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Abstract— 1
A new Ordinary Differential Equation (ODE)

governing the SNIR evolution of a Successive Interference Can-

celler (SIC) for DS-CDMA is derived when the number of users

tends to infinity and all users share the same channel encoder.

Using Variational Calculus, this ODE is applied to obtaining

the energy profile that maximizes the average spectral efficiency

when a constraint on the power unbalance (maximum power

to minimum power ratio) of received users is enforced. The

conditions for extremality of the optimum energy profile are

established in terms of the common encoder’s Packet Error Rate

(PER) function.

Index Terms— Successive Interference Cancellation, power

unbalance, differential equation, Variational Calculus, Packet

Error Rate, CDMA, error propagation.

I. INTRODUCTION AND INITIAL DEFINITIONS

Spectral efficiency studies carried out for DS-CDMA Suc-
cessive Interference Cancellation (SIC) may be found in the
literature in terms of capacity-achieving codes and a constraint
on the average received energy of all users. With this setting,
an exponential energy profile, which leads to a uniform per-
user Signal to Noise plus Interference Power Ratio (SNIR)
profile, is shown to optimize the average capacity [1]. In
constrast, in this work we consider real (implementable) non-
capacity-achieving channel encoders characterized by their
Packet Error Rate (PER) function versus the per-user symbol
energy Es to noise plus interference power spectral density
ratio Nt: Es=Nt (SNIR), with Nt = N0 + Ni, and we seek
to maximize the average spectral efficiency over all users,
¥, using the expression previously derived in [2] for SIC
and summarized in section II. Although the average received
symbol energy per user Es is the usual constraint when opti-
mizing the average capacity over the per-user symbol energy
distribution at the SIC input, it does not reflect possible and
practical limitations in terms of the dynamic range of users, as
upper/lower bounds on the received symbol energy profile (i.e.
minimum/maximum transmission power constraints). Hence,
we set out to derive the maximum average spectral efficiency
under a power unbalance constraint h = Es;max=Es;min, or
ratio of maximum to minimum per-user symbol energy at
the SIC input. We will show that, when some conditions
on the PER function and operating Es=Nt are met, the
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exponential energy profile asymptotically achieves maximum
average spectral efficiency under such a constraint.

II. ASYMPTOTIC PER

In this section, we summarize the basic definitions and
results in [2] used for the computation of the asymptotic PER.
New results will be presented in section III onwards.

We consider that, for a scenario of K active users, SIC
operation proceeds from user k = 1 up to user k = K,
with Es[k] the per-user symbol energy. In the asymptotic case
K ! 1, we may define the continuous index t as: 0 <

t = limK!1 k=K ∑ 1, associated with the corresponding
continuous energy profile Es(t) = limK!1 Es[tK]. Although
the results in [2] are valid for an arbitrary Es(t), we will
understand that Es(t) is non-increasing in t (ordered users), as
is usually assumed when optimizing SIC performance. Then,
the power unbalance and average symbol energy parameters
mentioned in section I may be defined as h = Es(0)=Es(1)
and Es =

R 1
0 Es(t)dt, respectively. It was shown in [2] that the

average PER, PER(Æ), is given by the following expression,
where Æ = limK!1 K=N is the load factor (ratio of users K

to spreading factor N ) in the long spreading code model [3]
and µ is a generic decorrelation factor accounting for inter-user
timing misalignment and/or carrier phase differences,

PER(Æ) =

Z 1

0
PER

£
°(tj∑ª(t))

§
dt (1)

°(tj∑ª(t)) :
=

Es(t)

N0 + ∑ª(t) + Æµ
R 1
t Es(u)du

(2)

with °(tj∑ª(t)) the per-user Es=Nt at an interference level
Æµ

R 1
t Es(u)du from yet uncanceled users and ∑ª(t) the aggre-

gate residual interference level incorporating error propagation
from previous users [4]. The usual error propagation model
considers that at each stage, a fraction "(t) of the current
user’s energy affects users in subsequent stages with "(t) = ≤

(imperfect cancellation under successful decoding) or "(t) = 1
(no cancellation under unsuccessful decoding). Thus, it was
shown in [2] that ∑ª(t) becomes deterministic and constitutes
a solution to the following Ordinary Differential Equation
(ODE), with boundary constraint ∑ª(0) = 0,

d∑ª(t)=dt = ÆµEs(t)
°
≤+ (1° ≤)PER

£
°(tj∑ª(t))

§¢
(3)

Now, we may define the average Packet Success Rate (PSR)
from (1) as PSR(Æ) = 1°PER(Æ), so that the average suc-
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cessfully delivered spectral efficiency ¥(Æ) [b/s/Hz] becomes,

¥(Æ) = ÆRcPSR(Æ) = ÆRc

Z 1

0
PSR[∑°(t)]dt (4)

with Rc = brc=(1+Ø) (Ø: roll-off factor of chip pulse shaping;
b: bits per constellation symbol; rc: channel coding rate) and
PSR[°] = 1 ° PER[°] the Packet Success Rate function of
the common channel coding/modulation scheme. The integral
for PSR(Æ) is defined implicitly.

III. DIFFERENTIAL EQUATION ON °(tj∑ª(t))
We derive a new ODE for °(tj∑ª(t)) to obtain the optimum

energy profile in section IV. For shorter notation, we consider
the dependence on ∑ª(t) implicit, with ∑°(t)

:
= °(tj∑ª(t)).

Let M(t) denote the denominator in (2), with M(t) =
Es(t)=∑°(t) = N0 + ∑ª(t) + Æµ

R 1
t Es(u)du. Then, we may

express its derivative dM(t)=dt using the ODE in (3) to get,

d

dt
M(t) = ÆµEs(t)

°
≤+ (1° ≤)PER[∑°(t)]

¢
° ÆµEs(t)

= °ÆµM(t)(1° ≤)∑°(t)PSR[∑°(t)] (5)

Dividing by M(t) on both sides and letting log denote Napier’s
base-e logarithm, we finally obtain,

d

dt
logEs(t) =

d

dt
log ∑°(t)° Æµ©[∑°(t)] (6)

©[°]
:
= (1° ≤) ¢ ° ¢ PSR[°] (7)

which is the ODE for ∑°(t) with initial condition ∑°(0) =
Es(0)=

°
N0+Æµ

R 1
0 Es(t)dt

¢
for an input energy profile Es(t),

where the nonlinearity ©[°] depends on the decoder’s PSR
function and on the residual interference factor ≤. We remark
that the ODE in (6) for determining ∑°(t) is valid for an arbi-
trary Es(t) (regardless of whether users are ranked according
to power or not). For an ordered non-increasing energy profile
Es(t), with h = Es(0)=Es(1) the power unbalance, we get a
useful expression for h in terms of ∑°(t) for later use in Section
IV: integrating (6) over the interval [0; 1], it results that,

log
1

h
° log

∑°(1)
∑°(0)

= °Æµ

Z 1

0
©[∑°(t)]dt (8)

IV. OPTIMUM ENERGY PROFILE

The previous section has shown how to compute the Es=Nt

profile ∑°(t) from the received energy profile Es(t). In this
section, we intend to maximize the average spectral efficiency
¥(Æ) over Es(t), subject to a power unbalance constraint and
for a specific load Æ and noise spectral density N0. We follow
an indirect procedure where, inspired by the relationship (4),
optimization of ¥(Æ) is carried out first over ∑°(t) (setting
the appropriate constraints), and used later to compute the
corresponding Es(t). We consider the functional G(∑°;Æ) =
¥(Æ)=(ÆRc) = PSR(Æ), where, for clarity, its dependence
on ∑°(t) is now made explicit and the constant factor ÆRc

irrelevant for maximization is dropped. Two point constraints
are considered on ∑°(t): ∑°(0) = °0 (to account for the initial
condition of the ODE in (6), and therefore, N0) and ∑°(1) = °1

(a technicality whose necessity will become apparent during

optimization). One additional integral constraint is also re-
quired to incorporate the power unbalance h by way of (8).
The following variational optimization problem results, where
G(∑°;Æ) is to be maximized over ∑°(t) at a specific load Æ,

¥(Æ)
ØØ
max

ÆRc
= max

∑°(t)

∑
G(∑°;Æ) =

Z 1

0
PSR[∑°(t)]dt

∏
(9)

s:t: ∑°(0) = °0 ; ∑°(1) = °1 (10)

s:t:

Z 1

0

°
∑°0(t)=∑°(t)° Æµ©(∑°(t))

¢
dt = log

1

h
(11)

with ∑°0(t) = d∑°(t)=dt. Note that the integral constraint in
(11) is obtained by moving the term log(∑°(1)=∑°(0)) in (8)
to the integral’s first term on the left-hand side of (11). For
a stationary point ∑°(t) of G(∑°;Æ), the corresponding profile
Es(t) with power unbalance h can be derived from (6) by
direct integration over the interval [0; t] as,

Es(t)

Es(0)
=

∑°(t)
∑°(0)

exp

∑
°Æµ

Z t

0
©[∑°(u)]du

∏
(12)

The constrained optimization problem (9) can be solved using
standard Variational Calculus techniques. We consider the
following equivalent problem,

Jmax = max
∑°(t)

∑Z 1

0
F (t; ∑°(t); ∑°0(t))dt

∏
(13)

s:t: ∑°(0) = °0 ; ∑°(1) = °1

s:t:

Z 1

0
G(t; ∑°(t); ∑°0(t))dt = log

1

h
(14)

where we set F (t; ∑°; ∑°0) = PSR[∑°] and G(t; ∑°; ∑°0) = ∑°0
=∑°°

Æµ©(∑°) the terms within the two integrals in (9,11). As
proved in [5], the Euler-Lagrange Equation (ELE) can be
used to compute the stationary point ∑°(t) when applied to
the Lagrangian H = F + ΩG, with Ω a Lagrange multiplier,

@∑°[H]° d

dt
@∑°0 [H]

(E:L:E:)
= 0 (15)

where @x denotes the partial differentiation operator w.r.t.
variable x. The two differentiation operators on H yield,

@∑°[H] = PSR0[∑°(t)] + Ω ¢
µ
°

∑°0(t)
∑°2(t)

° Æµ©0(∑°(t))

∂

d

dt
@∑°0 [H] =

d

dt

∑
0 + Ω

1
∑°(t)

∏
(16)

with PSR0
;©0 the derivatives w.r.t. ∑°. When the two previous

results are substituted into (15), an ODE in t is obtained for
∑°(t), which must be solved subject to the boundary conditions
∑°(0) = °0 and ∑°(1) = °1 for a suitable value of the Lagrange
multiplier Ω. As the terms depending on ∑°0(t) cancel each
other out, the ELE (15) is turned from a differential equation
to the following nonlinear equation on ∑°(t),

PSR0[∑°(t)] = Ω ¢ Æµ©0(∑°(t)) (17)

which is fulfilled when ∑°(t) = °? is constant over t. Then,
a Lagrange multiplier Ω can always be found such that Ω =
(Æµ)°1PSR0[°0]=©0(°0) > 0 (PSR;© are increasing in °)
and a stationary point to the optimization problem in (9) is
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obtained, with ∑°(t) = °? uniform. Thus, ∑°(t) cannot be a
stationary point unless we have equality of the two boundary
conditions on ∑°(t) at t = 0 and t = 1: °0 = °1 = °§.

V. EXTREMALITY CONDITIONS

We prove under what conditions the stationary point ∑°(t) =
°0 of the constrained optimization problem (9) yields a
maximum. Hence, we consider an infinitesimal variation of
∑°(t) which fulfils the constraints in (10,11): °(t) = °0+v(t),
with v(t) converging uniformly to 0 (v(t) ! 0) in 0 < t ∑ 1,
with v(0) = v(1) = 0 so that the constraints in (10) are met
and, additionally, from (8), the constraint (11) becomes,

log
1

h
= °Æµ

Z 1

0
©[°0 + v(t)]dt (18)

As v(t) ! 0 uniformly, vmax
:
= max0∑t∑1[jv(t)j] is asymp-

totically small and we may use the second-order Taylor
expansions in v(t) of the functional G(°;Æ) about °(t) = °0

and of the integral constraint (18). Thus, we may write,

G(°;Æ) = PSR[°0] + PSR0[°0]

Z 1

0
v(t)dt+

+
1

2
PSR00[°0]

Z 1

0
v
2(t)dt+ o(v2max) (19)

with PSR0[°];PSR00[°] the first/second derivatives of PSR[°]
w.r.t. ° and o(¢) Landau’s small-o. Further, the second-order
approximation to the integral constraint (18) yields (20), with
©0[°];©00[°] the first/second derivatives of ©[°] w.r.t. °,

log
1

h
= °Æµ

°
©[°0] + ©0[°0]

Z 1

0
v(t)dt+

+
1

2
©00[°0]

Z 1

0
v
2(t)dt

¢
+ o(v2max) (20)

As (18) must also be fulfiled for v(t) = 0, we have log 1
h =

°Æµ©[°0] and thus, (20) reduces to the following equality
between the integrals on v(t) and v

2(t),

©0[°0]

Z 1

0
v(t)dt+

1

2
©00[°0]

Z 1

0
v
2(t)dt+ o(v2max) = 0 (21)

As v(t) ! 0 uniformly: v2(t) << jv(t)j, and the constraint
(21) requires that v(t) have positive and negative fluctuations
so that its integral mean over 0 < t ∑ 1 be in the order of
the integral mean of v2(t) over the same interval. Substituting
(21) into (19), with G(°0;Æ) = PSR[°0], we get,

G(°;Æ) = G(°0;Æ)° ≠(°0) ¢
1

2

Z 1

0
v
2(t)dt+ o(v2max)

(22)

≠(°0)
:
= PSR0[°0]

©00[°0]

©0[°0]
° PSR00[°0] (23)

Hence, the condition for °(t) = °0 to be a maximum is that
≠(°0) > 0, which is analyzed in Lemma 1. Additionally,
from (22), and as v(t) = °(t) ° °0, we see that ≠(°0) is
measuring the sensitivity to deviations from the uniform pro-
file while preserving constraints (power unbalance and point
constraints). The value of ≠(°0) depends on the encoder’s

PSR characteristic and the operating point °0. Hence, letting
jj ¢ jj2 denote the L

2[0; 1] norm, we may write from (22),

≠(°0) = °2 lim
°(t)!°0

G(°(t);Æ)° G(°0;Æ)

jj°(t)° °0jj22
(24)

We now seek a more direct expression of ≠(°) in terms of
PSR[°] than its definition in (23) to examine what property
is required of PSR[°] to guarantee ≠(°0) > 0 and hence,
optimality of ∑°(t) = °0. Let r° = d=d° denote diffentiation
w.r.t. °. Then, (23) can be expressed as follows,

≠(°) = PSR0[°] ¢ r° log s(°) (25)

s(°)
:
=

1

1° ≤
¢ ©0[°]

PSR0[°]
= ° +

PSR[°]

PSR0[°]

As PSR[°] is increasing in °, we have PSR0[°] > 0. Hence,
from (25), ≠(°) > 0 implies that log s(°), and consequently,
s(°), be increasing in °. This reduces to r°s(°) > 0, where,

r°s(°) = 1 +r°[(r° log PSR[°])
°1] (26)

Differentiating on the right-hand side, r°s(°) > 0 leads to,

jr° log PSR[°]j2 > r2
° log PSR[°] (27)

Using PSR[°] = 1 ° PER[°] in (27), we get its equivalent
condition in the PER after some straightforward algebra,

2(PER0[°])2 + PER00[°](1° PER[°]) > 0 (28)

Finally, the property sought is established by Lemma 1,
Lemma 1: ≠(°0) > 0 is equivalent to conditions (27,28)

at ° = °0. A sufficient condition for (28) to hold is that
PER00[°] > 0, with ° expressed in linear scale ®.

No explicit general expression is available for the PER
of any code, which would provide a quantitative assessment
of the range of °’s where (28) holds. Nonetheless, the more
restricted condition PER00[°] > 0 already guarantees ≠(°) >
0 where PER[°] is convex-[. This is reasonably fulfilled by
all practical codes for some semi-infinite interval ° ∏ °min,
where °min is associated with rather high values of the PER.

We may extract some additional insight from the aver-
age Es=Nt, defined as °av =

R 1
0 °(t)dt. Then, we haveR 1

0 v(t)dt = °av ° °0, and, from (21),

°av ° °0 = ° ©00[°0]

2©0[°0]
jj°(t)° °0jj22 + o(v2max) (29)

Hence, substituting this expression into (24), we get,

≠(°0) =
©00[°0]

©0[°0]
lim

°(t)!°0

G(°(t);Æ)° G(°0;Æ)

°av ° °0
(30)

and then, plugging (30) into (23), we obtain the sensitivity to
deviations from the average value when constraints are met,

¢(°0) = lim
°(t)!°0

G(°(t);Æ)° G(°0;Æ)

°av ° °0
(31)

= PSR0[°0]° PSR00[°0]
©0[°0]

©00[°0]
(32)

Hence, as G(°0;Æ) is a maximum (the denominator in
(31) is negative), the sign of ¢(°0) in (31) determines the
sign of the deviations of °av from °0: ¢(°0) > 0 )
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°av < °0 and ¢(°0) < 0 ) °av > °0. Some tedious but
straightforward algebra shows that ¢(°) = °r°[s°1(°)] ¢
(©0[°])2=((1 ° ≤)©00[°]). As we saw before, for ≠(°) > 0,
we have r°[s(°)] > 0 and thus r°[s°1(°)] < 0, which leads
to the following result for °(t) ! °0 (when also ≠(°) > 0),

sign[¢(°)] = sign[©00[°]] = °sign[°av ° °0] (33)

VI. THE EXPONENTIAL ENERGY PROFILE

We determine the energy profile Es(t) maximizing ¥(Æ)
under the given constraints, proving that, as in capacity studies,
it is also exponential. Setting ∑°(t) = °0 in (12), we get,

Es(t) = Es(0)e
°∏t

; ∏ = Æµ(1° ≤)°0PSR[°0] (34)

with PSR[°0] = G(°0;Æ) and ∏ = log h. This energy profile
is optimum only at the given load Æ: (i) at Æ

0 6= Æ the
corresponding °Æ0(t) associated with Es(t) in (34) is no longer
uniform; (ii) the optimum exponential profile is different for
each Æ. We intend now to derive a relationship for the power
unbalance h in terms of the set of inputs f≤; pE ; snr0g, where,

1) pE denotes the target PER, associated from (4) with the
average spectral efficiency ¥(Æ) = ÆRc(1 ° pE) and
where pE = PER[°0], for °0 the operating Es=Nt.

2) snr0 = Es(0)=N0 constitutes the SNR of the first user
and allows to incorporate direct information on the
channel noise power spectral density N0.

Substituting (34) into (2) at t = 0 and using ∑ª(0) = 0,
°(0) = °0 and PSR[°0] = 1 ° pE , some tedious algebra
shows that, for the target pE , the relationship between h and
snr0 becomes h°1 = 1° (1°≤)(1°pE)(1°°0=snr0), where
°0 = PER°1[pE ] ∑ snr0 must hold.

VII. SIMULATIONS AND CONCLUSIONS

Figure 1(a) shows an estimation b≠(°) of ≠(°) for an im-
plementation of the following codes: (i) the DVB-RCS/QPSK
turbo-code [6] with blocklength L = 482 information bits and
rates r = 1=2 (TC1) and r = 1=3 (TC2) using max-log-MAP
decoding; (ii) the rate r = 1=2 quasi-cyclic LDPC/QPSK code
(LDPC1) of the DVB-S2 standard [7]. The horizontal axis has
been chosen to be Eb=Nt instead of ° for each channel code:
° = (brc)Eb=Nt. The estimate b≠ has been obtained by local
parabolic fitting of the measured PER characteristic over 5
points for computing the derivatives in (23), represented in
Figure 1(b) for all codes. It is thus experimentally verified that
≠(°) > 0 and that the uniform profile ∑°(t) = °0 achieves
a maximum of the average spectral efficiency for the given
constraints. We note that largest sensitivity is associated with
low °’s, whereas a decrease ≠ ! +0 is manifested at high
°’s (a flat maximum for ¥(Æ) about ∑°(t) = °0).

As an example, Figure 1(c) shows the average PER over
all SIC stages versus Eb=Nt

ØØ
t=0

= °0=(brc) for a family of
profiles °d(t) = ©°1[©[°0] ¢ (1 + d sin(2ºt))] parametrized
by 0 ∑ d ∑ 0:3, ° = ©°1[¡] the inverse function of ¡ = ©[°]
and the average PER given by PER =

R 1
0 PER[°d(t)]dt. As

can be checked using (8), any °d(t) fulfils the same power
unbalance constraint h (9 dB) as well as °d(0) = °d(1) = °0

(the uniform profile is obtained for d = 0). The associated
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Fig. 1. (a) ≠, (b) PER versus Eb=Nt for the TC1, TC2 and LDPC1
codes; (c) PER vs. Eb=Nt

ØØ
t=0

for d = 0; 0:05; 0:1; 0:2; 0:3.

Es(t) is easily found substituting °d(t) in (6). The parameter
d controls the fluctuations of °d(t) about °0, so that larger d’s
lead to increased degradation of the average PER in Figure
1(c), shifting the waterfall region toward higher Eb=Nt’s.

Concluding, we have validated that, for a common non-
capacity-achieving channel encoder, the uniform Es=Nt profile
∑°(t) = °0 of DS-CDMA SIC and its corresponding expo-
nential per-user symbol energy profile asymptotically achieve
maximum average spectral efficiency under a power unbalance
constraint, if the second derivative of the encoder’s PER
function fulfils PER00[°0] > 0. A more compact ODE for
∑°(t) than in the one in [2] for ∑ª(t) has also been derived.
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