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Abstract. Let f be a function from a finite field Fp with a prime number p of elements,
to Fp. In this article we consider those functions f(X) for which there is a positive
integer n > 2

√
p− 1− 11

4 with the property that f(X)i, when considered as an element
of Fp[X]/(Xp −X), has degree at most p− 2− n + i, for all i = 1, . . . , n. We prove that
every line is incident with at most t − 1 points of the graph of f , or at least n + 4 − t
points, where t is a positive integer satisfying n > (p − 1)/t + t − 3 if n is even and
n > (p − 3)/t + t − 2 if n is odd. With the additional hypothesis that there are t − 1
lines that are incident with at least t points of the graph of f , we prove that the graph
of f is contained in these t − 1 lines. We conjecture that the graph of f is contained
in an algebraic curve of degree t − 1 and prove the conjecture for t = 2 and t = 3.
These results apply to functions that determine less than p−2

√
p− 1+ 11

4 directions. In
particular, the proof of the conjecture for t = 2 and t = 3 gives new proofs of the result
of Lovász and Schrijver [7] and the result in [5] respectively, which classify all functions
which determine at most 2(p− 1)/3 directions.

1. Introduction

Let p be a prime power and let f be a function from Fp, the finite field with p elements,
to Fp. Any such function has a unique representation as a polynomial of degree at most
p − 1 and, conversely, each polynomial φ(X) of degree at most p − 1 defines a distinct
function x 7→ φ(x). The function x 7→ f(x)i is understood to be the i-th power of the
image of f(x), will sometimes be abbreviated as f i, and should not be confused with the
i-fold composition of f .

This article is concerned with functions f(x) for which there is an n > 2
√
p− 1− 11

4
with

the property that, for all i = 1, . . . , n, the function f(x)i has degree at most p− 2−n+ i.
By degree we mean the degree of the polynomial of degree at most p− 1 which represents
the function x 7→ f(x)i, that is the degree of the residue of f(x)i in the quotient ring
Fp[x]/(x

p − x).

We define I(f) to be the maximum such n plus one. An alternative definition is given by

I(f) = min{i+ j |
∑
x∈Fq

xjf(x)i 6= 0}.
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To see this note that the sum −
∑

x∈Fp
g(x) is equal to the coefficient of xp−1 in g, for

any polynomial g(X) of degree at most p − 1. Thus, for all n ≤ I(f) − 1, the sum∑
x∈Fp

xn−if(x)i = 0 implies that f(x)i has degree at most p− 2− n+ i.

Let M(f) be the number of elements c of Fp for which x 7→ f(x) + cx is a permutation of
Fp, in other words f(X) + cX is a permutation polynomial. Alternatively, −c does not
occur as a direction determined by the function f , i.e. −c 6= (f(y) − f(x))/(y − x) for
all x, y ∈ Fp, x 6= y. Indeed, the motivation to look at the properties of functions f for
which I(f) is large, stems from the desire to classify those functions that determine few
directions.

Although the results in the first section relate to functions over a field with a prime
number of elements they more or less extend to all finite fields, some care having to be
taken with the parity of the characteristic in a few places. However, the motivation to
study functions with the above property is the fact that if the field is a prime field then
I(f) is greater than M(f). Let us check this first.

Let

πk(Y ) =
∑
x∈Fp

(f(x) + xY )k =
∑

i+j=k

∑
x∈Fp

(
i+ j

i

)
xjf(x)iY j.

By [6, Lemma 7.3], if x 7→ f(x)+cx is a permutation, then πk(c) = 0 for all 0 < k < p−1.
For k < p − 1 the polynomial πk(Y ) has degree at most k − 1, since the coefficient of
Y k is

∑
x∈Fp

xk = 0. Therefore it is identically zero for all 0 ≤ k − 1 < M(f), unless

M(f) = p−1 in which case f is linear. The binomial coefficient occurring in the coefficent
of Y j,

(
i+j
i

)
is non-zero since i+ j < p. Hence, if f is not linear then I(f)− 1 ≥M(f).

The purpose of this note is to say something about the graph of the function f given that
I(f) > 2

√
p− 1 − 7

4
. We shall then apply these results to functions for which M(f) is

large. Previously, in [7], [5] and [2], although the proofs centered on functions for which
I(f) is large, all assumed that M(f) was reasonably large too. Here we eliminate this
necessity. Moreover, in previous articles I(f) was required to be much larger, at least
(p+ 4)/3, to be able to draw conclusions.

Other articles that are relevant here are [4] and [1] which deal with functions f over a
finite field Fq, where q is a prime power, for which M(f) ≥ (q − 1)/2 and [10] which
bounds M(f) in terms of the degree of f .

2. Properties of functions for which I(f) is more than 2
√
p− 1− 7

4

Write I(f) = 2s + 1 + ε where s is some integer satisfying s >
√
p− 1 − 11

8
and ε = 0 if

I(f) is odd and ε = 1 if I(f) is even. This implies I(f) > 2
√
p− 1− 7

4
.

By definition ∑
x∈Fp

f(x)ixj = 0,

for all 0 < i+j ≤ 2s+ε, and the degree of f , which we write as f ◦, satisfies f ◦ ≤ p−2s−1−ε
and more generally (f i)◦ ≤ p− 2s− 2 + i− ε, for all i = 1, . . . , 2s+ ε.
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Let
V = {(F1, F2, . . . , Fs) | Fi ∈ Fp[X], F ◦

i ≤ s− i}.
The set V consists of s-tuples of polynomials and is a vector space over Fp of dimension
s(s+ 1)/2.

Consider the linear map ψ1 from V to Fp[X] defined by

ψ1((F1, F2, . . . , Fs)) = F1f + F2f
2 + . . .+ Fsf

s.

We want to bound the dimension of the subspace Im(ψ1), the image of ψ1. Note that
the dimension of a subspace U of a vector space of polynomials is equal to the number of
distinct degrees of polynomials that appear in U .

Lemma 2.1. At most (p − 3)/2 − s − ε of the numbers in the interval [s + 1, . . . , p − 1]
occur as degrees of polynomials in Im(ψ1).

Proof. The maximum degree of a polynomial in Im(ψ1) is p − s − 2 − ε so we are only
concerned with the interval [s+ 1, . . . , p− s− 2− ε]. Given any two polynomials g and h
in Im(ψ1), the product gh can be written as a

∑2s
i=1Gif

i, where G◦
i ≤ 2s− i for some Gi.

Thus, since I(f) ≥ 2s + 1, it follows that (gh)◦ 6= p− 1 and if ε = 1 then (gh)◦ 6= p− 2,
since Xgh cannot have degree p− 1 in this case.

If ε = 0 then only half of the numbers in the interval [s + 1, . . . , p − s − 2] can occur as
degrees of polynomials in Im(ψ1), that is at most (p− 3)/2− s.

If ε = 1 and m a number in the interval [(p + 1)/2, . . . , p − s − 3] occurs as a degree
of a polynomial in Im(ψ1), then neither p − 1 − m, nor p − 2 − m occur as degrees of
a polynomial in Im(ψ1). Thus, if a positive number d of the numbers in the interval
[(p + 1)/2, . . . , p − s − 3] occur as a degree of a polynomial in Im(ψ1), then at most
(p− 3)/2− s− d− 1 of the numbers in the interval [s+1, . . . , (p− 3)/2] occur as a degree
of a polynomial in Im(ψ1). If g ∈ Im(ψ1) then g◦ 6= (p − 1)/2, since (g2)◦ 6= p − 1.
Thus, overall at most (p − 5)/2 − s of the numbers in the interval [s + 1, . . . , p − s − 3]
can occur as degrees of polynomials in Im(ψ1). The case d = 0 does not occur since
f, f2, . . . , f s ∈ Im(ψ1) and it is not possible that all these polynomials have degree less
than (p− 1)/2. �

Let t be a positive integer with the property that I(f)−1− ε = 2s > (p−1−2ε)/t+ t−3
and 2 ≤ t ≤

√
p− 1. Note that t < s+ 2, so the following lemma is not trivial.

Lemma 2.2. Either the polynomial f has less than t distinct zeros or it has more than
s+ 2 distinct zeros.

Proof. Let r be the number of distinct zeros of f and suppose that t ≤ r ≤ s. We will
deal with the cases r = s+ 1 and r = s+ 2 at the end of the proof.

A zero of f is a zero of any polynomial in Im(ψ1), so all non-zero polynomials in Im(ψ1)
have degree at least r. Thus, applying Lemma 2.1,

dim Im(ψ1) ≤ (p− 3)/2− s− ε+ s− r + 1 = (p− 1)/2− r − ε,

and so Ker(ψ1), the kernel of ψ1 satisfies

dim Ker(ψ1) ≥ s(s+ 1)/2− (p− 1)/2 + r + ε.
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Let (F1, . . . , Fs) ∈ Ker(ψ1). Then F1f + F2f
2 + . . . + Fsf

s = 0 and for all x such that
f(x) 6= 0

−F1 = F2f + . . .+ Fsf
s−1.

The degree of this equation is at most p− s− 3 and it holds for all elements that are not
zeros of f , of which there are at least p− s− 2 by assumption, so it holds for all elements
of Fp. Therefore a zero of f is a zero of the polynomial F1, which implies, if F1 is not zero
then it has degree at least r. By definition it has degree at most s− 1.

Define a linear map ψ2 from Ker(ψ1) to Fp[X] by

ψ2((F1, F2, . . . , Fs)) = F2f + F3f
2 + . . .+ Fsf

s−1.

A non-zero polynomial in the Im(ψ2) has degree at least r and at most s− 1 and so

dim Ker(ψ2) ≥ s(s+ 1)/2− (p− 1)/2 + r + ε− (s− r).

Let (F1, . . . , Fs) ∈ Ker(ψ2). Then F2f + F3f
2 + . . .+ Fsf

s−1 = 0 and for all x such that
f(x) 6= 0

−F2 = F3f + . . .+ Fsf
s−2.

The degree of this equation is at most p − s − 4 and since it holds for at least p − s − 2
elements of Fp, it holds for all elements of Fp. Therefore a zero of f is a zero of the
polynomial F2, which implies, if F2 is not zero then it has degree at least r, and by
definition it has degree at most s− 2.

Now we define recursively maps ψj, for j = 3, 4, . . . , s − t + 1, from the Ker(ψj−1) to
Fp[X] by

ψj((F1, F2, . . . , Fs)) = Fjf + Fj+1f
2 + . . .+ Fsf

s−j+1.

Arguing as before, non-zero polynomials in the Im(ψj) have degree at least r and at most
s− j + 1 and so the dimension of Im(ψj) is at most s− j − r + 2. Therefore

dim Ker(ψj) ≥ s(s+1)/2− (p− 1)/2+ r+ ε− (s− r)− (s− r− 1)− . . .− (s− j− r+2).

In particular

dim Ker(ψs−r+1) ≥ (2rs− p+ 1− r(r − 3) + 2ε)/2,

which is greater than zero since 2rs− r(r− 3) is minimised while r ranges between t and
s+ 2 when r = t, and 2ts− t(t− 3) > p− 1− 2ε.

Let (F1, F2, . . . , Fs) be a non-zero element of Ker(ψs−r+1). The fact that Fs−r+1f + . . .+
Fsf

r = 0 implies that for all x that are not zeros of f

−Fs−r+1 = Fs−r+2f + . . .+ Fsf
r−1.

However, the degree of this equation is at most p − 2s + r − 3 ≤ p − s − 3 and, since
it holds for at least p − s − 2 elements, it holds for all elements of Fp. Therefore a zero
of f is a zero of the polynomial Fs−r+1, which implies that Fs−r+1 is zero since it has
degree at most r − 1. Similarly Fs−r+2, Fs−r+3, . . . , Fs are zero. Now (F1, F2, . . . , Fs) =
(F1, F2, . . . , Fs−r, 0, . . . , 0) ∈ Ker(ψs−r+1) ⊆ Ker(ψs−r) ⊆ . . . ⊆ Ker(ψ1). Recursively
(F1, F2, . . . , Fs−r−j, 0, . . . , 0) ∈ Ker(ψs−r−j) implies Fs−r−j = 0 for j = 0, 1, . . . , s− r − 1,
and hence (F1, F2, . . . , Fs) = 0. We have shown that if (F1, . . . , Fs) ∈ Ker(ψs−r+1) then
(F1, F2, . . . , Fs) = 0. Thus the dimension of Ker(ψs−r+1) is zero, which is not the case.
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Let us finally deal with the cases r = s+ 1 and r = s+ 2. In these cases, since the zeros
of f are zeros of any polynomial in Im(ψ1), every polynomial in Im(ψ1) has degree at
least s+ 1. Lemma 2.1 implies

dim Im(ψ1) ≤ (p− 3)/2− s− ε,

and so

dim Ker(ψ1) ≥ s(s+ 1)/2− (p− 3)/2 + s+ ε,

which is greater than zero since s >
√
p− 1− 11

8
and p ≥ 5.

Let (F1, . . . , Fs) ∈ Ker(ψ1). Then F1f + F2f
2 + . . . + Fsf

s = 0 and for all x such that
f(x) 6= 0,

−F1 = F2f + . . .+ Fsf
s−1.

The degree of this equation is at most p− s− 3 and it holds for all elements that are not
zeros of f , of which there are at least p− s− 2 by assumption, so it holds for all elements
of Fp. The degree of F1 is at most s − 1 and has at least s + 1 zeros, since it is zero
whenever f is zero. Therefore F1 = 0 and arguing as before F2 = . . . = Fs = 0, and we
have shown that the dimension of Ker(ψ1) is zero, which is not the case. �

Lemma 2.3. If f has more than s+2 distinct zeros then it has at least I(f)+3−t distinct
zeros.

Proof. Since f has more than s+2 distinct zeros, the image of ψ1 contains no polynomials
of degree less than s+3. Thus, by Lemma 2.1, the dimension of Im(ψ1) ≤ (p−3)/2−s−ε.
Therefore the dimension of Ker(ψ1) is at least s(s+ 1)/2− (p− 3)/2 + s+ ε > 0.

Again, let r be the number of distinct zeros of f , so r ≥ s+ 3, and let

g(X) = (Xp −X)/((Xp −X), f(X)),

so the degree of g is p− r.

Define a linear map φ2 from Ker(ψ1) to Fp[X] by

φ2((F1, F2, . . . , Fs)) = F1 + F2f + . . .+ Fsf
s−1.

Let (F1, F2, . . . , Fs) ∈ Ker(ψ1). Since F1f + F2f
2 + . . . + Fsf

s = 0 it follows that for all
x such that f(x) 6= 0 we have F1 + F2f + . . . + Fsf

s−1 = 0 and so there is a polynomial
k(X) with the property that

F1 + F2f + . . .+ Fsf
s−1 = g(X)k(X).

The degree of the left-hand side of this equality is at most p− s− 3− ε so the degree of
k is at most r − s− 3− ε. Thus, dim Im(φ2) ≤ r − s− 2− ε and therefore

dim Ker(φ2) ≥ s(s+ 1)/2− (p− 3)/2 + s+ ε− (r − s− 2− ε).

Define recursively linear maps φj for j = 3, 4, . . . , s, from the kernel of φj−1 to Fp[X] by

φj((F1, F2, . . . , Fs)) = Fj−1 + Fjf + . . .+ Fsf
s−j+1.

Let (F1, F2, . . . , Fs) ∈ Ker(φj−1). Then

Fj−2 + Fj−1f + . . .+ Fsf
s−j+2 = 0.
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Every one of the r zeros of f is a zero of Fj−2, which has degree at most s− j+2 < r− 1.
Thus Fj−2 = 0. Since Fj−1f +Fjf

2 + . . .+Fsf
s−j+2 = 0 it follows that for all x such that

f(x) 6= 0 we have Fj−1 + Fjf + . . . + Fsf
s−j+1 = 0 and so there is a polynomial kj(X)

with the property that

Fj−1 + Fjf + . . .+ Fsf
s−j+1 = g(X)kj(X).

The degree of the left-hand side of this equality is at most p− s− j− 1− ε, so the degree
of kj is at most r− s− j − 1− ε. Thus, the dimension of Im(φj) ≤ r− s− j − ε. Hence,
for j ≤ r − s− 1, the dimension of the kernel of φj is at least

s(s+ 1)/2− (p− 3)/2 + s+ ε− [(r − s− 2− ε) + (r − s− 3− ε) + . . .+ (r − s− j − ε)].

Let us suppose that r ≤ 2s+ 1 and consider the above in the case j = r − s− 1.

The dimension of the kernel of φr−s−1 is at least

s(s+ 1)/2− (p− 3)/2 + s+ ε− (r − s− 2− ε)(r − s− 1− ε)/2.

Now if (F1, F2, . . . , Fs) ∈ Ker(φr−s−1) then F1 = . . . = Fr−s−2 = 0 and

Fr−s−1 + Fr−s−2f + . . .+ Fsf
2s−r+1 = g(X)kr−s(X).

The degree of the left-hand side of this equality is at most p− r− 1, so kr−s = 0. Each of
the r zeros of f is therefore a zero of Fr−s−1, which has degree at most 2s− r+1 ≤ r− 5.
Thus Fr−s−1 = 0. Similarly Fr−s−2 = . . . = Fs = 0 and so the kernel of φr−s−1 is zero.
Therefore

0 ≥ s(s+ 1)/2− (p− 3)/2 + s+ ε− (r − s− 2− ε)(r − s− 1− ε)/2.

If r ≤ 2s+ 3− t+ ε then this implies that

(p− 1− 2ε)/t+ (t− 3) ≥ 2s,

which it is not. �

The previous two lemmas have the following consequence. Recall that ε = 0 if I(f) is odd
and ε = 1 if I(f) is even.

Theorem 2.4. If I(f) > (p−1−2ε)/t+ t−2+ ε for some integer t then every line meets
the graph of f in at least I(f) + 3− t > (p− 1)/t+ 1 points or at most t− 1 points.

Proof. The line y = mx+ c meets the graph of f , {(x, f(x)) | x ∈ Fp}, in the point (x, y),
whenever mx + c = f(x). Define f1(x) = f(x) −mx − c. Since, for all 0 < i + j < I(f)
we have

∑
xif(x)j = 0 it follows that

∑
xif1(x)

j = 0. Thus I(f1) ≥ I(f). Lemma 2.2
and Lemma 2.3 imply f1 has at most t− 1 zeros or at least I(f) + 3− t > (p− 1)/t+ 1
zeros. �

Note that if f(x) = xt and t divides p + 1 then I(f) = (p + 1)/t + t− 3 so the bound is
the more or less best possible for the short lines, assuming that for some p and t there
will be a and b such that xt = ax + b has t solutions. And if f(x) = x(p+1)/t then again
I(f) = (p + 1)/t + t − 3 and so the bound is also good for the long lines, assuming that
for some p and t there will be a and b such that x(p+1)/t = ax+ b has (p+ 1)/t solutions.

The property that the graph of f is incident with at most t − 1 points or more than
(p− 1)/t+ 1 points of a line indicates that the following conjecture may hold.
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Conjecture 2.5. If I(f) > (p− 1− 2ε)/t+ t− 2 + ε for some integer t then the graph
of f is contained in an algebraic curve of degree t− 1.

To prove the conjecture it is sufficient to prove that the Ker(ψs−t+1), where ψs−t+1 is as
defined in the proof of Lemma 2.2, is not {0}. We shall prove the conjecture by other
means for t = 2 and t = 3 in the following section.

We finish this section by proving Conjecture 2.5 under additional hypothesis.

Theorem 2.6. If I(f) > (p− 1− 2ε)/t+ t− 2 + ε and there are t− 1 lines incident with
at least t points of the graph of f then the graph of f is contained in the union of these
t− 1 lines.

Proof. After a suitable affine transformation we can assume that one of the t − 1 lines,
incident with at least t points of the graph of f , is the line Y = 0 and that the lines
Y = miX + ci, i = 1, 2, . . . , t− 2, are the other t− 2 lines incident with at least t points
of the graph of f .

Recall that I(f) = 2s+ 1 + ε.

Let V = {(F1, F2, . . . , Ft−1) | F ◦
i ≤ s− i}. The dimension of V is (t−1)s− (t−1)(t−2)/2

which is greater than (p− 3)/2− ε− s, since by assumption 2st > p− 2ε− 1 + t2 − 3t.

Define a linear map ψ from V to Fp[X] by

ψ((F1, F2, . . . , Ft−1)) = F1f + F2f
2 + . . . Ft−1f

t−1.

Since I(f) > 2s the product of any two polynomials in the image of ψ cannot have degree
p− 1. The maximum degree of any polynomial in the image of ψ is p− s− 2− ε, so only
half of the numbers in the interval [s + 1 + ε, . . . , p − s − 2 − ε] can occur amongst the
degrees of polynomials in the image of ψ. Thus at most (p − 3)/2 − s − ε, which is less
than the dimension of V . Hence in the image of ψ there is a polynomial of degree at most
s+ ε or ψ has a non-trivial kernel.

The line Y = 0 is incident with at least t points of the graph of f and so by Theorem 2.4
it is incident with at least I(f) + 3− t points of the graph of f . Therefore f has at least
I(f)+3−t distinct zeros and any polynomial in the image of ψ has the zeros of f amongst
its zeros and so must have degree at least I(f) + 3− t. Since this number is larger than
s+ ε we conclude that ψ has a non-trivial kernel.

Let (F1, F2, . . . , Ft−1) ∈ V be such that

(2.1)
t−1∑
j=1

Fjf
j = 0.

For all i = 1, . . . , t− 2 we have that the line Y = miX + ci is incident with t, and hence
by Theorem 2.4, at least I(f) + 3 − t points of the graph of f . Therefore, there are at
least I(f) + 3− t solutions to the equation

(2.2)
t−1∑
j=1

Fj(miX + ci)
j = 0.
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However, this equation has degree at most s and so is an identity. These t− 2 equations
are linear and homogeneous in the Fj and will have a unique solution up to a scalar factor
whenever the determinant∣∣∣∣∣∣∣∣∣∣

m1X + c1 . . . (m1X + c1)
t−2

. . . . .

. . . . .

. . . . .
mt−2X + ct−2 . . . (mt−2X + ct−2)

t−2

∣∣∣∣∣∣∣∣∣∣
is non-zero. This determinant is the determinant of a Vandermonde matrix, which is
non-zero since the lines are distinct.

Now we only have to find a solution of these equations and this is easily done. Define
polynomials σj in X of degree at most j by

t−2∏
i=1

(Y −miX − ci) =
t−2∑
j=0

σt−2−jY
j.

For all i = 1, . . . , t− 2 we have

t−2∑
j=0

σt−2−j(miX + ci)
j = 0.

Putting Fj = σt−1−jFt−1 in Equation 2.2 we get

Ft−1

t−1∑
j=1

σt−1−j(miX + ci)
j = (miX + ci)Ft−1

t−2∑
j=0

σt−2−j(miX + ci)
j = 0.

Substituting the solution into Equation 2.1 we have

Ft−1

t−1∑
j=1

σt−1−jf
j = 0.

For every x ∈ Fp that is not a zero of Ft−1

t−1∑
j=1

σt−1−jf
j = 0.

This equation has degree at most p− 2s+ t and has at least p− (s− t+ 1) solutions and
so is an identity. Thus for all x ∈ Fp

0 = f
t−2∑
j=0

σt−2−jf
j = f

t−2∏
i=1

(f −mix− ci).

�
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3. Classification of functions for which I(f) is more than (p+ 5)/3 and
consequences for functions determining few directions

Firstly we note that we have proved what Lovász and Schrijver proved in [7], with no
restriction on M(f).

Theorem 3.1. If I(f) ≥ (p+ 1)/2 then f is linear.

Proof. This is an immediate corollary of Theorem 2.4 with t = 2. �

Since I(f) ≥M(f) + 1 it follows that if M(f) ≥ (p− 1)/2 then f is linear.

The theorem itself holds for all finite fields Fq, that is if I(f) ≥ (q+ 1)/2 then f is linear,
although there do not seem to be any geometric applications in the case q is not a prime.

Now we shall prove a generalised version of the main theorem in [5], where the hypothesis
on f was M(f) ≥ (p + 2)/3. This was weakened slightly in [2], where the hypothesis on
f was I(f) ≥ (p+ 5)/3 and M(f) ≥ (p− 1)/6. In both cases the conclusion was that the
graph of f is contained in the union of two lines. Here we have no hypothesis on M(f)
which allows the possibility that f(X) is of degree 2, so our conclusion is slightly weaker.

Theorem 3.2. If I(f) ≥ (p+ 5)/3 then the graph of f is contained in an algebraic curve
of degree 2.

Proof. Since (p+ 5)/3 > (p− 1− 2ε)/3 + 1 + ε = (p+ 2 + ε)/3, Theorem 2.4 implies that
there is a line incident with at least (p + 5)/3 points of the graph of f or every line is
incident with at most 2 points of the graph of f . In the latter case, Segre’s theorem [8]
implies that the graph of f is contained in an algebraic curve of degree 2.

Thus we can assume that there is a line meeting the graph of f in at least (p + 5)/3
points and after making a suitable affine transformation we can assume that this is the
line y = 0. In other words f has at least (p+ 5)/3 distinct zeros.

Recall that I(f) = 2s+ 1 + ε, so 2s ≥ (p− 1)/3− ε. By Theorem 3.1 we can assume that
s < p/4.

Let V be a vector space of pairs of polynomials of dimension 2s − 1 defined by V =
{(A,B) | A◦ ≤ s− 1, B◦ ≤ s− 2}. Define a linear map φ from V to Fp[X] by

φ((A,B)) = Af +Bf 2.

The maximum degree of any polynomial in the image of φ is p− s− 2. Arguing as in the
previous lemmas, only half of the degrees in the range [s+1+ε, . . . , p−s−2−ε] can occur
amongst the polynomials in the image of φ. Since (p− 2s− 3)/2− ε ≤ (4s+ ε− 5)/2 ≤
2s − 2 ≤ dim(V ), the image of φ contains a polynomial of degree at most s or φ has a
non-trivial kernel.

Any polynomial g in the image of φ has at least (p + 5)/3 zeros, since any zero of f is a
zero of g. However, (p+ 5)/3 > s, so we can conclude that φ has a non-trivial kernel.

Let A and B be such that
Af +Bf 2 = 0.

By removing any common factors, if necessary, we can assume (A,B) = 1. This equation
has degree at most p−s−2 and it holds for all x ∈ Fp, so it is an identity. Thus A divides
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f 2 and B divides f . Moreover A and B have no common factors so f/B has the same
zeros as f 2, and since f 2 has the same zeros as f , f/B has the same zeros as f . Since B
divides f , the zeros of B are zeros of f and so the zeros of B are zeros of f/B.

Multiplying by Bf and rearranging we see that

B2f 3 = A2f

for all x ∈ Fp, and so

Bf 3 = A2(f/B),

for all x ∈ Fp, such that B(x) 6= 0. If x is a zero of B then the left-hand side of this
equation is zero and the right hand side is also zero since any zero of B is a zero of f/B.
This equation holds for all x ∈ Fp, it has degree less than p, and so is an identity.

Thus A2 divides f 3 and B2 divides f . Again, since A and B have no common factors
f/B2 has the same zeros as f 3, and since f 3 has the same zeros as f , f/B2 has the same
zeros as f . Therefore the zeros of B are zeros of f/B2.

Repeating the above argument we conclude that

Bf i+1 = Ai(f/Bi−1),

for all i = 1, 2, . . ., so long as the degree of this equation is less than p, in other words
whenever B◦+(f i+1)◦ ≤ p−1, which is certainly whenever i ≤ s+2. Thus Bs+2 divides f ,
so the degree of B is at most 3. Now we can conclude that B◦+(f i+1)◦ ≤ p− 1 whenever
i ≤ 2s− 3. Thus B2s−3 divides f . The polynomial f/B2s−3 has at least (p + 5)/3 zeros,
so B◦ ≤ 1 and the equation is an identity for i = 2s − 1. Now we can conclude that
B2s−1 divides f and the polynomial f/B2s−1 has at least (p + 5)/3 zeros, which implies
f ◦ − (2s − 1)B◦ ≥ (p + 5)/3 which in turn implies (2s − 1)B◦ ≤ 2s − 2 and so B is
constant. Now A2s−1 divides f 2s and the quotient has at least (p + 5)/3 zeros. Hence
p− 2− (2s− 1)A◦ ≥ (p+ 5)/3, which gives A◦ ≤ 1.

The graph of f is contained in the algebraic curve

A(X)Y +B(X)Y 2 = 0,

which is of degree two. �

Corollary 3.3. If M(f) ≥ (p + 2)/3 then the graph of f is contained in the union of
two lines.

Proof. Since I(f) ≥M(f)+1, by Theorem 3.2 the graph of f is contained in an algebraic
curve of degree two. If this curve is irreducible then f determines every direction, since

((y2 + ay + b)− (x2 + ax+ b))/(y − x) = x+ y + a.

If not then after a suitable affine transformation there exsits a linear polynomial A(X) =
aX + b and a constant polynomial B(X) = c such that

f(x)(ax+ b+ cf(x)) = 0,

for all x ∈ Fp. �

We can also prove Corollary 3.3 as a corollary to Theorem 2.4.
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Proof. Since I(f) ≥M(f)+1 Theorem 2.4 implies that every line meets the graph of f in
at least (p+ 5)/3 points or at most 2 points. If a point of the graph of f is incident only
with lines incident with at most 2 points of the graph of f , then M(f) ≤ 1. Therefore,
every point of the graph of f is incident with a line which is incident with at least (p+5)/3
points of the graph of f . The graph of f is a set of p points and so is contained in the
union of two such lines. �

In the article [9] T. Szőnyi proves that if M(f) ≥ 2 and the graph of f is contained in
the union of two lines then f is affinely equivalent to a generalized example of Megyesi,
which is constructed using cosets of the multiplicative group. For more details of this
construction see [9] or [5].

In the article [3] A. Biró proves that if the graph of f is contained in the union of two
lines then I(f) = p− 1 or I(f) = (p− 1)/3 or I(f) ≤ (p− 1)/4 and classifies all examples
when I(f) = p− 1, I(f) = (p− 1)/3 or I(f) = (p− 1)/4.

If the graph of f is contained in an irreducible curve of degree 2 then f is of degree two
and I(f) = (p− 1)/2.

We are unaware of any results concerning I(f) (or M(f)) obtained under the assumption
that the graph of f is contained in an algebraic curve of degree three.
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[3] A. Biró, On polynomials over prime fields taking only two values on the multiplicative group, Finite
Fields Appl., 6 (2000) 302–308.

[4] A. Blokhuis, S. Ball, A. E. Brouwer, L. Storme and T. Szőnyi, On the number of slopes of the graph
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