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Abstract 
 

The use of the Internet is linked with the constant technological change that the world 

is suffering nowadays, which is responsible for the important need to update the 

infrastructure of current data centers. The amount of traffic that is moving in data 

centers has increased significantly in the past few years, so a better alternative for 

them should be studied, as the use of Ethernet or InfiniBand is no longer appropriate in 

terms of scalability and flexibility. 

Optical technology is one possible solution for it, as it provides a big bandwidth, low 

latency and an overall better performance. However, the physical resources that form a 

data center should be managed in an efficient way. To perform an optimum use of 

them, the new concept of virtual data center appeared, where the orchestration of the 

resources is done with the aim of offering to a cloud infrastructure to a third party. 

In this context, OpenStack has become one of the most popular open source platforms 

when building public or private clouds, based on three important aspects: compute, 

storage and network. But the flexibility of these cloud infrastructures is attached to 

being scalable or dynamic. In this case, Software Definiton Network (SDN) and 

Network Function Virtualization (NFV) play an important role in data centers, as they 

allow to build complex network capabilities on demand. 

In this project, we experimentally demonstrate the programmable OPsquare data 

center network empowered by an SDN control plane. The implementation is based on 

monitoring the real-time statistics of the network, so some actions such as network 

slices provisioning and reconfiguration, packet priority class assignment or dynamic 

load balancing operations can be done in order to achieve the required Quality of 

Service level. 

This project is a cooperation between TU/e (Eindhoven University of Technology, The 

Netherlands) and UPC (Universitat Politècnica de Catalunya, Barcelona). 
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1. Introduction 
 

1.1. Data Centers 
The Data Center infrastructures (DC) are a fundamental piece in the current 

telecommunication systems and cloud services, allowing the users to access to huge 

amounts of data. In the traditional DC’s, the servers are organized in racks. Each racks 

is composed by a ToR (Top of the Rack) switch which interconnects the different 

servers and allows the exchange of information between racks through a network 

called intra-DC (DCN). In this kind of network, electrical switches are used in a way that 

provides redundancy to have a better usage of network resources and to guarantee the 

QoS required. 

However, the rise of cloud computing, big data services and IoT (Internet of Things) 

has significantly increased the traffic in the data centers. The key requirements for data 

center networks are: 

• Latency: time that a packets need to traverse the network from the source to 

the destination node, including the propagation and switch latency. 

• Capacity: if full-bandwidth communication is desired between the servers, a 

high internal capacity of it is required. 

• Scalability: the rise of this infrastructures is expected to continue growing over 

the next few years. The DC should enable to scale a high number of nodes to 

address future capacity needs in an efficient way. 

Fig. 1 Traditional DC network 
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Fig. 2 Data center rise 

• Flexibility: using virtualization services, DC should be able to adapt to new 

changes in a quickly way. For example, the adoption of new standards or 

protocols in order to seed up the deployment of networks. 

• Power/cost-efficiency: in order to keep the energy costs as minimum as 

possible, there is an important need to think about power-efficiency. Optical 

technology and virtualization networks are used in that sense. 

Because all of this factors, the rise of DC should be well prepared and managed. As 

shown in Fig. 2, we can see the traffic growth in data centers from 2014 to 2019. 

However we can see that the traffic that is happening within them is not changing 

significantly from 2014 to 2019. In this sense, data centers are growing in terms of size 

and complexity, in other words, in the increase of demands for more powerful 

computational performance, which can be managed using NFV (Network Functions 

Virtualization) allowing an efficient use of the resources shared on the same 

infrastructure. 

 

 

 

 

 

 

 

 

For this reason, the use of electrical switches in the tradition DCN structures is coming 

to an end. So there is an important need to improve the intra-DCN deployed in the 

future data centers. Taking this fact into account combined with the previous mentioned 

key requirements for a DC, one of the possible solutions that is being really used 

nowadays is the optical fiber technology. 
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1.2. Optical fiber technology 
Fiber-optic technology has popular since several years ago and is known for some 

characteristics. The wave-guide being more used is the fiber-optic, which has been 

successful due to two main reasons: 

• Low attenuation: currently the systems without amplification allow distances 

close to 100km, and systems with amplification allow intercontinental 

communication (submarine cabling). 

• High bandwidth: allows the transmission at high speeds. Nowadays, there are 

laboratory experiments that allow transmissions around 3.2 Terabits per 

second. 

So, as an overview, fiber optic technology allows fast transmission of data, is made of 

glass and works as a waveguide to transmit light between two nodes. Fiber optic has 

been used in long distances scenarios such as an intercontinental connection. 

However, in the past few years it is also becoming more popular in Ethernet LAN 

networks. The reason for this is because of the fast speeds that can reach and 

because immunity to interferences, like cross-talk. 

The fiber optic is composed of two important parts: the core and the cladding. The core 

holds the light and the cladding confines the light in the core. If the cladding is small, 

the core is small too. So, when the core is small, less light will be sent through but the 

speed and the distance will be higher. 

In the Fig. 3 it is shown the composition of this technology. In this case, there is a small 

core (9-micron), which can be compared as human hair (50 microns). 

 

  

 

 

 

 

 
Fig. 3 Fiber cable composition 



Master Thesis  UPC, TU/e 

 

13 

The cladding of 125 microns is a fiber standard well known by different manufacturers 

to make standardized connectors. The buffer is in charge to protect the fiber glass. 

There are two types of fiber optic: single-mode and multimode. In Fig. 4 we can see the 

differences between both types. 

 

 

  

 

 

 

 

 

 

 

 

Let’s state the differences between both types: 

Table 1 Differences between single-mode and multi-mode 

Single-mode Multi-mode 

Expensive Cheap 

Small core Large core 

Farther distances Less distances 

 

The single-mode fiber optic has a small core, which means that it will allow only one 

light mode to be propagated through it, reaching higher distances. However, the multi-

mode one has a large core, so multiple light modes will propagate through it. 

 

Fig. 4 Multimode and single-mode fibers 
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1.3. Evolution of Data Centers 
A clear drawback of the intra-DCN network shown in Fig. 1 are the bottlenecks that 

can be found in the first access level to them, also known as core switch. This switches 

route the traffic that comes from or to the data center. A bottleneck can be observed in 

case there is not enough bandwidth due to the high amount of traffic between the 

switches. The first level of switches (core switches) are connected to the aggregation 

switches, which are connected to the access switches (usually located on the Top of 

the Rack (ToR) with servers). The traffic that goes between these different type of 

switches generate a high latency when transmitting information and a significant 

cabling distance, which is not an ideal condition in virtual environments. Another 

possible bottleneck could be related to the electrical process that perform Ethernet 

cables. That’s why fiber optic technology is used. 

Therefore, there is a need for an evolution of the traditional DC architectures in order to 

keep correctly the key requirements mentioned in previous sections: low latency 

between switches and high bandwidth to try to support the maximum capacity and so, 

reach the maximum speed.  

Fig. 5 shows an horizontal way to send traffic between switches, instead of the vertical 

one proposed in Fig. 1. In this new evolution of DC, fiber optic is a must in order to set 

the architecture with a better scalability, management and flexibility. 

 

 

Fig. 5 Evolution of DC architecture 

  

The interconnection switches work in a Optical-to-Optical-to-Optical (OOO) technology 

shown in the previous picture are pure optical switches, without altering the information 

that is being sent. The access switches work as Optical-to-Electrical-to-Optical (OEO) 
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switches, despite the fact that they could support optic technology. But as in this case 

there exist some electric commutations inside the switches, this will lead to a rise of the 

dissipated heat and a significant reduce of the latency when sending information. So, 

when some traffic is coming to the switch from the fiber-optic cabling, it is going to be 

transformed into electrical information and then again to light in order to be sent to the 

output pot. This is really useful, as two different sources of information destinated to the 

same output could be combined. In this case, this switches will be the ToR. Finally, 

these switches will be connected to the servers in the racks, which they will have an 

electrical communication through Ethernet. 

 

1.4. Transport technologies 
Optical transport network increased their use in the last few years. Some reasons could 

be: 

• To adjust to QoS network requirements (high bandwidth and low latency) 

• There is a need to cope with the ever-growing Internet traffic 

• Energy efficiency, reducing the power consumption 

• Flexibility and low operational cost 

There are two methods of optical transport: 

• Optical Circuit Switching (OCS): light paths are established to carry aggregated 

data traffic, achieving a higher bandwidth, scalability and guarantying the QoS 

requirements. This method is used for long-lived data flows, such as bulk data 

transfer, HDTV… 

• Optical Packet Switching (OPS): in this case, the IP packets are aggregated in 

optical packets before being sent to WDM channels, achieving high flexibility 

and optical flow control. This method is used for short-lived data flows such as 

VoIP, HPC... 

 

So, we can see that using both types of optical transport technologies, these 

architectures requires control and management planes, the topic which we will cover in 

the following section. 
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2. Network Programmability 
 

2.1. Traditional networks 
Nowadays, routers and switches ports are the only devices that are not virtualized. And 

it is what is used in traditional networks. In the last few years, there has been a 

significant increase in the research of how to virtualize the devices physical ports. 

First of all, it’s important to keep in mind that the current routers and switches run an 

operating system that provides network functionality. During approximately 25 years, 

this has been widely used, but the complexity to configure, implement or troubleshoot 

the devices made to approach it in another way, as current networks are quite large 

and complex. 

Before designing any new approach to design networks, it’s important to understand 

the business requirements and then carry it out in all the devices. This process can be 

done in several weeks or months, as the configuration, maintenance and monitoring 

has to be done separately. 

There current networks forward traffic data using two planes: 

• Data plane: this plane is responsible for forwarding frames of packets from the 

source to the destination interfaces using protocols managed by the control 

plane. Once the information is received, the destination interface is looked up, 

so the frames are forwarded in that direction.  

• Control plane: this plane is in charge of managing and controlling any 

forwarding table that the data plane uses. Routing protocols are included in this 

plane, such as OSPF or RIP, but also switch MAC address learning and the 

Spanning Tree Protocol (STP). 

To sum up, the data plane relies completely on the control plane when forwarding 

traffic in traditional networks. 
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2.2. Application Programming Interfaces (APIs) 
In the last decade, enterprise Wi-Fi installations designed physical networks and then 

configured a type of network controller that managed all the wireless APs in the 

networks. It’s difficult to think that a company would install a wireless network today 

without any controller in an enterprise network, where the access points (APs) receive 

their directions from the controller on how to manage the wireless frames and the APs 

have no operating system or brains to make any decisions on their own. 

A similar situation is true for our physical devices, so this centralized management of 

frames that are sent in the network and that SDN (Software Definition Network) 

provides to them. 

SDN removes the control plane from each network device. Instead of that, it has a 

centralized controller that is in charge of managing the network, avoiding the need of 

having an operating system on each device. Therefore, this controller separated the 

data and control planes, with the aim to automate the configuration and remediation of 

each these network devices. 

So, using the network programmability tool, we only have one centralized control plane 

instead of having individual control planes inside the network devices. With this, we 

consolidate all network operations inside the SDN controller. To control and configure 

the network without the need of human interactivity, APIs in applications are used, as 

they make easy the communication and operations between machines. 

In Fig. 6 we can see the difference between the SDN architecture and the traditional 

one. Now we add a third layer called the application plane: 

• Data plane: based on the network device that is in charge of sending and 

receiving traffic. 

• Control plane: based on a software solution, in this plane is where the SDN 

controllers lives, providing centralized network management to populate the 

data plane and removing the control plane of each device. 

• Application plane: that’s the new layer of SDN architecture. Here, they reside 

the applications that need to communicate to network device by means of the 

SDN controller using APIs. 
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As far as we have studied, SDN tool could change a lot the way we see the network in 

the future, as the applications will say to the network what to do based on the business 

requirements instead of user manually configuration. The SDN controller will use the 

APIs to pass the instructions to the physical devices, so this will avoid spending a high 

amount of time to implement business needs. 

About APIs, there are two categories that SDN controller use to communicate. As we 

have seen in Fig. 6 SDN communicates with the application plane, but also with the 

data plane. The communication with the data plane is defined with southbound 

interfaces, but the communications with the applications uses the northbound interface. 

Southbound APIs 

This are defined as device-to-control-plane communication, or as SBI (Logical 

Southbound interfaces) APIs, so they are used for the communication between the 

SDN controller and the physical devices of the network. They are really useful, as they 

allow they controller to program the data plane for example, forwarding tables of the 

switches.  

It’s important to keep in mind that when talking about network programmability using 

SDN, the term interface is not referred anymore to a physical interface. Instead, it 

refers to a logical one.  

SBI have many standards. Let’s take a look at the most common ones: 

Fig. 6 SDN architecture comparison 
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• OpenFlow: is the standard used in this project, defined by ONF 

(OpenNetworking). Using NETCONF, it can configure flow path in the network 

or the device’s forwarding table. This is known as an imperative SDN model. 

• NETCONF: this is a new way of providing network management protocols by 

the IETF. Using RPC, it’s possible to configure the physical devices using XML. 

• OpFlex:  this is known as a declarative SDN model and it’s the default one used 

by Cisco devices, as the controller send an abstract summary policy to the 

network devices, which they only have a partially centralized management 

control. 

 

Northbound APIs 

This are defined as NBIs (Logical Northbound Interfaces) APIs, allowing the 

communication between the controller and the different applications. 

This type of API makes able the possibility that the application control the network, 

saving a huge amount of time in comparison when some manual configuration is 

needed in each physical device. 

They include a big amount of services, such as network virtualization, firewall 

monitoring, access policy control and so on. And what’s more important, they allow the 

possibility for enabling cloud platforms tools, including virtualized processing and 

storage. 

In this case, there are not common standards as they were with SBIs. So when using 

NBI, it’s important to choose the correct one that works only with a determined set of 

applications. For example, REST (Representational State Transfer) is really useful in 

the past few years, using HTTP to send data through the applications which resides in 

the different hosts. 

In the following picture, we can see an overall of both types of interfaces. 
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2.3. Virtual Data Center 
As far as we have seen in the previous sections, SDN technology is not only aimed to 

provide connectivity, but also a dynamic network infrastructure able to provide, 

establish and manage complex services. So, SDN allows the network infrastructure 

virtualization, in which we can define a new term: Network Slicing. Using physical 

resource abstraction, these network slices are created, which they will need 

independent management and control to each of them. This  concept is the previous to 

a new one: Virtual Data Centers. 

A Virtual Data Center (VDC) service consists in giving a part of the DC infrastructure to 

a tenant (or an external entity) as a support to develop their own business model. Each 

VDC consists on a virtual infrastructure which integrates computational capacities as 

virtual machines. These VMs are interconnected between them through a virtual 

network (network slice), in where tenants can develop their applications with the main 

goal to offer a final service to their users. Using VDCs, we open the possibility of 

different tenants using the same infrastructure but making each one independently of 

the others and having the whole control and management of its network. All of this 

network virtualization process is described in the following picture. 

  

Fig. 7 Application Programming Interaces 
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This process is complex, but it mainly consists on mapping the VMs into servers in the 

DC and the virtual links into physical network resources in the DC network. In this 

context, talking about the orchestrator is key. 

 

2.4. The orchestration layer 
To sum up the concepts we have introduces by far:  

• SDN provides an efficient way to configure connectivity services using for 

example OpenFlow proposed by the ONF to connect to the physical network (in 

our case, optical network), making this independent of the other node. 

• Applications can connect to the SDN controller using specialized, modular and 

open Northbound APIs.  

• OpenDaylight controller is a well known SDN controller, deeply extended in 

support of optical technologies 

• VDC is a form of Infraestructure as a Service (IaaS) where a tenant asks for an 

infrastructure composed by VMs, interconnected through a virtual network. 

However, SDN technology is not sufficient to achieve an optimization of the network 

resources, as there are some challenges we need to face. For example, the presence 

of more than one data plane, the coordination of the network resources provision or the 

Fig. 8 VDC services functionality 
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presence of more than one SDN-controlled infrastructure. Because of all this reasons, 

there is a need of an orchestration layer. 

The orchestration layer provides functionality such as coordinated service provisioning 

according to the status of the physical infrastructure and the requests coming form 

external users. OpenStack is an example of it, as it provides: VDC dashboard 

configuration, VM configuration, IP network configuration and stack configuration. In 

the following section, we will talk in a deeply way about the OpenStack orchestrator, 

but until now, this picture summaries our scenario: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 Architecture including SDN controller and orchestrator 
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3. Our scenario 
 

3.1. Tools needed 
Before going deep in presenting our scenario, we need to explain some tools we are 

going to use: the SDN controller and the orchestrator. 

3.1.1. OpenDaylight: the SDN controller 

OpenDaylight is an open project written in Java organized by The Linux Foundation in 

2013. Its objective is to accelerate the adoption of SDN networks and create a solid 

base to network virtual functions (NFV). The members of this project did it with the 

main goal to be a open platform so it can be used by different companies, avoiding the 

limitation of the proprietary systems and reducing the developments costs.  

OpenDaylight does not have a single company. It operates through an open and active 

community in which anyone can join. The only requisite is to contribute on it, offering 

help on the development field, marketing or project management. Cisco, IBM or 

Microsoft are some of the members of the project. 

Hydrogen was the first version of the project. It was launched in 2014 and it consisted 

in a simple functionality SDN controller, overlay networks, plug-ins protocols and 

improvements in the communication devices. After it, Helium version was launched, 

making OpenDaylight very popular between developers and operators. 

The main advantage of this controller is that removes the adoption barriers due to the 

fact that there are some organizations that don’t want to get attached to a determined 

seller or manufacturer. With this solution, the companies could choose different 

technologies of different sellers, making them inter-operable.  

 

 
 
 

Fig. 10 Opendaylight logo 
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3.1.2. OpenStack: the orchestrator 

The OpenStack project is a cloud computing platform created around 7 years ago, 

being nowadays one of the most successful tools when implementing a private or 

public cloud providing an easy IaaS solution to implement. 

Similar than in OpenDaylight, OpenStack is not owned by any company. It’s a 

foundation called OpenStack Foundation on which different members can participate to 

it.  

As we have said, OpenStack provides an IaaS solution using interrelated services. This 

cloud platform tool is quite well-known due to its easy-going APIs and its modularity. 

Each of these modules are implemented using Python and are in charge of a specific 

service: 

• Horizon: dashboard 

• Nova: virtual machines configuration 

• Cinder: block storage 

• Keystone: authentication and authorization 

• Swift: object storage 

• Glance: images configuration 

• Neutron: SDN management (networks) 

A typical example of functionality could be the following: first of all the user is 

authenticated in Keystone, so he/she obtains a session token that will let perform the 

rest of the actions without having to authenticate again. Then, the user asks Glance the 

available images to use. After selecting one and specifying the instance characteristics 

(flavours), the user asks Nova to start a new instance. Finally, the Neutron service is in 

charge of the virtual network configuration for it. 

 

 
 

Fig. 11 Openstack logo 
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3.2. Orchestrated SDN-enabled OPSquare DCN 
With the tools needed presented, we are ready to present our scenario. The 

explanation is easy to understand looking at Fig. 12 

 

 

 

 

 

 

 

 

We can divide the scenario in 3 parts: the physical layer (Optical Data Plane), the 

OpenDaylight (SDN Controller) and the OpenStack (Orchestrator). 

The first part is the Optical Data Plane. In this scenario, we are using OPSquare 

architecture, an optical DCN (Data Center Network) architecture based on fast SOA-

based optical switches. There are N NxN intra-cluster (IS) switches and M NxN inter-

cluster (ES) switches. Both types interconnect the clusters of ToR (Top of the Racks), 

implemented by the FPGAs. OPSquare is also based  on the Optical Flow Control 

(OFC) with the main goal  to solve possible packet contentions at the switches. That 

means that the packets with high priority are directly forwarded by the switches, but the 

packets with low priority will be retransmitted if there is a packet collision. So, we have 

an scenario that using the optical data plane an the OFC protocol the data traffic an be 

sent between ToRs in only nanoseconds.  

The second part is the SDN Controller. In the switches, there is also an OpenFlow (OF) 

Agent, which is in charge to collect and send information to the SDN controller. As we 

have seen, we are using the OpenDaylight controller, so it receives this information and 

decides the actions to the ToRs, with the aim to reconfigure the look-up tables of the 

switches or to assign packets priority depending on the applications running on each 

Fig. 12 Our scenario 
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Network Slice (NS). As we see in Fig. 12, there are some important blocks inside the 

controller: 

• Manager Topology: we can find the data plane layout and the physical 

distribution information 

• Optical Provisioning Manager: is in charge of the switches and ToRs 

configuration for the Network Slices connectivity. 

Finally, at the top of the structure we have the orchestrator, in our case, the 

OpenStack. This element has two differentiated elements: 

• Monitoring Engine: in charge of collecting the data plane statistics, such as the 

lost packets or the number of collisions, through the information collected by the 

SDN controller. 

• Path Computation Engine: here is where the monitoring information is used to 

compute some path algorithms, with the main goal of achieving the expected 

QoS. This block relies on the Optical Provisioning Manager of the SDN 

controller providing a new path or a flow priority service. 

To sum up, we are implementing our system on a OPSquare DCN architecture with a 

SDN controller that controls the configurations of it and with an orchestrator that 

implements the management operations. 

It’s important to keep in mind the goal of the project: implement the Monitoring Engine 

module to be able to collect the monitoring information coming from the SDN controller, 

so we can take some actions in the Path Computation Engine to the deployment of the 

service VDC affected. 
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3.3. The implementation 
 

3.3.1. First approach 

The first idea when starting the project was to install a combined infrastructure of the 

SDN controller and the orchestrator in one computer located in the IPI-ECO laboratory 

in TU/e (Eindhoven University of Technology). That means, a full installation of 

OpenDaylight and OpenStack. 

The configuration of both tools was successful, and we achieved connection from 

OpenDaylight to the Java Agent of the switches. However, the problem we faced was 

with connection between OpenDaylight and OpenStack, as we found some 

compatibility problems due to the versions used. In the past, Universitat Politècnica de 

Catalunya (UPC) and Eindhoven University of Technology (TU/e) worked together in 

the COSIGN project, in which they achieved the integration of OpenDaylight and 

OpenStack by means of the VTN module of OpenDaylight. However, the version of 

OpenStack that they used (Liberty) is not available anymore. And moreover, the 

version of OpenDaylight used (Lithium - SR2) is a very old one. In the recent years, 

post-versions have been implemented, such as Carbon, Oxygen, Fluorine or Neon, 

with improved features and new tools. So after this discussion, we decided that it was a 

must to upgrade as much as possible our infrastructure, in other words, to use one of 

the last versions of both tools. In that moment, we faced the problem of the 

compatibility versions, as when trying to make the integration of both components 

using the last versions, the connection between them was not successful anymore. 

After spending a significant amount of time on this, we decided to approach main goal 

of the thesis in another way. 

3.3.2.  Second approach  

The main goal of the project remained the same: implementation of the monitoring 

module of OpenStack to be able to reconfigure the DCN in the Path Computation 

Engine block. But now the approached changed: instead of integrating OpenDaylight 

and OpenStack, the main idea is to deploy both components independently, so the 

collection of statistics will be done separately. The approach is described in the 

following picture: 
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As we can see, two modules have been included inside the Monitoring box: an 

OpenStack Monitoring, which will monitor the IP network and an OpenDaylight 

Monitoring, which will monitor the optical network.  

3.3.2.1. OpenStack 

In this case, OpenStack will be deployed using 3 components, as explained in Fig. 14, 

where we can see an illustration of what we’re targeting to achieve in the installation of 

it. Therein, there is a Management Network on top of the nodes that provides 

interconnection between them (192.168.0.0/24). We have also deployed an OpenStack 

control node and a compute node. The nova service are enabled in both nodes, which 

means that we have 2 instances created and running: one in the controller node and 

the other one in the compute node. Finally, the Mininet is intended to simulate the 

“Physical DC Network”, by deploying a three OVS switches topology to connect both 

instances. This interconnection is done through the tunnel network (10.10.10.0/24). 

 

 

Fig. 13 Final approach of the thesis 
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Fig. 14 OpenStack deployment 

 

The instances created in the controller node and in the compute node are intended to 

be the TX and the RX. So the monitoring module will consists on collecting data 

statistics from both instances. 

To develop the OpenStack Monitoring module, we will use an extra service that 

OpenStack provides: the Ceilometer (Telemetry Service), which will collect the traffic 

statistics across the various OpenStack components. In our project, we will get: 

• CPU utilization 

• Memory usage 

• Network incoming/outcoming packets 

• Network incoming/outcoming dropped packets 

The version used for OpenStack is Ocata. 

3.3.2.2. OpenDaylight 

The installation of OpenDaylight is easy to do and to configurate: we used the 

Beryllium version. OpenDaylight incorporates a service called DLUX, in which we can 

see in a graphical way the switches that are connected to some OF Agent. We used 3 

switches to simulate the same network as we did in the previous section. 
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To collect the statistics from each switch, we will use the OpenFlow plugin, which 

automatically collects traffic statistics from each element: 

• Packets TX/RX 

• Packets dropped TX/RX 

• Packets rate TX/RX 

• Collisions 

 

The OpenDaylight scenario can be summarized in the following picture, where we can 

see that the SDN controller can send an OpenFlow message to the OF Agents of the 

ToR and the OPS. 

 

 

 

Fig. 15 OpenDaylight DLUX 
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3.3.2.3. Monitoring information 

To develop the monitoring modules, we will use a Java application to connect to both 

components separately. Using REST API services, the application will get all the 

information in JSON format and will translate it to a graphical and structured way. This 

process is explained deeply in the next section of the thesis. 

 

 

 

 

 

 

 

Fig. 16 SDN-based control for OPS 
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4. The results 
 

After the implementation of the scenario, we achieved the collection of statistical 

information on both parts: 

• IP network, through OpenStack monitoring module 

• OPS network, through OpenDaylight monitoring module 

The installation of OpenStack and OpenDaylight was successful. For example, in Fig. 

17 we can see a screenshot of an OpenFlow packet that the SDN controller sends 

when a new node is connected. This message is also known as a FlowMod. When a 

OF Agent receives this type of message, it is able to configure the hardware flow tables 

according to the flow requirements. In the screenshot, we can also see some periodical 

statistics requested by the controller to the OP node. 

 

 

 

 

 

 

 

 

 

So, let’s show in a graphical and easy way to understand the statistics obtained 

through both components.  

 

 

Fig. 17 OpenFlow packet 
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On the one hand, in Fig. 18 we can see the output of the OpenStack monitoring 

module. In this case, we have 2 instances (VM1 and VM2), with their respective IP 

addresses and their statistics about the CPU and memory usage, incoming packets, 

outgoing packets and so on. The CPU util is measures in % and the memory usage in 

MB. The incoming/outgoing packets are measured in packets, an the 

incoming/outgoing packets the rate in packets/s. 

On the other hand, in Fig. 19 we can see the output of the OpenDaylight monitoring 

block. In the figure we can only see 2 switches, each one of one port. The reason for 

this is because there were not sufficient FPGA in the TU/e laboratory, so we can 

connect the three OF Agent wit the FPGA. In this test, there were no collisions and no 

errors, as we are using a test scenario with only 2 switches. But if errors in 

transmission or reception occurred, it will appear in the results, so the Path 

Computation Engine could take some actions in the DCN. 

It’s extremely important to remark the difference of packets that we can see in the 

previous figures. The packets monitored in the OpenStack module are electric packets, 

as it controls the IP network. However, the packets monitored in the OpenDaylight 

module are optical packets. Remember that the switches that we can see in 

Fig. 18 OpenStack statistics 

Fig. 19 OpenDaylight statistics 
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OpenDaylight DLUX refer to the OF Agents of the ToRs and the OPS, so this traffic is 

in optical format.  

4.1. Path Computation Engine 
Once the Monitoring module is completed and provides the necessary information to 

the Path Computation Engine, it’s time to work on what to do with this data. We have 

two sources from statistics: from the IP network and from the DCN. The main goal is to 

combine them and, upon some decision and benefiting from the multiple path 

connections among racks in the OPSquare architecture, OpenDaylight is able to 

reconfigure the paths to reduce packet loss maintaining the required level of QoS. 

Due to a lack of time, it has not ben possible to complete this module. However, some 

ideas have been discussed to a future work on it. 

• Packets Priority: we are using the Optical Flow Control (OFC) with the aim to 

solve packet contention, using packet retransmission. However, this 

retransmission increases the end-to-end latency. If we want to maintain the 

required latency , packets priority assignment is a solution. The packets with 

high priority will have priority when they arrive at the OPS, while the traffic with 

low priority will be retransmitted in case of contention. This process is shown in 

Fig. 20, where we can see two packets generated from two different ToRs. Both 

of them are destined to the same output of IS, so in the OPS there is packet 

contention. As packet 1 has a higher priority than packet 2, packet 1 will be 

forwarded to the output port in the IS with the aim to avoid packet loss and not 

to increase the end-to-end latency. This process of assigning dynamically the 

priority in optical packets can be done using 4 bits of the packet label, so we 

can define 16 different transmission priority classes. 

 

 

 

 

 

 
Fig. 20 Packet priority example 
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• Load Balancing: using the monitoring statistics collected from the Monitoring 

Engine module, load balancing could be another option to reduce the number of 

packets lost in the OPS. As exemplified in Fig. 21, there are 2 packets that are 

sent from different instances, but both are destined to the same output port in 

IS. As the load increases, the packet contention that is produced at that port 

would cause more number of lost packets from both instances. Using a good 

combination of the instances (VMs) statistics and of the physical switches 

statistics, it’s possible to reconfigure the connectivity to balance the load to the 

ports with less usage. What is needed to define is which threshold of packet 

loss guarantees the required QoS for the service. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Fig. 21 Load balancing example 
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5. Conclusions 
 

In this project we have studied the use of Virtual Data Centers (VDC) in Data Center 

Networks (DCN). We studied the benefits of using an OPSquare architecture based on 

fast optical switches (SOA) and optical flow control, which features low latency and 

high connectivity as well as low cost and power consumption. We used OpenDaylight 

as a SDN controller, a software defined networking control plane to provide dynamic 

provisioning and reconfiguration of VDCs services. And we used OpenStack as an 

orchestrator to be able to trigger the operation of path computing engine, so some 

actions can be taken in the physical infrastructure to avoid packet loss and to decrease 

the end-to-end latency.  

But this engine’s decision cannot be made without the Monitoring Engine module, 

which we have implemented during the thesis. Inside it, we demonstrate the capability 

to monitor the traffic that is exchanged in the OPSquare architecture, where the OF 

Agents and ToRs switches reside, and in the IP network, where the instances for the 

different VDC services are launched. This real-time data is provided to the SDN 

controller and therefore, to the orchestrator as statistics. The orchestrator layer has the 

necessary tools to perform path computation taking into account the monitoring data 

obtained from both networks. 

As a future work, the next step should be to implement the Path Computation Engine 

module. In this project some ideas have been discussed, such as load balancing or 

priority class assignment algorithms. But it’s important to keep in mind that after a 

decision is taken by the orchestrator (OpenStack), then the SDN controller 

(OpenDaylight) is able to reconfigure the paths and data plane resources in order to 

increase the number of lost packets and the end-to-end latency, with always the main 

goal of maintaining the requested level of Quality of Service (QoS).  
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1. Scenario 
Our scenario will be based in the following picture. 

 

Fig. 1 Scenario 

We will have two networks: 
• Management Network: used for administration purposes, API access, public 

network access and so on. 
• Data Network: connectivity between instances of OpenStack 

 
We will have three nodes: 

• OpenStack Controller Node: the nova service is enabled. 
• OpenStack Compute Node: the nova service is enabled. 
• Mininet: this will simulate a Data Center (DC), composed by 3 SW. 

In this manual, we will use VirtualBox. Before starting, we need to configure our 
management network. Let’s create a NAT Network in the VirtualBox preferences. Go to 
VirtualBox ! Preferences ! Network. Add a Network with the address 
192.168.0.0/24.  

Now, we can start with the setup. 
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2. Mininet 
2.1. ODL Controller 
In order to make the Mininet block working properly, we need a OpenDayLight 
controller. 

1. Download Ubuntu and install it in a VirtualBox VM: 
https://www.ubuntu.com/download/desktop. Configure a NAT Network adapter 
with the network created at the start of this manual (192.168.0.0/24).  
 

2. Execute the command apt-get update 
 

3. Configure the etc/network/interfaces: 
auto enp0s3 
iface enp0s3 inet static 
 address 192.168.0.20 
 netmask 255.255.255.0 
 broadcast 192.168.0.255 
 gateway 192.168.0.1 
 

4. Restart the VM and check that the interface has been assigned with the @IP 
provided. 
 

5. Install the ODL controller. In this case, we are using the version 0.3.4 Lithium-
SR4. Download it using the following command: 
wget https://nexus.opendaylight.org/content/repositories/public/org/opendayli 
ght/integration/distribution-karaf/0.3.4-Lithium-SR4/distribution-karaf-0.3.4-
Lithium-SR4.zip 
 

6. Unzip the file: 
unzip distribution-karaf-0.3.4-Lithium-SR4.zip 
 

7. Start the ODL Controller: 
cd distribution-karaf-0.3.4-Lithium-SR4.zip 
./bin/karaf 
 

8. Install the following features: 
feature:install odl-openflowplugin-all-li odl-l2switch-all odl-dlux-all odl-
restconf odl-mdsal-apidocs 
 

9. Wait until all features are installed and running. Make sure that the ODL 
Controller is listening to ports 8080, 6633 and 6653. 
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2.2. Mininet VM 
1. Download the Mininet VM at mininet.org/download 

 
2. Configure three interfaces at this VM using VirtualBox: 

a. eth0: configured as a NAT Network Adapter in order to provide 
connectivity to the Management Network to reach the ODL Controller. 

b. eth1: configured as an Internal Network Adapter and attached to the 
internal network (intnet) in order to allow connectivity towards the 
Control Node. 

c. eth1: configured as an Internal Network Adapter and attached to the 
internal network (intnet2) in order to allow connectivity towards the 
Compute Node. 
 

3. Important note. After starting the VM the interfaces recently configured will 
switch places (not sure why the Mininet VM does this), in this case eth0 will be 
now eth2 and eth1, eth2 will change to eth0, eth1 respectively. 

a. eth0 ! eth2 
b. eth1 ! eth0 
c. eth2 ! eth1 

 
4. Configure the etc/network/interfaces file, so all interfaces are enabled at boot 

time. 
 
 
auto eth0 
auto eth1 
auto eth2 
iface eth2 inet static 
 address 192.168.0.21 
 netmask 255.255.255.0 
 broadcast 192.168.0.255 
 gateway 192.168.0.1 
 
 

5. Restart the VM and verify that eth2 has been assigned the @IP written as before 
and that it reaches the ODL Controller. 
 

6. Create a new custom topology (test.py) at /home/mininet/mininet/custom 
folder. In our case, we have used the topology depicted in Fig. 2. 
 

7. Start Mininet using sudo python /home/mininet/mininet/custom/test.py 
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Fig. 2 Mininet topology file 
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3. OpenStack 
3.1. CentOS Installation on VirtualBox 

1. Download the Minimal ISO of CentOS from https://www.centos.org/download/ 
 

2. Install 2 VM CentOS in Virtual Box. One for the Controller Node and one for 
the Compute Node.  

• Controller Node 
• RAM: 6144MB  
• Memory: 20GB 
• 2 network interfaces: 

o NAT Network Adapter, using the network created before 
(192.168.0.0/24) 

o Internal Network Adapter (intnet). 
 

• Compute Node 
• RAM: 4096MB 
• Memory: 10GB 
• 2 network interfaces 

o NAT Network Adapter, using the network created before 
(192.168.0.0/24) 

o Internal Network Adapter (intnet2). 
 

3. Run both VM. Follow the installation setup with: 
• Installation Destination: automatic partitioning selected 
• Kdump: disabled 
• Securiy police: disabled 

 
4. In both VM, execute yum -y update and reboot the machines 

 
5. Populate the /etc/environment file with below locale settings in both VM: 

LANG=en_US.utf-8 
LC_ALL=en_US.utf-8 
 

6. Stop and disable the firewalld service of both VM: 
systemctl stop firewalld 
systemctl disable firewalld 
 

7. Stop and disable the NetworkManager service of both VM: 
systemctl stop NetworkManager 
systemctl disable NetworkManager 
 

8. Enable and start network service of both VM: 
systemctl enable network 
systemctl start network 
 

9. Configure the management interface of both nodes. Edit the file in 
/etc/sysconfig/network-scripts/ifcfg-enp0s3 with the following: 
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TYPE=Ethernet 
BOOTPROTO=none 
DEFROUTE=yes 
IPV4_FAILURE_FATAL=no 
IPV6INIT=no 
NAME=enp0s3 
DEVICE=enp0s3 
ONBOOT=yes 
IPADDR=192.168.0.11 (controller) // 192.168.0.44 (compute) 
PREFIX=24 
GATEWAY=192.168.0.1 
DNS1=8.8.8.8 
 
 
Remember to put the correct @IP in the IPADDR field depending which VM 
you are configuring (controller or compute). 
 

10. Configure the tunnel traffic interface of both nodes. Edit the file in 
/etc/sysconfig/network-scripts/ifcfg-enp0s8 with the following: 
 
 
TYPE=Ethernet 
BOOTPROTO=static 
IPV4_FAILURE_FATAL=no 
IPV6INIT=no 
DEVICE=enp0s8 
ONBOOT=yes 
IPADDR=10.10.10.2 (controller) 10.10.10.3 (compute) 
NETMASK=255.255.255.0 
DNS1=8.8.8.8 
 
 
Remember to put the correct @IP in the IPADDR field depending which VM 
you are configuring (controller or compute). 
 

11. Disable selinux from both VM in the config file /etc/selinux/config: 
SELINUX=disabled 
 

12. Edit the file /etc/sysconfig/network with: 
• In the Controller Node: HOSTNAME=controller.localdomain 
• In the Compute Node: HOSTNAME=computenode1.localdomain 

 
13. Edit the hostname of both VM: 

• In the Controller Node: hostname controller.localdomain 
Go to /etc/hostname and change it for controller.localdomain 

• In the Compute Node: hostname computenode1.localdomain 
Go to /etc/hostname and change it for computenode1.localdomain 
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14. Change the file /etc/hosts of both VM and change it for: 
• In the Controller Node: 

 
127.0.0.1 controller controller.localdomain localhost4 localhost4.localdomain4 
::1 controller controller.localdomain localhost6 localhost6.localdomain6 
 
 

• In the Compute Node: 
 

127.0.0.1 computenode1 computenode1.localdomain localhost4 localhost4.localdomain4 
::1 computenode1 computenode1.localdomain localhost6 localhost6.localdomain6 
 
 
 

15. Reboot both VM. 
 

16. Check ping connectivity in the management network (192.168.0.11 ! 
192.168.0.44) 
 

17. Check ping connectivity in the tunnel traffic network (10.10.10.2 ! 10.10.10.3). 
This traffic should go through the Mininet topology. 

 

3.2. OpenStack installation 
 

1. In the Controller node, install the OpenStack package. In our case, we used the 
ocata version. 
sudo yum install -y centos-release-openstack-ocata 
 

2. In the Controller node, update the current packages and install the packstack 
installer. 
sudo yum -y update 
sudo yum install -y openstack-packstack 
 

3. Generate the answer file in the Controller node: 
packstack --gen-answer-file=/root/answer.txt 
 

4. Edit the answer file /root/answer changing the following parameters: 
 
CONFIG_NEUTRON_OVS_TUNNEL_IF=enp0s8 
CONFIG_NEUTRON_OVS_TUNNEL_SUBNETS=10.10.10.0/24 
CONFIG_NEUTRON_OVS_BRIDGE_MAPPINGS=extent:br-ex 
CONFIG_NEUTRON_ML2_TYPE_DRIVERS=vxlan,flat 
CONFIG_PROVISION_DEMO=n 
CONFIG_KEYSTONE_ADMIN=admin 
CONFIG_COMPUTE_HOSTS=192.168.0.11,192.168.0.14 
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5. Install Openstack. Execute the following command in the Controller node: 
packstack --answer-file=/root/answer.txt 
 

6. Wait until the installation is successfully completed. It may take about an hour 
depending on your hardware. 
 

7. Configure the file /etc/sysconfig/network-scripts/ifcfg-enp0s3 of Controller 
Node replacing the content of the file with the following: 
 
TYPE=OVSPort  
NAME=enp0s3  
DEVICE=enp0s3 
DEVICETYPE=ovs  
OVS_BRIDGE=br-ex 
ONBOOT=yes 
 
 

8. Configure the file /etc/sysconfig/network-scripts/ifcfg-br-ex of Controller 
Node with the following: 
 
DEVICE=br-ex  
DEVICETYPE=ovs  
TYPE=OVSBridge  
BOOTPROTO=static  
IPADDR=192.168.0.11 
NETMASK=255.255.255.0 
GATEWAY=192.168.0.1 
IPV4_FAILURE_FATAL=no  
IPV6INIT=no  
DNS1=8.8.8.8 
ONBOOT=yes 
 
 

9. Restart the network service using service network restart 
 

10. In the Controller node, acess the OpenStack admin privileges using  
source keystonerc_admin 
 

11. Run this command to create the provider network for instances so they can 
communicate with the outside world 
neutron net-create external_network --provider:network_type flat --
provider:physical_network extent --router:external 
 

12. Run this command to create the subnet attached to the provider network. This 
configuration should match the LAN your linux machine is connected to. 
neutron subnet-create --name public_subnet --enable_dhcp=False  
--allocation-pool start=192.168.0.100,end=192.168.0.120  
--gateway=192.168.0.1 external_network 192.168.0.0/24 
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13. Create a network to allocate the VM instances: 
openstack network create admin intent 
 

14. Create the subnet attached to the previous network: 
openstack network subnet create subnet1 --subnet-range 10.5.5.0/24  
--dns-nameserver 8.8.8.8 --network intent 
 

15. Create the router that will connect both networks and add the correct interface: 
openstack router create R1 
 
openstack router add subnet R2 subnet1 
 
neutron router-gateway-set R2 external_network 
 

16. Create a Cirros image: 
curl -o /root/cirros-0.3.4.img http://download.cirros-cloud.net/0.3.4/cirros-
0.3.4-x86_64-disk.img 
 
openstack image create --min-disk 1 --disk-format qcow2 --file /root/cirros-
0.3.4.img cirros 
 
 

17. Add rules to the default security group to allow ping and SSH traffic from/to the 
instances: 
openstack security group rule create --src-ip 0.0.0.0/0 --protocol icmp --ingress  
 
openstack security group rule create --src-ip 0.0.0.0/0 —dst-port 22 —protocol 
tcp --ingress  
 

18. Create two instances. One will be located on the controller node and the other on 
the compute node. To get the netID parameter use openstack network list. 
 
openstack server create --image cirros --flavor 1 --nic net-id=<netID>  
--availability-zone nova:controller:controller.localdomain.com VM1 
 
openstack server create --image cirros --flavor 1 --nic net-id=<netID>  
--availability-zone nova:compute:compute.localdomain.com VM2 
 

19. Create floating @IP to access the VM from the external network. The 
paramaters subnet_ID and network_ID can be known using openstack subnet 
list. 
 
openstack floating ip create --subnet <subnet_ID> <network_ID> 
 

20. The floating @IP will be shown in the output of the previous command. Now 
execute: 
openstack add floating ip VM1 <floating_IP> 
 

21. Repeat the previous 2 steps to assign an instance to VM2. 
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22. Ping both VM’s through floating @IP 
 

23. SSH both VM’s through floating @IP 
 

24. From VM1, ping VM2 (using the internal @IP assigned to that instance). In our 
case, the internal network is 10.5.5.0/24. This traffic should pass through the 
Mininet. 
 

 


