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Abstract— One of the challenges in the simulation of human
motion, either applied to humanoid robots or avatars in virtual
environments, is to design a kinematics structure and a set of joint
trajectories that move a robot or avatar in a human-like manner.
In this paper, a technique is introduced to create accurate human-
like motion with a simplified topology as a reference. Using an
optical motion capture system, a finite number of key poses are
captured from different subjects performing full body articulated
movements. Motion is modeled using the Clifford algebra of dual
quaternions and dimensional synthesis techniques are applied to
generate the kinematic skeleton of a 3D avatar or robot. The
synthesized kinematic skeleton provides location of joints and
dimensions of the links forming the limbs, as well as the joint
trajectories. Five serial chains constitute our approximation to
the human skeleton. Revolute, universal and spherical joints are
employed, although other topologies can be used in a similar
fashion. Several real datasets are evaluated and results demon-
strate that good accuracy can be obtained at interactive rates
using the presented methodology. The results show that using
simple serial chains in combination with dimensional synthesis
suffices to generate the mechanical structure and trajectories of
a humanoid robot or 3D avatar mimicking human motion.

I. INTRODUCTION

A broad range of applications can benefit from access to

libraries of realistic human motion, from virtual environments

to computer animated movies. If human motion is compactly

expressed using robotics techniques, it can be applied to

humanoid robot motion, in path planning and robot design.

Different types of model acquisition, motion capture and

synthesis systems have been developed. O’Brien et al. [1]

used magnetic motion captured data to determine the joint

parameters of articulated figures to support system calibra-

tion. Articulated models have been described as products of

exponential maps and twist motions for video-based [2] and

voxel-based human motion tracking [3]. Kinematic models of

articulated figures in volume sequences were extracted using

Isomap [4]. Usually these techniques rely on considering a

model in which the limbs can freely rotate about the joints,

generating a set of rotations for each joint. However, these

motions may not be directly accomplished by a humanoid

robot having more restricted mobility, for instance using only

revolute joints.

To analyze how human motion can be applied to humanoid

robots, a set of characteristics needs to be extracted before

motion can be mapped to robots with dimensions different

from those of the captured subject [5], [6]. Similarly, motion

retargetting has to address this problem when animating syn-

thetic characters [7], [8]. Physical skills acquisition, for which

motion has to be carefully evaluated and correlated, has similar

demands [9].

Our research is oriented towards generating the motion and

a simplified kinematic structure that can describe it [10], [11].

Both are accomplished by expressing the human body as a set

of five kinematic serial chains, called the kinematics skeleton,

while tracking information is obtained from optical motion

capture data. Clifford algebra of dual quaternions is used to

represent the corresponding human avatars. Clifford algebra

has been used for motion interpolation [12], in robot design

[11], in camera calibration and 3D rigid motion estimation

[13].

The kinematics equations of the serial chain are equated

to the target motion and solved for the joint angles and

dimensions along the chain [14]. Without user intervention,

it is then possible to obtain (i) a compact representation of

the properties of the target subject’s kinematic skeleton and

(ii) a set of control parameters representing the motion of the

kinematic skeleton for further use in animation or trajectory

planning, at interactive rates.

The Clifford algebra of dual quaternions is briefly presented

(Sect. II) to define the kinematics equations representing

an arbitrary kinematic chain and to perform the synthesis

(Sect. III) from a set of finite positions. In Section IV, the

topology of the kinematic skeleton is described along with

the kinematic chains to be dimensioned. Next, the kinematics

equations and design equations for each chain are derived, and

its solution process specified. Finally, the results are detailed

(Sect. V) and summarized (Sect. VI).

II. ANALYSIS OF KINEMATIC CHAINS

A. Kinematics Equations of a Serial Chain

For a serial chain, the kinematics equations define the

position of its end-effector as a function of the geometry

of the chain and the joint variables. The most common

formulation uses the Denavit-Hartenberg parameters [15] to

define transformations between local frames, see Figure 1.

For the m-jointed kinematic chain, the kinematics equations

at instant of time ti, i = 1, . . . n, are defined as [Di] and

are created as the composition of local screw displacements,
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Fig. 1. Generic serial chain with m joints.

expressed as homogeneous transformations,

[Di] =[G][Z(θi
1, d

i
1)][X(α12, a12)][Z(θi

2, d
i
2)] . . .

[X(αn−1,n, an−1,n)][Z(θi
m, di

m)][H], i = 1, . . . n,

where [G] locates the base of the chain with respect to the

fixed reference frame F , and [H] represents the displacement

between the end-effector and the last joint m.

Given [Di] at ti and [D0] at t0, we can define the rel-

ative displacement [D0i] = [Di][D0]−1 which represents a

displacement from the reference configuration [D0] expressed

in the fixed frame. The kinematics equations of a relative

displacement take the form

[Di(Δ�θi)] = [T (Δθi
1,S1)][T (Δθi

2,S2)] . . . [T (Δθi
m,Sm)],

(1)

where Sj are the Plücker coordinates of the j joint axis at

the reference configuration expressed in the fixed frame, Sj =
Sj+εS0

j , and Δθi
j = θi

j−θ0
j is the angle about joint j measured

from the reference configuration.

B. Dual Quaternion Kinematics Equations

The Clifford algebra of the projective three-space P
3 is

a sixteen-dimensional vector space with a non-commutative

product called geometric or Clifford product [16], [17]. The

elements of even rank form an eight-dimensional subalgebra

C+(P3) that can be identified with the set of 4 × 4 homoge-

neous transformations. An element of C+(P3) can be written

as the eight-dimensional vector given by

Ŝ = s0 + s1i + s2j + s3k + s4ε + s5iε + s6jε + s7kε, (2)

where i, j, and k are the quaternion units, and ε is called the

dual unit, with the property ε2 = 0.

In the calculations, the notation S = s1i + s2j + s3k and

S◦ = s5i + s6j + s7k is used allowing us to represent the

Clifford algebra element (Eq. (2)) as

Ŝ = s0 + S + s4ε + S◦ε = (s0 + s4ε) + (S + S◦ε) = ŝ + S.

A spatial displacement is identified with the unit dual

quaternion

Q̂ = cos
φ̂

2
+ sin

φ̂

2
S,

where S is the screw axis of the displacement, and φ̂ is the dual

axis variable defined as φ̂ = φ + εt, where t is the translation

along and φ is the rotation about the axis.

The composition of these Clifford algebra elements defines

the relative kinematics equations for a serial chain that are

equivalent to Eq. (1),

D̂i(Δ�̂θ) = Q̂1(θ̂i
1)Q̂2(θ̂i

2) . . . Q̂m(θ̂i
m), (3)

where Q̂j(θ̂i
j) = cos Δθ̂i

j

2 + sin Δθ̂i
j

2 Sj corresponds to the

relative transformation of the chain about joint j from the

reference configuration D̂0.

III. SYNTHESIS OF KINEMATIC CHAINS

A. Design Equations

Dimensional synthesis seeks to compute the dimensions of

a kinematic chain in order to perform a specified task [16]. For

our problem, the goal of the synthesis process is to determine

the location and orientation of the human joints and the joint

angles needed to perform a movement obtained via motion

capture. For this, a series of n + 1 coordinate data frames

is given, from which we can calculate n relative unit dual

quaternions P̂ i, i = 1 . . . n expressing the relative motion of

each link. First, the task dual quaternions P̂ i are equated with

(Eq. (3)) to create the design equations Qi for i = 1 . . . n

Qi : Q̂1(θ̂i
1)Q̂2(θ̂i

2) . . . Q̂m(θ̂i
m) − P̂ i = 0. (4)

It is then possible to solve the set of 8n design equations

to obtain the location and orientation of the joint axes in the

reference configuration D̂0. In addition, the inverse kinematics

to reach the end-effector position can be obtained, that is, the

relative joint angles θi
j for the task position i at joint j.

IV. KINEMATIC SKELETON SYNTHESIS

A. Topology and Joint Types

Our human body model consists of five serial kinematic

chains corresponding to the main limbs: head, arms and legs

(Fig. 2). They are designed using spherical (S), universal (T)

and revolute (R) joints. An R-joint allows a one-degree-of-

freedom rotational movement, a T-joint allows a two-degrees-

of-freedom rotation expressed as two perpendicular R-joints

concurrent at the joint location, while an S-joint allows a

general rotation (three degrees of freedom) about a point. The

skeleton to be designed has a total of 13 joints and 14 links,

accounting for 27 degrees of freedom.

In Figure 2, an S joint is represented as a ball-joint, and the

R and T joints are represented lines locating the rotation axes.

Neck, shoulders and hips are modeled using S joints; elbows

and knees as T joints; and wrists and ankles with R joints.

An R-joint is represented using dual quaternions as

R̂(θ) =

⎧⎪⎪⎨
⎪⎪⎩

sin θ
2gx

sin θ
2gy

sin θ
2gz

cos θ
2
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⎪⎪⎩

sin θ
2g0

x

sin θ
2g0

y

sin θ
2g0

z

0
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,



Fig. 2. Human body model.

where g = (gx, gy, gz) is the rotation axis, g0 = (g0
x, g0

y, g0
z)

gives its location, and θ is the rotation angle about g.

A T-joint consists of two revolute joints intersecting and

perpendicular to each other,

T̂ (θ1, θ2) = Ĝ1(θ1)Ĝ2(θ2).

The screw axes corresponding to each of the dual quaternions

are defined as G1 = g1 + εg0
1 and G2 = g2 + εg0

2, so that G1 ·
G2 = 0. They intersect at a point c = (cx, cy, cz). Considering

g0
1 = c×g1 and g0

2 = c×g2, the dual quaternion expression

for a universal joint is

T̂ (θ1, θ2) =
{
g1sθ1cθ2 + g2cθ1sθ2 + g1 × g2sθ1sθ2

cθ1cθ2

}
+ ε

{
c × (

g1sθ1cθ2 + g2cθ1sθ2 + (g1 × g2)sθ1sθ2

)
0

}
,

where sθi
= sin θi

2 and cθi
= cos θi

2 .

An S-joint can be defined as three R-joints with concurrent

axes,

Ŝ(θ1, θ2, θ3) = Ĝ1(θ1)Ĝ2(θ2)Ĝ3(θ3), (5)

with screw axes G1 = g1 + εg0
1, G2 = g2 + εg0

2 and

G3 = g3 + εg0
3, perpendicular to each other and intersecting

at a point c = (cx, cy, cz). Incorporating these constraints

into Eq. (5) we obtain

Ŝ(θ1, θ2, θ3) =
{

α1G1 + α2G2 + α3G3

α4

}
,

where the αk’s appear as combinations of the joint variables

θ1, θ2 and θ3,

α1 = sin θ1
2 cos θ2

2 cos θ3
2 + cos θ1

2 sin θ2
2 sin θ3

2 ,

α2 = cos θ1
2 sin θ2

2 cos θ3
2 − sin θ1

2 cos θ2
2 sin θ3

2 ,

α3 = sin θ1
2 sin θ2

2 cos θ3
2 + cos θ1

2 cos θ2
2 sin θ3

2 ,

α4 = cos θ1
2 cos θ2

2 cos θ3
2 − sin θ1

2 sin θ2
2 sin θ3

2 .

The design variables are the structural parameters that define

the position of the joints: a point c on the line and the direction

g of the line. In the case of the S joint, only the intersection

point c needs to be calculated.

B. Design Equations

A total of five kinematics equations are defined: head

(Q̂head); right and left arm (Q̂arm); and right and left leg (Q̂leg),

Q̂head = ĜheadŜneck(θh1, θh2, θh3),

Q̂arm = ĜarmŜshld(θa1, θa2, θa3)T̂elb(θa4, θa5)R̂wrst(θa6),

Q̂leg = ĜlegŜhip(θl1, θl2, θl3)T̂knee(θl4, θl5)R̂ankle(θl6). (6)

The reference pose of the kinematic skeleton is arbitrarily

chosen to coincide with the captured subject’s pose at t = 0.

To create the design equations, we equate Eq. (6) to the input

data, P̂ i, for as many frames i as are needed to solve for the

design variables.

Qheadi
: Q̂head − P̂ i

head = 0, i = 1 . . . n,

Qarmi
: Q̂arm − P̂ i

arm = 0, i = 1 . . . n,

Qlegi
: Q̂leg − P̂ i

leg = 0, i = 1 . . . n. (7)

For each limb, P̂ i defines the relative position of a frame

attached to a point of the limb (Fig. 3 (c)), with respect to the

reference kinematic skeleton.

Fig. 3. Motion capture data markers (a) used to specify the reference frames
Garm (b) and Plarm : {Pup-larm, Plow-larm, Phand-larm} (c) for a left arm.

As the subject moves in a three-dimensional world per-

forming a sequence of arbitrary movements such as walking,

jumping or running, the reference frames attached to the base

of each chain, Ghead, Garm and Gleg, are also moving (Fig. 3

(b)). Therefore, a different set of displacements Ĝheadi
, Ĝarmi

and Ĝlegi
for at each ti exists. Expressing them with respect

to the reference configuration pose at t0, we obtain

Ĝi
chain = ĜchainiĜ

∗
chain0

, i = 1 . . . n,

where the subscript chain is used to denote any of the five

chains that form the skeleton: head, left and right arm, and

left and right leg. Once the equations are stated and the task

positions are calculated, we solve individually for each of the

five chains.

C. Hierarchical Synthesis

In the hierarchical synthesis (Fig. 4), we solve sequentially

link by link along the chain, starting the procedure at the link

closest to the base of the chain. In the case of an arm, the

process starts at the upper arm (P̂ i
up) to solve for the shoulder



joint (Ŝshld(θi
a1, θ

i
a2, θ

i
a3)), continues with the lower arm (P̂ i

low)

determining the elbow joint (T̂elb(θi
a4, θ

i
a5)), and finishes with

the hand (P̂ i
hand) and wrist joint (R̂wrst(θi

a6)).

hierarchical solving process

Qarm-Parm = 0i^ ^

Parm:{Pup , Plow , Phand}i^ ^ ^^i i i

geometric skeleton

Qarm = Garm Sshld (θa1,θa2,θa3) Telb (θa4,θa5) Rwrst (θa6)
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Fig. 4. Hierarchical synthesis of an arm at ti.

Taking an arm as an example, we need to solve for

Qarmi
: Q̂arm − P̂ i

arm = 0, i = 1 . . . n,

The number of data frames n required to obtain a solution

depends on the type of joint being solved and the number of

unknowns.

The hierarchical solution process begins at the S-joint defin-

ing the shoulder of the Q̂arm chain, and the set of equations,

Ĝi
armŜshld(θi

a1, θ
i
a2, θ

i
a3) = P̂ i

up, i = 1 . . . n,

which is equivalent to

Ŝshld(θi
a1, θ

i
a2, θ

i
a3) = Ĝi∗

armP̂ i
up, i = 1 . . . n, (8)

and solved numerically to obtain the point defining the location

of the S-joint, c, and the joint angles θi
a1, θ

i
a2, θ

i
a3 that most

closely approximate the position at ti. This allows us for

the creation to create the dual quaternion S̃shld(θi
a1, θ

i
a2, θ

i
a3)

approximating the movement of the upper arm.

To solve for the elbow, the input data of the lower arm must

be equated with the series of transformations from the base to

the lower arm,

Ĝi
armŜshld(θi

a1, θ
i
a2, θ

i
a3)T̂elb(θi

a4, θ
i
a5) = P̂ i

low, i = 1 . . . n.
(9)

To isolate the elbow joint, we left-multiply by the inverse

of Ĝi
armS̃shld(θi

a1, θ
i
a2, θ

i
a3), which is the same as P̂ i

up (Eq. (8)).

This is done using the dual quaternion conjugate,

T̂elb(θi
a4, θ

i
a5) = P̂ i∗

up P̂ i
low, i = 1 . . . n,

for which the right part of the equation is known. After solving

numerically, we obtain the Plücker coordinates of the joint axis

and the joint rotation, which can be used to create the dual

quaternion approximating the elbow joint T̃elb(θi
a4, θ

i
a5).

Similarly to the solving process used for the elbow, we use

data from the movement of the hand to solve for the last joint

of the chain

Ĝi
armŜshld(θi

a1, θ
i
a2, θ

i
a3)T̂elb(θi

a4, θ
i
a5)R̂wrst(θi

a6) = P̂ i
hand,

i = 1 . . . n.

After pre-multiplying by the lower limb data, the design

equations for the wrist are

R̂wrst(θi
a6) = P i∗

lowP̂ i
hand, i = 1 . . . n,

providing the approximation R̃wrst(θi
a6) for the wrist.

To obtain an accurate kinematic skeleton the input move-

ment has to be general enough to show movement at all joints.

This process is repeated several times, accounting for the lack

of resolution of the input data, and for the disparity between

a model made of rigid rotations and the real movement of the

human body. The synthesis is performed for a number of steps,

averaging the solutions at each joint, until the error between

solutions satisfies an error threshold.

D. Minimization and Measuring

For the experimental results, a Levenberg-Marquardt algo-

rithm [18] was used to solve the design equations (Eq. (7)).

The algorithm showed robustness and a fast convergence

rate to the correct solution for the five chains modeling the

human subject, allowing for interactive rates of the kinematic

synthesis process.

1) Error Measurement: Once a solution is obtained, the

error at each joint for an instant in time i is defined as the two-

norm error εi of the 8-component dual quaternion difference

obtained from subtracting the dual quaternion data from the

solution. For an arm εi is defined as,

εi = ‖Q̃i
arm − P̂ i

arm‖2 =

√√√√ 8∑
j=1

(Q̃i
arm − P̂ i

arm)2j ,

which is equivalent to computing the length of the difference

vector (Q̃i
arm− P̂ i

arm). This metric for spatial displacements, as

any other metric that we can define, is not bi-invariant [19].

More research is required in order to assess the effects of

wandering subjects on the metrics.



2) Execution Time Measurement: Execution time quanti-

fies the current computational cost required by the synthesis

process. To measure the execution time, a timer is initiated

when the synthesis process starts for a specific joint, and it is

stopped once it reaches a valid solution; i.e. the error value εi

is below a predefined threshold.

V. RESULTS

Ten case studies were evaluated quantitatively and qualita-

tively for synthetic and real data records. Table I presents their

characteristics, including a reference number, dataset name,

input data source type (synthetic or motion capture for real

human subjects), total length in frames of the sequence, and

acquisition rate in frames per second (fps) for the motion

capture sequences. Mathematica [20] was used to generate

the synthetic datasets. Experiments were run on a Dell In-

spiron 8600 laptop with a 1.4 GHz Pentium M processor,

768 MB of RAM, and nVidia Geforce FX Go5200 graphics.

TABLE I

CHARACTERISTICS OF ANALYZED CASE STUDIES [14].

Nr Dataset Name Source Type Length Rate
1 MATH-STR Synthetic 40 -

2 MATH-NOISY-STR Synthetic 40 -

3 MC-ARMS Motion capture 1545 120

4 MC-LEGS Motion capture 1476 120

5 MC-WALK Motion capture 1491 120

6 MC-WANDER Motion capture 1505 120

7 MALE-WALKA Motion capture 331 60

8 MALE-WALKB Motion capture 669 60

9 FEMALE-WALK Motion capture 962 60

10 BALLET Motion capture 464 30

MATH-STR tests the accuracy and correctness of the

algorithm, given an ideal dataset, and MATH-NOISY-STR

evaluates its robustness, after introducing random noise at the

joint locations. The remaining datasets correspond to motion

performed by real subjects. Datasets three to six captured a

single subject using an optical motion capture system available

in the Dance Department at the University of California,

Irvine, while datasets seven to ten were available for public

download.

Performance is quantified examining synthesis errors and

execution times (Sect. IV-D), while the recovered sequences

are qualitatively validated through visual inspection. First, one

case study is discussed in detail and finally, a comprehensive

comparison for all cases is included to evaluate the global

performance of the proposed method.

A. Dataset MC-WANDER

In MC-WANDER a woman walks moving arms, legs and

head. For the synthesis, the original sequence was subsampled,

resulting in an effective length of 131 frames and 12 fps. Fig. 5

shows a sequence of inputs and results, where rows correspond

to frame numbers 1250 and 1290. The first column shows

the input motion capture data used for the motion synthesis

process, the second the recovered motion, while the third one

compares them blending both views. The last column contains

the kinematic skeleton at the reference configuration, which

should remain constant during the whole sequence.

Fig. 5. MC-WANDER legs synthesis comparison (frames 1250 and 1290).

Since sufficient movement is available for all body parts,

visual results of the synthesized sequence are stable for

all chains. Table II presents the mean values and standard

deviations for the structural design parameters characterizing

a left arm in the kinematic skeleton, respectively using 93, 117

and 86 samples for shoulder, elbow and wrist. As the analyzed

motion is generic, execution times on average are constant for

all chains and accordingly for the global average of the subject.

As a general trend T-joints synthesis is computationally more

demanding, which compared to S- and R-joints is consistent,

given the larger number of parameters to synthesize.

TABLE II

KINEMATIC SKELETON FOR A LEFT ARM IN MC-WANDER.

Joint Params Mean and Standard Dev
Shoulder c (0.3233, 0.3554, 1.1951) ±(0.0570, 0.0176, 0.0429)

Elbow c (0.3937, 0.2941, 0.9308) ±(0.0341, 0.0155, 0.0078)

g1 (0.9296, 0.1596, 0.3320) 17.74◦±11.33◦
g2 (-0.3597, 0.5878, 0.7245) 17.41◦±10.99◦

Wrist c (0.4001,0.1807,0.7616) ±(0.0181,0.0264,0.0253)

g (-0.0299,0.8988,-0.4372) 26.03◦±12.64◦

B. Case Studies Comparative

Fig. 6 compares error (left) and execution times (right) for

each chain (head, arms and legs) averaging all case studies,

while Fig. 7 averages all joints for each case study. In Fig. 6,

all chains are in the same error and execution time range.

However, only those cases presenting a generic motion at all

joints show such behavior with respect to error. In terms of

execution times, except for MC-ARMS, all case studies are on

average in the 1.263-6.353 milliseconds range.

Based on the joint types (Fig. 7), a repetitive pattern is found

in all case studies, S-joints synthesis error is at least twice

the error for R- or T-joints. R- and T-joints do not present a

clear pattern, but are comparable in terms of error. The use

of S-joints to approximate neck, shoulders and hips are not

that accurate, requiring their topological redesign. Shoulders

show a three-degrees-of-freedom movement, but assuming



three concurrent axis is excessive. Execution times for T-joints

are significantly larger compared to S- and R-joints, being

consistent with the larger number of synthesis parameters for

a T-joint. Nevertheless, T-joints present a low synthesis error,

indicating a suitable approximation.
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Fig. 6. Per chain average error (left) and execution time (right) comparison.
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Fig. 7. Global comparison of average error (left) and execution time (right).

Real datasets required at most four input data frames to

provide a first acceptable approximation, in contrast to the 12

or 15 needed for the synthetic ones. The fast convergence rate

for real data sequences underlines the richness of real human

motion. Assuming all joints were synthesized using the worst-

case execution time for each joint type, the average synthesis

frame rate would be in the range of 1.98 fps. However, on

average this frame rate increases to 42.44 fps, which allows

for interactive synthesis rates. The average execution times for

the experimental results confirm that synthesis is feasible at

interactive rates. In addition, frames causing longer execution

times can be directly correlated with those that show poor

qualitative synthesis performance. Therefore, they can be

discarded by filtering out time-consuming data frames.

VI. CONCLUSIONS

A technique is presented for the simulation of human-like

motion applied to the design of humanoid robots or 3D avatars.

With finite-position kinematic synthesis using dual quater-

nions, a kinematic skeleton is synthesized to approximate the

set of poses specified for an arbitrary subject. The advantage is

that complicated articulated figures and joint types, accepting

arbitrary poses of human subjects, can be created without

human intervention. Experiments using real optical motion

capture data show that the algorithm is fast, stable and reliable.

The human skeleton is modeled as four S-T-R chains for the

limbs and one S chain for the head. Although this model could

be extended to reflect more complex topologies, the results

show that the error between real motion and the kinematic

skeleton approximation can be small even when using simple

kinematic structures.

On average, all chains used in the experiments were within

the same synthesis error range, indicating it can be bounded.

Average execution times are stable, and show that synthesis

can be performed at interactive rates.

The results obtained can be applied to create libraries

of human motion and 3D figures for motion retargetting

applications, as well as to provide valuable information about

the topologies that accurately imitate human motion.
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model and motion capture from volume sequences,” in Computer Vision
and Pattern Recognition, vol. II, June 2003, pp. 475–482.

[5] T. Beth, I. Boesnach, M. Haimerl, J. Moldenhauer, K. Bös, and V. Wank,
“Characteristics in human motion - from acquisition to analysis,” in
IEEE International Conference on Humanoid Robots, Karlsruhe, 2003,
p. 56.

[6] J. Moldenhauer, I. Boesnach, T. Beth, V. Wank, and K. Bös, “Analysis of
human motion for humanoid robots,” in IEEE International Conference
on Robotics and Automation, 2005, pp. 312–317.

[7] J. Lee and S. Y. Shin, “A hierarchical approach to interactive motion
editing for human-like figures,” in ACM SIGGRAPH, 1999, pp. 39–48.

[8] M. Brand and A. Hertzmann, “Style machines,” in ACM SIGGRAPH,
2000, pp. 183–192.

[9] M. Abe, T. Yamamoto, and T. Fujinami, “A dynamical analysis of
kneading using a motion capture device,” in proceedings of third
international workshop on Epigenetic Robotics, 2003, pp. 41–48.

[10] E. Lee and C. Mavroidis, “Geometric design of 3R manipulators for
reaching four end-effector spatial poses,” The International Journal of
Robotics Research, vol. 23, no. 3, pp. 247–254, 2004.

[11] A. Perez and J. M. McCarthy, “Dual quaternion synthesis of constrained
robotic systems,” ASME Journal of Mechanical Design, vol. 126, no. 3,
pp. 425–435, 2004.

[12] G. Mullineux, “Modeling spatial displacements using Clifford algebra,”
ASME Journal of Mechanical Design, vol. 124, no. 3, pp. 420–424,
2004.

[13] E. Bayro-Corrochano, K. Daniilidis, and G. Sommer, “Motor algebra
for 3D kinematics. the case of the hand-eye calibration,” International
Journal of Mathematical Imaging and Vision, vol. 13, no. 2, pp. 79–99,
2000.

[14] M. Villa-Uriol, “Video-based avatar reconstruction and motion capture,”
Ph.D. dissertation, Henry Samueli School of Engineering, University of
California, Irvine, 325 Engineering Tower, Irvine, CA, 2005.

[15] J. J. Craig, Introduction to Robotics, Mechanics and Control. Addison
Wesley Publ. Co, 1989.

[16] J. M. McCarthy, Introduction to Theoretical Kinematics. Cambridge,
MA: The MIT Press, 1990.

[17] J. M. Selig, Geometrical Methods in Robotics. Springer-Verlag, New
York, 1996.
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