
1

A local algorithm for the computation of image

velocity via constructive interference of global

Fourier components

Babette Dellen1 and Florentin Wörgötter2

1 Institut de Robòtica i Informàtica Industrial (CSIC-UPC)

Llorens i Artigas 4-6, 08028 Barcelona, Spain
2 Bernstein Center for Computational Neuroscience Göttingen

Georg-August-University Göttingen, III. Physikalisches Institut - Biophysik

Friedrich-Hund Platz 1, 37077 Göttingen, Germany

bdellen@iri.upc.edu

September 28, 2010 DRAFT

2

Abstract

A novel Fourier-based technique for local motion detection from image sequences is proposed. In

this method, the instantaneous velocities of local image points are inferred directly from the global

3D Fourier components of the image sequence. This is done by selecting those velocities for which

the superposition of the corresponding Fourier gratings leads to constructive interference at the image

point. Hence, image velocities can be assigned locally even though position is computed from the

phases and amplitudes of global Fourier components (spanning the whole image sequence) that have

been filtered based on the motion-constraint equation, reducing certain aperture effects typically arising

from windowing in other methods. Regularization is introduced for sequences having smooth flow

fields. Aperture effects and their effect on optic-flow regularization are investigated in this context. The

algorithm is tested on both synthetic and real image sequences and the results are compared to those of

other local methods. Finally, we show that other motion features, i.e. motion direction, can be computed

using the same algorithmic framework without requiring an intermediate representation of local velocity,

which is an important characteristic of the proposed method.

I. INTRODUCTION

The computation of optic flow is a prerequisite for solving many important tasks encountered

in the fields of computer vision and robotics, e.g. navigation, surveillance, and tracking. As

a consequence, many methods for optic flow have been proposed in the past (for reviews

see [1]–[3]). We distinguish roughly betwen local and global methods. Local methods for

optic-flow computation perform a local analysis of the time-dependent pixel intensities inside

a small measurement window and are as such concerned with the basic principles of local

velocity measurement. Common approaches are differential [4], [5], phase-based [6], [7], energy-

based, [8], and region-based-matching techniques [9], [10]. Usually, local algorithms allow the

computation of a confidence function, leading ultimately to non-dense optic-flow fields.

Global methods perform a global optimization of image velocities, usually through the for-

mulation of a global cost function, which is then minimized, e.g. by using methods such as

graph cuts or belief propagation [11], [12]. Global optimization has also been successfully

implemented by using iterative solutions of a set of partial differential equations [13]–[16].

Recently, there has been much progress along this strand of optic-flow research and extensive

comparisons of algorithms have been provided for the Middlebury benchmark data set [3]

(see also http://vision.middlebury.edu/flow/). However, basic methods of velocity measurements,

September 28, 2010 DRAFT

3

i.e. local algorithms, are also important here, since global algorithms always contain a local

measurement as a core ingredient, on top of which global optimization is applied. However,

while in many algorithms local and global computations can be separated [17], [18], this is not

always the case [13]–[16].

Estimation of motion has been explained in the past by formulating the problem in the

Fourier domain [19], [20]. Here, the motion of a translating 2D intensity image corresponds

to a characteristic plane in the Fourier domain, defined through the motion-constraint equation,

which relates the image velocity with the spatial and temporal frequencies of the Fourier space.

The image velocity determines the orientation of the plane, and can be derived from the nonzero

Fourier components. The computations of local methods are restricted to a small spatiotemporal

region of the image sequence [1], [2], i.e., in the Fourier space formulation, a local power

spectrum is obtained by restricting the Fourier transformation to the size of the measurement

window, e.g., energy-based methods using Gabor filters (Gaussian windows) [8], [19] 1. If this

region is sufficiently small, it will, in the ideal case, contain only the object of interest, which

will then have a unique velocity. There is a catch though: Since the measurement of frequencies

is based on spatiotemporal sampling, the velocity estimates become less accurate with decreasing

window size. This phenomenon is known as the uncertainty principle in signal processing [21].

As a consequence, local methods [1], [2] can only compute accurate velocity estimates at points

which have sufficient image structure, such as edges. Global methods in some sense attempt to

solve this problem by adjusting the window sizes locally via an iterative optimization process.

Previously, several methods have tried to facilitate motion processing by representing the

image sequence in the global Fourier domain. Vernon developed a Fourier-based method for

segmenting images which are composed of an occluding foreground and occluded background

for situations in which the object velocity is constant and normal to the principal ray of the

image sensor [22]. Dellen et al. (2007) demonstrated that objects which are moving in opposing

directions are separable in Fourier space [23]. Global Fourier components have also been used

to reduce motion estimation errors in a hybrid approach [24].

In this paper, a novel approach for local velocity estimation based on processing in a global

1These methods can be shown to be closely related and, under certain conditions, to be identical to differential methods [1],

[4], [20], matching techniques [9], [10], and phase-based methods [6], [7].

September 28, 2010 DRAFT

4

Fourier space is proposed. The amplitudes of the global Fourier components are multiplied with

a weight which measures how well the respective spatial and temporal frequencies fulfill the

motion-constraint equation for a certain test velocity. The weigthed amplitudes and phases of the

global Fourier components allow us to reconstruct spatiotemporal position from the signal, and

the reconstructed image can then be compared directly with the original image, constituting the

essential idea of the proposed algorithm. Local image velocity is computed by finding the test

velocity which reconstructs most the intensity of the original image at the given position. Similar

to region-based matching [9], [10], where the image of an adjacent frame is translated and the

pixel intensities are compared with the original image, we compare our Fourier-space-filtered

image with the original one, which allows, at the read-out stage, applying similar strategies

as region-based matching. However, applying spatiotemporal frequency filters in Fourier space

instead of shifting pixels in real space has the following advantages: (i) Subpixel velocities are

automatically defined in the framework. (ii) Aperture effects can be reduced because the whole

sequence is considered when the motion-constraint equation is applied. (iii) As a consequence,

multiple (transparent) motions can be treated in the framework. (iv) The motion-constraint

equation can be relaxed without increasing the complexity of the algorithm. (v) The framework

can be easily applied to the computation of other motion features by formulating appropriate

frequency filters, e.g., for motion direction.

Following this introduction, in Section II, we formulate the algorithm and demonstrate theoreti-

cally how local image velocity can be derived from global Fourier components using the principle

of constructive interference. The inclusion of a regularization operation (without optimization)

further allows the computation of dense smooth optic-flow fields and quantitative comparison

with other local methods which intrinsically perform regularization through the application of

a measurement window. In Section III, we investigate the core parameters of the algorithm.

The algorithm is then applied to several real image sequences and evaluated qualitatively and

quantitatively. We demonstrate on the example of an artificial and a real sequence that the

measurement-window-induced aperture problem is reduced in our method compared to others.

In this context, we shortly discuss some fundamental effects of optic-flow regularizers, i.e.

smoothing and global optimization, which can be applied on top of the algorithm. We also

analyze the behaviour of the algorithm with respect to image properties such as pattern velocity,

noise, and motion jitter. In this context, our method is compared with region-based matching.

September 28, 2010 DRAFT

5

Finally, we show how the framework can be used to compute motion direction. In Section IV,

the results are discussed and directions for future research are given.

Part of the results shown in this paper have been previously published in conference pro-

ceedings [25]. Following parts have been added. We describe the algorithm in greater detail

and theoretically investigate its response to local motion. We further included an algorithmic

extension that allows transparent motion to be detected. A sensitivity analysis with respect to

the core parameters of the algorithm has been included. Furthermore, to allow better comparison

with other local methods, we introduced regularization delivering dense smoothed optic-flow

fields, and compare the method in detail with region-based matching and also with other local

methods. Quantitative results for some standard motion sequences are provided. We also show

that the framework can be used to infer other local motion features, e.g. motion direction, directly

from the image sequence, without requiring an intermediate representation of local velocity.

II. ALGORITHM

A. Basic algorithmic framework

The motion of a translating one-dimensional intensity image corresponds to a characteristic

line pattern in the Fourier domain [19], [20], where the spatial frequency k and the temporal

frequency kt are related via the motion-constraint equation kv = kt, where v is the velocity of

the pattern. Similarly, a translating 2D intensity image represents a plane in Fourier space, which

is defined by the respective motion-constraint equation kxvx + kyvy = kt. This property can be

used to measure optical flow by searching for the plane that best fits the power spectrum of the

spatio-temporal signal. However, spatiotemporal position is also encoded in the amplitudes and

phases of the Fourier components, which can be used to reconstruct spatiotemporal position from

the signal. The amplitudes of global Fourier components are multiplied with weights measuring

how well the motion-constraint equation is fulfilled for a given test velocity, and the image

is reconstructed in real space. For test velocities close to the image velocity at a given local

point, the Fourier components interfere with each other constructively, and an intensity peak is

observed.

On the basis of this idea, we formulate an algorithm for local-motion detection from global

Fourier components as follows. Let the visual scene be represented by a three-dimensional

discrete function of intensity values I(x, t), where x = (x, y) defines the spatial dimensions and

September 28, 2010 DRAFT

6

t the temporal dimension. We further assume that the image sequence has a mean intensity of

zero. Using Fourier decomposition, the image sequence can be described as a superposition of

translating gratings, such that

I(x, t) =

+∞∫∫∫

−∞

A(k, kt) cos(kx− ktt) + B(k, kt) sin(kx− ktt)dkdkt , (1)

where k = (kx, ky) is a wave vector with spatial frequencies kx and ky, and kt is a temporal

frequency. The amplitudes A(k, kt) and B(k, kt) depend on the spatial and temporal frequencies

of the gratings and represent the image sequence in 3D Fourier space. Each grating moves

with a velocity v⊥ = ktk/k2, where k = |k| is the absolute spatial frequency of the grating.

The combined movements of the gratings contributing to a particular point (x, t) of the image

sequence determine the local velocity V(x, t) at this point. Importantly, for non-transparent

conditions, only intensities belonging to a single object are represented at a local point (x, t).

The contribution of a grating to the velocity of a point (x, t) of the image sequence can be

quantified by assigning a weight to every grating. For example, a grating which has a negative

amplitude at a point of positive intensity is contributing destructively, while a grating of positive

amplitude contributes constructively. Note that the intensity I(x, t) has a mean intensity of zero

and thus can also take negative values. Thus, weights depend not only on the amplitude of the

grating at this point, but also on the intensity of the point itself, such that

w(x, t,k, kt) = [A(k, kt) cos(kx− ktt) + B(k, kt) sin(kx− ktt)] sign[I(x, t)] , (2)

where sign[±a] = ±1 is the sign function. Hence, for each point (x, t) of the image sequence, we

obtain a set of weighted velocities {v⊥(k, kt); w(x, t,k, kt)}. The set of weighted velocities can

be used to estimate the local velocity V(x, t) of the image point since all gratings belonging to

an object moving with a velocity v fulfill the motion-constraint equation kt = vk = v⊥(k, kt)k

[19].

We estimate the local velocity by employing the following voting scheme: Each component

velocity votes with its assigned weight for all local velocities which lie along the corresponding

constraint line, yielding a map of votes

m(U,x, t) =

+∞∫∫∫

−∞

w(x, t,k, kt) exp[−(kt −Uk)2/(ξ|k|)2]dkdkt , (3)

September 28, 2010 DRAFT

7

where the parameter ξ is the width of the Gaussian. The Gaussian function, which reaches its

maximum at kt = Uk, implements the motion-constraint equation. If ξ is large, gratings with a

combination of frequencies in the neighborhood of the selected velocity also contribute to the

voting. If ξ is small, almost only those gratings contribute to the voting which fulfill the motion-

constraint equation exactly and the Gaussian converges to a delta function. A large ξ can be

advantageous if the motion of the image point is accelerated and thus smeared in Fourier space. It

should be noted however that accelerated motion is a violation of the motion constraint equation.

If accelerated motion is of interest, an extended motion-constraint equation with additional higher

order terms would be more accurate and make the estimation of acceleration feasible at the same

time.

The map of votes peaks at U = V(x, t) if the velocity signal is sufficiently strong, where

V(x, t) is the local velocity of the point. Thus, we compute the velocity estimate Ve(x, t) by

finding the maximum of the map of votes and taking its argument

Ve(x, t) = arg{max[m(U)]} . (4)

A schematic of the algorithm is presented in Fig. 1A-B.

B.

We shortly illustrate that the algorithm indeed computes local velocity on the example of a

moving dot. Let I(x, t) = δ(x− vt), then, applying the 3D Fourier transform yields

F (k, kt) =

+∞∫

−∞

exp[−i(kvt′ − ktt
′)]dt′ , (5)

and we obtain for the map of votes

m(U,x, t) =

+∞∫∫∫∫

−∞

exp[−i(kvt′ − ktt
′)] exp[i(kx− ktt)] exp[−(kt −Uk)2/(ξ|k|)2]dkdktdt′ .

(6)

For matters of simplification, we assume ξ → 0, and hence

m(U,x, t) u sign[I(x, t)]

+∞∫∫∫∫

−∞

exp[−i(kvt′ − ktt
′)] exp[i(kx− ktt)]δ(kt −Uk)dkdktdt′

(7)

September 28, 2010 DRAFT

8

x

I(
x
)

xa xb

va
v
b

kx

kt

ky

x

t

y

Image sequence

 I(x,t)

3D Fourier transform

 F(k,k)

 Selected

Fourier components

IFFT3

k u + k u = kx x y ty
s s

I (x,t)
1

I (x,t)
i

I (x,t)
s

x sign(I(x,t))

u

u

x

y

vx
e

v
y

e

t

Reconstructed
 Image

Map of votes

 m(u)

FFT3

Preprocessing
 (optional)

A

B

Regularization
 (optional)

k u + k u = kx x y ty
1 1

k u + k u = kx x y ty
i i

1 2
3 4

5

 Selected

Fourier components

2

3

IFFT3
I (x,t)
1

I (x,t)
i

I (x,t)
s

x sign(I(x,t))

φ

m(φ)

e

Reconstructed
 Image

Map of votes

Regularization
 (optional)

4 5

φ

m(φ)

C

(d ,e)<90°φ
i

c

(d ,e)<90°φ
1

c

(d ,e)<90°φ
s

c

 d = sign(k)k/k c t

Original frame t 0

Reconstructed frame t

 (our method)
0 Reconstructed frame t

 (matching techniques)
0

Original frame t -1

D

va

vb

Fig. 1. Algorithmic framework. A Algorithm for local-velocity computation. The fast Fourier transform (FFT3) of the image

sequence is computed (step 1-2). The image sequence is preprocessed (optional) with a high-pass frequency filter. According to

the motion-constraint equations, Fourier components are selected for a set of predefined test velocities (u1,...,ui,..,u1) (step 3).

For each velocity, the filtered image is reconstructed in real space (step 4), multiplied with the local sign of the image intensity,

and in step 5 the resulting values for different test velocities are compared locally to find the velocity for which the value is

maximal, as a consequence of constructive interference (see B). A regularizing smoothing operation may be employed to obtain

dense flow fields. B Constructive interference: Spatiotemporal frequency of global Fourier components connect with local image

velocity through the superposition principle. The Fourier components of two objects (blue and red lines), moving with va and vb,

superpose constructively (bold blue and red lines) at the instantaneous location of the objects, xa and xb, respectively. C Relation

to region-based matching. Two consecutive frames of a motion sequence are shown (upper left and right panel). Shifting frame

t−1 by test velocity U = va results in the reconstructed frame t0 shown in the lower, left panel, as performed in region-based

matching. Applying the motion-constraint equation in global Fourier space with U = va and returning to real space returns

the reconstructed frame at t0 shown in the lower, right panel. Objects moving with v 6= U have faded in intensity, but appear

at their original position. D Algorithm for local-motion-direction computation. Other motion features can be computed directly

by modifying the frequency filters in step 3 of A. Fourier components are selected using a set of predefined motion directions

(e1
φ,...,ei

φ,...es
φ), (step 3). The resulting map of votes (step 5) allows the detection of local motion direction.

September 28, 2010 DRAFT

9

= sign[I(x, t)]

+∞∫∫∫

−∞

exp[i(−kvt′ + Ukt′ + kx−Ukt)]dkdt′ (8)

= sign[I(x, t)]

+∞∫∫∫

−∞

exp[−ik(v −U)t′] exp[−ik(Ut− x)]dkdt′ (9)

= sign[I(x, t)]δ(v −U)

+∞∫∫

−∞

exp[−ik(Ut− x)]dk (10)

= sign[I(x, t)]δ(v −U)δ(Ut− x) , (11)

which peaks only if U = v and x = Ut.

C. Algorithmic extensions

Confidence values: We measure the “confidence” G(x, t) of the velocity estimated at x by

computing the correlation coefficient of the map of votes with a Gaussian centered at Ve(x, t)

G(x, t) = C
{
exp

[−(U−Ve(x, t))2/σ2
]
,m(U,x, t)

}
, (12)

where σ is a parameter determining the width of the Gaussian. The function G provides a

confidence measure for each estimated local velocity value. For example, if the velocity signal

is too weak, no peak will emerge from the map of votes, and Eq. 4 will return a wrong velocity

estimate. In this case, the confidence will be small and the velocity estimate can be discarded.

We use a parameter τ to threshold the confidence function.

Regularization: Many image sequences have largely smooth optic-flow fields, i.e. the image

velocity changes continuously with space and time. In these cases, the performance of the optic-

flow algorithm can be improved by a smoothing operation. In our algorithm, a regularizing

smoothing step is introduced best before reading-out the velocity from the map of votes. We

convolve the map of votes with a Gaussian function, giving

m̃(x, t,U) = m(x, t,U) ∗ exp
(−x2/α2 − t2/β2

)
, (13)

where α and β are smoothing parameters. By performing this smoothing operation, the map of

votes of neighboring points are combined. If the velocities of neighboring points are similar, the

velocity map will improve. However, at motion boundaries, smoothing will introduce errors since

signals belonging to different objects are falsely combined. To decrease the smoothing effects

September 28, 2010 DRAFT

10

at the motion boundaries, a more elaborate smoothing method would have to be employed, i.e.

global optimization with discontinuity-preserving constraints.

Preprocessing: If an image point is part of a large homogeneous image area, the low spatial

frequencies are usually static even if the respective object is moving. Gratings with a low spatial

frequency need to be sampled over a longer time for a slow moving object in order to find

their correct temporal frequency compared to a situation where the object is moving fast. If

the sequence is short and motions are slow, we thus face a temporal aperture problem and it is

advantageous to remove the affected Fourier components. Accordingly we preprocess the image

sequence with a spatiotemporal high-pass Butterworth filter

Ψf = 1/[1 + τf/(k
2
x + k2

y + k2
t)] , (14)

where τf is a threshold parameter. A sensitivity analysis revealed that a large τf is advantageous

at least for image sequences with smooth flow fields.

It should be noted that many optic-flow algorithm intrinsically perform high-pass filtering

by not including Gabor filters of very low spatiotemporal frequencies or by computing image

gradients.

D. Parameter choices

Parameter choices of the algorithm are summarized in Table I. According to a sensitivity

analysis (Fig. 3), we chose ξ to be between 0.3 and 0.6 pixels/frame. If high-pass filtering is

included as a preprocessing step, values in the range of τf = 0.05 to 0.2 are reasonable choices.

We tend to use a larger τf for shorter sequences because the amount of static gratings is expected

to be higher. For the algorithm with smoothing (which we used for quantitative comparisons)

we used fixed parameters τf = 0.2 and ξ = 0.6 pixels/frame.

The parameter σ for obtained the confidence map should be chosen dependent on ξ, since the

peak in the map of votes broadens with increasing ξ. Here, we chose σ = 2ξ = 0.6 pixels/frame.

III. RESULTS

We first demonstrate the basic properties of the algorithm using three artificial test sequences

(Section III.A), and investigate its sensitivity to system parameters (Section III.B). Then the

algorithm both with and without smoothing is applied to several real image sequences and the

September 28, 2010 DRAFT

11

No Regularization With Regularization

Sequence ξ σ τf Step size ξ τf α β Step size

Trans. square 0.3 0.6 x 0.1 x x x x x

Lines 0.3 x x 0.1/1 x x x x x

Transp. square 0.3 0.6 x 0.1 x x x x x

Trans. tree 0.3 0.6 0.1 0.1 0.6 0.2 15 3 0.05

Div. tree 0.3 0.6 0.1 0.1 0.6 0.2 15 3 0.05

Yosemite 0.3 0.6 0.2 0.1 0.6 0.2 15 3 0.05

Rubber whale 0.3 0.6 0.2 0.1 0.6 0.2 10 1 0.1

Hydrangea 0.3 0.6 0.2 0.1 0.6 0.2 10 1 0.2

SRI trees 0.3 0.6 0.05 0.1 0.6 0.2 5 1 0.2

Rubic cube 0.3 0.6 0.05 0.1 x x x x x

Hamburg taxi 0.3 0.6 0.05 0.1 0.6 0.2 10 1 0.2

Durlacher Tor x x x x 1 0.2 15 1 1

“Direction Fields” x x x x 1 0.2 15 1 30

TABLE I

Parameter choices.

error is evaluated for those sequences for which ground truth is available (Section III.C). We

further provide a qualitative discussion on aperture effects and their effect on regularization

(Section III.D). We then systematically study the effect of certain image properties, i.e., pattern

speed, noise, and motion jitter, on the performance of the algorithm and in this context compare

our results to region-based matching approaches [9], [10] (Section III.E). In this context, the

effect of noise is studied as well. Finally, we show that the proposed framework allows compute

other motion feature, here motion-direction fields, as well (Section III.F), which is an important

characteristic of the approach. The absolute (end-point) error and the angular error are defined

as in [1]. Parameter choices are summarized in Table I.

Computations were performed using MATLAB on a 1.73 GHz Intel Core Duo Processor. For

a velocity range of −2 to 2 pixels/s and a step size of 0.1 pixels/frame, the program required

187 s to compute the optic-flow fields of an image sequences containing 20 frames of size

100×100 pixels, corresponding to an approximate computation time of 9 s/frame. However, the

run time scales with a factor proportional to the ratio of the step sizes squared, i.e., for a step

September 28, 2010 DRAFT

12

size of 1 pixels/frame we would obtain an approximate computation time of 0.09 s/frame.

A. Verification of the core algorithm and characteristic properties

In this section, we verify the core algorithm and its applicability to the motion problem.

Characteristic properties of the method are elaborated.

We illustrate the algorithm first on a sequence which contains a square, 10 pixels wide, which

moves on a white background with a velocity of v = [1, 1] pixels/frame. The translating-square

sequence contains 24 frames, which is about the number of frames movies display within a

second (Fig. 2A). The global Fourier transform is taken over the whole sequence, as explained

in Section II, and the weights are computed for each point of frame 12 of the sequence. We

compute the map of votes for velocities U, where the component velocities in x and y direction

are ranging from −3 to 3 pixels/frame in steps of 0.1 pixels/frames. The map of votes for an

image point belonging to the square (labeled a) is presented in Fig. 2B. A clearly distinguishable

peak is visible in the map of votes, with a maximum positioned at U = [1, 1] pixels/frame.

In contrast, point b in the surround of the square, which is a large homogeneous image

region, returns a flat map of votes, and no clear peak can be distinguished (Fig. 2C). This is

reflected in the confidence G(x) of the velocity estimate, presented in Fig. 2D. All points on the

square have a high confidence, while points in the homogeneous surround have not. Thresholding

G(x) with τ = 0.4, returns only velocity estimates which have a high confidence. The color-

coded estimated velocities are plotted together with the color coding in Fig. 2E. The algorithm

returns estimates for points lying on the square. Remarkably, the estimated velocities of points

belonging to the edge of the square are not afflicted with the measurement-window-induced

aperture problem, since no windowing is performed in real space and our method can thus

exploit motion information contained in the whole image sequence. However, velocity estimates

for points in the homogeneous surround cannot be given. This merely demonstrates the ambiguity

of the vision problem (correspondence problem), and is not a insufficiency of the algorithm, since

the homogeneous background contains all possible velocities.

To quantify the performance of the algorithm, we compute the absolute error and the angular

error as a function of τ , together with the standard error (Fig. 2F-G). In Fig. 2H the density of

the sequence is plotted as function of τ . The error measures decrease with increasing threshold

and settle at low values close to the resolution of the map of votes of 0.1 pixels/frame.

September 28, 2010 DRAFT

13

-2 -1 0 1 2

-2

-1

0

1

2

0

0. 1

0. 2

0. 3

0. 4

0. 5

-2 -1 0 1 2

-2

-1

0

1

2
-0.2

-0.15

-0. 1

-0.05

0

0.05b

a

a b

 0

0. 2

0. 4

0. 6

0 0. 5
0

0. 5

1

1. 5

2

A
b

s
o

lu
te

 E
rr

o
r

0 0. 5
0

20

40

60

A
n

g
u

la
r

E
rr

o
r

0 0. 5
0

0. 5

1

D
e

n
s
it
y

A B C

x
U x

U
y

U x

y

G(x)m(U) m(U)

U
y

x

y

τ τ

D

x

y

E

I J K

L

τ

F G H

V
e

-0.8 0 0.8

0.8

0

-0.8

x

V
e y

M N O

Fig. 2. Results for artificial motion sequences (without regularization). A Schematic of translating square. B Map of votes

for a point of the square, showing a clear peak, and C for point b in the homogeneous surround. D The confidence G(x) as

a function of position. E Color-coded estimated velocities and color code. F-H Absolute error, angular error, and density as a

function of the threshold τ . I Schematic of oriented lines. J Computed optic-flow field (our approach). K Computed optic-flow

field Lucas and Kanade for a window of size 5 × 5 pixels. L-M Fore- and background of a transparent motion. Positions at

which two motion coincide are marked red. N Co-occurence of two characteristic peaks in the map of votes at an image point

containing two motions due to transparency. O Estimated optic-flow field. Transparent motions are marked red.

September 28, 2010 DRAFT

14

To further demonstrate the behavior of our algorithm at edges, we designed an artificial

image sequence consisting of oriented lines moving in negative x-direction with a speed of

1 pixels/frame (Fig. 2I). The sequence contains 30 frames. We plot the optic-flow field for

the oriented lines computed with our algorithm (Fig 2J) and the one of Lucas and Kanade

with window size 5 × 5 pixels (Fig. 2K) 2. We observe that aperture effects are reduced in

our method. We further computed the mean angular error only for the lines for our approach,

Lucas and Kanade [4], a phase-based approach [7] (with Nmin = 7 and τl = 0), and region-

based matching (for implementation details of region-based matching see Section III.E) [9], [10].

Results are presented in Table II.

Finally, we apply the algorithm to an image sequence containing two moving random-dot

patterns which are moving on top of each other under conditions of transparency (Fig. 2L-M).

The random-dot patterns are moving with velocities v = (1, 0) pixels/frame and v = (−1, 0)

pixels/frame, as depicted in Fig. 2L-M, respectively. In Fig. 2M, dots of the background which

are overlapping with dots of the foreground are encircled by a red line. The respective map of

votes shows two peaks, thus containing signals from both the pattern moving to the left and

from the pattern moving to the right (Fig. 2N). Transparency does not eliminate the motion

signal in the map of votes, instead, co-occurence of multiple peaks is observed, which can be

used to detect transparent motion. We test for the presence of a second peak by removing the

first detected peak, then locating the second peak by finding the maximum of the map of votes.

We find a confidence value for transparent motion according to Eq. 13, except that the Gaussian

contains two peaks. The second velocity estimate is then accepted if the confidence value for

transparent motion is larger than the confidence value for single motion. The resulting optic-flow

field is depicted in Fig. 2O. Confidence values were thresholded with τ = 0.75. The velocities

obtained at points of transparent motion are colored red. In the past, other methods have been

proposed to detect multiple, transparent motions [26]–[28]. In [28], a generalized structure tensor

for multiple motions is derived from the output of linear filters, which allows the extraction of

multiple motion vectors, which is shown analytically and also confirmed using an artificial test

sequence. The detection of transparent motion is of relevance under semi-transparent conditions,

2Note that in our implementation of Lucas and Kanade we used the gradient function of MATLAB to compute image gradients

(more advanced techniques can be employed here) without image pyramids.

September 28, 2010 DRAFT

15

which can occur for example in medical imaging [28].

In summary, we could show that correct velocity estimates could be obtained in certain cases

at extended edges, homogeneous and semi-transparent areas at which other local algorithms

would fail. It should be noted also that these results were obtained without applying smoothing,

corresponding to a spatial window of only 1 pixel.

B. Sensitivity analysis

First, we investigate the influence of the core parameter ξ on the computation of optic flow.

We consider a Gaussian function moving with a constant velocity of 2 pixels/frame, as shown in

Fig. 3A, left panel. In this example, the motion is one-dimensional. The map of votes at (x, t) =

(30, 61) shows a clear peak at the position of the true velocity (dashed line) of the Gaussian for

parameter values ξ = 0.1 pixels/frame, ξ = 0.3 pixels/frame, and ξ = 0.6 pixels/frame (2nd to

4th panel). We further observe a broadening of the peak with increasing ξ. When the Gaussian

is accelerated with a = 0.8 pixels/frame2 (Fig. 3B, left panel), the peak in the map of votes at

(x, t) = (50, 25) deteriorates with decreasing ξ (Fig. 3B, 2nd to 4th panel), and the maximum

of the peak is not exactly at the position of the true velocity (dashed line) of the image point.

For large ξ, the maximum of the peak is located at the true velocity (dashed line) of the image

point, but the peak itself is broadened.

Next, we investigate the performance of the algorithm in dependence of system parameters. We

define the following performance measure P =
∑

i |ρi/Eφ,i|, where ρi is given in discrete steps

of 0.01. This is done by writing the values of ρi and Eφ,i in a histogram. While this measure is

appropriate to quantify and compare performances of our method, it is not well suited to compare

performances across methods or image sequences, because the density-error curves take different

shapes or may be cut-off, thus affecting the result in a non-trivial manner. Thus, only relative

peformance are of significance here. In Fig. 3C, the gray-value coded performances for the

translating-tree sequences are shown as function of ξ and α (left panel), ξ and the test-velocity

step size (middle panel), and τf and the number of frames used (right panel). A lighter gray

value indicates a better performance. The same experiments were performed for the diverging-

tree sequence (Fig. 3D). The translating- and diverging-tree sequences are well-known artificial

sequences generated from a real image of a tree [1] (see Fig. 5B). In the translating-tree sequence,

the camera moves to the right, while filming a picture of a tree, which is slanted with respect to

September 28, 2010 DRAFT

16

the fronto-parallel plane. The velocities are parallel to the x-axis and range form 1.73 to 2.26

pixels/frame. In the diverging-tree sequence, the camera recedes from the tree image, causing

the optic-flow field to diverge from the center of expansion which is located in the middle of

the image. The speed ranges from 1.29 to 1.86 pixels/frame.

The results show that the algorithm performs best for large values of the smoothing parameter

α, however, this is not surprising because the ground truth of the translating- and diverging-tree

sequence are smooth global motion patterns. We further find that ξ between 0.3 and 1 pixel/frame

to be a reasonably good value for the image sequences considered. In general, we observe

that a small step size is best, except for the translating-tree sequence for which a step size of

1 pixel/frame is preferable, but this is most likely due to the particular velocity distribution of

the ground truth. We further conclude from the sensitivity analysis that the performance of the

algorithm is best for a large number of frames. This is understandable since the 3D Fourier

transform will deliver only a coarse temporal frequency range for short image sequences. The

result further demonstrates that the algorithm utilizes motion information contained in the entire

sequence. We also observe that a large parameter τf improves the results.

Parameter choices (if parameter is not varied) have been ξ = 0.6 pixels/frame, α = 7 pixels,

β = 1 frame, and τf = 0.2.

C. Real image sequences

We apply the algorithm to several real images sequences. First we show results without

smoothing to demonstrate that with our method it is indeed possible to obtain results under

conditions under which many local methods would fail, i.e. a spatial window of 1 pixel.

In the SRI sequence, a camera moves parallel to the ground plane along the x-axis in front of

several trees. The velocities are as large as two pixels/frame. The sequence contains 20 frames.

The color-coded velocities in x direction of frame 10 for τ = 0.3 and τf = 0.05 are shown

in Fig. 4A, right panel. Image points which are below threshold are set to zero. The tree in

the foreground has a speed of about 2 pixels/frame and be distinguished from the background

despite the poor resolution, the amount of occlusion, and the low contrast of the image sequence.

In the Rubic-cube sequence, a Rubic cube is rotating counterclockwise on a turntable. The

rotation induces velocities of the cube between 0.2 and 0.5 pixels/frame. The velocities on the

turntable range from 1.2 to 1.4 pixels/frame. This sequence contains 20 frames. The optic-flow

September 28, 2010 DRAFT

17

0.015

0.02

0.025

0.03

0.035

0.04

0.02

0.04

0.06

0.08

0.1

0.02

0.03

0.04

0.05

0.05

0.1

0.15

0.2

0.25

0.3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.05

0.1

0.15

0.2

0.25

0.3

0.35

20 40 60 80 100

10

20

30

40

50

60
-10 -5 0 5 10

0

0.2

0.4

0.6

-10 -5 0 5 10

0

0.2

0.4

0.6

-10 -5 0 5 10

0

0.2

0.4

0.6

20 40 60 80 100

10

20

30

40

50

60
-10 -5 0 5 10

0

0.2

0.4

0.6

-10 -5 0 5 10

0

0.2

0.4

0.6

-10 -5 0 5 10

0

0.2

0.4

0.6

A

B

C

D

a=0.08 pixel/frame2

v=2 pixel/frame
a = 0

ξ=0.6

ξ=0.3

ξ=0.3

ξ=0.1

ξ=0.1

ξ=0.6

U [pixels/frame]
m

(u
)

U [pixels/frame]U [pixels/frame]

U [pixels/frame] U [pixels/frame] U [pixels/frame]

m
(u

)

T
im

e
 [

fr
a

m
e

s
]

T
im

e
 [

fr
a

m
e

s
]

Position [pixels]

Position [pixels]

f

s
te

p
 s

iz
e
 [
p
ix

e
ls

/f
ra

m
e
]

0.2 0.5 0.8 1.1 1.4

3

6

9

12

15

0.25

0.5

1

2

0.25 0.5 1 2

ξ [pixels/frame]
0 0.05 0.1 0.15 0.2

6

12

18

24

30

α
 [

p
ix

e
ls

]

τ ξ [pixels/frame]

n
u
m

b
e
r

o
f
fr

a
m

e
s

3

6

9

12

15

α
 [

p
ix

e
ls

]

0.2 0.5 0.8 1.1 1.4

ξ [pixels/frame]
0.25 0.5 1 2

ξ [pixels/frame]

s
te

p
 s

iz
e
 [
p
ix

e
ls

/f
ra

m
e
]

0.25

0.5

1

2

f
0 0.05 0.1 0.15 0.2

τ

6

12

18

24

30n
u
m

b
e
r

o
f
fr

a
m

e
s

Fig. 3. Sensitivity analysis. A The x-t plot of a Gaussian function moving with a constant velocity of 2 pixel/frame is shown.

The corresponding maps of votes for ξ = 0.1, ξ = 0.3, and ξ = 0.6/frames show a broadening of the peak with increasing ξ.

B The x-t plot of a Gaussian function moving with a constant acceleration of 0.08 pixel/frame2 is shown. The corresponding

map of votes for ξ = 0.1, ξ = 0.3, and ξ = 0.6/frames. The peak deteriorates with decreasing ξ. C-D The performance of

the algorithm is measured as a function of several parameters for the translating- (C) and diverging-tree sequence (D). The

performance values have been gray-value coded, where a lighter tone indicates a better performance than a darker tone. For

further information, see text.

September 28, 2010 DRAFT

18

field at frame 10 for τ = 0.3 and τf = 0.05 is shown in Fig. 4B, middle panel. An enlarged part

of the optic-flow field is given in Fig. 4B, right panel. The optic-flow field is scaled by a factor

2 for reasons of better display. This demonstrates that our method is applicable to rotational

motion as well.

In the Hamburg taxi sequence, a street scene is shown with four moving objects: (i) a taxi

turning the corner (ii) a car in the lower left, driving from the left to the right (iii) a van in

the lower right driving from the right to the left, and (iv) a person in the upper left walking

downwards and to the left. Image speeds of the four moving objects are approximately 1.0, 3.0,

3.0, and 0.3 pixels/frame, respectively. A snapshot shown in Fig. 4C. The sequence contains

20 frames. The optic-flow field at frame 10 for τ = 0.55 and τf = 0.05 is shown in Fig. 4C,

right panel. The optic-flow field is scaled by a factor 2 for reasons of better display. By means

of manual segmentation, we computed the average velocity for each moving object: (i) V̄e =

(−0.7,−0.7), (ii) V̄e = (2.7, 0.5), (iii) V̄e = (−2.6,−0.3), and (iv) V̄e = (−0.3, 0) pixels/frame.

We included the smoothing operation as described in Section II.F and applied the modified

algorithm for several real image sequences. In Fig. 5A, left panel, the estimated velocity in

x-direction for the SRI-tree sequence is shown. The parameter choices are τf = 0.2, ξ =

0.6 pixels/frame, α = 5 pixels, and β = 1 frame. Even though the optic-flow fields captured the

main velocity pattern of the sequence, undesirable but expected smoothing effects are visible at

the motion boundaries (Fig. 5A).

Next, we applied the algorithm with smoothing to the translating- and diverging-tree sequence

with parameters ξ = 0.6, τf = 0.2 pixels/frame, α = 15 pixels, and β = 3 frames (Fig. 5B).

The algorithm returns flow fields with 100% density and angular errors of 0.52 deg for the

translating-tree sequence and 3.82 deg for the diverging-tree sequence.

For the taxi sequence, our algorithm with parameters τf = 0.2, ξ = 0.6 pixels/frame, α =

10 pixels, and β = 1 frame returns a dense optic-flow field in which the moving objects are

clearly visible (Fig. 5C, left panel). The velocity estimates are close to the true velocities of the

objects. However, the objects appear larger than they are due to regularization.

We also computed optic-flow fields for rubber whale with τf = 0.2, ξ = 0.6 pixels/frame,

α = 10 pixels and β = 1 frame, and, alternatively, α = 10 pixels and β = 5 frame (Fig. 5D-E).

The results for hydrangea with α = 10 pixels and β = 1 frame are shown in Fig. 5F. Images

have been taken from the Middlebury database. We obtained an angular error of 9.8 deg and

September 28, 2010 DRAFT

19

A

C

-3

-2

-1

0

1

2

3

vx
e

B

Fig. 4. Estimated optic-flow field for real-image sequence without ground truth (without regularization). A SRI-tree sequence.

Frame 10 of the original sequence (left panel). Estimated optic-flow field at frame 10 for τ = 0.3 and τf = 0.05 (right panel).

B Rubic-cube sequence. Frame 10 of the original sequence (left panel). Estimated optic-flow field at frame 10 for τ = 0.3 and

τf = 0.05 (right panel). C Hamburg taxi sequence: Frame 10 of the original sequence (left panel). Estimated optic-flow field

at frame 10 for τ = 0.55 and τf = 0.05 (right panel).

September 28, 2010 DRAFT

20

9.3 deg at 100% density for rubber whale and hydrangea, respectively. We used here a downsized

version (factor 2) of rubber whale and hydrangea. However, since the angular error is used for

quantitative comparisons, this choice should have only minor consequences on the results.

For the Yosemite sequence (Fig. 5G, right panel) with parameters ξ = 0.6 pixels/frame,

α = 15 pixels, and β = 3 frames, the algorithm returns flow fields with 100% density and

angular errors of 0.52 deg for the translating-tree sequence and 3.82 deg for the diverging-tree

sequence (Fig. 5G, left panel). The algorithm achieves an angular error of 3.75 everywhere

except for the area of the clouds. In the cloud area, the angular error is 35.25 deg. However,

this error has been computed under the assumption that the clouds are moving with a constant

velocity of 1 pixel/frame. It should be noted that this value only approximates the true motion

of the clouds, which are undergoing Brownian motion and are changing shape. Hence, errors

reported for the cloud region do not have much significance.

We also applied the algorithm with smoothing to the Durlacher-Tor sequence (KOGS/IAKS

Universität Karlsruhe), showing a traffic intersection scene recorded at the Durlacher-Tor-Platz

in Karlsruhe by a stationary camera (Fig. 5H, left panel). For this sequence, we used parameters

τf = 0.1, ξ = 1 pixels/frame, α = 15 pixels, and β = 1 frame, and a large step size of

1 pixel/frame. The various moving objects can be clearly identified in the computed optic-flow

field (Fig. 5H, right panel).

Quantitative results are summarized in Table II together with results obtained with other local

approaches. The comparison shows that our approach delivers similar and in several cases even

better results than other local approaches such as region-based matching, differential methods,

and phase-based methods.

D. The aperture problem and its effect on regularization

We investigate qualitatively differences between our method and another representative local

method, for which we chose the algorithm of Lucas and Kanade. We compare our method

without smoothing with Lukas and Kanade for a window size of 3 × 3 pixels, because only

for this value comparable locality with our method is achieved, but note that regularization

is introduced for window sizes larger than one pixel. This comparison demonstrates that the

measurement-window induced aperture problem is reduced in our method. For this purpose, we

display previously computed velocity estimates for the Hamburg taxi sequence only at image

September 28, 2010 DRAFT

21

C
D

0

0.5

1

1.5

2

2.5

V
e
x

G

BA

D E F

H

Fig. 5. Estimated optic-flow fields for several real image sequences (with regularization). A SRI-tree sequence. B

Translating/diverging tree. C Hamburg taxi. D Rubber whale (α = 10 pixels) E Rubber whale (α = 5 pixels) F Hydrangea G

Yosemite snapshot (left panel). Estimated optic flow (right panel). H Durlacher Tor snapshot (left panel). Estimated optic flow

(right panel).

September 28, 2010 DRAFT

22

Sequence EDW
a EDW,r

a ERBM,1
a ERBM,2

a ELK
a EGH

a

Lines 8.32/3.1(0.03) x 8.3w=14/30w=5(0.03) x 18.2w=5(0.03) x

Trans. tree 3.5(0.1) 0.52(1) 1.33(1) 4.54(1)∗ 0.66(0.4)∗ 2.67(0.68)∗

Div. tree 4.37(0.044) 3.82(1) 13.99(1) 7.64(1)∗ 1.94(0.48)∗ 4.07(0.77)∗

Yosemite 6.29(0.018) 3.751/11.46(1) 16.76/10.96w=14(1) 15.84∗ 6.41∗∗,1/4.1(0.35)∗ x/4.4(0.35)∗

Rubber whale 5.49(0.012) 9.8(1) 17.76(1) x 15.1(1) 10.14(0.6)

Hydrangea 12.52(0.014) 9.3(1) 12.80(1) x 14.3(1) 6.86(0.37)

TABLE II

Average angular error Ea of our algorithm without (DW) and with smoothing regularization (DW,r). The densities of the respective

flow fields are given in round brackets. The results are compared with region-based matching using our implementation (RBM,1)

(here a similar window size w as used for (DW,r) was chosen unless indicated otherwise) and Anandan (RBM,2) [1], Lucas

and Kanade (LK) [4], and Gautama and van Hulle (GH) [7]. ∗ Values taken from [1], [7]. ∗∗ Values taken from the Middlebury

flow evaluation (LK with pyramids). Otherwise parameters Nmin = 7 and τl = 0.2 were used for GH. For LK and RBM2, a

window of 5 × 5 pixels was used if not indicated otherwise. 1 Clouds in Yosemite were excluded. Cases for which no values

were available are marked with x.

areas having a large image gradient (see Fig. 6A). The selected velocity vectors obtained by our

method with τ = 0 and the method of Lucas and Kanade (1981) for a window size of 3 × 3

pixels are shown in Fig. 6B, left and right panel, respectively, for the car moving from the left

to the right. Measurement-induced aperture effects are clearly visible for the method of Lucas

and Kanade (1981), whereas in our case, local velocity estimates, capturing the true motion of

the car, could be assigned to the elongated edges of the car. These differences are clearly visible

in the magnifications.

Increasing the window size of the Lucas and Kanade algorithm to 10× 10 pixels does partly

remove the aperture problem (see Fig. 6C, right panel), however, as a consequence motion

boundaries will be blurred. In addition, as soon as there is a too dramatic lack of information

(mag. b from panel C) the correct flow cannot be recovered by the Lucas and Kanade method.

For our method we used α = 5 pixels and no smoothing along the temporal dimension. To allow

a fair comparison in terms of regularization, we used a Gaussian window for Lucas and Kanade

of the same size and shape as in our method.

Using a larger window size in the Lucas and Kanade algorithm acts regularizing. Clearly

there are nowadays much more powerful methods for flow-regularization and global optimization

September 28, 2010 DRAFT

23

existing [14]–[17], but the fundamental problem remains: As soon as flow information at edges

becomes too sparse, regularization will become more difficult. Here, we see one potential major

advantage of our new algorithm as we are less affected by the measurement-window-induced

aperture problem 3 having the consequence that in certain areas information can be extracted

where other methods fail. The reason is that our method takes into account the whole image

sequence during the motion analysis, and not only a small area of the image sequence.

E. Performance with respect to image-intrinsic properties and comparison with region-based

matching

We investigate the effect of certain image properties, i.e., pattern speed, additive noise, and

motion jitter, on the performance of our algorithm. The results are compared with those obtained

for region-based matching. Region-based matching is in some sense related to our method and

as such allows us to compare the “core” methods directly with each other.

Filtering for a certain test velocity U in global Fourier space and returning to real space using

the principle of constructive interference yields an “reconstructed” image which can be directly

compared with the original. Region-based matching also provides a “reconstruction” for a certain

test velocity, which can be obtained by shifting all pixels of an adjacent frame uniformly. This is

illustrated in Fig. 1C. In the left and right upper panel, two consecutive frame t−1 and t0 of the

image sequences are shown. For test velocity U = va, region-based matching reconstructs frame

t0 by shifting all objects by va, as illustrated in the lower, left panel. In contrast, our method

reconstructs the image at t0 from the global Fourier components, after applying the motion-

constraint equation in Fourier space for U = va. The reconstructed image is shown in the lower

right panel. All objects moving with va have been fully reconstructed, while the remaining ones

have faded in intensity. In both cases, local velocity estimates are obtained by comparing the

reconstructed with the original image for a set of test velocities.

We adjusted both methods such that only the core algorithms would differ, but all other

additional techniques would be identical. For the regularization window of our algorithm, we

3For the sake of completeness, we emphasize that aperture problems may also arise due to insufficient velocity information

carried by the image sequence, which we identify as the correspondence problem. As an example, no unique velocity can be

assigned to points belonging to an image consisting of a uniform surface. Such ambiguities are intrinsic to the data and can

thus not be removed by applying a different measurement technique.

September 28, 2010 DRAFT

24

Our Method Lucas and Kanade

No smoothing

B

C

a

b

b

A

a a

a

a

a

a

a

b

b

b

b

bb

Fig. 6. Aperture effects and their effect on regularization. A Thresholded absolute image gradient of a frame of the Hamburg

taxi sequence, showing just the car in the left lower corner. In the following, only velocity estimates for pixels above threshold

are displayed to highlight computed flow features at edges. B Results of our method without regularization (left panel) and the

one of Lucas and Kanade (1981) with a window size of 3× 3 pixel (right panel), ensuring equal locality. Aperture effects are

clearly visible for the method of Lucas and Kanade (1981). C Results of our method with smoothing only along the spatial

direction (α = 5 pixels) (left panel) and the one of Lucas and Kanade (1981) using a similar window size of w = 10 × 10

pixels (right panel).

September 28, 2010 DRAFT

25

use a rectangular spatial window of size 15×15 pixels and no regularization along the temporal

dimension. For the region-based matching algorithm, an identical window is chosen. In both

algorithms the image sequence is preprocessed with an identical high-pass spatiotemporal filter

with τf = 0.2 pixels. We note that the results overall of region-based matching are improved if

preprocessing is applied.

Furthermore, both methods provide a map of votes, which allows utilizing the same velocity-

read-out technique. In region-based matching, the sum-of-squared-differences (SSD) of pixel

gray values of the reference image at t0 shifted by a test velocity U with the adjacent images

t−1 and t+1 is computed within a rectangular measurement window [1], providing a set of SSD

values, which we substract from the maximum SSD value of all test velocities. This returns a

map of votes very similar to our method. Since region-based matching only allows integer pixel

displacement, we also constrain our algorithm to integer velocities, and modify our velocity-

read-out technique as follows. The maximum in the map of votes is determined and an average

velocity is computed from the test velocities within an rectangular window of size 3× 3 around

the maximum. A confidence value is computed in a simplified way by calculating the correlation

coefficient between the map of votes and a map that contains a single peak at the position of the

maximum. For our algorithm we choose ξ = 0.6 pixels/frame and a total number of 24 frames.

First, we compare the performance of both methods with respect to image speed. In Fig. 7A, the

angular-error/density curves are shown for a translating random Gaussian dot pattern (see inset

Fig. 7A) moving at velocity (vx, vy) = (0.5, 1) (solid line with square) , (vx, vy) = (2.5, 3) (solid

line with circle), (vx, vy) = (4.5, 5) (solid line with diamond), (vx, vy) = (6.5, 7) pixels/frame

(dashed line with circle). Except for the first case at high densities, our method clearly outper-

forms region-based matching. The image sequence contained 24 frames of size 200×200 pixels.

For large velocities, our method breaks down at some point if not more frames are added.

Otherwise a temporal aperture is created which prevents sufficient sampling along the temporal

dimension of the Fourier transform.

Here and for the remaining simulations, we used a fixed step size of 1 pixel/frame and a fixed

maximum absolute test velocity of 8 pixels/frame.

Now we add Gaussian distributed noise to the image sequence with different standard de-

viations of 0.025 (solid line with circle), 0.05 (solid line with diamond), 0.075 (dashed line

with circle), given as percentage of the maximum intensity of the image. Here, we again

September 28, 2010 DRAFT

26

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

Density

A
n
g
u
la

r
e
rr

o
r

A
n
g
u
la

r
e
rr

o
r

A
n
g
u
la

r
e
rr

o
r

DensityDensity

A B C

Fig. 7. Effect of image properties on performance in comparison with region-based matching. A Angular error for a translating

random dot pattern moving at different image speeds. B Angular error for a translating random dot pattern with different levels

of Gaussian noise added to the images. C Angular error for a translating random dot pattern with Gaussian motion jitter added

to the dot trajectories. Results of our method are plotted in black, while the ones obtained for region-based matching are plotted

in red. For further explanations, see text.

observe that our method performs best at low densities, while at higher densities region-based

matching shows better results (Fig. 7B). The velocity of the input pattern had been chosen as

(vx, vy) = (4.5, 5) pixels/frame.

Finally, we measure the angular error of both methods for different amounts of motion jitter. To

each random dot, we added a Gaussian distributed random motion component to the translating

motion, which caused each dot to perform a jittery movement along its trajectory. As ground

truth, we assume the original translating movement without jitter. We add Gaussian-distributed

jitter with a standard deviation of 1 (dashed line with circle), 1.5 (solid line with square), and

2 pixels/frame (solid line with circle), where the initial velocity of the input pattern had been

chosen as (vx, vy) = (3.5, 4) pixels/frame (see Fig. 7C).

As we can see in Fig. 7C, adding jitter drastically decreases performance of region based

matching, while our method is highly robust to this kind of noise. This suggests that our method

may be well applicable to tracking of particle images which often perform some additional jittery

motion. Similar results are observed (not shown) if adding jitter uniformly to the whole frame,

as it could be expected if the camera is vibrating slightly due to wind or other environmental

factors.

September 28, 2010 DRAFT

27

F. Local motion direction

We demonstrate that the core of our method is different from previous approaches by modi-

fiying our computation scheme (Fig. 1A) such that local motion direction is computed instead

local velocity. This only requires that the frequency filters for local velocity are replaced by

frequency filters for local motion direction as follows. Each Fourier component votes with its

assigned weight for all local motion directions eφ if the angle enclosed by the component motion

direction vector dc = sign(kt)k/k and the vector eφ is smaller than 90 deg, yielding a map of

votes

m(φ,x, t) =

+∞∫∫∫

−∞

w(x, t,k, kt,x, t)θ(∠(dc, eφ), 90)dkxdkydkt , (15)

where the parameter θ(a, b) = 1 if a < b and zero otherwise. As for the local velocity estimation,

the position of the maximum of m(φ,x, t) defines the estimated local motion direction at

(x, t). Note that the computation of motion direction does not require an intermediate repre-

sentation/computation of local velocity. The results of the algorithm with smoothing parameters

α = 15 and β = 1 and a step size of 30 deg for Hamburg Taxi, Diverging Tree, and Tennis

(OSU/SAMPL database) are presented in Fig. 8A-C, respectively. The motion directions of the

objects could be captured by the algorithm. Furthermore, the algorithm succeeded in capturing

the fast motion of the ball in Tennis, which constitutes a major challenge for most algorithms

(except matching techniques).

IV. DISCUSSION

We proposed a novel local algorithm (i.e. no global optimization is performed) which derives

velocity estimates from the global Fourier components of the image sequence using the principle

of constructive interference. The motion-constraint equation is formulated in Fourier space and

corresponding spatiotemporal frequency filters are applied to select certain motion features. Then

spatiotemporal position is reconstructed from the phases and amplitudes of the filtered Fourier

components of the image sequence. The “reconstructed” image can then be directly compared

with the original image for local velocity estimation, as illustrated in Fig.1C.

We demonstrated the characteristic properties of the algorithm on several artificial image

sequences. In particular, we could show that correct velocity estimates could be obtained for

September 28, 2010 DRAFT

28

0

50

100

150

200

250

300

A

B

C

Fig. 8. Estimated motion-direction fields (with regularization). A Hamburg taxi with color code in degrees with respect to the

positive x-axis. B Diverging tree. C Tennis. The fast moving ball could be detected by the method.

September 28, 2010 DRAFT

29

several examples at extended edges and in homogeneous areas for which other local algorithms

would have failed. We also showed that the method is applicable to the detection of transparent

motion. The sensitivity of the algorithm with respect to system parameters was analyzed and a

suitable parameter range for further simulations was identified.

We further applied the algorithm to real image sequences. The basic motion structure of the

scene could always be captured. We found low mean angular errors at low densities. Since the

algorithm does not use a (regularizing) measurement window, the resulting local-velocity fields

are very sparse, making a comparison with other methods difficult. We included a regularizing

smoothing operation which allowed an easier comparison of our results with other local methods

(see Table II). For scenes with largely smooth flow fields (translating/diverging tree, Yosemite)

dense optic-flow fields with a low mean angular error could be obtained. For scenes containing

many motion discontinuities (rubber whale, hydrangea), smoothing densified the flow fields, but

the angular error did not drop significantly. The same effect could be observed for two other local

methods. In summary, the regularized optic-flow algorithm delivered results competitive to other

local methods and even outperformed them in terms of mean angular error in several cases. This

improvement in performance may be caused by the different behaviour of our method along

extended edges compared with other local methods. We demonstrated on the example of the

Hamburg taxi sequence that our method delivers qualitatively better results along an extended

edge than the method of Lucas and Kanade [4], where measurement-induced aperture problems

become apparent, and quantitatively for an artificial image sequence of moving oriented lines.

Importantly, smoothing cannot always recover these kind of aperture problems, suggesting that

similar effects might occur in global methods as well. Finally, we showed that our framework

can also be applied to extract other local motion features, here motion direction, directly from

the global Fourier components, which is an important characteristic of the method (in particular

compared to matching approaches). The algorithm is applicable to image sequences containing

motions with large displacements. For the tennis sequence, the motion of the fast moving ball

could be captured and tracked from frame to frame (Fig. 8C).

We further investigated the performance of our algorithm with respect to various image

properties, i.e., pattern speed, additive noise, and motion jitter, and in this context compared

the algorithm with region-based matching. For this analysis, we assimilated both algorithms and

all system parameters as much as possible to allow for a fair evaluation. As a consequence, we

September 28, 2010 DRAFT

30

had to use a large step size of 1 pixel/frame also for our algorithm, even though our method also

allows for subpixel step size and delivers better results for these. However, larger step sizes have

the advantage that the run time of the algorithm decreases. Both our method and region-based

matching have been shown to be applicable to fast moving stimuli, while our method performed

on average better than region-based matching. Gaussian noise added to the image decreased both

the performance of our algorithm and the region-based matching, however, the characteristics

differ. For motion noise, our algorithm showed strictly better results than region-based matching.

Our method is computationally expensive, being the main disadvantage of the approach

compared to, e.g., Lucas and Kanade. The speed of the algorithm is mainly determined by

the speed of the 3D fast Fourier transform and the number of test velocities used. However the

full 3D transform does not need to be computed for each frame, because results from previous

computations can be reused. For an image sequence of size 100 × 100 × 20 we estimate an

approximate run time of 0.09 s/frame on an Intel Core Duo Processor with 1.73GHz using

a MATLAB implementation for a step size of 1 pixel/frame. Run times could potentially be

improved by performing the Fourier transformation on a graphical processing unit or by using a

multicore architecture where the computations for different test velocities are executed in parallel.

ACKNOWLEDGEMENTS

The work has received support by the German Ministry for Education and Research (BMBF)

via the Bernstein Center for Computational Neuroscience (BCCN) Gttingen under Grant No.

01GQ0430 and the EU project Drivsco under contract number 016276-2. B.D. also acknowledges

support from the Spanish Ministry for Science and Innovation via a Ramon y Cajal Fellowship.

REFERENCES

[1] J.L. Barron, D.J. Fleet, S. Beauchemin, and T. Burkitt, “Performance of optical flow techniques,” Int. J. Comput. Vis., vol.

12, no. 1, pp. 43-77, 1994.

[2] B. Galvin, B. McCane, K. Novins, and S. Mills, “Recovering motion fields: An evaluation of eight optical flow algorithms,”

in Proc. British Machine Vision Conf., 1998, pp. 195-204.

[3] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. Black, and R. Szeliski. A database and evaluation methodology for optical

flow. In ICCV 2007, 2007.

[4] B.D. Lucas and T. Kanade, “An iterative image registration technique with an application to stereo vision. Proc. DARPA

IU Workshop, pp. 121-130, 1981.

September 28, 2010 DRAFT

31

[5] H.H. Nagel, “Displacement vectors derived from second-order intensity variations in image sequences,” CGIP, vol. 21, pp.

85–117, 1987.

[6] D.J. Fleet and A.D. Jepson, “Computation of component image velocity from local phase information,” Int. J. Comp. Vision,

vol. 5, pp. 77-104, 1990.

[7] T. Gautama and M. Van Hulle, “A phase-based approach to the estimation of the optical flow field using spatial filtering,”

IEEE Trans. Neural. Net., vol. 13, pp. 1127-1136, 2003.

[8] D.J. Heeger, “Model for the extraction of image flow,” J. Opt. Soc. Am. A, vol. 4, pp. 1455–1471, 1987.

[9] P. Anandan, “A computational framework and an algorithm for the measurement of visual motion,” Int. J. Comp. Vision,

vol. 2, pp. 283-310, 1987.

[10] A. Singh, “An estimation-theoretic framework for image-flow computation,” Proc. IEEE ICCV, Osaka, pp. 168–177, 1990.

[11] Y. Boykov, O. Veksler and R. Zabih. “Fast approximate energy minimization via graph cuts,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 23, no. 11, pp. 1222–1239, 2001.

[12] Y. Weiss and W.T. Freeman. “On the optimality of solutions of the max-product belief propagation algorithm in arbitrary

graphs,” IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 723735, 2001.

[13] B.K.P Horn and B.G. Schunck, “Determining optic flow,” AI, vol. 17, pp. 185-204, 1981.

[14] J. Weickert and C. Schnörr, “A theoretical framework for convex regularizers in PDE-based computation of image motion,”

Int. J. Comp. Vis., vol. 14, no. 3, pp. 245-264, 2001.

[15] A. Bruhn, J. Weickert, and C. Schnörr, “Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow

methods,” International Journal of Computer Vision, vol. 61, no. 3, pp. 211-231, 2005.

[16] N. Papenberg, A. Bruhn, T. Brox, S. Didas, and J. Weickert, “Highly accurate optic flow computation with theoretically

justified warping,” International Journal of Computer Vision, vol. 67, no. 2 pp. 141-158, 2006.

[17] P. F. Felzenszwalb and D. P. Huttenlocher. “Efficient belief propagation for early vision,” International Journal of Computer

Vision, vol. 70, no. 1, 2006.

[18] T. Cooke. “Two applications of graph cuts to image processing,” DICTA 2008.

[19] E.H. Adelson and J.R. Bergen, “Spatiotemporal energy models for the perception of motion,” J. Opt. Soc. Am. A, vol. 2,

pp. 284–299, 1985.

[20] E.P. Simoncelli, “Distributed representation and analysis of visual motion,” PhD Thesis, Dept. of Electrical Engineering

and Computer Science, MIT.

[21] R. Wilson, G.H. Granlund, “The uncertainty principle in signal processing,” IEEE Trans. Pat. An. Mach. Intel., vol. 6,

1984.

[22] D. Vernon, “Decoupling Fourier components of dynamic image sequences: a theory of signal separation, image

segmentation, and optical flow estimation,” Lect. Not. in Comp. Sci, Springer Berlin/Heidelberg, Computer Vision –

ECCV’98, pp. 69, 1998.

[23] B.K. Dellen, J.W. Clark, and R. Wessel, “The brain’s view of the natural world in motion: Computing structure from

function using directional Fourier transformations,” International Journal of Modern Physics B, vol. 21, no. 13-14, pp.

2493-2504, 2007.

[24] A. Briassouli, A. Narendra, “Spatial and Fourier error minimization for motion estimation and segmentation.” Proceedings

of the 18th International Conference on Pattern Recognition, ICPR 2006, August 20-24, Hong Kong, 2006.

[25] B. Dellen and F. Wörgötter. “A local algorithm for the compuation of optic flow via constructive interference of global

Fourier components,” Proceedings of the British Machine Vision Conference, 2008.

September 28, 2010 DRAFT

32

[26] M. Shizawa and K. Mase, “Simultaneous multiple optic flow estimation,” Proc. IEEE ICVPR, 1990.

[27] T. Aach, C. Mota, I. Stuke, M. Muhlich and E. Barth, “Analysis of superimposed oriented patterns,” IEEE Trans. Image

Processing, vol. 15, no. 12, pp. 3690–3700, 2006.

[28] C. Mota, I. Stuke, and E. Barth, “Analytic solutions for multiple motions,” Proc. IEEE ICIP, Thessaloniki, pp. 917-920,

2001.

September 28, 2010 DRAFT

