Homoclinic Connections in the Restricted Three Body Problem and the Scattering Map

CELMEC, September 2005

Elisabet Canalias, Amadeu Delshams, Josep Masdemont, Pablo Roldán
elisabet.canalias@upc.edu, amadeu.delshams@upc.edu,
josep@barquins.upc.edu, pablo.roldan@upc.edu

Universitat Politècnica de Catalunya
Contents

- I: The restricted three body problem:
 1. Equations of motion.
 2. Hyperbolic manifolds.
 3. Homoclinic connections.

- II: The scattering map:
 1. Definition.
 2. Computation for planar RTBP.
 3. Applications.

- References
Restricted three body problem

- (Planar) equations of motion:

\[\ddot{X} - 2\dot{Y} = \frac{\partial \Omega}{\partial X}, \quad \ddot{Y} + 2\dot{X} = \frac{\partial \Omega}{\partial Y} \] \hspace{1cm} (1)

where,

\[\Omega(X, Y) = \frac{1}{2}(X^2 + Y^2) + \frac{1 - \mu}{r_1} + \frac{\mu}{r_2} + \frac{1}{2} \mu(1 - \mu). \]

- First integral: Jacobi constant

\[\mathcal{C}(X, Y, \dot{X}, \dot{Y}) = -(\dot{X}^2 + \dot{Y}^2) + 2\Omega(X, Y) \]

- 5 equilibrium points. We will focus on \(L_1 \) and \(L_2 \).
The vicinity of L_1 and L_2

- Linear behaviour around L_1 and L_2 is of the type centre \times saddle.
- $\forall \mathcal{C} \in [\mathcal{C}_{\text{min}}, \mathcal{C}_{\text{max}}]$ \exists one periodic motion around each $L_i \implies$ Lyapunov (planar) orbit $\gamma = \{\gamma(t)\}$.

The vicinity of L_1 and L_2

- Linear behaviour around L_1 and L_2 is of the type centre-\times saddle.
- $\forall C \in [C_{min}, C_{max}] \ni \exists$ one periodic motion around each $L_i \implies$ Lyapunov (planar) orbit $\gamma = \{\gamma(t)\}$.
- Hyperbolic manifolds of γ: unstable and stable:

$$W^u_\gamma = \{x \in \mathbb{R}^4 \mid \lim_{t \to -\infty} ||\Phi_t(x) - \gamma||=0 \},$$

$$W^s_\gamma = \{x \in \mathbb{R}^4 \mid \lim_{t \to +\infty} ||\Phi_t(x) - \gamma||=0 \}$$

where $\Phi_t(x) \equiv$ orbit of x in the flow of equations (1).
The vicinity of L_1 and L_2
Homoclinic connections

- If $x \in W^{u}_{\gamma_1} \cap W^{s}_{\gamma_2}$, then $\Phi_t(x)$ asymptotically tends to a Lyapunov orbit both in forward and backward time.
Homoclinic connections

- If $x \in W^{u}_{\gamma_1} \cap W^{s}_{\gamma_2}$, then $\Phi_t(x)$ assymptotically tends to a Lyapunov orbit both in forward and backward time.
- If $\gamma_1 = \gamma_2$, $\Phi_t(x) \equiv$ homoclinic connection.
- If $\gamma_1 \neq \gamma_2$, $\Phi_t(x) \equiv$ heteroclinic connection.
Homoclinic connections (II)

- Space of solutions of equations (1) for each value of C is 3-dimensional.
Homoclinic connections (II)

- Space of solutions of equations (1) for each value of C is 3-dimensional.
- W^u_γ, W^s_γ are 2-dimensional tubes.
Homoclinic connections (II)

- Space of solutions of equations (1) for each value of C is 3-dimensional.
- W^u_γ, W^s_γ are 2-dimensional tubes.
- A Poincaré section can be used, $\Sigma = \{X = \text{constant}\}$.
Homoclinic connections (III)

- $\forall C$, each manifold intersects the Poincaré section in a curve.
- Homoclinic connections can be found on the section by intersecting two of these curves:
Families of connections

- 2 intersecting points \(\implies \) 2 connections \(\Gamma_1(C), \Gamma_2(C) \).

\[C = 3.0008044 \]
Families of connections

- 2 intersecting points \implies 2 connections $\Gamma_1(C), \Gamma_2(C)$.

$C = 3.00083$
Families of connections

- 2 intersecting points \iff 2 connections $\Gamma_1(C), \Gamma_2(C)$.

$c = 3.000862$
Families of connections

- 2 intersecting points \Longleftrightarrow 2 connections $\Gamma_1(C), \Gamma_2(C)$.

$C = 3.0008788$
Families of connections

- Tangency → bifurcation orbit.

\[C = 3.0008839 \]
Families of connections (II)
Normally hyperbolic manifold

- Objects vary with energy:

\[\gamma(C), \quad W_{\gamma}^{u/s}(C), \quad \Gamma_{1,2}(C). \]
Normally hyperbolic manifold

- Objects vary with energy:
 \[\gamma(C), \quad W_{\gamma}^{u/s}(C), \quad \Gamma_{1,2}(C). \]

- Consider the sets
 \[\Lambda = \bigcup_{C} \gamma(C) \]
 \[W_{\Lambda}^{s} = \bigcup_{C} W_{\gamma}^{s}(C), \quad W_{\Lambda}^{u} = \bigcup_{C} W_{\gamma}^{u}(C) \]

 where \(C \in [C_{\text{min}}, C_{\text{max}}] \).
Normally hyperbolic manifold

- $\Lambda = \Lambda(\theta, C)$ is a normally hyperbolic invariant manifold (2D).
- W^s_Λ, W^u_Λ are stable/unstable manifolds to Λ (3D).
Normally hyperbolic manifold

Parametric representation of the manifolds
Homoclinic intersection

\[\Gamma = \bigcup_{C \in [C_{min}', C_{max}']} \Gamma_1(C) \subset W^s_\Lambda \cap W^u_\Lambda \]

- The intersection of the stable/unstable manifolds is transversal along \(\Gamma \). Hence, \(dim(\Gamma) = dim(\Lambda) \).
Scattering map

- Given Γ, define $x_+ = S(x_-)$ if there exists a point $z \in \Gamma$ s.t.

$$\| \Phi_t(z) - \Phi_t(x_-) \| \to 0, \quad t \to -\infty$$

$$\| \Phi_t(z) - \Phi_t(x_+) \| \to 0, \quad t \to \infty.$$
Scattering map

- Scattering map $S : \mathcal{D} \subset \Lambda \rightarrow \Lambda$.
- S is a dynamical system acting on Λ associated to the homoclinic excursions along Γ.
- There exist different scattering maps associated to different Γ.
Computation for planar RTBP

- Dynamics inside Λ amounts to Lyapunov orbits $\gamma(C)$.
- Homoclinic orbits $\Phi_t(z) \to \gamma, \quad t \to \pm\infty$.
- S can be computed independently for each $\gamma(C)$:

 $$x_+ = S(x_-)$$

 or

 $$\theta_+ = S(\theta_-)$$

 where $\theta_-, \theta_+ \in \gamma(C)$.

Computation for planar RTBP
Computation for planar RTBP

- Lindstedt-Poincaré expansion of W^u_γ (linear approximation):

$$\bar{X}(t) = \alpha_1 e^{\lambda t} + \alpha_3 \cos(\omega t + \theta)$$
$$\bar{Y}(t) = \kappa_2 \alpha_1 e^{\lambda t} + \kappa_1 \alpha_3 \sin(\omega t + \theta)$$

where κ_1, κ_2, ω and λ are constant.
Computation for planar RTBP

- Lindstedt-Poincaré expansion of W^u_γ (linear approximation):

\[
\begin{align*}
\tilde{X}(t) &= \alpha_1 e^{\lambda t} + \alpha_3 \cos(\omega t + \theta) \\
\tilde{Y}(t) &= \kappa_2 \alpha_1 e^{\lambda t} + \kappa_1 \alpha_3 \sin(\omega t + \theta)
\end{align*}
\]

where κ_1, κ_2, ω, and λ are constant.

- In the planar case, S is simply a twist map

\[
(C, \Theta) \rightarrow (C, \Theta + \Delta(C))
\]

\[
\Delta'(C) \neq 0
\]
Spatial RTBP

- Linear behaviour around L_1 and L_2 is of the type centre \times centre \times saddle.
Spatial RTBP

- Linear behaviour around L_1 and L_2 is of the type centre \times centre \times saddle.
- Fixed C, there is a whole family $\{\gamma^n\}$ of libration orbits around $L_{1,2}$:
 - Lissajous orbits (quasi-periodic motions on \mathbb{T}^2);
 - Halo periodic orbits.
Spatial RTBP

- Linear behaviour around L_1 and L_2 is of the type centre × centre × saddle.
- Fixed C, there is a whole family $\{\gamma^n\}$ of libration orbits around $L_{1,2}$:
 - Lissajous orbits (quasi-periodic motions on \mathbb{T}^2);
 - Halo periodic orbits.
- Homoclinic/heteroclinic connections between libration orbits.
Spatial RTBP

- Linear behaviour around L_1 and L_2 is of the type centre \times centre \times saddle.
- Fixed C, there is a whole family $\{\gamma^n\}$ of libration orbits around $L_{1,2}$:
 - Lissajous orbits (quasi-periodic motions on T^2);
 - Halo periodic orbits.
- Homoclinic/heteroclinic connections between libration orbits.
- Each libration orbit γ^i can be connected to many libration orbits $\gamma^{j_1}, \gamma^{j_2}, \ldots$.

E.Canalias, A.Delshams, J.Masdemont, P.Roldan, CELMEC 2005 – p.20/22
Applications

- Scattering map is an efficient and convenient representation of homoclinic and heteroclinic connections.
- Combine scattering map(s) with dynamics inside Λ to obtain interesting orbits:
 - Complex mission design.
 - Diffusion orbits.
References
