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A fault detection method for hysteretic
base-isolation systems

Yolanda Vidal, Leonardo Acho, Jose Rodellar, and Francesc Pozo

Abstract—This paper proposes a fault detection method for hysteretic
base-isolation systems. One of the key contr butions of this work is a
Lyapunov-based restoring force observer that leads to the design of
a robust fault detection scheme. The different fault types considered
are stiffness and damping variations in the system. The proposed fault
estimation method provides a direct estimate of the size and severity of
the fault, which can be important in many civil engineering applications.
A design procedure is descr bed, and nonlinear simulation results are
presented to demonstrate the applicability of the proposed method.

Index Terms—fault detection, base-isolation, observer

1 INTRODUCTION

Base isolation is a collection of structural elements of a
building that should substantially decouple the build-
ing’s structure from the shaking ground; thus, they
protect the building’s integrity and enhance its seismic
performance (see [1] and [2]). Base isolation tends to re-
strict transmission of the ground motion to the building,
and it also keeps the building positioned properly over
the foundation (see [2]). For example, sliding and elas-
tomeric bearing systems reduce the building response
to seismic excitation, but with increased base displace-
ments in near-fault motions as seen in [3]. The current
practice is to provide nonlinear passive dampers to limit
the bearing displacements. However, this increases the
forces in the superstructure and at the isolation level.
Active and semiactive control using novel devices, such
as magnetorheological (MR) dampers, present attractive
alternatives to passive nonlinear devices (see [4], [5], [6],
[7]). In this work, a passive second-order, base-isolated
system is used for simplicity; however, it is straightfor-
ward to generalize the obtained results to active and
semiactive control.

In nonlinear control theory, fault detection has at-
tracted significant interest as can be seen in the works of
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[8], [9], [10], and [11]. Moreover, when operating highly
reliable systems, the primary interest is to detect a fault
at the earliest possible stage (see [12]). A system that
continuously monitors a structure to detect damage is
often referred to as a health monitoring system in the
mechanical, aerospace, and civil engineering fields. A
fault detection technique detects faults by means of a
residual signal (see [13]) produced by available mea-
surements. It must be a signal that is close to zero in
the absence of a fault, and significantly affected in the
presence of faults (see [12], [13], and [14]). The main
components of a fault detection system are the following:
a residual generator signal, residual evaluation, and
the decision-making process. In addition, the residual
signal has to return to its original no-fault detection
stage when the fault vanishes. Various methods have
been proposed, among which the observer-based fault-
detection techniques have yielded the best results (see
[8], [9], and [10]). The basic idea behind the observer-
based approaches is to estimate the outputs of the system
from the measurements by using some type of observer,
and then construct the residual by a properly weighted
output estimate error. This paper proposes a fault de-
tection method following the observer-based approach.
The different fault types considered are stiffness and
damping variations in the system. A residual signal is
obtained that can be examined for the likelihood of
faults in hysteretic base-isolator devices. As expected, the
residual signal returns to its original no-fault detection
stage when the fault vanishes, but also provides a direct
estimate of the size and severity of the fault, which can
be important in many applications.

The paper is structured as follows. The problem state-
ment is presented in Section 2. Next, the fault detection
method is developed in detail in Section 3 and different
fault types considered in this paper are presented. To
illustrate the efficiency of the proposed method, numeri-
cal simulations are analyzed for hysteretic structural sys-
tems in the presence of seismic excitations (the recorded
earthquake El Centro is used as in [1]) in Section 4.
Finally, the conclusions and future work are stated in
Section 5.
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2 PROBLEM STATEMENT

Consider a passive second-order base-isolated structure
(see [15]) given by

mi + ci + O(z,t) = f(¢) 1)

where m and ¢ are the mass and the damping coef-
ficients, respectively; ®(z,t) characterizes a nonlinear
restoring force, where = gives the position and f(t)
is an exciting but bounded unknown force given by
the earthquake ground acceleration. The nonlinear force
®(z,t) presents a hysteresis phenomenon due to the use
of inelastic rubber bearings, and it can be described by
the so-called Bouc-Wen model as in [16] in the following
form:

D(z,t) = aprz(t) + (1 — ag) Drw(t), (2)
W=D (Ai — Bolz||w|"tw — Ai|w|™) + A(t). (3)

This model represents the restoring force ®(x,t) by the
superposition of an elastic component aorz(t) and a
hysteresis component (1 — ag)Drw(t), in which D > 0
is the yield constant displacement and oy € (0,1) is
the post- to pre-yielding stiffness ratio. The hysteretic
component involves a non-dimensional auxiliary vari-
able, w(t), which is the solution of the nonlinear dif-
ferential equation (3). In equation (1), A, and X are
nondimensional parameters that control the shape and
size of the transition from the elastic to plastic response
(see [16] and [17]). Finally, the term A(¢) in equation (3)
represents an unknown fault in the MR damper system.
A detailed discussion of this term is given in the next
section; however, broadly speaking, when A(t) = 0 the
system is healthy and otherwise a fault has occurred.

Because state variables describe the state evolution
of the dynamical system (see [18]), any change in the
system’s dynamic properties will be registered by the
state variables. The Bouc—Wen model has only one state
variable; thus, any change (fault) in its dynamic behavior
will be registered. As a result, the fault term, A(¢), is
added to the dynamic of the internal variable. Recall
that the fault detection method assumes that the hys-
teretic base-isolation is represented by the Bouc-Wen
model. This model has gained large consensus within the
engineering community because it can capture a wide
variety of different shapes of the hysteresis loops as
can be seen in [19]. Although the internal parameters of
the Bouc-Wen model can be manipulated by applying
a voltage in magnetorheological dampers, for simplicity,
we assume that they are constant as in [20]. Moreover,
many base-isolated structures have hysteretic behavior
with constant parameters as can be seen in [21].

The objective of this paper is to detect a failure in the
base-isolated structure, which is equivalent to finding a
fault in w(t). It is noteworthy that the internal variable
w(t) is uniformly bounded for any piecewise discontin-
uous signal #(t), for certain values of the parameters
A, g and A. Theorem 1 in [20] proves this statement and
provides a way to compute the bound.
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The state representation of (1)-(3) yields
. 13 O(x,t
g = O Ly L, (5)
m m m

W=D (Ai — Bola||w|"tw — Ad|w|™) + A(t).  (6)

The main goal of this paper is to design a residual
signal that is able to detect the presence of the unknown
fault A(t). This residual signal must be close to zero
when A(t) =0, and otherwise, it must be far from zero.
In order to design the fault detection method, let us
assume that the following conditions are satisfied:

o position (z), velocity (&), and seismic perturbation

(f(t)) are measurable signals.

o the nominal parameters in (4)-(6) are known.

« the nonlinear restoring force, ®(z,t), is unknown.
Note that because of the unknown restoring force,
®(z,t), an observer is necessary to fulfill the objective.

3 FAULT DETECTION METHOD

The aim of this section is to model the various subsys-
tems of the fault detection method (see Fig. 1), namely

o a real plant, modeled in this paper via (4)-(6), and
from which position (z), velocity (&), and seismic
perturbation (f(t)) are measurable signals;

o a restoring force observer that uses the measured
signals z, i, and f(t) to construct an observer ®(z, t)
of the unknown ®(z,t);

o a healthy model, to simulate the behavior of the
system in the absence of a fault;

« a residual signal generator.

y
Y i -
| Real | Observer ®
plant T
Y
f ) | Residual| r(t
generator
{ X
»| Healthy | wy
> model

Fig. 1. Block diagram of the fault detection method.

3.1 Real Plant

The real plant is modeled using equations (4)-(6). Recall
that position (z), velocity (&), and seismic perturbation
(f(t)) are measurable signals. Two types of faults in
the base-isolation system are modeled: changes in the
stiffness and changes in the damping of the device.
Faults due to a change in the stiffness of the base-
isolation system (caused, for example, by the leakage
of the MR damper’s fluid) are modeled by adding an
additional term, AA, to the nominal value of A. That
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is, when a fault in the stiffness is present, the internal
variable dynamic is modeled as

W=D (A4 AA)i — Bolz||w|"tw — Ad|w|™),
that can be written as
W=D YA — Bol||w|" tw — Ai|w|™) + DTIAAL. (7)

Recall that the restoring force ®(x,t), given in equation
(2), depends on w. Therefore, the effect of the fault on
®(x,t) can be obtained by integrating the added term
D~'AAi, which gives D™'AAz. That is, an additional
stiffness term is added to the restoring force to simulate
a fault in the stiffness of the base-isolation system.
Following the same idea, faults due to a change in
the damping of the base-isolation system are modeled
by adding an additional term, D~'AA#, to the dynamic
of the internal variable. That is, when a fault in the
damping is present, the real plant is modeled as

W= D" Ai — Bo|i||w|" tw — Ai|w|") + DTTAAE. (8)

The effect of the fault on ®(x,t) can be obtained by inte-
grating the added term D~'AA#, which gives D' AAi.
In other words, a damping term is added to the restoring
force, which simulates a fault in the damping of the base-
isolation system.

3.2 Restoring Force Observer Design

In this section, an observer, (i)(x, t), of the restorting force
®(z,t) is presented.

The observer assumes that position (z), velocity (%),
and seismic perturbation (f(¢)) can be measured. In addi-
tion, since there is no prior information about the deriva-
tive of the restoring force, it is reasonable to suppose
that ® = 0, which implies that the restoring force varies
slowly relative to the observer dynamics. In fact, in [22],
[23] it is shown, by simulation and experiment, that an
observer designed under the previous assumption can
also track some fast time-varying disturbances. Thus, the
hypothesis ® = 0 is not a very restrictive assumption.

Theorem 1: Consider the system

gj:(kl(i:—gj)—ci:—i-f—(i))/m, ki >0, )

z = 7k22+yA7 (kQC*k%ﬂ’L)iﬁ*leL‘ﬁ*ka, ko > 0,
(10)
where k1, ko are design parameters and
b =z—x— komi. (11)

Assume that & = 0, then ® is an observer of the restoring
force ®.
Proof: Consider the Lyapunov function

1
-2
Differentiating the positive definite function V; along the
system trajectory, and taking into account that ® = 0,
yields

Vi=5(@ -8+ 2@ - )

Vi=(®-9)(~d—i+9) — k(@ —9)>

Clearly, taking
b= i+ §+ ko(® — B) (12)

then . R
Vi = —ka(® — @) — k(& — §)°,

and, thus, V; is negative semi-definite. To complete
the proof it only remains to see that the equation (12)
corresponds to equations (10) and (11). For this purpose,
replace ® in (12) by the equation (1) to obtain

b= i+ ko(—mi—ci+ [ — &),
and arranging terms yields

komi + &+ ® = § + ko(—ci + f — ®).

Defining the right hand side of the previous equation as
Z and integrating leads to

ﬁ):z—m—kzgmj:.

Notice that using the previous equation, Z can be written
as
5= —koz + 4 — (kac — k2m)i + kox + ko f.

3.3 Healthy Model

The healthy model is developed in order to simulate the
behavior of the system in the absence of a fault. The
system is modeled as

:th = Yh, (13)

. c o

yhzi——yh——h-i-v, (14)
m m m

Oy, = apkay + (1 — ag)Diwp (t) (15)

wp = DN (A, — Boldn||wn|"wn — Adplwl}),  (16)

where v is a control law to be chosen in order to ensure
that e; := = — z, and ez := y — y, are uniformly
ultimately bounded. Recall that e3 := w —wy, is bounded
because both variables are internal variables of a Bouc-
Wen model, and thus, they are already bounded.

Loosely speaking, we would like to find state feedback
control for the system (13)-(16) that guarantees that every
response of the system is uniformly ultimately bounded
within a set containing the zero state. Let’s take the
Lyapunov function Vz = $2%¢? + L¢3, then the derivative
of V3 along the system trajectory yields

R . . ok . . . .
Vo =——e161 + eaés = ——e1 (& — @) + ea(y — yn)
m m

agk c ¢—§>+<§th
=——eeater |——(y—yn) - ————————— —v
m m m
ok C o ~, €2 2 €
= ——e—(D—D)—= — (& —Dp)— —
S €1e2 — —€) ( )m ( h) vé2
d-d
Takingv:@el—u,
m m
Vo= (- 0)2 — e,
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and therefore, V5 < 0 when lea| > @. It can be con-

cluded that the solution is uniformly ultimately bounded
with the ultimate bound

| — &

|€2| <

Note that the size of the ultimate bound depends on the
performance of the observer. As the performance of &
improves, the ultimate bound decreases.

To summarize, our healthy model (13)-(16) is com-
pleted using the control law

ok
V= ——€1 —

(q’*q’h)'

3.4 Residual Signal Design

In the field of fault detection and identification, a resid-
ual signal should be defined to detect and identify fault
signals. Note that using the measurement of = and
the observer ®, the variable w can be estimated from
equation (2) obtaining,
. o — QORI
YT 1= a0)Ds
A first trial for the residual signal was a weighted func-
tion of the difference between & and wj,. However, this
residual signal would stabilize after the fault vanishes,
but it would not return to zero. This is because the
internal variable of the Bouc-Wen model does not return
to zero after the earthquake (or after a fault) passes away
but rather stabilizes to a different value (because of the
memory effect of hysteresis). In order to circumvent this
issue, the following residual signal is used
r(t) = K (& — i) 17)
where K is the weight, and & is obtained by numerical
differentiation of . Several numerical differentiation
procedures can be used. Here, differentiation of the cubic
spline approximation is used.

When the residual signal is close to zero, the system is
healthy, otherwise the residual signal not only indicates
the presence of a fault but also gives a measure of the
severity of that fault.

4 NUMERICAL SIMULATION

In order to investigate the efficiency of the proposed
health monitoring scheme, the El Centro earthquake is
used (see Fig. 2). The parameters used in the simula-
tions have the following nominal values: m = 156 x
10 Kg, ¢ = 2 x 10! Ns/m, x = 6 x 10° N/m, oy =
06,D =06m,A=1053 =01,\=05 and n = 3
as in [20] and [24].
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Fig. 2. El Centro earthquake, ground acceleration.
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Fig. 3. Stiffness fault present in the system.

4.1 Stiffness and Damping Faults

Design parameters k; and k3 in (9) and (10) are set equal
to 400, and the constant K in (17) is set equal to 45.
The parameter AA in equation (7) varies with time, thus
simulating a stiffness fault in the base-isolated system.
Simulation results are shown in Fig. 3. The first row
in Fig. 3 shows the real restoring force ® versus the
observed one @ (left) and the absolute error among these
quantities (right). The second row shows @ versus the
internal variable given by the healthy model, wy, (left)
and the absolute error among these quantities (right).
Note that, when the fault vanishes, the absolute error
W — wy, stabilizes to a constant value that is usually not
zero. This is because the internal variable of the Bouc-
Wen model does not return to zero after the earthquake
(or after a fault) passes away but stabilizes to a different
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value (because of the memory effect of hysteresis). The
third row in Fig. 3 shows the residual signal (left) and the
faulty increment, A A, used in the simulations (right). As
desired, the residual signal is close to zero in the absence
of a fault and is significantly affected in the presence
of faults. As expected, the residual signal returns to its
original no-fault detection stage (close to zero) when the
fault vanishes. However, small variations in the system
stiffness (AA = —0.2) are not clearly detected by the
fault detection method. Further work should be done to
improve the sensitivity of the method.

In order to model the damping fault, the parameter
AA in equation (8) varies with time and, therefore,
simulates a damping fault in the base-isolated system.
Simulation results are shown in Fig. 4. Note that the

o 10 20 30 0 10 20 30
Time (sec.)

Time (sec.)

— @ - wp

0 10 20 30 0 10 20 30

Time (sec.) Time (sec.)

0 10 20 30 0 10 20 30

Time (sec.) Time (sec.)

Fig. 4. Damping fault present in the system.

observer, @, is a different approximation of ® than the
one obtained in the stiffness fault simulation. This is
because the observer uses the real plant measurements
of position, velocity and force that are affected by the
fault. As different faults are simulated, different approx-
imations are obtained. Again, when the fault vanishes
(AA 0), the absolute error & — wj stabilizes to a
constant value that is usually not zero, and the residual
signal is close to zero in the absence of a fault and is
significantly affected in the presence of faults.
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5 CONCLUSION

This paper proposes a novel Lyapunov-based restoring
force observer that allows the design of a robust fault
detection method. The fault detection goal is fulfilled
because a residual signal is designed that is close to zero
in the absence of a fault and is significantly affected in
the presence of a fault. As expected, the residual signal
returns to its original no-fault detection stage when the
fault vanishes, but also provides a direct estimate of the
size and severity of the fault, which can be important in
many civil engineering applications.

As future work it remains to examine the robustness
of the proposed algorithm when noise is present in
the measured signals and the robustness with respect
to parametric uncertainty. It also would be interesting
to apply the proposed fault detection method to the
benchmark problem for seismically excited base-isolated
buildings (multiple degrees of freedom problem) pro-
posed by [1]. Finally, it is important to test the scheme
in an experimental setup with a shacking table and a
real MR-damper which will easily allow to modify the
damping behavior, thus simulating a fault. This exper-
imental setup will also be helpful to give the minimal
size of the fault that can be detected by the proposed
technique.
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