannot
be straightforwardly approximated by only looking at the approximability prop-
erties of the FE space. The reason is quite simple: inf-sup conditions satisfied by
the continuous problem are not inherited (in general) by their discrete versions.
Therefore, FE spaces are not only required to exhibit an approximability property,
but also a discrete inf-sup condition.

Saddle-point problems include the primal unknown and the dual one, the La-
grange multiplier. FE pairs for these unknowns have to be built such that they
satisfy a discrete inf-sup condition (see, e.g., [8]). Examples of linear PDEs with
this structure are Stokes’ problem, Darcy’s problem and Maxwell’s problem. Ev-
ery problem involves a different differential operator, and their well-posedness
relies on different inf-sup conditions. It is not surprising that stable FE approxi-
mations (called inf-sup stable) are different from one problem to the other. Using
inf-sup stable FE methods, e.g. the Stokes problem could be approximated by the
Crouzeix-Raviart element [15], Darcy’s problem (in dual form) would be solved
by using the Raviart-Thomas FE [23], whereas Maxwell’s problem would be dis-
cretized by using Nédélec elements [21, 22]. More recently, inf-sup stable FEs
for these problems have been nicely casted in the frame of de Rham sequences;
see [1, 2] for details. Even though this approach can be appealing when we want
to solve one of these problems alone, it is not suitable for multiphysics simu-
lations that couple different operators. The FE spaces for every sub-problem are
different, and the unknowns are evaluated in different ways; it complicates the im-
plementation, mainly the data-structure and the integration of the coupling terms.
Furthermore, when these operators are combined with convection terms, like the
Navier-Stokes equations, Galerkin FE techniques exhibit instabilities in the sin-
gular limit of dominant convection.

Alternatively, we can consider stabilized FE methods. The idea is to intro-
duce additional terms to those obtained from the Galerkin technique that will
provide the desired stability without the need to satisfy a discrete inf-sup con-
dition. Obviously, we want these methods not to spoil the convergence of the
Galerkin technique; this is usually attained by the introduction of residual-based
terms that also make the final system consistent. However, wecan also consider
non-consistent but optimal techniques. Stabilized FE methods were originally
motivated for the stabilization of the convection-diffusion equation in the convec-
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tion dominant regime [9]. Some time later, these techniqueswere proved to be
effective also for the stabilization of the pressure in the Stokes problem, allowing
to avoid the satisfaction of the inf-sup condition (see [19]). Many years later, these
ideas were extended to the Darcy problem in primal form in [20]. Then, a stabi-
lized FE technique for the dual Darcy problem that exhibits the same convergence
rates as inf-sup stable FEs was proposed in [4, 5]. Very recently, a stabilized FE
formulation for the Maxwell problems that allows to use Lagrange finite element
methods and converge also to singular solutions has been designed in [3]. Using
the stabilized FE approach, all the unknowns for all these problems can be approx-
imated via Lagrangian (nodal) FE spaces. This approach is clearly well-suited for
multiphysics, since we can consider a simple data structure, the integration of all
the terms involve the same FE spaces, and all the unknowns aredefined in the
same way. Further, it allows to use computationally efficient nodal FEs. The
aim of this work is to show for the first time that the Stokes, Maxwell and Darcy
problems can be treated in a unified way. As a result, we can consider numer-
ical methods for the combined Stokes-Maxwell-Darcy problem whose stability
is independent of the physical parameters, something that cannot be attained by
inf-sup stable finite elements satisfying a discrete de Rhamsequence, since every
problem requires a different discretization.

2. Model problems

In this section we present the finite element approximation we propose for
the Stokes, the Maxwell and the Darcy problemsseparately. After stating the
problems, we discuss their functional framework, which hasdirect consequences
on the numerical approximation. The Galerkin approximation is presented then,
and the stabilized formulations we propose follow. Our objective is to show which
is the stabilization mechanism in each case.

2.1. Boundary value problems
Let Ω ⊂ R

d, d = 2, 3 be the domain where the problem needs to be solved.
The problems we are interested in consist in finding a vector fieldu : Ω −→ R

d

and a scalar fieldp : Ω −→ R such that

Stokes’ problem.

−ν∆u +∇p = f in Ω,

∇·u = 0 in Ω,

u = 0 on∂Ω.

3



Maxwell’s problem.

λ∇×∇× u+∇p = f in Ω,

∇·u = 0 in Ω,

n× u = 0 on∂Ω.

Darcy’s problem.

σu+∇p = f in Ω,

∇·u = g in Ω,

n · u = 0 on∂Ω.

In these equations,f is the vectors of body forces,g is a given mass flow,
andν, λ andσ are physical parameters. In general, for the Stokes and Maxwell
problems,g is considered zero. This is the case considered above and when ana-
lyzing every sub-problem separately. We will pay special attention to the design of
methods that account for limit values (zero or infinity) of the physical parameters,
particularly when dealing with combined problems.

It is observed that the three problems share a saddle point mathematical struc-
ture. They all can be written as

LX(u) +∇p = f in Ω, (1)

∇·u = g in Ω, (2)

FX(u) = 0 on∂Ω. (3)

where the differential operatorLX is given by

LX(u) =











LS(u) := −ν∆u for the Stokes problem

LM (u) := λ∇×∇× u for the Maxwell problem

LD(u) := σu for the Darcy problem

(4)

and the boundary operatorFX is given by

FX(u) =











FS(u) := u for the Stokes problem

FM(u) := n× u for the Maxwell problem

FD(u) := n · u for the Darcy problem

(5)

In the case of Maxwell’s problem,f is usually assumed to be divergence free,
which together with the boundary conditionp = 0 on ∂Ω that needs to be added
to (3), yieldsp = 0 everywhere.
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2.2. Variational form and functional setting

Let VX × QX the functional spaces where the pair[u, p] is sought for each of
the problems introduced earlier. These spaces will be described in what follows,
but first we may formally obtain the weak form of problem (1)-(3). Testing (1)
with a functionv which satisfiesFX(v) = 0 on ∂Ω and denoting by〈·, ·〉 the
integral of the functions in the two arguments inΩ, whenever it makes sense, we
get

〈v, LXu〉 = aX(u, v),

where

aX(u, v) =











aS(u, v) := ν(∇u,∇v) for the Stokes problem

aM (u, v) := λ(∇× u,∇× v) for the Maxwell problem

aD(u, v) := σ(u, v) for the Darcy problem

(6)

These bilinear forms are bounded (and therefore continuous) if v ∈ VS :=
H1

0 (Ω)
d in the Stokes case, ifv ∈ H(curl; Ω) for the Maxwell problem and if

v ∈ L2(Ω)d for the Darcy problem. Here and below we will make use of the
spacesH(div; Ω) andH(curl; Ω), defined as usual as

H(div; Ω) :=
{

v ∈ L2(Ω)d such that∇ · v ∈ L2(Ω)
}

,

H(curl; Ω) :=
{

v ∈ L2(Ω)d such that∇× v ∈ L2(Ω)d
}

.

A subscript 0 will be added to denote the subspace of functions such thatFX(v) =
0 on∂Ω, with X eitherM orD.

SpacesVX andQX are determined by requiring that the term〈∇p, v〉, obtained
by testing∇p by v is well defined under the minimum regularity conditions. In
the Stokes case, sincev ∈ H1

0 (Ω)
d we may integrate this term by parts and get

〈∇p, v〉 = −(p,∇ · v), so that the spaceQS must beL2
0(Ω) (square integrable

functions with zero mean overΩ).
The situation is different in the case of Maxwell’s and Darcy’s problem, since

in these cases there is an alternative for the choice ofQX . Starting with the former,
on the one hand, if we do not integrate by parts we have to takep ∈ H1(Ω) to
guarantee that〈∇p, v〉 is bounded. Moreover, to ensure that the solution of the
problem isp = 0 for a solenoidalf , we may in fact takep ∈ H1

0 (Ω). On the other
hand, if we do integrate by parts and take〈∇p, v〉 = −(p,∇ · v), then we need to
require thatp ∈ L2

0(Ω) andv ∈ H(div; Ω).
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Table 1: Functional setting for Stokes’, Maxwell’s and Darcy’s problems

VX QX BX([u, p], [v, q])

Stokes VS = H1

0
(Ω)d QS = L2

0
(Ω) aS(u,v)− (p,∇ · v) + (q,∇ · u)

Maxwell VM1 = H0(curl; Ω) QM1 = H1

0
(Ω) aM (u,v) + (∇p,v)− (∇q,u)

VM2 = VM1 ∩H(div; Ω) QM2 = L2

0
(Ω) aM (u,v)− (p,∇ · v) + (q,∇ · u)

Darcy VD1 = L2(Ω)d QD1 = H1(Ω) aD(u,v) + (∇p,v)− (∇q,u)

VD2 = H0(div; Ω) QD2 = L2

0
(Ω) aD(u,v)− (p,∇ · v) + (q,∇ · u)

For Darcy’s problem something similar happens. If we do not integrate by
parts we have to takep ∈ H1(Ω), and if we do, we need to require thatp ∈ L2(Ω)
andv ∈ H(div; Ω). The former leads to the so calledprimal formulation of
Darcy’s problem, whereas the latter leads to thedual formulation.

In all cases we need to assume that〈f , v〉 is bounded. To simplify a little the
discussion we may consider thatf ∈ L2(Ω)d andg ∈ L2(Ω). Likewise, boundary
conditions have a different interpretation depending on the choice of the space for
p in Maxwell’s and Darcy’s problems.

The summary of the choices described is presented in Table 1.Note that for
the primal formulation of Darcy’s problem(VX×QX = VD1×QD1) the boundary
conditionFX(u) = 0 is in fact a Neumann-type boundary condition forp.

When equation (2) is tested by a test functionq ∈ QX the result has to be
treated according to the spaceQX chosen. If the result is added to the weak form
of (1), the final problem to be solved can be written as follows: find [u, p] ∈
VX ×QX such that

BX([u, p], [v, q]) = (f , v) + (g, q) ∀[v, q] ∈ VX ×QX , (7)

where the bilinear formBX defined on(VX × QX) × (VX × QX) is also given
in Table 1. As mentioned above, we will takeg = 0 for Maxwell’s and Stokes’
problems.

Let us discuss now the appropriate working norms. In the Stokes problem,
there is no alternative in the choice of the functional spaces. In order to work
with a norm that scales correctly and that accounts for the values of the physical
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parameterν, we define

‖v‖VS
:= ‖∇v‖, ‖q‖QS

:= ‖q‖,

where‖ · ‖ stands for the standardL2-norm overΩ. The norm inVS ×QS is then
defined as

|||[v, q]|||S = ν
1

2‖v‖VS
+ ν− 1

2‖q‖QS
.

In spite of the fact that all problems discussed are well posed in all functional
settings presented (see below), the choice of this functional framework in the case
of Maxwell’s and Darcy’s problems has important practical consequences. Let us
start considering Maxwell’s problem. The choiceVM1 × QM1 in Table 1 leads to
the so called curl formulation, whereas the choiceVM2×QM2 leads to the curl-div
formulation. Let us explicitly write these two formulations:

curl formulation. Findu ∈ H0(curl; Ω) andp ∈ H1
0 (Ω) such that

λ(∇×u,∇×v) + (∇p, v) = (f , v), ∀v ∈ H0(curl; Ω), (8)

−(∇q,u) = 0, ∀q ∈ H1
0 (Ω). (9)

curl-div formulation I. Findu ∈ H0(curl; Ω) ∩H(div; Ω) andp ∈ L2
0(Ω) such

that

λ(∇×u,∇×v)− (p,∇·v) = (f , v), ∀v ∈ H0(curl; Ω) ∩H(div; Ω), (10)

(q,∇·u) = 0, ∀q ∈ L2(Ω). (11)

In any case, the solution to the problem isp = 0 provided∇·f = 0. This curl-div
formulation admits an alternative statement in which the scalarp is eliminated:

curl-div formulation II. Findu ∈ H0(curl; Ω) ∩H(div; Ω) such that

λ(∇×u,∇×v) + λ(∇·u,∇·v) = (f , v), ∀v ∈ H0(curl; Ω) ∩H(div; Ω).
(12)

Even though both the curl and the curl-div formulation are well posed, the
latter has an important drawback when considering the finiteelement approxima-
tion which will be described in the following subsection. This is why we will be
mainly interested in the curl formulation. The norms to be considered inVM1 and
QM1 are

‖v‖VM1
:=

1

L0
‖v‖+ ‖∇×v‖, ‖q‖QM1

:=
1

L0
‖q‖+ ‖∇q‖,
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whereL0 is a length scale that depends on the domainΩ. Its choice is in principle
arbitrary, but it will play a major role in the approximationof Darcy’s problem.

The norm associated to the product spaceVM1 ×QM1 will be denoted by

|||[v, q]|||M = λ
1

2‖v‖VM1
+ L0λ

− 1

2‖q‖QM1
.

It is important to remark that the solution to the problem satisfies∇·u = 0, but
the norm|||[u, p]|||M provides no control on the divergence ofu.

Let us finally consider Darcy’s problem. In this case, both functional settings
indicated in Table 1 can be approximated numerically. The resulting problems
are:

Primal problem.Findu ∈ L2(Ω)d andp ∈ H1(Ω) such that

σ(u, v) + (∇p, v) = (f , v), ∀v ∈ L2(Ω)d

−(∇q,u) = (g, q), ∀q ∈ H1(Ω).

Dual problem.Findu ∈ H0(div; Ω) andp ∈ L2
0(Ω) such that

σ(u, v)− (p,∇·v) = (f , v), ∀v ∈ H0(div; Ω)

(q,∇·u) = (g, q), ∀q ∈ L2
0(Ω).

The norms to be considered for the primal problem are

‖v‖VD1
:= ‖v‖, ‖q‖QD1

:=
1

L0
‖q‖+ ‖∇q‖,

|||[v, q]|||D1 := σ
1

2‖v‖VD1
+ σ− 1

2‖q‖QD1
,

whereas for the dual problem we will take

‖v‖VD2
:= ‖v‖+ L0‖∇·v‖, ‖q‖QD2

:=
1

L0

‖q‖,

|||[v, q]|||D2 := σ
1

2‖v‖VD2
+ σ− 1

2‖q‖QD2
.

The norms introduced for all problems are collected in Table2. Note that
they are all dimensionally consistent and, in fact, all the terms have the same
dimensions when units are accounted for.

All problems considered are well posed foranyof the choices of the functional
spaces. This well-posedness can be written in terms of the inf-sup condition

inf
[u,p]∈VX×QX\{0,0}

sup
[v,q]∈VX×QX\{0,0}

BX([u, p], [v, q])

|||[u, p]|||X|||[v, q]|||X
≥ C > 0. (13)

Here and below,C denotes a positive constant, which may take different values at
different appearances.
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Table 2: Working norms for Stokes’, Maxwell’s and Darcy’s problems

|||[v, q]|||X

Stokes |||[v, q]|||S = ν
1

2‖∇v‖+ ν− 1

2‖q‖

Maxwell |||[v, q]|||M = λ
1

2‖∇×v‖+ λ
1
2

L0
‖v‖+ λ− 1

2‖q‖+ λ− 1

2L0‖∇q‖

Darcy, primal |||[v, q]|||D1 = σ
1

2‖v‖+ σ− 1

2‖∇q‖

Darcy, dual |||[v, q]|||D2 = σ
1

2‖v‖+ σ
1

2L0‖∇·v‖+ σ−
1
2

L0
‖q‖

2.3. Galerkin finite element approximation

The Galerkin finite element approximation of the problems introduced above
is well understood. Here we will consider only conforming finite element approx-
imations. Thus, ifVX,h andQX,h are finite element spaces to approximateVX

andQX , respectively, the discrete problem consists in seekinguh ∈ VX,h and
ph ∈ QX,h such that

BX([uh, ph], [vh, qh]) = (f , vh) + (g, qh) ∀[vh, qh] ∈ VX,h ×QX,h, (14)

which is the Galerkin version of (7). As it is well known, the difficulty to construct
the finite element spacesVX,h andQX,h is to meet the discrete counterpart of (13)
in order to have a stable problem. Each of the model problems analyzed in this
work has its own particular difficulties to satisfy this condition, as explained next.
For the sake of simplicity, only continuous finite element interpolations will be
considered.

2.3.1. Stokes’ problem
In this case, the bilinear formaS(u, v) defined in Table 1 is coercive in the

kernel of the operatorB defined as(q,∇·v) = 〈q, Bv〉. It is known that in this
case the satisfaction of the discrete version of (13) reduces to

inf
qh∈QS,h

sup
vh∈VS,h

(qh,∇·vh)

‖qh‖QS
‖vh‖VS

≥ C > 0. (15)

Different finite element interpolations satisfying this condition are known, al-
though the convenient equal order interpolation is not allowed. If (15) is satisfied,
the Galerkin approximation can be shown to be stable and optimally accurate.
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2.3.2. Maxwell’s problem
The Galerkin finite element approximation of the Maxwell problem is much

more delicate than that of the Stokes problems. Suppose thatwe wish to approxi-
mate spacesVM (eitherVM1 or VM2) andQM (eitherQM1 orQM2) by nodal finite
element interpolations, defined as

Nk(Ω) =
{

vh ∈ C0(Ω) such that vh|K ∈ Pk(K) ∀K ∈ Th

}

, (16)

whereTh is a triangulation of the domainΩ.
The crucial point in the approximation of Maxwell’s problemis the difficulty

to use the curl-div formulation (12), which consists of findinguh ∈ VM2,h such
that

λ(∇×uh,∇×vh) + λ(∇·uh,∇·vh) = (f , vh), ∀vh ∈ VM2,h,

whereVM2,h is a finite element subspace ofVM2. Finite dimensional spaces made
of nodal based (or Lagrangian) finite elements areH1-conforming. These approx-
imations encounter the so calledcorner paradox, which relies on the following
result:

Lemma 1. If Ω is not convex,VM2 ∩ H1(Ω)d is a closed proper subspace of
H0(curl; Ω) ∩H(div; Ω).

We also refer to the works [13, 17, 14] for a further discussion. Thus, the solution
of the continuous problemu might be outsideH1(Ω)d if Ω is not convex. As a
consequence, we have that

Corollary 1. If Ω is not convex and the finite element solutionsuh are uniformly
bounded inH1(Ω)d then

lim
h→0

‖u− uh‖VM2
6= 0,

in general.

This result is a serious drawback for nodal based finite element interpolations, and
in fact excludes their use whenΩ is not convexand the curl-div formulation is
employed(unless a regularization as proposed in [14] is used). This is so because
of the well known fact that

If uh ∈ H1(Ω)d ⇒ ‖∇uh‖ . ‖∇×uh‖+ ‖∇·uh‖.
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Here and in the following the symbol. is used to denote upper bounds up to con-
stants (& will be used to denote lower bounds up to constants). Since the curl-div
formulation will allow us to bound the right-hand-side (RHS) of this inequality (as
it is trivially checked) and nodal approximations areH1(Ω)d-conforming, the fi-
nite element solution will be uniformly bounded inH1(Ω)d and therefore it will be
unable to approximate the so calledsingular solutions(those belonging toVM2but
not toH1(Ω)d). In general, what can be shown is that (see e.g. [13]):

L0
r−1‖u‖Hr(Ω) . ‖∇×u‖+ ‖∇·u‖, r > 1/2.

From this discussion it is sometimes said thatH1(Ω)d conforming finite ele-
ment spaces cannot approximateVM2 if Ω is not convex unless a weighted reg-
ularization is used (cf. [6], see also references therein for alternatives). This is
a wrong conclusion, since the correct one, in view of the results stated, is thatif
‖∇·uh‖ is uniformly bounded,H1(Ω)d-conforming finite element spaces cannot
approximateVM2. Thus, nodal interpolations are excludedonlywhen the curl-div
form of the problem (12) is being approximated (see [3]).

Let us consider now the curl formulation given by (8)-(9). The discrete version
consists in findinguh ∈ VM1,h andph ∈ QM1,h such that

aM(uh, vh) + (∇ph, vh) = (f , vh), ∀vh ∈ VM1,h,

−(∇qh,uh) = 0, ∀qh ∈ QM1,h.

The discrete counterpart of (13) needs to hold in order to have a well posed
problem. As for the Stokes problem, convenient equal-orderinterpolations us-
ing nodal approximations are excluded. A possible way to design a compatible
pair VM1,h × QM1,h is to constructVM1,h using Nédélec’s elements andQM1,h

using a Lagrangian nodal interpolation (and therefore continuous).

2.3.3. Darcy’s problem
The primal and the dual formulations of Darcy’s problem havecompletely

different stability requirements. For the former, it is obvious thataD(u, v) is
coercive inL2(Ω)d and thus the stability condition can be expressed in the form
of the inf-sup condition

inf
qh∈QD1,h

sup
vh∈VD1,h

(∇qh, vh)

‖qh‖QD1
‖vh‖VD1

≥ C > 0. (17)

This condition is trivially satisfied ifQD1,h is made of continuous functions and
VD1,h is made of the gradients of functions inQD1,h. In fact, in this caseuh can
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be eliminated and the resulting problem forph is nothing but the discrete version
of the Poisson equation. Other choices ofVD1,h andQD1,h require the satisfaction
of (17).

The dual problem is often considered more interesting for applications that
require an accurate approximation touh. The difficulty in this case stems from
the fact thataD(u, v) is not coercive inH(div; Ω), because of the lack of control
on theL2(Ω)-norm of the divergence of functions inVD. To ensure stability,
QD2,h should be such thataD(uh, vh) is H(div; Ω)-coercive in the kernel of the
discrete operatorBh defined through the identity(qh,∇·vh) = 〈qh, Bhvh〉 and,
furthermore,

inf
qh∈QD2,h

sup
vh∈VD2,h

(qh,∇·vh)

‖qh‖QD2
‖vh‖VD2

≥ C > 0. (18)

This condition is analogous to (15), but the problem is that compatible interpola-
tions for the Stokes problem fail to yield the coercivity ofaD(uh, vh) in the kernel
of Bh just mentioned. This is why stable pairsVD2,h×QD2,h are different to those
used for the Stokes problem. An example of finite element pairthat satisfies (18)
is the Raviart-Thomas’ finite element foru-p.

2.4. Stabilized finite element approximation

The Galerkin finite element approximation of the model problems we consider
is obviously feasible, but not convenient from the point of view of implementation
ease. However, the situation worsens when combined problems are considered, as
discussed in Section 3.

The simplest compatible interpolations that satisfy the appropriate inf-sup
conditions (in 2D) for the model problems we consider are depicted in Fig. 1.
If the formulations we describe in the following are used, itis possible in partic-
ular to use equal interpolation for bothuh andph, which greatly simplifies the
implementation of the methods.

We will not present here the motivation of the stabilized formulations we de-
scribe, which may be found elsewhere. Our intention is to summarize their main
properties, with the objective to propose in Section 3 a formulation for a combined
problem that inherits these properties in the limit when twoof the three physical
parameters vanish.

In the following,K denotes a generic element of the finite element partition
Th. To simplify the notation, we will assume thatTh is quasi-uniform, although
all our results extend to non-degenerate finite element partitions. This assumption
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Figure 1: Low order compatible elements in 2D. Degrees of freedom foruh are depicted in black,
whereas interpolation nodes forph are depicted in red. Top left:P1 continuousuh enriched
with a bubble function,P1 continuousph (mini-element); top-center:P1 Nédélec interpolation
for uh, P1 continuousph; top-right:P1/P0 Raviart-Thomas element. Bottom:P1/P1 continuous
interpolations foruh andph.

will allow us to identify ash the characteristic element size of the subdomains in
Th.

The integral of the product of two functions overK is denoted by〈·, ·〉K . The
L2-norm inK will be identified with the appropriate subscript.

2.4.1. Stokes’ problem
Let VS,h andQS,h be the finite element spaces to approximate the velocity and

the pressure, respectively. The methods to be analyzed can be written as follows:
find [uh, ph] ∈ VS,h ×QS,h such that

BS,h([uh, ph], [vh, qh]) = LS,h([vh, qh]),

for all [vh, qh] ∈ VS,h×QS,h, where the bilinear formBS,h and the linear formLS,h

depend on the stabilized method to be considered as described in the following.
The first two methods that we consider are consistent. This isattained by

introducing stabilization terms based on the magnitude of the residual.
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Algebraic subgrid scale (ASGS) method.The formsBS,h andLS,h are given by:

BS,h([uh, ph], [vh, qh]) = BS([uh, ph], [vh, qh]) + τp
∑

K

〈∇·uh,∇·vh〉K

+ τu
∑

K

〈−ν∆uh +∇ph, ν∆vh +∇qh〉K , (19)

LS,h([vh, qh]) = (f , vh) + τu
∑

K

〈f , ν∆vh +∇qh〉K , (20)

whereτp andτu are the so calledstabilization parameters, that we compute as

τp = c1ν, τu = (c1ν)
−1h2, (21)

with c1 an algorithmic constant. The stabilization parameters arethe same for the
three methods presented.

Skew symmetric weighting (SSW) method.The formsBS,h andLS,h are given by:

BS,h([uh, ph], [vh, qh]) = BS([uh, ph], [vh, qh]) + τp
∑

K

〈∇·uh,∇·vh〉K

+ τu
∑

K

〈−ν∆uh +∇ph,∇qh〉K , (22)

LS,h([vh, qh]) = (f , vh) + τu
∑

K

〈f ,∇qh〉K , (23)

The difference between ASGS and SSW methods relies in the operator that is
applied over the test functions in the stabilization term. Whereas ASGS uses the
adjoint of the spatial differential operator (see, e.g., [18]), SSW only introduces
the skew-symmetric part (see [19]). Therefore, using ASGS the final formula-
tion keeps the symmetry of the problem, whereas the SSW method looses this
symmetry. The analysis of these two methods is almost identical.

Finally, we consider a third stabilization technique, originally introduced for
the Stokes problem in [11].

14



Orthogonal subscales (OSS) method.The bilinear formBS,h and the linear form
LS,h in the OSS method are given by

BS,h([uh, ph], [vh, qh]) = BS([uh, ph], [vh, qh])

+ τp
∑

K

〈P⊥
h (∇·uh), P

⊥
h (∇·vh)〉K

+ τu
∑

K

〈P⊥
h (−ν∆uh +∇ph), P

⊥
h (ν∆vh +∇qh)〉K ,

LS,h([vh, qh]) = (f , vh),

whereP⊥ = I − Ph, Ph being the projection onto the finite element space (for
implementation issues of this projection, see [12]). Alternatively, we could con-
sider an SSW-type OSS method, i.e. to consider only the skew-symmetric part
of the spatial differential operator in the stabilization term. In this case, the vis-
cous terms can be dropped without altering consistency, andthe resulting method
would be symmetric (see [10]).

Analysis.The ASGS, SSW and OSS methods have the same stability and conver-
gence properties, even though their numerical behavior on afixed mesh is differ-
ent. Let us define the mesh dependent norm:

|||[vh, qh]|||
2
S,h = ν‖∇vh‖

2 +
1

ν
‖qh‖

2 +
h2

ν

∑

K

‖∇qh‖
2
K . (24)

In fact, the last term is unnecessary, since the first two are already those that appear
in the norm of the continuous problem. However, stability inthe first and the last
term is in fact what the method provides, and the second term can be recovered
a posteriori (see [19]). Because of this, and to clarify the generalization to be
introduced in Section 3, we have decided to keep the whole expression (24).

We also define the error function

E2
S(h) = νε21(u) +

1

ν
ε20(p), (25)

whereεi(·) denotes the interpolation error in theH i(Ω)-seminorm. It can be
proved that (24) and (25) are the norm and error function of the ASGS and the
OSS methods for the Stokes problem. This is what the following results state, that
have been proved in [19] for SSW and in [11] for OSS:
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Theorem 1 (Stability). Suppose that the constantc1 is large enough. Then, there
exists a constantC > 0 such that

inf
[uh,ph]∈VS,h×QS,h\{0,0}

sup
[vh,qh]∈VS,h×QS,h\{0,0}

BS,h([uh, ph], [vh, qh])

|||[uh, ph]|||S,h|||[vh, qh]|||S,h
≥ C > 0.

Theorem 2 (Convergence). Let [u, p] be the solution of the continuous problem
and [uh, ph] the solution of the discrete one. Suppose as before thatc1 is large
enough. Then

|||[u− uh, p− ph]|||S,h . ES(h).

2.4.2. Maxwell’s problem
The stabilized finite element method we propose has recentlybeen introduced

in [3], with slight modifications. In the original article, the pressure stabilization
makes use of the fact thatp = 0 for a solenoidalf , by stating the problem in
a novel augmented formulation that provides pressure stability. In the following
we will motivate the method as a residual-based stabilized finite element method,
and we will also design a new OSS technique for the problem at hand. This
reinterpretation allows us to couple the resulting residual-based stabilized method
with those developed for Stokes’ and Darcy’s problems.

In the following, we assume thatVM ≡ VM1 andQM ≡ QM1, defined in Table
1; we only consider the curl functional setting that allows one to approximate
singular solutions. LetVM,h andQM,h be finite element approximations ofVM

andQM respectively. We can now state the ASGS and OSS stabilized algorithms
for Maxwell’s problem as follows: find[uh, ph] ∈ VM,h ×QM,h such that

BM,h([uh, ph], [vh, qh]) = LM,h([vh, qh]),

for all [vh, qh] ∈ VM,h ×QM,h, where

BM,h([uh, ph], [vh, qh]) = BM([uh, ph], [vh, qh]) + τp(P̃ (∇ · uh),∇ · vh)

+
∑

K

τu〈P̃ (λ∇×∇×uh +∇ph),−λ∇×∇×vh +∇qh〉K , (26)

LM,h([vh, qh]) = (f , vh) +
∑

K

τu〈P̃ (f ),−λ∇×∇×vh +∇qh〉K , (27)

and the stabilization parameters read:

τp = c2λ
h2

L2
0

, τu =
L2
0

λ
.
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Apart from the definition ofL0, c2 is the algorithmic constant on which the for-
mulation depends. The projectioñP can be either the identityI or the projection
orthogonal to the finite element spaceP⊥

h , getting the ASGS and OSS formula-
tions, respectively.

When taking the test functions equal to the unknowns to provestability we get

BM,h([uh, ph], [uh, ph]) = λ‖∇×uh‖
2 − L2

0λ‖P̃ (∇×∇×uh)‖
2

+
L2
0

λ
‖P̃ (∇ph)‖

2 + c2λ
h2

L2
0

‖P̃ (∇·uh)‖
2.

The problem is the control of the second term. WhenP̃ = I, this control could be
achieved using an inverse inequality, but for thatL0 should behave ash, and this
would not allow us to approximate singular solutions (see [3]). For these reasons,
the previous algorithm is discarded.

Skew symmetric weighting method.Instead we can consider an SSW-type formu-
lation, in which the bilinear form of the problem is given by

BM,h([uh, ph], [vh, qh]) = BM([uh, ph], [vh, qh])

+
∑

K

L2
0

λ
〈λ∇×∇×uh +∇ph,∇qh〉K +

∑

K

c2λ
h2

L2
0

〈∇·uh,∇·vh〉K . (28)

Since
∑

K 〈λ∇×∇×uh,∇qh〉K = 0, this term can be cancelled out, recovering
the same method as in [3]:

BM,h([uh, ph], [vh, qh]) = BM ([uh, ph], [vh, qh])

+
∑

K

L2
0

λ
〈∇ph,∇qh〉K +

∑

K

c2λ
h2

L2
0

〈∇·uh,∇·vh〉K , (29)

LM,h([vh, qh]) = (f , vh) +
∑

K

L2
0

λ
〈f ,∇qh〉K .

We stress the fact that this SSW stabilization ends up being symmetric. Note that
the last term vanishes iff is solenoidal.

Orthogonal subscales method.When P̃ = P⊥
h , the termP⊥

h (λ∇×∇×uh) in
(26)-(27) can be omitted without sacrificing accuracy. If this is done, the bilinear
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form of the problem is

BM,h([uh, ph], [vh, qh]) = BM([uh, ph], [vh, qh])

+
∑

K

L2
0

λ
〈P⊥

h (∇ph), P
⊥
h (∇qh)〉K +

∑

K

c2λ
h2

L2
0

〈P⊥
h (∇·uh), P

⊥
h (∇·vh)〉K .

(30)

Analysis.We will not analyze in detail the formulations determined by(29) and
(30), but the following discussion will be useful in Section3 to design the com-
bined problem. Let us state the stability and convergence results we have proved
for problem (29) in [3]. First, let us define the mesh-dependent norm:

|||[vh, qh]|||M,h = λ
1

2‖∇×vh‖+ λ
1

2

h

L0
‖∇·uh‖+

L0

λ
1

2

‖∇ph‖. (31)

As for the Stokes problem, this is the norm for which the method provides stability
in a straightforward manner. Indeed, it is easy to check thatthe SSW method is
coercive with respect to this norm. For OSS, we immediately get

BM,h([uh, ph], [uh, ph]) = λ‖∇×uh‖
2 +

L2
0

λ
‖P⊥

h (∇ph)‖
2 + c2λ

h2

L2
0

‖∇·uh‖
2.

The problem is now to obtain control on the component ofph in the finite element
space, that is to say,Ph(∇ph). To this end, we may take as test functionvh,0 =
ℓ2

λ
Ph(∇ph), ℓ being a length scale to be determined. Using an inverse inequality,

we then have

BM,h([uh, ph], [vh,0, 0])

& −ℓ2‖∇×uh‖‖∇×Ph(∇ph)‖+
ℓ2

λ
‖Ph(∇ph)‖

2

−
ℓ2h2

L2
0

‖∇·uh‖‖∇·Ph(∇ph)‖

& −
β1

2
λ‖∇×uh‖

2 −
1

2β1

ℓ4

λh2
‖Ph(∇ph)‖

2 +
ℓ2

λ
‖Ph(∇ph)‖

2

−
β2

2

λh2

L2
0

‖∇·uh‖
2 −

1

2β2

ℓ4

λL2
0

‖Ph(∇ph)‖
2,

which holds for arbitraryβ1, β2 > 0. The optimal situation would be to take
ℓ = L0, but then we cannot control the second term of the last bound.To be able
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to achieve this control, we must takeℓ = h. On the other hand, full stability over
∇ · uh is attained taking as test functionqh,0 = λh2

L2
0

Ph(∇ · uh), getting:

BM,h([uh, ph], [0, qh,0])

&
λh2

L2
0

‖Ph(∇ · uh)‖
2 − ‖∇ph‖h

2‖∇Ph(∇ · uh)‖

&
λh2

L2
0

‖Ph(∇ · uh)‖
2 −

L2
0

2β3λ
‖∇ph‖

2 −
λh2

2β3L2
0

‖Ph(∇ · uh)‖
2 (32)

for an arbitraryβ3 > 0. After combining these results, it is not difficult to see that
the formulation obtained using the bilinear form (30) is stable (in the form of an
inf-sup condition) in the norm

|||[vh, qh]|||M,h = λ
1

2‖∇×vh‖+ λ
1

2

h

L0

‖∇·uh‖+
L0

λ
1

2

‖P⊥
h (∇ph)‖

+
h

λ
1

2

‖Ph(∇ph)‖,

which is weaker than (31). It is worthy to note that control onthe last term can
also be obtained for a Galerkin formulation.

In the following, we list some results proved in [3]:

Lemma 2 (Stability in the mesh dependent norm). The bilinear form in (29),
BM,h : VM,h × QM,h × VM,h × QM,h → R, is coercive with respect to the mesh-
dependent norm (31).

However, once stability is proved in this norm, it can also beproved in the norm
defined in Table 2 for the Maxwell problem:

Lemma 3 (Norm equivalence). The solution[wh, αh] ∈ VM,h×QM,h of the dis-
crete problem

BM,h(wh, αh; vh, qh) = 〈f , vh〉+ 〈g, qh〉, ∀(vh, qh) ∈ VM,h ×QM,h,

for f ∈ V ′ andg ∈ Q′, satisfies:

|||wh, αh|||M,h . |||wh, αh|||M . |||wh, αh|||M,h + ‖g‖Q′.

The idea to prove this result is to recover theL2(Ω)-control onu andp from the
control on the divergence ofu and the gradient ofp, respectively. To this end, the
continuous inf-sup condition is crucial. Note that in this case we have considered
an arbitrary functiong. This allows us to obtain the target stability result:
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Corollary 2 (Natural stability). The solution[uh, ph] of the problem satisfies

|||[uh, ph]|||M . ‖f‖.

When restricted to the discrete finite element spaces, the bilinear form of our
method is continuous:

Corollary 3 (Natural continuity). The stabilized bilinear form in (29),BM,h :
VM,h×QM,h×VM,h×QM,h → R, is continuous with respect to the norm||| · |||M .

These results allow us to prove a convergence result in a straightforward way.
The error function of the method is given by

EM(h) := inf
[wh,rh]∈VM,h×QM,h

[

|||[u−wh, p− rh]|||M

+ λ
1

2

(

∑

K

h

L2
0

‖u−wh‖
2
L2(∂K)

)
1

2
]

.

We have left the last term, which shows the additional error introduced by our
method compared to what could be expected from a Galerkin approach. Never-
theless, this last term behaves in an optimal way. We have:

Theorem 3 (Convergence). The solution[uh, ph] of the discrete problem satisfies

|||[uh − u, ph − p]|||M . EM(h).

In Maxwell’s problem it is important to clearly state how themethod converges
when the solutions are smooth and when they are not, since singular solutions are
common in non-convex domains. In general, we have the following interpolation
estimates:

inf
wh∈VM,h

‖v −wh‖Hs(ω) . ht−s‖v‖Ht(ω), 0 ≤ s ≤ t ≤ k + 1,

inf
rh∈QM,h

‖q − rh‖Hs(ω) . ht−s‖q‖Ht(ω), 0 ≤ s ≤ t ≤ l + 1,

for any bounded setω ⊂ Ω.
When the solution is smooth we have, from the last convergence theorem:

Corollary 4 (Convergence to smooth solutions). If u ∈ Hr(Ω)d, with r ≥ 1,
the solution[uh, ph] satisfies:

|||u− uh, p− ph|||M . λ
1

2ht−1‖u‖Ht(Ω), t := min{r, k + 1}.
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This is clearly an optimal result. For singular solutions wehave to make use of
the following result:

Lemma 4 (Decomposition of singular solutions). The solutionu ∈ VM∩H(div; Ω)
of the problem can be decomposed into a regular part and a singular part as fol-
lows:

u = u0 +∇ϕ,

whereu0 ∈ H1+r(Ω)d ∩ H0(curl; Ω), ϕ ∈ H1
0 (Ω) ∩ H1+r(Ω) for some real

numberr > 1
2
.

In order to prove convergence to non-singular solutions, wehave toassume
that the finite element partition is able to approximate the gradient part of this
solution. This assumption is common to other numerical formulations and can be
stated as follows:

Assumption 1. There exists a finite element spaceGh defined overTh such that,
for anyφh ∈ Gh, ∇φh ∈ VM,h. Furthermore, this space satisfies

inf
φh∈Gh

‖φ− φh‖Hs(ω) . ht−s‖φ‖Ht(ω)

for φ ∈ H t(ω) and0 ≤ s ≤ t ≤ 1 + k.

Assumption 1 is known to hold for interpolation ordersk ≥ 4 in dimension
2 without any assumption on the mesh typology. In this case, we can takeGh

as the finite element space obtained for the Argyris triangle. Fork ≥ 2, Gh can
be constructed by using the Bogner-Fox-Schmidt triangle; in order to do this, the
triangulationTh should admit a coarser mesh of macroelements. We refer to [14]
for a detailed discusion.

The discrete space recently introduced in [25], based on a Powell–Sabin inter-
polant (see Figure 2 right), makes true Assumption 1 fork ≥ 1, both in two and
three dimensions. Furthermore, we have observed from numerical experiments
that a mesh with the crossed-box typology (see Figure 2 left)also satisfies this
assumption. In a numerical code, it implies to perform a cheap pre-processing
of the original mesh. Given any original triangular mesh, the Powell-Sabin mesh
is obtained by introducing additional nodes on the mid-points of the edges and
the element barycentes, and re-connecting the nodes properly. On the other hand,
crossed-box meshes are obtained from a quadrilateral mesh by placing a node on
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Figure 2: Crossed-box (left) and Powell-Sabin (right) macro-element typologies.

its center, and creating four triangles; in fact, the additional node can be con-
densed.

If Assumption 1 holds, we are able to prove the following quasi-optimal error
estimate [3]:

Corollary 5 (Convergence to singular solutions). Under Assumption 1, the so-
lution [uh, ph] of the discrete problem satisfies

|||u− uh, p− ph|||M . λ
1

2ht‖u0‖H1+t(Ω) +
λ

1

2

L0
1−ǫh

t−ǫ‖ϕ‖H1+t(Ω),

for anyǫ ∈]0, t− 1/2[ and fort = min{r, k}, wherer is defined in Lemma 4.

This result is based on the embedding ofHǫ(∂K) in Hǫ+ 1

2 (K) for any element
domainK, and therefore the bound explodes asǫ → 0.

2.4.3. Darcy’s problem
The formulation of the method we propose and its analysis forDarcy’s prob-

lem follows exactly the same lines as for the Stokes problem.Let VD,h andQD,h

be the finite element spaces to approximate the velocity and the pressure, respec-
tively. The methods to be analyzed can be written as follows:find [uh, ph] ∈
VD,h ×QD,h such that

BD,h([uh, ph], [vh, qh]) = LD,h([vh, qh]),

for all [vh, qh] ∈ VD,h × QD,h. Once again, the bilinear and linear forms of the
problem are defined depending on the stabilization method being used.
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Algebraic subgrid scale method.The formsBD,h andLD,h are given by:

BD,h([uh, ph], [vh, qh]) = BD([uh, ph], [vh, qh]) + τp
∑

K

〈∇·uh,∇·vh〉K

+ τu
∑

K

〈σuh +∇ph,−σvh +∇qh〉K ,

LD,h([vh, qh]) = (f , vh) + (g, qh) + τp
∑

K

〈g,∇·vh〉K

+ τu
∑

K

〈f ,−σvh +∇qh〉K .

The stabilization parameters are computed as

τp = c3σℓ
2, τu = (c3σℓ

2)−1h2, (33)

with c3 an algorithmic constant andℓ a length scale to be determined. This length
scale turns out to be crucial to be able to approximate eitherthe primal or the
dual form of the problem. It can be taken asL0, h or (L0h)

1/2. Its introduction
can be motivated by scaling arguments. In fact, the length scale in τp could be
different from that inτu, but we have taken them equal to simplify the discussion.
Using an approximate Fourier analysis as in [5], the stabilization parameters are
found, now depending on scaling coefficientsµu andµp. In turn, these scaling
coefficients depend on a length scale of the problem that may be taken asL0 or h.
This is what determines the choice forℓ. The same expression of the stabilization
parameters is used for SSW and OSS algorithms presented next.

Skew symmetric weighting method.The formsBD,h andLD,h are given by:

BD,h([uh, ph], [vh, qh]) = B([uh, ph], [vh, qh]) + τp
∑

K

〈∇·uh,∇·vh〉K

+ τu
∑

K

〈σuh +∇ph,∇qh〉K ,

LD,h([vh, qh]) = (f , vh) + (g, qh) + τp
∑

K

〈g,∇·vh〉K

+ τu
∑

K

〈f ,∇qh〉K .

This formulation is non-symmetric but introduces all the stabilization needed for
the discrete problem to be well-posed.
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Orthogonal subscales method.The bilinear formBD,h and the linear formLD,h

in the OSS method are given by

BD,h([uh, ph], [vh, qh]) = BD([uh, ph], [vh, qh])

+ τp
∑

K

〈P⊥
h (∇·uh), P

⊥
h (∇·vh)〉K + τu

∑

K

〈P⊥
h (∇ph), P

⊥
h (∇qh)〉K ,

LD,h([vh, qh]) = (f , vh) + (g, qh).

Analysis.As for the Stokes problem, all the methods have the same stability and
convergence properties. Let us define the mesh dependent norm

|||[vh, qh]|||
2
D,h = σ‖vh‖

2 + σℓ2‖∇ · vh‖
2 +

1

σL2
0

‖qh‖
2 +

h2

σℓ2

∑

K

‖∇qh‖
2
K , (34)

as well as the error function

E2
D(h) = σℓ2(h−2ε20(u) + ε21(u)) + σε20(u) +

h2

σℓ2
(h−2ε20(p) + ε21(p)). (35)

The following results can be summarized by saying that theseare the norm and
error function of the methods introduced:

Theorem 4 (Stability). Suppose that the constantc3 in (33) is large enough.
Then, there exists a constantC such that

inf
[uh,ph]∈VD,h×QD,h\{0,0}

sup
[vh,qh]∈VD,h×QD,h\{0,0}

BD,h([uh, ph], [vh, qh])

|||[uh, ph]|||D,h|||[vh, qh]|||D,h

≥ C > 0.

Theorem 5 (Convergence). Let [u, p] be the solution of the continuous problem
and [uh, ph] the solution of the discrete one. Suppose as before thatc3 is large
enough. Then

|||[u− uh, p− ph]|||D,h . ED(h).

We refer to [4, 5] for the proof of these results. Let us discuss the implications
of the choice ofℓ in view of the working norm in (34) and the error function in
(35). On the one hand, ifℓ = h (up to constants), we do not have control on the
velocity divergence, but pressure gradients are controlled. Thus, (34) coincides
with the norm of theprimal formulation of Darcy’s problem in Table 2, and the
error function (35) (withℓ = h) is consistent with this fact. On the other hand,
if ℓ = L0 (34) is the discrete counterpart of the norm of thedual formulation of
Darcy’s problem in Table 2 and, as in the previous case, the error function (35)
(with ℓ = L0) is consistent with this fact.
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3. Combined problem

3.1. Boundary value problem

In this section we consider the problem that combines all themodel problems
discussed heretofore. It consists of findingu andp solution of the differential
equations posed in a domainΩ

−ν∆u + λ∇×∇× u+ σu+∇p = f , (36)

∇ · u = g, (37)

together with appropriate boundary conditions on the normal and tangential com-
ponents ofu and, ifν = 0, also onp on∂Ω (possible ifσ > 0, needed ifσ = 0).
The problem has obviously the structure (1)-(3), with

LX(u) = LS(u) + LM (u) + LD(u).

If ν > 0, the problem is in principle posed in the functional settingof the
Stokes problem. However, at the numerical level itdoesmatter whetherν is small
or not compared to the rest of physical parameters. Thus, if aGalerkin method is
used which is stable for the Stokes problems, results are likely to be very poor ifν
is small. Likewise, in the caseν = 0 it is not clear which is the interpolation that
will lead to a stable method, since it is different for Maxwell’s problem (λ > 0,
σ = 0) and for Darcy’s problem (λ = 0, σ > 0).

Our goal is therefore to propose an approximation of the boundary value prob-
lem (36)-(37) (plus boundary conditions) able to deal with the limits

ν → 0, σ → 0, or λ → 0.

Concerning the physical interest of (36)-(37), the caseλ = 0 is known as the
Brinkman problem, and models the flow of viscous fluids in porous media. The
caseν = 0 is relevant to the analysis of eigenvalues of the Maxwell operator. We
are not aware of any situation involvingν > 0 andλ > 0, but nevertheless being
able to deal with it highlights the robustness of a numericalformulation.

3.2. Variational form and functional setting

The weak form of problem (36)-(37), with the homogeneous boundary condi-
tions used in the model problems, is straightforward. It consists of finding[u, p]
such that

BSMD([u, p], [v, q]) = (f , v) + (g, q), (38)
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for all [v, q] in the appropriate functional spaceV × Q, which is discussed next.
The bilinear formBSMD in (38) is given by

BSMD([u, p], [v, q]) = ν(∇u,∇v) + λ(∇×u,∇×v) + σ(u, v)

+ 〈∇p, v〉+ 〈q,∇ · u〉.

The functional setting is a delicate issueif we want to encompass all possible
situations discussed previously for the model problems. We define the norm

‖v‖V =L−1
0 κ

1

2‖v‖+ ν
1

2‖∇v‖+ λ
1

2‖∇×v‖+ κ
1

2

ℓ ‖∇ · v‖2, (39)

with

κ = ν + λ+ σL2
0, κℓ = ν

ℓ2S
L2
0

+ λ
ℓ2M
L2
0

+ σℓ2D,

and whereℓS, ℓM andℓD arecharacteristic lengthscalesfor the Stokes, the Maxwell
and the Darcy problems, respectively, which may beeitherL0 or 0. In fact, for the
Stokes problem only the caseℓS = L0 makes sense, as we will see immediately.
We also denote by‖ · ‖V ′ the corresponding dual norm.

This, in turn, allows us to define the following norm:

‖q‖Q := sup
v 6=0

〈∇q, v〉

‖v‖V
. (40)

This is the crucial ingredient we need to define the followingnorm:

|||[v, q]|||X := ‖v‖V + ‖q‖Q. (41)

Finally, we defineV × Q as the closure ofC∞
0 (Ω)d × C∞

0 (Ω) with respect to this
norm.

Let us discuss how (41) behaves in particular cases. From (39) it is seen that
whenν > 0, (39) behaves as theH1(Ω)-norm and (40) as theH−1(Ω)-norm for
∇q, the regularity we may require for∇q in the Stokes problem. Suppose that
ν = 0 and thatσ = 0. If ℓM = 0 then (39) is theH(curl; Ω)-norm ofv. From
the inf-sup condition betweenH(curl; Ω) andH1

0 (Ω) (see e.g. [24]) it follows
from (40) that‖q‖Q is equivalent to theH1

0 (Ω)-norm of q. This allows us to
conclude thatℓM = 0 corresponds to theH(curl; Ω) × H1(Ω) formulation of
Maxwell’s problem. Analogously, it is easy to see thatℓM = L0 corresponds to
theH(curl; Ω) ∩ H(div; Ω) × L2(Ω) formulation. A similar discussion leads to
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conclude that, in the Darcy case (ν = 0, λ = 0), ℓD = 0 corresponds to the mixed
primal problem andℓD = L0 to the mixed dual problem.

The limiting cases provided by the norm (41) are summarized in Table 3. The
norms of the particular cases have some redundant terms, that are nevertheless
required to encompass all possible situations. The objective of a unified functional
framework for the combined problem being analyzed is thus accomplished.

Let us proof that problem (38) is stable in the norm (41), stability being ex-
pressed in the form of an inf-sup condition, as usual. We defineKerB as the set
of functions that belong to the functional spaceV such that〈∇q, v〉 = 0 for any
q ∈ Q. Finally,X = V ×Q andX0 = KerB ×Q.

Theorem 6. The following inf-sup condition holds:

inf
[u,p]∈X0\{0,0}

sup
[v,q]∈X\{0,0}

BSMD([u, p], [v, q])

|||[u, p]|||X |||[v, q]|||X
≥ C,

withC > 0 a positive constant.

Proof. First, let us take[v, q] = [u, p] ∈ X0 in the combined problem. We easily
obtain:

BSMD([u, p], [u, p]) & ‖u‖2V ,

where the divergence stability terms come from the fact thatu is solenoidal. On
the other hand, by the definition of the norm‖ · ‖Q, there always exists a function
vp ∈ V such that‖vp‖V = ‖p‖Q and〈∇p, vp〉 = ‖p‖2Q. So, we have that:

BSMD([u, p], [u+ αvp, p]) & ‖u‖2V + α‖p‖2Q + aSMD(u, αvp),

whereaSMD(u, v) = ν(∇u,∇v) + λ(∇ × u,∇ × v) + σ(u, v). Now, noting
thataSMD is continuous with respect to‖ · ‖V , we can prove the theorem taking
α > 0 small enough in the previous expression together with Cauchy-Schwarz
and Young’s inequalities. �

The previous inf-sup condition, inKerB, is enough to prove the well-posedness
of the problem (see, e.g., [16, Theorem 2.34.]).

3.3. Stabilized finite element approximation

The stabilized finite element formulation of problem (38) wepropose is a gen-
eralization of the one presented for the three independent model problems, keep-
ing in mind the reformulation of the approximation of Maxwell’s problem as a
residual based stabilized finite element method.
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Table 3: Unified norm in the particular cases of Stokes’, Maxwell’s and Darcy’s problems

|||[v, q]|||
X

Stokes,ℓS = L0 ν
1

2 ‖∇v‖+ ν
1

2

L0

‖v‖+ ν−
1

2 ‖q‖+ ν
1

2 ‖∇ · v‖+ L0ν
−

1

2 ‖∇q‖H−1

Maxwell, curl: ℓM = 0 λ
1

2 ‖∇×v‖+ λ
1

2

L0

‖v‖+ λ−

1

2 ‖q‖+ λ−

1

2L0‖∇q‖

Maxwell, curl-div: ℓM = L0 λ
1

2 ‖∇×v‖+ λ
1

2

L0

‖v‖+ λ−

1

2 ‖q‖+ λ
1

2 ‖∇ · v‖+ λ−

1

2L0‖∇q‖H−1

Darcy, primal:ℓD = 0 σ
1

2 ‖v‖+ σ
−

1

2

L0

‖q‖+ σ−

1

2 ‖∇q‖

Darcy, dual:ℓD = L0 σ
1

2 ‖v‖+ σ
−

1

2

L0

‖q‖+ σ
1

2L0‖∇·v‖+ σ−

1

2 ‖∇q‖H−1

If Vh×Qh is a finite element space to approximateV ×Q, the discrete problem
reads: find[uh, ph] ∈ Vh ×Qh such that

BSMD,h([u, p], [v, q]) = LSMD,h([v, q]), (42)

for all [vh, qh] ∈ Vh × Qh, whereBSMD,h andLSMD,h are the forms in the stabi-
lized finite element formulation. Stokes’ and Darcy’s problems allow one the use
of ASGS, OSS and SSW techniques. However, Maxwell’s problemonly allows
the SSW formulation or an OSS formulation with a weakened stability. For this
reason, when considering a unified treatment of all the problems at hand, we only
use the SSW and OSS methods.

Skew symmetric weighting method.The forms for the unified Stokes-Maxwell-
Darcy problem approximated via a SSW finite element discretization read as fol-
lows:

BSMD,h([uh, ph], [vh, qh]) = BSMD([uh, ph], [vh, qh]) + τp
∑

K

〈∇·uh,∇·vh〉K

+ τu
∑

K

〈−ν∆uh + σuh +∇ph,∇qh〉K , (43)

LS,h([vh, qh]) = (f , vh) + τu
∑

K

〈f ,∇qh〉K + (g, qh)

+ τp
∑

K

〈g,∇ · vh〉K .
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Let us stress the fact that the curl-curl term in the stabilization term weighted with
τu has been cancelled out, as commented above for the Maxwell problem. A crit-
ical issue is the calculation of the stabilization parameters τp, τu, which are the
same in (43) and in (49) below. They have to behave as the parameters of the
model problems when the appropriate physical parameters tend to zero. In the
case of Maxwell’s and Darcy’s problems, they also have to allow one to encom-
pass the two functional settings we have discussed for each of these problems. It
is immediately checked that both goals are achieved if we take

τp = c1ν + c2λ
ℓ2M,h

L2
0

+ c3σℓ
2
D,h, τu =

h2

τp
.

The values ofℓM,h andℓD,h may be eitherh or L0, corresponding to the values of
ℓM andℓD of 0 andL0, respectively. Note that, for stability reasons,ℓM,h andℓD,h

cannotbe 0.
For the SSW formulation in (43), the stability and error analysis can be under-

taken in the mesh dependent norm:

|||[vh, qh]|||
2
X,h :=L−2

0 κ‖vh‖
2 + ν‖∇vh‖

2 + λ‖∇×vh‖
2

+ τp‖∇·uh‖
2 + τu

∑

K

‖∇qh‖
2
K . (44)

From this norm it is readily seen that we have all the control expected. In particu-
lar, in the applications the most interesting situations are the curl formulation for
the Maxwell problem and the dual formulation for the Darcy problem. If we take
ℓM,h = L0 andℓD,h = h, these will be precisely the limiting cases whenν → 0,
σ → 0 andν → 0, λ → 0, respectively.

The following theorem proves that the SSW is stable. To avoidtechnicalities,
we present this stability result in the form of a bound for theunknowns in terms
of the data rather than as an inf-sup condition.

Theorem 7. The solution[uh, ph] of problem (42) satisfies the stability bound:

|||[uh, ph]|||X,h . Cf,g,

whereCf,g is used to denote a generic constant that depends on the norm of the
data (but is independent ofh). Moreover

‖ph‖Q . Cf,g.
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Proof. The stabilized problem is coercive for the whole mesh-dependent norm,
except for theλ‖uh‖2 term, and therefore all terms in|||[uh, ph]|||X,h except this
one will be bounded by the appropriate norm of the data. ForℓM,h = L0, this
result is straightforward from the fact that

L−1
0 ‖uh‖ . ‖∇×uh‖+ ‖∇ · uh‖.

For ℓM,h = h, this term can still be bounded by using the technical resultin [3,
Lemma 3], that gives:

L−2
0 λ‖uh‖

2 . λ‖∇×uh‖
2 + λ

h2

L2
0

‖∇ · uh‖
2 + L2

0λ
−1‖ph‖

2. (45)

Then, multiplying the previous inequality against

τuλL
−2
0 =

λ h2

L2
0

c1ν + c2λ
h2

L2
0

+ c3σℓ2D,h

. 1,

we get

L−2
0 λ‖uh‖

2
λ h2

L2
0

c1ν + c2λ
h2

L2
0

+ c3σℓ
2
D,h

. λ‖∇×uh‖
2 + τp‖∇ · uh‖

2 + τu‖ph‖
2,

(46)

where the right-hand side is bounded in terms of the data. Now, we use the already
known stability bounds overL−2

0 (σL2
0 + ν)‖uh‖2. We have that:

L−2
0 λ‖uh‖

2
λ h2

L2
0

c1ν + c2λ
h2

L2
0

+ c3σℓ
2
D,h

+ L−2
0 (σℓ2D,h + ν)‖uh‖

2 ≤ Cf,g.

Using the relation

a <
a2

a+ b
+ b

for anya, b > 0 in the previous equation, we easily get the bound overL−1
0 λ‖uh‖

2.
With regard to the pressure, we can always find avp ∈ X such that

‖ph‖
2
Q = 〈∇ph, vp〉

and‖vp‖V = ‖ph‖Q, by the definition of the norm. On the other hand, let us
consider an optimal projection ofvp onto the finite element space, denoted by
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ṽp,h (see, e.g., [7]), e.g. the Scott-Zhang projection. Invoking the problem solved
by the solution[uh, ph], we have

‖ph‖
2
Q = 〈∇ph, vp − ṽp,h〉 − aSMD(uh, ṽp,h)

− τp
∑

K

〈∇·uh,∇·ṽp,h〉K + (f , ṽp,h). (47)

The first term is bounded as follows:

〈∇ph, vp − ṽp,h〉

.

(

h2

ν + λh2L−2
0 + σh2

)
1

2

‖∇ph‖

(

h2

ν + λh2L−2
0 + σh2

)− 1

2

‖vp − ṽp,h‖

.

(

h2

ν + λh2L−2
0 + σh2

)
1

2

‖∇ph‖‖vp‖V , (48)

where we have used the interpolation properties and stability of the Scott-Zhang
projector. The rest of the terms in (47) are easily bounded interms of the data
using the bounds already proved for|||[uh, ph]|||X,h. �

Orthogonal subscales method.For the combined problem we can also consider
the following unified formulation:

BSMD,h([uh, ph], [vh, qh]) = BSMD([uh, ph], [vh, qh])

+ τp
∑

K

〈P⊥
h (∇·uh), P

⊥
h (∇·vh)〉K

+ τu
∑

K

〈P⊥
h (∇ph), P

⊥
h (∇qh)〉K , (49)

LS,h([vh, qh]) = (f , vh) + (g, qh),

when using the OSS formulation. However, in this case the norm (44) has to
be weakened for the OSS method (49) in what concerns control on the pressure
gradient projected onto the finite element space, as explained at the end of sub-
section 2.4.2.

We omit the details of the convergence analysis for the formulations presented,
which follow along the same lines as those of the individual problems.
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4. Conclusions

The purpose of this paper has been twofold. On the one side, wehave sum-
marized in a unified manner the formulation and the analysis we had presented in
[5, 4, 3]. We have shown that the stabilized formulations we propose are able not
only to allowarbitrary interpolations ofu andp, but also to resort to the appro-
priate functional setting of the problem with a proper design of the stabilization
parameters (curl or curl-div formulations for Maxwell’s problem, primal or dual
formulations for Darcy’s problem). Stability and optimal convergence results in
fully meaningful norms have been presented.

On the other hand, we have also proposed a formulation for a combined prob-
lem able to reduce correctly to the model problems when the physical parameters
tend to zero. A stabilized formulation has also been introduced for this unified
problem. Let us just remark the difficulty encountered to formulate this method as
residual based because of the lack of control of the double curl of u if ℓM,h = L0,
the case of interest if singular solutions need to be approximated.
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