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Abstract

This work presents the design guidelines of a control for direct regulation
of the voltage amplitude at the connection point of a single-phase grid-
connected PV inverter. The parameters of such control are designed for
ensuring locally asymptotic stability for a given range of the impedance.
Usually, the design of the controllers are done by applying the drop method
approximation. This work evaluates the application of another method, that
consists in a linearization of the non-linear curve relating the amplitude of
the voltage at the connection point with the injected active and reactive
power. It has been studied the control strategy of drop method and new
control strategy, which considers the real function and its linearization. Nu-
merical simulations for the last method confirm the expected proper voltage
regulation and the control robustness with respect to the grid impedance
variations without the requirement of any estimation or measure of the ac-
tual impedance.
This thesis shows, through a comparison between the drop method and the
linearization method, what is the more realistic one. The results show that
the linearization method is faster and has more accuracy than the drop
method. This is more evident when one or more control parameters change.
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Chapter 1

Introduction

The penetration of photovoltaic (PV) systems in the electricity network has
been increased in the last decades. When operating with a low voltage (LV)
network the PV installation produce an undesirable phenomenon of volt-
age fluctuation in the connection point. This problem is specially serious
when the network has a high R/X ratio, as usually happens in LV networks.
Moreover, this effect is compounded by the injected active power.

In grid-connected PV inverters the voltage is usually controlled by reg-
ulating the reactive power delivered to the grid. In the literature one can
find several techniques devoted to design such control [1], [2], [3], [4]. Most
of them are based on the droop control method. The regulation of the de-
livered reactive power and the active power is achieved by the design of two
different control loops. The inner one is a current loop in charge to ensure
the injection of the grid current that provides the desired active and reactive
power. On the other hand, the outer loop regulates the powers and gener-
ates the reference current for the inner one. The inner loop controller can be
designed by using linear control techniques in a rotating frame dq [5], [6], [7]
or in a time-variant framework [8], [9], [10], [11], [12], [13] or applying non-
linear control techniques as Lyapunov-based control [14] or passivity-based
control [15].

The outer loop design assumes that the internal PV inverter variables
reached their steady-state regime, although this assumption the dynamical
description of the complete system is highly nonlinear and the controllers
design is even worsened by the unknown impedance that exists between the
connection point and the grid source. In order to overcome the aforemen-
tioned problems, the droop control method uses an approximation of the
voltage fluctuation depending on the resistive and the reactive parts of the
grid impedance and evaluates the impact of the grid impedance variation in
the control design. Alternatively, this work develops a rigorous mathemati-
cal description of the nonlinear dynamics of the grid-connected PV inverter,
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6 CHAPTER 1. INTRODUCTION

applies a linearization procedure and designs PI controllers to ensure closed-
loop asymptotic stability and the desired voltage regulation. Variations of
the grid impedance and the active power delivered to the grid are included
in the analysis, thus ensuring the proper power regulation over the whole
working range without any measure or estimation of the grid impedance.
This elaborate of thesis was done at the Universitad Politecnica de Catalunya
(UPC), in the control system laboratory with the professor Domingo Biel
Sole. In the following chapters are described the problems for the control
design of a PV inverter when is connected to a weakly grid.
In the second chapter is introduced the problem statement, i.e. the problems
for a weakly grid and the differences that are present between a ideal-grid
(strong grid) and non-ideal grid (weakly grid). In this chapter is present
also discussed the passivity based control, used for the inner loop of the sys-
tem for regulation of the reference current. At the end of the chapter, using
Matlab-Simulink, some simulations are presented, which show the variations
of voltage amplitude, the current amplitude and the phase shift changing the
values of active and reactive power injected.
In the third chapter is discussed about the closed-loop system modelling. It
has been shown how to simplify and to linearize the generical model of the
PV inverter and it has been demostrated as the MPPT control is not good for
the application of the subject. The final control scheme has been shown at
the end of the chapter and is used for the outer loop (power regulator). This
is composed by two PI controllers used to regulate the voltage amplitude at
connection point.
In the fourth chapter the Drop method is explained and its use in this sub-
ject. In the chapter are shown the equations and the control scheme used for
the Drop method and the simulations of a weakly grid controlled using the
Drop method for few combination of parameters.
In the fifth chapter the Linearization method is explained, that is an alter-
native method more efficient than the last one. Also here, are shown the
equations used and the control scheme. Finally, are introduced the simula-
tions in the same conditions used for the Drop method.
In the sixth the methods presented in the previous chapters are compared
with the real behavior and will be seen what of the two methods has a trend
closer to the real one. This comparison has been done using Matlab-Simulink
simulations, i.e. are shown the root locus graph of the closed loop system,
the voltage amplitude at connection point curve and the active and reactive
power curves.
Finally, the last chapter summarizes the conclusions of the thesis work.



Chapter 2

Problem statement

Figure 2.1: PV inverter connected to a non-ideal grid.

Fig. 2.1 shows the circuit scheme of a PV inverter connected to a non-
ideal grid, where the non-ideal grid is modelled by an impedance, Zg, in series
with an ideal sinusoidal voltage source, vg. The state equations (in averaged
values) of the PV inverter are:

Cż1 = −uz2 + fpv(z1), (2.1a)

Lż2 = uz1 − vCP , (2.1b)

where z1 and z2 correspond to the capacitor voltage and the inductor current,
respectively, L is the inductance, C is the capacitance, u ∈ [−1, 1] is the
control and fpv(z1) = Λ − Ψe(αz1) is the current delivered by the PV array.
The parameters L and C are assumed to be known constants.
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8 CHAPTER 2. PROBLEM STATEMENT

Figure 2.2: Power control for a PV inverter connected to a non-ideal grid

The PV inverter has to be controlled in order to perform two main tasks:

� To provide the desired active power to the grid (the active power
reference value could be given by a Maximum Power Point Tracker
(MPPT), for instance).

� To regulate the amplitude of the voltage at the connection point to the
value of the amplitude of the ideal grid voltage. This is possible by an
injected reactive power control which provides the reference value of
reactive power to the grid.

When the voltage at the connection point is vcp = Acp sin(ωt) and the
injected current is given by z2 = AI sin(ωt − θ), the PV inverter injects an

active power, P = AcpAI

2
cos θ, and a reactive power, Q = AcpAI

2
sin θ.
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Figure 2.3: Control scheme of a PV inverter connected to a non-ideal grid
(extract from [15]).

Fig. 2.3 presents the block diagram of a control system that could perform
the previously mentioned control specifications. In this document will be
used for the system a passivity-based control, a Q-control and a P-control.
The research of the proper dynamical models allows to design the parameters
of the controllers. Obviously, the passivity-based control is only one of the
methods in the literature, but for the purpose of this document it will be
used it, recalling the paper [15].

2.1 Current control: Passivity-based control

As reported in the paper [15], where has been discussed and explained the
Passivity based control in depth, in my document I have summarized for the
subject in question.
The proposed control ensures that the PV inverter tracks the reference cur-
rent guaranteeing stability of the overall system written in terms of the error
variables. Consider the system defined before, where C and L are known con-
stant parameters. A nonlinear dynamic feedback passivity-based controller
is given by:

u =
1

ζ1

(
Lζ̇2 + vCP − ra(z2 − ζ2)

)
(2.2a)

Cζ̇1 = −uζ2 + fpv(z1) (2.2b)
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The reference current being ζ2 = AI sin(ωt− θ) and being the controller
parameter ra > 0. Under these conditions and assuming ζ1(t) > 0, the
controller solves the tracking problem of the grid injected current

lim
t→∞

z2(t) = ζ2(t)

Defining the variables z̃1 = z1− ζ1, z̃2 = z2− ζ2 the system equations can be
rewritten as:

C ˙̃z1 = −uz̃2 − uζ2 + fpv(z1)− uζ̇1 (2.3a)

L ˙̃z2 = uz̃1 + uζ1 − vCP − Lζ̇2 (2.3b)

Replacing the controller equations, the following equations can be obtained:

C ˙̃z1 = −uz̃2 (2.4a)

L ˙̃z2 = uz̃1 − raz̃2 (2.4b)

In order to prove the stability of the system, consider the following lower
bounded Lyapunov function:

V =
1

2
Cz̃1

2 +
1

2
Lz̃2

2 (2.5)

where the time derivative along the trajectories of 2.4 are given by

V̇ = z̃1(−uz̃2) + z̃2(uz̃1 − raz̃2) = −raz̃12 ≤ 0 (2.6)

which indicates that V̇ is a negative semi-definite function and thus the
variables z̃1 and z̃2 are also bounded. Furthermore, following Barbalat’s
lemma [25], the global asymptotic convergence of the tracking error z̃1 to zero
is guaranteed because the boundedness of u, z̃1 and z̃2 implies the bounded-
ness of ˙̃z2 and therefore the uniform continuity of V̇ . Notice that the bound-
edness of the control signal u = 1

ζ1
(Lζ̇2 + vCP − raz̃2) is ensured since all

the involved variables are bounded and the controller variable z̃1 is assumed
bounded away from zero. Moreover, when the perfect tracking is achieved,
z̃2 = 0, the error system simplifies in ˙̃z1 = 0 and uz̃1 = 0. Taking into account
that the control signal u is a time variant signal the last expression implies
that z̃1 = 0 and ζ1 = z1. For what has just been said, it can be done some
remarks:
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� Numerical simulations show that ζ1 converges quickly to z1 when the
value of ζ1(0) is selected to be equal to the initial condition of the PV
output voltage.

� The convergence rate of the Lyapunov function depends on the value
of the control parameter ra.

� When reference ζ2(t) = AI sin(ωt− θ) is selected such that

AI = 2
ACP

√
(P ∗2 +Q∗2) and θ = tan−1(Q

∗

P ∗ ), the PV inverter delivers
the desired active, P ∗, and reactive power, Q∗, to the grid.

2.2 Ideal Case (Strong Grid)

In this case, as shown in the Fig.2.3, the amplitude of the voltage at the
connection point is fixed by the amplitude of the sinusoidal source. This
because the output impedance has only a resistive part, so the reactive power
to provide at the grid is nothing.
The existence or not of feedback of the active and reactive power will lead to
an indirect control framework or a direct active and reactive power control.

Simulations In order to validate the control, the controlled system has
been tested using Matlab-Simulink. For the simulation we consider the sys-
tem of the Fig.2.3 with C = 2.2mF , L = 950µH, vg = 312 sin(100πt)V and a
PV array with a peak power of 3.3kW , a short circuit current of 6.1A, and an
open circuit voltage of 678V at 1000 W

m2 (Λ = 6.1, α = 0.026, Ψ = 1.35 ∗ 107).
The control parameter ra is set to 1 and ζ1(0) = 500V . The initial condition
of the capacitor voltage is of 500V .
The following plots show the simulation results when the active power and the
reactive power are regulated to P ∗ = 2kW and Q∗ = −2kV Ar, respectively.
In t = 0.6s the references are changed to P ∗ = 3kW and Q∗ = −1kV Ar.

The Fig.2.4 (left) shows the PV voltage, the PV current, (which has been
amplified by 10 for a better view), the grid voltage and the injected current
(amplified by 10). The PV inverter output current has a phase shift with
respect to the grid, thus indicating the injection of reactive power.
The PV voltage decreases when the active power increases, the contrary hap-
pens with the PV current as it is usual in PV curves. On the other hand,
the Fig.2.4 (right) pictures the PV power, the active power and the reactive
power. Notice from the plot that the reference values are reached in just one
grid period.
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Figure 2.4: Left: PV voltage (V), PV current (A) (amplified by 10), grid
voltage (V) and injected current (A) (amplified by 10); right: PV power
(W), active power (W) and reactive power (VAr).

The control system has also been tested when an irradiance change is
applied. The irradiance varies from the initial value of 1000 W

m2 to 750 W
m2 .

Figure 2.5: Left: PV voltage (V), PV current (A) (amplified by 10), grid
voltage (V) and injected current (A) (amplified by 10); right: PV power
(W), active power (W) and reactive power (VAr).

The Fig.2.5 and Fig.2.4 shows the simulation results. Notice how the active
and the reactive power are properly regulated to their reference values to
P ∗ = 2kW and Q∗ = 1.5kV Ar, respectively, without any transient when the
irradiance changes.
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2.3 Non-ideal Case (Weak Grid)

In this case, the PV inverter has an impedance between the connection point
and the ideal sinusoidal source. The amplitude of the voltage at the connec-
tion point will depends on the active and the reactive power injected to the
grid. The relationship among those variables can be obtained as described
in the following lines. The PV inverter output network equation is:

vCP = vZg + vg (2.7)

where:

� vCP = ACP sin(ωt) is the voltage at CP,

� vZg = AI |Zg| sin(ωt−θ+θZg) is the voltage through the impedance, AI
is the amplitude of the injected current and θ the phase shift between
the voltage and the current at CP,

� vg = A sin(ωt + φ) is the ideal grid voltage, being φ the phase shift
between the grid source and the output voltage of the PV inverter.

Hence, the equation can be rewritten as:

ACP sin(ωt) = AI |Zg| sin(ωt− θ + θZg) + A sin(ωt+ φ) (2.8)

which, replacing the current amplitude expression AI = 2
ACP

√
P 2 +Q2 and

the phase shift expression θ = tan−1(Q
P

) in terms of the active and reactive
power, results in:

ACP sin(ωt) =
2

ACP

√
P 2 +Q2|Zg| sin(ωt− tan−1(

Q

P
) + θZg) + A sin(ωt+ φ)

(2.9)
Recalling the trigonometric property: sin(α + β) = sinα cos β + sin β sinα

and defining Γ = 2
√

(P 2 +Q2)|Zg| and ψ = − tan−1(
Q

P
) + θZg the equation

becomes:

A2
CP sin(ωt) = Γ(sin(ωt) cos(ψ) + cos(ωt) sin(ψ))+

+ACPA(sin(ωt) cos(φ) + cos(ωt) sin(φ))
(2.10)

or

A2
CP sin(ωt) = (Γ cos(ψ) + ACPA cos(φ)) sin(ωt)+

(Γ sin(ψ) + ACPA sin(φ)) cos(ωt)
(2.11)
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and, recalling trigonometric properties, the following set of equations should
be solved for ACP and φ:

Γ cos(ψ) + ACPA cos(φ) = A2
CP , (2.12a)

Γ sin(ψ) + ACPA sin(φ) = 0. (2.12b)

Finally, the following second order algebraic equation can be easily obtained:

x2 − (A2 + 2Γ cos(ψ))x+ Γ2 = 0. (2.13)

where the variable x = A2
CP has been defined, with the solutions:

x =
A2 + 2Γ cos(ψ)±

√
A2 + 2Γ cos(ψ)2 − 4Γ2

2
(2.14)

Considering that Γ ≥ 0, the two solutions of (2.13) are positive real when
|A2 + 2Γ cos(ψ)| ≥ 2Γ. Taking into account that both solutions provide the
same active power, it is clear that the upper one is the proper one for the
voltage regulation since it requires less injected current [15]. Once AP is
calculated, the amplitude of the injected current and the proper grid phase
shift can be also determined by solving:

AI =
2

ACP

√
P 2 +Q2 (2.15)

and

φ = sin−1(
−Γ

ACPA
sin(ψ)) (2.16)

Simulation The Fig. 2.6 shows the amplitude values of the voltage at the
connection point, ACP , and the injected current, AI , when the PV inverter
supplies an active power P = 2kW to a grid network with an equivalent
impedance of a series inductance (Lg = 2mH) and a resistance of (Rg = 2Ω).
The reactive power varies from −8kV Ar to 8000kV Ar in steps of 500V Ar.
Notice that the voltage is increased following the reactive power trend and
how the current amplitude has an expected minimum when the reactive
power is zero. It is also clear that the solution to be controlled corresponds to
the one close to the amplitude of the grid of 312V since the current amplitude
is always lower than the one giving by the voltage close to 150V .
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Figure 2.6: ACP and AI for P = 2kW and the reactive power varies from
−8000kV Ar to 8000kV Ar (extract from [15]).

The Fig. 2.7 presents the behaviour of the grid phase shift when the
reactive power is changed. Again, from the figure, one can realized that the
solution for the high value root shows less variation with respect the other
solution.
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Figure 2.7: φ for P = 2kW and the reactive power varies from −8000 to
8000 (extract from [15]).

2.4 Perfect amplitude regulation of the volt-
age at the connection point (Weak Grid)

Assuming that the PV inverter is properly controlled such that is delivering
the desired active power, P ∗, and the amplitude of the voltage at the con-
nection point is regulated to the value (reference) of the ideal grid source, A,
the equation of the network is given by:

A sin(ωt) = AI |Zg| sin(ωt− θ + θZg) + A sin(ωt+ φ) (2.17)

which can be rewritten as:

A sin(ωt)− A sin(ωt+ φ) = AI |Zg| sin(ωt− θ + θZg) (2.18)

Recalling the trigonometry property: sinα− sin β = 2 cos(α+β
2

) sin(α−β
2

), the
left hand side term of the equation can be expressed as:

A sin(ωt)− A sin(ωt+ φ) = −2A cos(ωt+
φ

2
) sin(

φ

2
) (2.19)

or, equivalently,

A sin(ωt)− A sin(ωt+ φ) = 2A sin(ωt+
φ

2
− π

2
) sin(

φ

2
) (2.20)
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Therefore,

AI |Zg| sin(ωt− θ + θZg) = 2A sin(ωt+
φ

2
− π

2
) sin(

φ

2
) (2.21)

which leads to the following system of equations:

AI |Zg| = 2A sin(
φ

2
)sign(φ), (2.22a)

θZg − θ =
φ

2
− π

2
sign(φ), (2.22b)

that, together with the expressions of the active power, P ∗ = AAI

2
cos θ, and

the reactive power, Q∗ = AAI

2
sin θ, allow to find the values of the required

reactive power, Q∗, the amplitude of the injected current, AI , the phase shift
between the current and the voltage in the connection point, θ, and the phase
shift between the grid source and the output voltage of the PV inverter, φ.
Summarizing, the system equations to be solved are given by:

� AI |Zg| = 2A sin(φ
2
)sign(φ)

� θZg − θ =
φ

2
− π

2
sign(φ)

� P ∗ = AAI

2
cos θ

� Q∗ = AAI

2
sin θ

Then, replacing the second one and the third one to the first equation, one
gets:

2P ∗

A

1

cos θ
|Zg| = 2A sin

(
θZg − θ +

π

2
sign(φ)

)
sign(φ) (2.23)

which can be rewritten as

P ∗

A2
|Zg| = cos θ sin

(
θZg − θ +

π

2
sign(φ)

)
sign(φ) (2.24)

Recalling the trigonometry property: sinα cos β = 1
2
(sin(α+β)+(sin(α−β)),

the equation becomes:

P ∗

A2
|Zg|sign(φ) =

1

2
sin

(
θZg +

π

2
sign(φ)−2θ

)
+sin

(
θZg +

π

2
sign(φ)

)
(2.25)
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and, finally, one gets:

θ =
1

2
(θZg +

π

2
sign(φ)− sin−1

(
P ∗

A2
|Zg|sign(φ)− sin

(
θZg +

π

2
sign(φ)

))
(2.26)

From this solution, the values of φ, AI and Q∗, can be obtained by subse-
quently applying the last three equations. Notice that the above equation
has two different solutions depending of the sign of the phase shift of the grid
voltage.

Simulations Simulations in the following, in the Fig.2.8 and in the Fig.
2.9, show respectively the curves of voltage amplitude at connection point
and trends of active and reactive output powers and the input power (from
the PV array) for the real behavior of the system.

Figure 2.8: Voltage amplitude of connection point when the grid impedance
is fixed at the values Rg = 2Ω and Lg = 2mH, active power is fixed at the
value P = 2000W and reactive power changes at t = 0.4s from Q = 0kV Ar
to Q = −4.570kV Ar

In this picture is observable that during the first 0.4s the power control is
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not enable yet and in this part is shown a free behavior and, as can be seen,
the voltage amplitude is at a wrong value. At t = 0.4s the power control
is enable and the voltage amplitude goes to at correct values ACP = 312V .
The transient is similar to an exponential trend and the duration is 0.35s.
After the transient the voltage amplitude is stable at the nominal value.
Also in this picture is observable that until t = 0.4s the power control loop

Figure 2.9: Variation of active and reactive power when the grid impedance
has been fixed at the values Rg = 2Ω and Lg = 2mH, active power has been
fixed at the value P = 2kW and reactive power changes at t = 0.4s from
Q = 0kV Ar to Q = −4.570kV Ar

is inactive. After, the power regulation begins, where starts up a transient of
0.4s, that brings the active and reactive power values at the reference values.
During the transient notice a quickly and little overshoot for the active power
and another very little for reactive power corresponding.
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Chapter 3

Closed-loop system modelling
and stability analysis

As seen so far, when the PV inverter is connected an ideal grid, where the
output impedance has only resistive part, the system needs only two con-
trol loops: one control regulator used to track the MPPT (maximum power
point tracker) and used to regulate the PV array output voltage in order to
guarantee that the system operates at the MPP of the PV array and another
one that controls the inductor current to ensure that it is in phase with vCP ,
that is the PF = 1.

Figure 3.1: Power control for a PV inverter

When the PV inverter is connected to a weak grid the amplitude of the volt-
age at the connection point is sensitive and depends on the grid impedance.
Changing the ratio X

R
, the power factor will change, so is not more equal to

the ideal case is PF = 1. Changing this value it has been created a varia-
tion of the amplitude ACP and it has been created a phase shift between the
voltage and the current. This is an important problem because the system

21
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results instable and, in this condition, the PV inverter circuit is unusable.
A good solution is to design a control loop which regulates the active and
reactive power that the system supplies at the connection point in order to
obtain the desired value of ACP . Then, in the real case the system needs a
third regulator.

Figure 3.2: Control scheme weak grid (extract from [35]).

In the Fig.3.2 has been shown the two control loops explained in following.

� An inner loop to track the reference current such that the required
active and reactive power are injected to the grid. (Passivity-based
controller).

� A outer loop composed by PI controllers that ensures the regulation of
P and Q toP ∗ and Q∗ and generates the required signals to determine
the current reference for the inner loop.

The control of the active and the reactive PV inverter power will help the
grid (at least at the connection point of the PV system) to be in compliance
with the quality standards, (i.e. amplitude setting and frequency regulation,
among others).
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Notice that the power regulation process is highly non-linear because:

� The PV inverter is a nonlinear system.

� The PV array presents a nonlinear characteristic which changes with
the irradiance (and the temperature).

� The relationships among the amplitude and phase shift of the injected
current and the active and the reactive power are highly nonlinear.

� The grid impedance could be unknown.

The non-linear caracteristic is observable from the relationship between ACP
and the values of P and Q has been calculated in the section 1.3 and reported
shown below:

ACP =

√
A2 + 2Γ cos(ψ) +

√
(A2 + 2Γ cos(ψ)2)− 4Γ2

2
(3.1)

where Γ = 2|Zg|
√
P 2 +Q2 and ψ = −tan−1(Q

P
) + θZg.

For this is necessary a linearization, assuming that the PV inverter operates
in its steady-state:

vg = A sin(ωt)
vCP = A sin(ωt− φ)

z2(t) = AI sin(ωt− θ − φ)

From the reference generator is possible to define the control signals uP and
uQ, shown below:

uP =
ACPAI

2
cos(θ + φ) (3.2a)

uQ =
ACPAI

2
sin(θ + φ) (3.2b)

Therefore, recalling the output power of PV inverter: P =
ACPAI

2
cos θ and

Q =
ACPAI

2
sin θ, it can be apllied the trigonometric properties, one gets:

P = uP cosφ+ uQ sinφ (3.3a)

Q = uQ cosφ− uP sinφ (3.3b)
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From these control signals, and some trigonometric operations, obtain the
values of active and reactive power.
In the control scheme shown so far can be highlighted two part, the PI con-
trollers (red) and the conditional path (green):

Figure 3.3: Control scheme weak grid

In order to model the closed-loop system and find rules to design the control
parameters, we have to model the transfer from the power references to the
amplitude at the connection point. The resultant scheme is shown in the
Fig.3.4.

Figure 3.4: Non-linear design for the control scheme.

Note that the scheme of the PV inverter in terms of the power is given by
equations 3.3.a and 3.3.b. Moreover, the PI controllers are defined with
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transfer functions Gi = Gi(s) = αi + βi
s

. As seen previously, in order to ob-
tain ACP from the active and reactive power should be used the equation 2.1.

Recalling that ACP is a non-linear function, this control scheme is not suf-
ficient in order to obtain the value of the amplitude voltage at the connection
point by the active and reactive power. For this is necessary a linearization.
In a first approach, can be considered that cosφ ≈ cosφ∗ and sinφ ≈ sinφ∗,
where φ∗ is the reference value of the phase shift obtained when the PV in-
verter delivers the reference powers P ∗ and Q∗, i.e. at the equilibrium point.
Considering the value of the phase shift φ, obtained when the PV inverter
delivers the reference powers P ∗ and Q∗, it can be introduce two parameter:

δ1 =
∂ACP
∂P

∣∣∣∣
(∗)

and δ2 =
∂ACP
∂Q

∣∣∣∣
(∗)

.

In the Fig.3.5 is possible to note as the model changes and what is the lin-
earization procedure used for the control scheme. So the model becomes as
follows:

Figure 3.5: Linearization design for the control scheme.

Both the methods that will be considered use the last one model and the
sensitivity parameters, but the main difference is how are obtained these
parameters.

When the amplitude feedback is considered, the control system can be
modelled by the scheme shown in Fig. 3.6.

In the last picture the following parameters have been defined: δ1 =
∂ACP
∂P

∣∣∣∣
(∗)

and δ2 =
∂ACP
∂Q

∣∣∣∣
(∗)

.

The following analysis will determine the characteristics transfer functions of
the system. First of all, it is reported the active and reactive power, which
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Figure 3.6: Simplified block diagram of the control scheme when the ampli-
tude is regulated by the reactive power (extract from [35]).

can be expressed as:

P = uP cosφ∗ + uQ sinφ∗ = G1 cosφ∗(P ∗ − P ) +G2 sinφ∗(Q∗ −Q) (3.4a)

Q = uQ cosφ∗ − uP sinφ∗ = G2 cosφ∗(Q∗ −Q)−G1 sinφ∗(P ∗ − P ) (3.4b)

Replacing the expression of Q∗ = G3(A−δ1P −δ2Q), the set of equations
results in:
(1 +G1 cosφ∗ + δ1G2G3 sinφ∗)P = G1 cosφ∗P ∗ +G2G3 sinφ∗A−G2 sinφ∗(1 + δ2G3)Q

(1 +G2 cosφ∗ + δ2G3)Q = G2G3 cosφ∗A−G1 sinφ∗P ∗ + (G1 sinφ∗ − δ1G2G3 cosφ∗)P

which allows to obtain the expressions of the active and reactive power as
function of the active power reference and the grid amplitude:

P =
1

∆
[G1(cosφ∗ +G2(1 + δ2G3))P

∗ +G2G3 sinφ∗A] (3.5a)

Q =
1

∆
[G2G3(G1 + cosφ∗)A−G1(sinφ

∗ + δ1G2G3)P
∗] (3.5b)

where ∆ = 1+(G1+G2) cosφ∗+G2G3(δ1 sinφ∗+δ2 cosφ∗)+G1G2(1+δ2G3).
Finally, as already noticed previusly ACP = δ1P + δ2Q, one gets:

ACP =
1

∆
[G1(δ1 cosφ∗−δ2 sinφ∗ +δ1G2)P ∗ +G2G3(δ1 sinφ∗ +δ2 cosφ∗ +δ2G1)A] (3.6)

Stability can be analyzed by searching the roots of ∆ = 0. Replacing the
transfer functions Gi in ∆, the characteristic polynomial can be written as
∆ = α3s

3 + α2s
2 + α1s+ α0, where the coefficients are:

α3 = 1 + α2α3(δ1 cosφ∗ + δ2 sinφ∗) + (α1 + α2) cosφ∗ + α1α2(1 + δ2α3)
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α2 = (α2β3 + α2β2)(δ1 sinφ∗ + δ2 cosφ∗) + (β1 + β2) cosφ∗ + α1β2 + α2β1 +
δ2(α1α2β3 + α1β2α3 + β1α2α3)

α1 = β2β3(δ1 sinφ∗ + δ2 cosφ∗) + β1β2 + δ2(α1β2β3 + β1α2β3 + β1β2α3)

α0 = δ2β1β2β3

Finally, local stability can be analyzed by applying the Routh Stability Cri-
teria to ∆. Notice that the values of δ1, δ2 and φ∗ depend on Zg, therefore the
parameters of the transfer functions Gi must be designed in order to ensure
local stability for the overall range of possible grid impedance values.

Matlab-Simulink In this paragraph are shown the implementation on
Matlab-Simulink the real control scheme and the corresponding simplified
model, which will be shown in the next two chapters, where are explained
the linearized methods.
Below, in the Fig. 3.7, is shown the Matlab-Simulink scheme, that represent
the real behaviour of the system. In fact, in this scheme are made all the
blocks in which are the real functions of the network and is built in order to
obtain the real behavior.

Figure 3.7: Real control scheme

In following, in the Fig. 3.11, is shown the Matlab-Simulink scheme used for
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the linearized methods, as Drop method and Linearization method.
In this one, in each block, are present the part of the system seen and ex-
plained before.

� PV array: In this block there are as input signals a PV voltage signal
and a reference value of corresponding current and in output there is
the PV current signal. In following is reported the path inside the block
described.

Figure 3.8: PV Array Simulink scheme

� PV inverter: This block is built in order to simulate an inverter and
so take as input signals the control signal u for the turn on/off of the
switch devices, the PV current and the voltage at connection point. As
output signal, it produces the PV voltage and the grid current.
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Figure 3.9: PV Inverter Simulink scheme

� Passivity-based control: This block implements the current control
regulation seen before. It takes as input signals the reference current
(inner loop), the grid current, the PV current and the voltage at con-
nection point. As output, naturally, it produces the control signal u

Figure 3.10: Passivity based control Simulink scheme

� Grid impedance path: This is a path where are as input signals the
resistive and inductive part of the output impedance (are present also
some paths used in order to change these values during the simulation),
the grid voltage and the grid current. This block produces at the out-
put the voltage at connection point.
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� Voltage amplitude control paths: These are the final two paths
where, regulating the output power provided at the grid, the voltage
amplitude at connection point is regulated. In these paths are present
three PI controllers, functions of sinus and cosinus and a control func-
tion where are used the sensitivity parameters in order to obtain the
correct value of voltage amplitude at connection point.

Figure 3.11: Simplified model of control scheme

In the control scheme, as explained before, there are two PI that manage
the active and reactive power signals. These are used in the successive four
blocks where, with the reference phase shift value, make up the combination
of sine and cosine functions (see equations 2.3). From here the active and
reactive power values provided at connection point have obtained and, more-
over, the output signal enters in a function block where has regulated the
amplitude voltage at connection point ACP .
Below, there is another path that takes as input signal the ACP and with a
Q value has obtained the Qref value from a PI controller, used in the upper
path.



Chapter 4

Modelling with drop method

In the literature there are some other methods which realize a power com-
pensation to regulate the voltage at the connection point. One of these is the
Drop method, which considers a approximation in the analytical calculus. It
will be shown in following a summarized of the paper [1].

4.1 The drop method

Figure 4.1: Conventional Two-bus Distribution System (extract from [1]).

The Fig.4.1 shows one scheme that can represent a passive network. Most
of the distribution networks are modelled as passive networks with radial
configuration and as mentioned in the literature. The flow of power, both
real (P) and reactive (Q), is always from the higher to lower voltage levels.
The amount of the voltage drop can be calculated from the analysis of two-
bus distribution system. In the picture DS stands for the distribution system,
OLTC stands for on-load tap-changer, VS is the sending end voltage, VR is
the receiving end voltage. P and Q are the real and reactive power flowing
through the distribution network to the customer, that are supplied from
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distribution substation (DS) and PL and QL are the real and reactive power
of the load. The voltage at the sending end can be written as:

V̂S = V̂R + Î(R + jX) (4.1)

Where: (I = |Î|) is the phasor representation of the current flowing through
the line. So, in this manner, it can write the power supplied from the distri-
bution system:

P + jQ = V̂S Î∗ (4.2)

Then, the current which flows through the line is:

Î =
P − jQ
V̂S

(4.3)

By this equations it can calculate the voltage:

V̂S = V̂R +
P − jQ
V̂S

(R + jX) = V̂R +
RP −XQ

V̂S
+ j

XP −RQ
V̂S

(4.4)

Therefore, the voltage drop between the sending end and recieving end can
be written as:

∆V̂ = V̂S − V̂R =
RP −XQ

V̂S
+ j

XP −RQ
V̂S

(4.5)

Since the angle between the sending end voltage and the receiving end voltage
is very small, the voltage drop is approximately equal to the real part of the
drop and if the sending end bus is considered as reference bus, the angle of
this voltage is 0, i.e., V̂S = (|V̂S|) = VS. Therefore, the above equation can
be approximated as:

∆V̂ ≈ RP −XQ (4.6)
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Figure 4.2: Conventional n-bus Large Distribution System (extract from [1]).

The amount of voltage variation in a large distribution network as shown
Fig.4.2 can be determined by using the same formula as shown by equation
(4.1). In Fig.4.2, an n-bus system is considered. The voltage drop between
ith and jth bus can be written as:

∆V̂ij ≈
RijPij −XijQij

Vij
(4.7)

Where, ∆V̂ij is the variation of voltage between ith and jth bus, Rij is the
resistance between ith and jth bus, Xij is the reactance between ith and jth

bus, Vi is the voltage at ith bus, andPij and Qij are the active and reactive
power flowing from ith to jth bus. The voltage level at each connection point
of the load is very important for the quality of the supply. Since, there are
not internationally agreed rules that define the allowed steady state voltage
range, the maximum voltage variation permitted on each bus is defined by
some technical regulations or specific contracts.
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4.2 Control scheme and equations

The control system can be modelled by the Fig.3.2 reported in the third
chapter. Where have been defined the following parameters:

δ1 =
∂ACP
∂P

∣∣∣∣
(∗)

=
RP ∗

ACP
(4.8)

and

δ2 =
∂ACP
∂Q

∣∣∣∣
(∗)

=
−2πfLQ∗

ACP
(4.9)

The voltage variation at the connection point is given by:

∆ACP = δ1(P − P ∗) + δ2(Q−Q∗) (4.10)

in which P ∗ and Q∗ are the active power and reactive power respectively, in
the condition when A = ACP .
Notice that is possible to evaluate the stability of system using this method
watching some parameters of control design, δ1 and δ2 and evaluating the
root locus.

Simulations Now will be studied the closed loop stability system for the
Drop method looking the poles of the root locus. Below are shown the root
locus plots for a specific case and will be seen all the properties of the system
response for this method. In following, in the Fig. 4.3, is shown the root
locus for a single case, i.e. where all the parameters of the steady state are
fixed. For this simulation are fixed the output impedance (R = 2Ω and
L = 2mH), the reference values for active and reactive power (P ∗ = 2kW
and Q∗ = −4.57kV Ar), naturally the phase shift at φ∗ = −0.2155rad. The
couple of sensitivity parameter are: δ1 = 0.0064 and δ2 = 0.002.

It can be seen that are present three poles, two conjugated complex s1,2 =
−5.043± j1.778 and a real pole s3 = −5.709. As expected it is a third order
transfer function. From this picture it can observable that the function is
stable for the of the root locus rules.
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Figure 4.3: Root locus of Drop method for a single case.

Below, in Fig. 4.4, is shown the root locus when the output resistive part
is fixed at R = 2Ω and reactive part changes from 1mH to 3mH by a step
of 1mH. The control parameter β3 has been fixed at the value β3 = 2000
and the active power changes from 500W to 3500W by a step of 500W .
Consequently, also the reactive power changes. Looking the poles on the
plot is possible notice that the system response is stable.



36 CHAPTER 4. MODELLING WITH DROP METHOD

Figure 4.4: Root locus of Drop method at variation of active and reactive
power fixing the value of output resistance (R = 2Ω) and changing the in-
ductance from 1mH to 3mH by a step of 1mH.

In the Fig. 4.5 is shown the root locus with the same conditions of the
previous one except for the control parameter β3. In this case is chosen β3 =
20000. Looking the poles on the plot is possible note that the system response
is approaching to instability because is near to positive part. This condition
is very important for the robustness of the system. Another difference is that
the amplitude of the conjugates and complexes poles increases.
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Figure 4.5: Root locus of Drop method at variation of active and reactive
power when is fixed the value of output resistance (R = 2Ω) and the induc-
tance changes from 1mH to 3mH with a step of 1mH. The other control
parameters αi and βi are fixed.

Below will be shown the simulation plots related to Drop method, where
is possible to observe the trends of main parameters of power control loop in
the system in the time domain. So it is possible to study the transient and
the related proprieties. These simulations are made with a Matlab-Simulink
file in which is simulated the simplified model of control design scheme, where
inside are present the control values related to Drop method.
The parameters used are: R = 2Ω and L = 2mH (for the grid impedance),
the reference active power fixed at P ∗ = 2kW , and the reactive power changes
at t = 0.4s from Q = 0 to Q = −4.570kV Ar. The PI control parameters
are: α1 = 0.5, β1 = 10, α2 = 0.5, β2 = 10, α3 = 300 and β3 = 2000. The
other parameters are: δ1 = 0.0064 and δ2 = 0.002. Naturally, also the values
of reference reactive power, that in this case is fixed to Q∗ = −4.570kV Ar
and the reference phase shift φ∗ = −0.2155rad.
Following, will be shown the simulation plots related to Drop method, where
is possible to observe the trend of main parameters of power control loop in
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the system in the time domain. In the third chapter, in the Fig. 3.11, is
shown the Matlab-Simulink scheme used.
This scheme represents the PV inverter connected to a non-ideal grid with an
equivalent impedance of a series inductance composed of an inductive part
Lg and a resistive Rg. The nominal working point is A∗CP = 312V .
The parameters used are: R = 2Ω and L = 2mH (for the grid impedance),
the reference active power fixed at P ∗ = 2kW , and the reactive power changes
at t = 0.4s from Q = 0 to Q = −4.57kV Ar. The reference phase shift is
φ∗ = −0.2155rad. The PID control parameters are: α1 = 0.5, β1 = 10,
α2 = 0.5, β2 = 10, α3 = 300 and β3 = 2000. The sensitivity parameters are
δ1 = 0.0064 and δ2 = 0.002.
In the Fig. 4.6, is shown the trends of active and reactive power and the
voltage amplitude at connection point, in Fig.4.7, for the simulation in object.

Figure 4.6: Variation of active and reactive power when the grid impedance
is fixed at the values Rg = 2Ω and Lg = 2mH, active power is fixed at the
value P = 2kW and reactive power changes at t = 0.4s from Q = 0kV Ar to
Q = −4.570kV Ar

In the Fig.4.6 notice the trend of the active and reactive power. At t = 0.4s
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the power regulation loop is active and the values of P ∗ and Q∗ change
and after about 0.4 seconds (transient) are stabilized at the reference values.
During the transient notice a little overshoot for the reactive power (about
100 kVAr), followed by a exponential decrease until the convergence at the
reference value. This plot shows that the system is stable because the power
trend goes to convergence at the reference values and it is happened slowly.
In the Fig. 4.7 is reported the plot of voltage amplitude at connection point,
when have been fixed the output impedance (R = 2Ω and L = 2mH), the
active power at P = 2kW and the reactive power changes at t = 0.4s from
Q = 0 to Q = −4.570kV Ar. The PI control parameters are: α1 = 0.5,
β1 = 10, α2 = 0.5, β2 = 10, α3 = 300 and β3 = 2000. Moreover, the
sensibility parameters are: δ1 = 0.0064 and δ1 = 0.002.

Figure 4.7: Voltage amplitude of connection point when the grid impedance
is fixed at the values Rg = 2Ω and Lg = 2mH, active power is fixed at the
value P = 2kW and reactive power changes at t = 0.4s from Q = 0kV Ar to
Q = −4.570kV Ar in Drop method

From the last picture it can be seen that the voltage amplitude goes to the
convergence without any overshoot or undershoot. This is good for the grid
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because the load does not suffer voltage variation and this could be positive
for the devices connected at the grid.
In order to see better the voltage trend following, in the Fig. 4.8, has been
reported a zoom of the same plot.

Figure 4.8: Zoom of the Fig. 4.7



Chapter 5

Modelling with linearization

Another method, more recent than the previous one, but which uses a lin-
earization of the ACP equation is the linearization method ( [15], [34], [35]).
The difference between the last one and this one is the different manner to
obtain the sensitivity parameters and therefore also their values. In this
chapter is shown the linearization method similary to have been done for the
drop method.

5.1 The linearization method

Figure 5.1: PV inverter connected to a non-ideal grid

For a PV inverter connected to a non-ideal grid, shown in Fig.5.1, the
amplitude of the voltage at the connection point depends on the active and
the reactive power injected to the grid. This dependence is due to the vari-
ations of the grid impedance, which consists in a series of a resistance value
(Rg) and an inductance value (Lg).
This power control method regulates the amplitude of voltage at connection
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point by a linearization of the real function, obtaining two control parame-

ters, that can be defined so: δ1 =
∂ACP
∂P

∣∣∣∣
(∗)

and δ2 =
∂ACP
∂Q

∣∣∣∣
(∗)

.

These control parameters, as is possible to see following, are defined in corre-
spondence of reference values of active and reactive power, P ∗ and Q∗ namely,
and in correspondence of the reference value of phase shift φ∗. These three
fixed values establish the equilibrium point of the system.
In following I have summarized the papers [15], [34] and [35] in order to re-
port a short introduction which explains this method.
In correspondence of real function, the starting control scheme is shown in
Fig.3.2, reported in the third chapter.
Linearizing the real function of the amplitude of voltage at connection point,
also the control scheme will be linearized until to obtain the model which
will be used for the following processes and simulations.

5.2 Design by linearization

Local stability of the system in object can be analyzed by a linearization
the equation, that defines the voltage amplitude at the connection point as
a function of the active and reactive power.
This equation is:

ACP =

√
A2 + 2Γ cos(ψ) +

√
(A2 + 2Γ cos(ψ)2)− 4Γ2

2
(5.1)

where Γ = 2|Zg|
√
P 2 +Q2 and ψ = −tan−1(Q

P
)+θZg The linearized equation

is given by:

ACPlinear
= A∗CP +

∂ACP
∂P

∣∣∣∣
(∗)

(P − P ∗) +
∂ACP
∂Q

∣∣∣∣
(∗)

(Q−Q∗) (5.2)

where (∗) stands for the nominal working point or equilibrium point.

Defining ACP =
√

f(P,Q)
2

, where f(P,Q) = f1(P,Q) + f2(P,Q), being

f1(P,Q) = A2 + 4|Zg|
√
P 2 +Q2 cos(− tan−1(Q

P
) + θZg)

f2 =
√
f1(P,Q)2 − 16(P 2 +Q2)|Zg|2
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one gets:

∂ACP
∂P

∣∣∣∣
(∗)

=

( √
2

4
√
f

)∣∣∣∣
(∗)

∂f(P,Q)

∂P

∣∣∣∣
(∗)

=
1

4A∗CP

∂f(P,Q)

∂P

∣∣∣∣
(∗)

=
1

4A∗CP

(
∂f1(P,Q)

∂P

∣∣∣∣
(∗)

+
∂f2(P,Q)

∂P

∣∣∣∣
(∗)

)
(5.3)

and

∂ACP
∂Q

∣∣∣∣
(∗)

=

( √
2

4
√
f

)∣∣∣∣
(∗)

∂f(P,Q)

∂Q

∣∣∣∣
(∗)

=
1

4A∗CP

∂f(P,Q)

∂Q

∣∣∣∣
(∗)

=
1

4A∗CP

(
∂f1(P,Q)

∂Q

∣∣∣∣
(∗)

+
∂f2(P,Q)

∂Q

∣∣∣∣
(∗)

)
(5.4)

Furthermore, the different partial derivatives result in:

∂f1(P,Q)

∂P
=

4|Zg|√
(P 2 +Q2)

(P cos

(
− tan−1(QP ) + θZg

)
−Q sin

(
− tan−1(QP ) + θZg

)
∂f1(P,Q)

∂Q
=

4|Zg|√
(P 2 +Q2)

(Q cos

(
− tan−1(QP ) + θZg

)
−P sin

(
− tan−1(QP ) + θZg

)
And, applying trigonometric properties yields:

∂f1(P,Q)

∂P

∣∣∣∣
(∗)

= 4|Zg| cos(θZg)

∂f1(P,Q)

∂Q

∣∣∣∣
(∗)

= 4|Zg| sin(θZg)

On the other hand,

∂f2(P,Q)

∂P

∣∣∣∣
(∗)

=
1

2f2(P ∗, Q∗)
(2f1(P ∗, Q∗)

∂f1(P,Q)

∂P

∣∣∣∣
(∗)
−32P ∗|Zg|2)

∂f2(P,Q)

∂P

∣∣∣∣
(∗)

=

4|Zg|
f2(P ∗, Q∗)

(f1(P ∗, Q∗) cos(θZg
)− 4P ∗|Zg|)

∂f2(P,Q)

∂Q
|(∗) =

1

2f2(P ∗, Q∗)
(2f1(P ∗, Q∗)

∂f1(P,Q)

∂Q
|(∗) − 32Q∗|Zg|2)

∂f2(P,Q)

∂Q
|(∗) =

4|Zg|
f2(P ∗, Q∗)

(f1(P ∗, Q∗) sin(θZg
)− 4Q∗|Zg|)

Finally, the linearized equation is:

ACPlinear
= A∗CP +

1

4A∗CP

(
∂f1(P,Q)

∂P

∣∣∣∣
(∗)

+
∂f2(P,Q)

∂P

∣∣∣∣
(∗)

)
(P − P ∗)+

1

4A∗CP

(
∂f1(P,Q)

∂Q

∣∣∣∣
(∗)

+
∂f2(P,Q)

∂Q

∣∣∣∣
(∗)

)
(Q−Q∗)
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and, replacing the developed expressions of the partial derivatives, results in:

ACPlinear
= A∗CP +

|Zg|
A∗CP

cos(θZg)

(
1 +

1

f2(P ∗, Q∗)

(
f1(P

∗, Q∗)− 4P ∗|Zg|
cos(θZg)

))
(P − P ∗)+

|Zg|
A∗CP

sin(θZg)

(
1 +

1

f2(P ∗, Q∗)

(
f1(P

∗, Q∗)− 4Q∗|Zg|
sin(θZg)

))
(Q−Q∗)

(5.5)

where

f1(P
∗, Q∗) = A2 + 4

√
(P ∗2 +Q∗2)|Zg| cos(− tan−1(

Q∗

P ∗
) + θZg) (5.6)

and

f2(P
∗, Q∗) =

√
f1(P ∗, Q∗)2 − 16(P ∗ +Q∗)|Zg|2 (5.7)

Simulations As seen in the previous chapter for the Drop method, here are
shown the root locus plots for the linearization method and will be studied
the closed loop stability and the properties of the system of this method.
Following is shown, in the Fig. 5.2, the root locus for a single case where all
the parameters of the steady state are fixed. For this simulation are fixed the
output impedance (R = 2Ω and L = 2mH), the reference values for active
and reactive power (P ∗ = 2kW and Q∗ = −4.57kV Ar) and, naturally the
phase shift at φ∗ = −0.2155rad. Moreover, the sensibility parameters used
are: δ1 = 0.0151 and δ1 = 0.0073.
It can be seen that are present three poles, two complex conjugate s1,2 =
−7.326± j3.786 and a real pole s3 = −6.39. As expected, it is a third order
transfer function. From this picture it can observable that the function is
stable for the root locus rules.
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Figure 5.2: Root locus of linearization method for a single case

Below is shown in Fig. 5.3 the root locus when the output resistive part
is fixed at R = 2Ω and reactive part changes from 1mH to 3mH by a step
of 1mH. The control parameter β3 has been fixed to the value β3 = 2000
and the active power changes from 500W to 3500W by a step of 500W ,
consequently also the reactive power changes.

Looking the poles on the plot in the last picture is possible to note that the
system response is stable.
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Figure 5.3: Root locus of Linearization method at variation of active and
reactive power when is fixed the value of output impedance (R = 2Ω) and
the inductance changes from 1mH to 3mH with a step of 1mH.β3 = 2000.

In the Fig. 5.4 is shown the root locus with the same conditions of the
previous one except for the control parameter β3. In this case is chosen
β3 = 20000. Looking the poles on the plot is possible note that the system
response continues to be stable and keeps a good robustness being far of
the positive part. Another difference is that the amplitude of the conjugates
complexes poles increases.
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Figure 5.4: Root locus of Linearization method at variation of active and
reactive power when is fixed the value of output impedance (R = 2Ω) and
the inductance changes from 1mH to 3mH with a step of 1mH. β3 = 20000.

Below will be shown the simulation plots related to Linearization method,
equivalently as seen as before for the Drop method, in order to observe the
trend of main parameters of power control loop in the system in the time
domain. So it is possible to study the transient and the related proprieties.
These simulations are made by a Matlab-Simulink file in which the simplified
control design scheme has been simulated.
Following, in the Fig. 5.5, is shown the Matlab-Simulink model scheme used.

This scheme represents the PV inverter connected to a non-ideal grid with an
equivalent impedance of a series inductance composed of an inductive part Lg
and a resistive Rg. The nominal working point is A∗CP = 312V . The control
scheme and the equilibrium point assumed are the same that have been used
previously for Drop method analysis. In this one change only some control
values as δ1 = 0.0151 and δ2 = 0.0073, i.e. the sensitivity parameters.
Have been used: R = 2Ω and L = 2mH (for the grid impedance), the
reference active power fixed at P ∗ = 2kW , and the reactive power changes
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Figure 5.5: Simplified control scheme

at t = 0.4s from Q = 0 to Q = −4.570kV Ar.
In following, in the Fig. 5.6, has been shown the trends of active and reactive
power, while the voltage amplitude at connection point has been shown in
Fig.5.7.
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Figure 5.6: Variation of active and reactive power when the grid impedance
is fixed at the values Rg = 2Ω and Lg = 2mH, active power is fixed at the
value P = 2kW and reactive power changes at t = 0.4s from Q = 0kV Ar to
Q = −4.570kV Ar

In the Fig.5.6 notice the trends of the active and reactive power. At
t = 0.4s, the power regulation loop is active and the values of P ∗ and Q∗

change and in 0.3 seconds (transient) are stabilized at the reference values.
During the transient notice an high overshoot for the active power of about
250 W and a corresponding overshoot for the reactive power. This picture
shows that the system is stable because the powers trend go to convergence
at the reference values and it is happen very fastly.
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Figure 5.7: Voltage amplitude of connection point when the grid impedance
is fixed at the values Rg = 2Ω and Lg = 2mH, active power is fixed at the
value P = 2000W and reactive power changes at t = 0.4s from Q = 0kV Ar
to Q = −4.57kV Ar in Linearization method

In the Fig.5.7 has been shown the trend of the voltage amplitude at the
connection point corresponding. Initially, before that the control works, the
value of the amplitude is at wrong value. At t = 0.4s, when the power control
is activeted, the voltage goes to the nominal value fastly. As for the powers
trends as here it is possible to see that the system response is stable and the
voltage go to convergence.



Chapter 6

Comparison of the methods

Through the cases analyzed in the last two chapter is possible to study and
analyze the approximated methods shown before. Obviously, the method
which has a trend closer to the real behavior is better than the other one
because is the most realistic. As seen before, both are stable and the curves
of active and reactive powers and the curve of voltage amplitude converge at
the referance values.
Following, in the Fig. 6.1, is shown the variation reference values of ac-
tive and reactive power of the linearization behavior compared to the drop
method behavior, when the PV inverter supplies an active power from 500W
to 3500W and a reactive power from −12000kV Ar to 0kV Ar to a grid with
an equivalent impedance of a series inductance (Lg = 2mH) and a resis-
tance of (Rg = 2Ω). The powers change in steps of 500W for the active and
500kV Ar for the reactive.
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Figure 6.1: P ∗ and Q∗ when active power varies from 500W to 3500W and
the reactive power varies from −12000kV Ar to 0kV Ar

Note that for the low power values the trends are similar and the differ-
ence is small and therefore neglected, but increasing the active and reactive
power values the difference increas, becouse the linearization behavior has
an exponential trend while the drop method behavior has a linear trend.
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Figure 6.2: δ1 when active power varies from 500W to 3500W

The Fig. 6.2 shows the comparison of the δ1 parameter between the
linearization behavior and the drop method changing the active power value
from 500W to 3500W . Notice that in the drop method δ1 is costant changing
P . This because δ1 = R

A
in the drop method. In the linearization notice that

δ1 depends on P by a non-linear function. The difference between these two
characteristics of δ1 changes the behaviur of the control system.
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The Fig. 6.3 shows the comparison of the δ2 parameter between the
real behavior and the drop method changing the active power value from
500W to 3500W . Also for δ2, notice that in the drop method behavior δ1
is costant with the changing of P , because δ2 = X

A
in the drop method. In

the real behavior notice that δ1 depends on P increasing costantly when P
increases. As for δ1 as for δ2, being a control parameters, the difference of
the charatteristics changes the behavior of the control system.

Figure 6.3: δ2 when active power varies from 500W to 3500W

Initially will be studied the case where the output grid impedance has been
fixed (R = 2Ω and L = 2mH), the referance active power fixed at P ∗ = 2kW ,
the reactive power changes at t = 0.4s from Q = 0 to Q = −4.570kV Ar and
the phase shift has been fixed to φ∗ = −0.2155rad. The PI control parameters
are: α1 = 0.5, β1 = 10, α2 = 0.5, β2 = 10, α3 = 300 and β3 = 2000. While
the sensitivity parameters are: δ1 = 0.0064 and δ2 = 0.002, for Drop method,
and δ1 = 0.0151 and δ2 = 0.0073, for Linearization method.
For these simulations has been used the model control scheme in the Fig.3.11.
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In following, this study will be deal with the Matlab-Simulink simulations
seen before overlapping the results. Below, in Fig.6.4, is shown the voltage
amplitude at connection point that has been compared among the real be-
havior, the Drop method behavior and the Linearization method behavior,
where the real one is taken, naturally, as the reference.

Figure 6.4: Voltage amplitude comparison



56 CHAPTER 6. COMPARISON OF THE METHODS

In order to see better the voltage trend following, in the Fig. 6.5, has
been reported a zoom of the same plot.

Figure 6.5: Zoom of the Fig.6.5

It can be seen that the Linearization method goes closer to the real behavior
than the Drop, specially during the transient, from t = 0.4s, or rather when
the power control loop in the system is activated. This difference is little but
very important, because this means that the Linearization method has an
higher accuracy.
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Below, in Fig.6.6, are shown the active and reactive powers provided to
the output. In the picture, infact, it has been compared among the real
behavior, the Drop method and the Linearization method, where the real
one is the reference.

Figure 6.6: Active and reactive power comparison

In this figure is more evident the difference, specially in the reactive power.
Take focus initially on the active power curves. The Drop method curve is
almost linear and is without an evident overshoot, while for the real trend
and the Linearization method curve, when the control loop starts up, there is
a little overshoot. Also during the transient the Linearization curve is closer
to real than Drop curve.
Now compare the reactive power curves. Notice easily that the Drop curve
has a slower slope and seems an exponential trend, while the frame of the
Linearization one is closer to real one and so it is observable an overshoot,
present when the regulation starts up. Then, also during the transient, notice
that the real behavior does not go immediately to the reference value, but
there is a slow and little undershoot. After 0.5s goes to convergence value.
It is explicit that the linearization curve follows better than the other one
the real behavior also during the transient.
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Now, changing a control parameter as β3 from a beginning value of
β3 = 1000 to a final value of β3 = 10000 with a step of 1000, it is possi-
ble compare again the methods. The firsts two pictures represent the real
behavior and so are the references for the comparison. In the Fig.6.7 has
been reported the voltage amplitude at connection point curve, while in the
Fig.6.8 has been shown the active and reactive power curves.

Figure 6.7: Voltage amplitude for real behavior changing β3
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Figure 6.8: Active and reactive power for real behavior changing β3

Below have been reported the pictures related to the root locus (Fig.6.9)
the voltage amplitude (Fig.6.10) and active and reactive powers (Fig.6.11)
for the Linearization method.

Figure 6.9: Root locus for Linearization method changing β3
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Figure 6.10: Voltage amplitude for Linearization method changing β3

Figure 6.11: Active and reactive power for Linearization method changing
β3
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Below have been reported the pictures related to the root locus (Fig.6.12)
the voltage amplitude (Fig.6.13) and active and reactive powers (Fig.6.14)
for the Drop method.

Figure 6.12: Root locus for Drop method changing β3

Figure 6.13: Voltage amplitude for Drop method changing β3
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Figure 6.14: Active and reactive power for Drop method changing β3



Chapter 7

Conclusions

This thesis evaluates different procedures for control design applied to reg-
ulate the amplitude of the voltage at the connection point in a PV inverter
single-phase connected to a weakly grid. Usually this goal is achieved us-
ing PI controllers and this work compares two methods used to design the
parameters of such PI controllers. This regulation is performed through a
control loop that manages the output active and reactive power, as explained
in the document. For this subject, the network has been considered to work
at an equilibrium point, so fixing a reference values for the active and re-
active power and obviously fixing the phase shift, in order to obtain at the
connection point of the weakly grid the nominal voltage amplitude.
The methods compared here are: the Drop method and the Linearization
method. The first one is very used nowadays, the other one is a more recent
proposal. So, the main goal has been to demostrate what is the method that
has trends closer to the real behavior.
Initially has been studied the problem statement, i.e. the variation of output
impedance causes regulation problems for the voltage amplitude at connec-
tion point. The main problem appears when the output impedance has an
inductive part, this introduces a necessary injection of reactive power. So
the PF is not more equal to unity. Consequenty, the voltage amplitude at
connection point is not equal to the nominal value. In this situation, the
power control loop takes part and provides active and reactive power values
in order to keep at the equilibrium point. Therefore, some sensitivity param-
eters has been included to characterize the dinamical behavior. This was the
most important part of the comparison between both methods.
Through the development environment Matlab-Simulink has been possible
to obtain the root locus graphs and to simulate the curves of powers and
the curves of the voltage amplitude with the system parameters in order
to prove analitically and demonstratively what is the ”best method”. Ini-
tially, the simulations have been done for a single case, where the output
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impedance was fixed and all control parameters. Then, other simulations
have been done changing a PI control parameter. The results obtained show
that the Linearization method is better than other one because is closer to
real behavior.
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