

Disclaimer

The Department of Electrical Engineering of the Eindhoven University of Technology

accepts no reTponsibility for the contents of M.Sc. theses or practical training reports�

Department of Electrical Engineering

Den Dolech 2, 5612 AZ Eindhoven

P.O. Box 513, 5600 MB Eindhoven

The Netherlands

http://w3.ele.tue.nl/nl/

Series title:

Master graduation paper,

Electrical Engineering

Commissioned by Professor:

Group / Chair:

Date of final presentation:

Report number:

Nicola Calabretta

IPI-ECO Research
Institute

SDN-based control and
orchestration of optical data centre
network

7th June 2019

Internal supervisors: Nicola Calabretta

External supervisors: Salvatore Spadaro

by

Author: Xavier Gonzalez Sans

Master Thesis UPC, TU/e

 2

Master Thesis UPC, TU/e

 3

Abstract

The use of the Internet is linked with the constant technological change that the world

is suffering nowadays, which is responsible for the important need to update the

infrastructure of current data centers. The amount of traffic that is moving in data

centers has increased significantly in the past few years, so a better alternative for

them should be studied, as the use of Ethernet or InfiniBand is no longer appropriate in

terms of scalability and flexibility.

Optical technology is one possible solution for it, as it provides a big bandwidth, low

latency and an overall better performance. However, the physical resources that form a

data center should be managed in an efficient way. To perform an optimum use of

them, the new concept of virtual data center appeared, where the orchestration of the

resources is done with the aim of offering to a cloud infrastructure to a third party.

In this context, OpenStack has become one of the most popular open source platforms

when building public or private clouds, based on three important aspects: compute,

storage and network. But the flexibility of these cloud infrastructures is attached to

being scalable or dynamic. In this case, Software Definiton Network (SDN) and

Network Function Virtualization (NFV) play an important role in data centers, as they

allow to build complex network capabilities on demand.

In this project, we experimentally demonstrate the programmable OPsquare data

center network empowered by an SDN control plane. The implementation is based on

monitoring the real-time statistics of the network, so some actions such as network

slices provisioning and reconfiguration, packet priority class assignment or dynamic

load balancing operations can be done in order to achieve the required Quality of

Service level.

This project is a cooperation between TU/e (Eindhoven University of Technology, The

Netherlands) and UPC (Universitat Politècnica de Catalunya, Barcelona).

Master Thesis UPC, TU/e

 4

Acknowledgments

In the first place, I would like to thank both of the supervisors of this project: Nicola

Calabretta and Salvatore Spadaro, for the help and support that gave to me during the

development of it. Working close to professional people in the electro-optical

communication field helped me to gain knowledge of that sector and be able to apply it

in the project, as well as in resolving methods to problems I faced during the

development. I can’t thank them enough, without its help this project would not have

arrived until this point.

Moreover, I would also like to thank some of the teachers and PhD students of TU/e

and UPC for all the material and information provided for the project. Xuwei Xue, Fu

Wang, Fernando Agraz and Rafael, thank you very much.

Finally, I would like to appreciate my family’s support that they gave to me during my

exchange period in The Netherlands and, what is more important, to encourage me.

Master Thesis UPC, TU/e

 5

Master Thesis UPC, TU/e

 6

CONTENTS

	

1.	 INTRODUCTION	 10	

1.1.	 DATA	CENTERS	 10	

1.2.	 OPTICAL	FIBER	TECHNOLOGY	 12	

1.3.	 EVOLUTION	OF	DATA	CENTERS	 14	

1.4.	 TRANSPORT	TECHNOLOGIES	 15	

2.	 NETWORK	PROGRAMMABILITY	 16	

2.1.	 TRADITIONAL	NETWORKS	 16	

2.2.	 APPLICATION	PROGRAMMING	INTERFACES	(APIS)	 17	

2.3.	 VIRTUAL	DATA	CENTER	 20	

2.4.	 THE	ORCHESTRATION	LAYER	 21	

3.	 OUR	SCENARIO	 23	

3.1.	 TOOLS	NEEDED	 23	

3.1.1.	 OPENDAYLIGHT:	THE	SDN	CONTROLLER	 23	

3.1.2.	 OPENSTACK:	THE	ORCHESTRATOR	 24	

3.2.	 ORCHESTRATED	SDN-ENABLED	OPSQUARE	DCN	 25	

3.3.	 THE	IMPLEMENTATION	 27	

3.3.1.	 FIRST	APPROACH	 27	

3.3.2.	 SECOND	APPROACH	 27	

4.	 THE	RESULTS	 32	

4.1.	 PATH	COMPUTATION	ENGINE	 34	

5.	 CONCLUSIONS	 36	

6.	 REFERENCES	 37	

7.	 ANNEX	 38	

Master Thesis UPC, TU/e

 7

	

Master Thesis UPC, TU/e

 8

List of abbreviations

DC: Data Center

DCN: Data Center Network

FPGA: Field Programmable Gate Arrays

ME: Monitoring Engine

MM: Monitoring Manager

NFV: Network Function Virtualization

NS: Network Slices

ODL: OpenDaylight

OF: OpenFlow

OFC: Optical Flow Control

OPM: Optical Provisioning Manager

OPS: Optical Switch

PCE: Path Computation Engine

SDN: Software Definition Network

TM: Topology Manager

ToR: Top of Rack

VDC: Virtual Data Center

VM: Virtual Machine

VN: Virtual Network

QoS: Quality of Service

Master Thesis UPC, TU/e

 9

Master Thesis UPC, TU/e

10

1. Introduction

1.1. Data Centers
The Data Center infrastructures (DC) are a fundamental piece in the current

telecommunication systems and cloud services, allowing the users to access to huge

amounts of data. In the traditional DC’s, the servers are organized in racks. Each racks

is composed by a ToR (Top of the Rack) switch which interconnects the different

servers and allows the exchange of information between racks through a network

called intra-DC (DCN). In this kind of network, electrical switches are used in a way that

provides redundancy to have a better usage of network resources and to guarantee the

QoS required.

However, the rise of cloud computing, big data services and IoT (Internet of Things)

has significantly increased the traffic in the data centers. The key requirements for data

center networks are:

• Latency: time that a packets need to traverse the network from the source to

the destination node, including the propagation and switch latency.

• Capacity: if full-bandwidth communication is desired between the servers, a

high internal capacity of it is required.

• Scalability: the rise of this infrastructures is expected to continue growing over

the next few years. The DC should enable to scale a high number of nodes to

address future capacity needs in an efficient way.

Fig. 1 Traditional DC network

Master Thesis UPC, TU/e

11

Fig. 2 Data center rise

• Flexibility: using virtualization services, DC should be able to adapt to new

changes in a quickly way. For example, the adoption of new standards or

protocols in order to seed up the deployment of networks.

• Power/cost-efficiency: in order to keep the energy costs as minimum as

possible, there is an important need to think about power-efficiency. Optical

technology and virtualization networks are used in that sense.

Because all of this factors, the rise of DC should be well prepared and managed. As

shown in Fig. 2, we can see the traffic growth in data centers from 2014 to 2019.

However we can see that the traffic that is happening within them is not changing

significantly from 2014 to 2019. In this sense, data centers are growing in terms of size

and complexity, in other words, in the increase of demands for more powerful

computational performance, which can be managed using NFV (Network Functions

Virtualization) allowing an efficient use of the resources shared on the same

infrastructure.

For this reason, the use of electrical switches in the tradition DCN structures is coming

to an end. So there is an important need to improve the intra-DCN deployed in the

future data centers. Taking this fact into account combined with the previous mentioned

key requirements for a DC, one of the possible solutions that is being really used

nowadays is the optical fiber technology.

Master Thesis UPC, TU/e

12

1.2. Optical fiber technology
Fiber-optic technology has popular since several years ago and is known for some

characteristics. The wave-guide being more used is the fiber-optic, which has been

successful due to two main reasons:

• Low attenuation: currently the systems without amplification allow distances

close to 100km, and systems with amplification allow intercontinental

communication (submarine cabling).

• High bandwidth: allows the transmission at high speeds. Nowadays, there are

laboratory experiments that allow transmissions around 3.2 Terabits per

second.

So, as an overview, fiber optic technology allows fast transmission of data, is made of

glass and works as a waveguide to transmit light between two nodes. Fiber optic has

been used in long distances scenarios such as an intercontinental connection.

However, in the past few years it is also becoming more popular in Ethernet LAN

networks. The reason for this is because of the fast speeds that can reach and

because immunity to interferences, like cross-talk.

The fiber optic is composed of two important parts: the core and the cladding. The core

holds the light and the cladding confines the light in the core. If the cladding is small,

the core is small too. So, when the core is small, less light will be sent through but the

speed and the distance will be higher.

In the Fig. 3 it is shown the composition of this technology. In this case, there is a small

core (9-micron), which can be compared as human hair (50 microns).

Fig. 3 Fiber cable composition

Master Thesis UPC, TU/e

13

The cladding of 125 microns is a fiber standard well known by different manufacturers

to make standardized connectors. The buffer is in charge to protect the fiber glass.

There are two types of fiber optic: single-mode and multimode. In Fig. 4 we can see the

differences between both types.

Let’s state the differences between both types:

Table 1 Differences between single-mode and multi-mode

Single-mode Multi-mode

Expensive Cheap

Small core Large core

Farther distances Less distances

The single-mode fiber optic has a small core, which means that it will allow only one

light mode to be propagated through it, reaching higher distances. However, the multi-

mode one has a large core, so multiple light modes will propagate through it.

Fig. 4 Multimode and single-mode fibers

Master Thesis UPC, TU/e

14

1.3. Evolution of Data Centers
A clear drawback of the intra-DCN network shown in Fig. 1 are the bottlenecks that

can be found in the first access level to them, also known as core switch. This switches

route the traffic that comes from or to the data center. A bottleneck can be observed in

case there is not enough bandwidth due to the high amount of traffic between the

switches. The first level of switches (core switches) are connected to the aggregation

switches, which are connected to the access switches (usually located on the Top of

the Rack (ToR) with servers). The traffic that goes between these different type of

switches generate a high latency when transmitting information and a significant

cabling distance, which is not an ideal condition in virtual environments. Another

possible bottleneck could be related to the electrical process that perform Ethernet

cables. That’s why fiber optic technology is used.

Therefore, there is a need for an evolution of the traditional DC architectures in order to

keep correctly the key requirements mentioned in previous sections: low latency

between switches and high bandwidth to try to support the maximum capacity and so,

reach the maximum speed.

Fig. 5 shows an horizontal way to send traffic between switches, instead of the vertical

one proposed in Fig. 1. In this new evolution of DC, fiber optic is a must in order to set

the architecture with a better scalability, management and flexibility.

Fig. 5 Evolution of DC architecture

The interconnection switches work in a Optical-to-Optical-to-Optical (OOO) technology

shown in the previous picture are pure optical switches, without altering the information

that is being sent. The access switches work as Optical-to-Electrical-to-Optical (OEO)

Master Thesis UPC, TU/e

15

switches, despite the fact that they could support optic technology. But as in this case

there exist some electric commutations inside the switches, this will lead to a rise of the

dissipated heat and a significant reduce of the latency when sending information. So,

when some traffic is coming to the switch from the fiber-optic cabling, it is going to be

transformed into electrical information and then again to light in order to be sent to the

output pot. This is really useful, as two different sources of information destinated to the

same output could be combined. In this case, this switches will be the ToR. Finally,

these switches will be connected to the servers in the racks, which they will have an

electrical communication through Ethernet.

1.4. Transport technologies
Optical transport network increased their use in the last few years. Some reasons could

be:

• To adjust to QoS network requirements (high bandwidth and low latency)

• There is a need to cope with the ever-growing Internet traffic

• Energy efficiency, reducing the power consumption

• Flexibility and low operational cost

There are two methods of optical transport:

• Optical Circuit Switching (OCS): light paths are established to carry aggregated

data traffic, achieving a higher bandwidth, scalability and guarantying the QoS

requirements. This method is used for long-lived data flows, such as bulk data

transfer, HDTV…

• Optical Packet Switching (OPS): in this case, the IP packets are aggregated in

optical packets before being sent to WDM channels, achieving high flexibility

and optical flow control. This method is used for short-lived data flows such as

VoIP, HPC...

So, we can see that using both types of optical transport technologies, these

architectures requires control and management planes, the topic which we will cover in

the following section.

Master Thesis UPC, TU/e

16

2. Network Programmability

2.1. Traditional networks
Nowadays, routers and switches ports are the only devices that are not virtualized. And

it is what is used in traditional networks. In the last few years, there has been a

significant increase in the research of how to virtualize the devices physical ports.

First of all, it’s important to keep in mind that the current routers and switches run an

operating system that provides network functionality. During approximately 25 years,

this has been widely used, but the complexity to configure, implement or troubleshoot

the devices made to approach it in another way, as current networks are quite large

and complex.

Before designing any new approach to design networks, it’s important to understand

the business requirements and then carry it out in all the devices. This process can be

done in several weeks or months, as the configuration, maintenance and monitoring

has to be done separately.

There current networks forward traffic data using two planes:

• Data plane: this plane is responsible for forwarding frames of packets from the

source to the destination interfaces using protocols managed by the control

plane. Once the information is received, the destination interface is looked up,

so the frames are forwarded in that direction.

• Control plane: this plane is in charge of managing and controlling any

forwarding table that the data plane uses. Routing protocols are included in this

plane, such as OSPF or RIP, but also switch MAC address learning and the

Spanning Tree Protocol (STP).

To sum up, the data plane relies completely on the control plane when forwarding

traffic in traditional networks.

Master Thesis UPC, TU/e

17

2.2. Application Programming Interfaces (APIs)
In the last decade, enterprise Wi-Fi installations designed physical networks and then

configured a type of network controller that managed all the wireless APs in the

networks. It’s difficult to think that a company would install a wireless network today

without any controller in an enterprise network, where the access points (APs) receive

their directions from the controller on how to manage the wireless frames and the APs

have no operating system or brains to make any decisions on their own.

A similar situation is true for our physical devices, so this centralized management of

frames that are sent in the network and that SDN (Software Definition Network)

provides to them.

SDN removes the control plane from each network device. Instead of that, it has a

centralized controller that is in charge of managing the network, avoiding the need of

having an operating system on each device. Therefore, this controller separated the

data and control planes, with the aim to automate the configuration and remediation of

each these network devices.

So, using the network programmability tool, we only have one centralized control plane

instead of having individual control planes inside the network devices. With this, we

consolidate all network operations inside the SDN controller. To control and configure

the network without the need of human interactivity, APIs in applications are used, as

they make easy the communication and operations between machines.

In Fig. 6 we can see the difference between the SDN architecture and the traditional

one. Now we add a third layer called the application plane:

• Data plane: based on the network device that is in charge of sending and

receiving traffic.

• Control plane: based on a software solution, in this plane is where the SDN

controllers lives, providing centralized network management to populate the

data plane and removing the control plane of each device.

• Application plane: that’s the new layer of SDN architecture. Here, they reside

the applications that need to communicate to network device by means of the

SDN controller using APIs.

Master Thesis UPC, TU/e

18

As far as we have studied, SDN tool could change a lot the way we see the network in

the future, as the applications will say to the network what to do based on the business

requirements instead of user manually configuration. The SDN controller will use the

APIs to pass the instructions to the physical devices, so this will avoid spending a high

amount of time to implement business needs.

About APIs, there are two categories that SDN controller use to communicate. As we

have seen in Fig. 6 SDN communicates with the application plane, but also with the

data plane. The communication with the data plane is defined with southbound

interfaces, but the communications with the applications uses the northbound interface.

Southbound APIs

This are defined as device-to-control-plane communication, or as SBI (Logical

Southbound interfaces) APIs, so they are used for the communication between the

SDN controller and the physical devices of the network. They are really useful, as they

allow they controller to program the data plane for example, forwarding tables of the

switches.

It’s important to keep in mind that when talking about network programmability using

SDN, the term interface is not referred anymore to a physical interface. Instead, it

refers to a logical one.

SBI have many standards. Let’s take a look at the most common ones:

Fig. 6 SDN architecture comparison

Master Thesis UPC, TU/e

19

• OpenFlow: is the standard used in this project, defined by ONF

(OpenNetworking). Using NETCONF, it can configure flow path in the network

or the device’s forwarding table. This is known as an imperative SDN model.

• NETCONF: this is a new way of providing network management protocols by

the IETF. Using RPC, it’s possible to configure the physical devices using XML.

• OpFlex: this is known as a declarative SDN model and it’s the default one used

by Cisco devices, as the controller send an abstract summary policy to the

network devices, which they only have a partially centralized management

control.

Northbound APIs

This are defined as NBIs (Logical Northbound Interfaces) APIs, allowing the

communication between the controller and the different applications.

This type of API makes able the possibility that the application control the network,

saving a huge amount of time in comparison when some manual configuration is

needed in each physical device.

They include a big amount of services, such as network virtualization, firewall

monitoring, access policy control and so on. And what’s more important, they allow the

possibility for enabling cloud platforms tools, including virtualized processing and

storage.

In this case, there are not common standards as they were with SBIs. So when using

NBI, it’s important to choose the correct one that works only with a determined set of

applications. For example, REST (Representational State Transfer) is really useful in

the past few years, using HTTP to send data through the applications which resides in

the different hosts.

In the following picture, we can see an overall of both types of interfaces.

Master Thesis UPC, TU/e

20

2.3. Virtual Data Center
As far as we have seen in the previous sections, SDN technology is not only aimed to

provide connectivity, but also a dynamic network infrastructure able to provide,

establish and manage complex services. So, SDN allows the network infrastructure

virtualization, in which we can define a new term: Network Slicing. Using physical

resource abstraction, these network slices are created, which they will need

independent management and control to each of them. This concept is the previous to

a new one: Virtual Data Centers.

A Virtual Data Center (VDC) service consists in giving a part of the DC infrastructure to

a tenant (or an external entity) as a support to develop their own business model. Each

VDC consists on a virtual infrastructure which integrates computational capacities as

virtual machines. These VMs are interconnected between them through a virtual

network (network slice), in where tenants can develop their applications with the main

goal to offer a final service to their users. Using VDCs, we open the possibility of

different tenants using the same infrastructure but making each one independently of

the others and having the whole control and management of its network. All of this

network virtualization process is described in the following picture.

Fig. 7 Application Programming Interaces

Master Thesis UPC, TU/e

21

This process is complex, but it mainly consists on mapping the VMs into servers in the

DC and the virtual links into physical network resources in the DC network. In this

context, talking about the orchestrator is key.

2.4. The orchestration layer
To sum up the concepts we have introduces by far:

• SDN provides an efficient way to configure connectivity services using for

example OpenFlow proposed by the ONF to connect to the physical network (in

our case, optical network), making this independent of the other node.

• Applications can connect to the SDN controller using specialized, modular and

open Northbound APIs.

• OpenDaylight controller is a well known SDN controller, deeply extended in

support of optical technologies

• VDC is a form of Infraestructure as a Service (IaaS) where a tenant asks for an

infrastructure composed by VMs, interconnected through a virtual network.

However, SDN technology is not sufficient to achieve an optimization of the network

resources, as there are some challenges we need to face. For example, the presence

of more than one data plane, the coordination of the network resources provision or the

Fig. 8 VDC services functionality

Master Thesis UPC, TU/e

22

presence of more than one SDN-controlled infrastructure. Because of all this reasons,

there is a need of an orchestration layer.

The orchestration layer provides functionality such as coordinated service provisioning

according to the status of the physical infrastructure and the requests coming form

external users. OpenStack is an example of it, as it provides: VDC dashboard

configuration, VM configuration, IP network configuration and stack configuration. In

the following section, we will talk in a deeply way about the OpenStack orchestrator,

but until now, this picture summaries our scenario:

Fig. 9 Architecture including SDN controller and orchestrator

Master Thesis UPC, TU/e

23

3. Our scenario

3.1. Tools needed
Before going deep in presenting our scenario, we need to explain some tools we are

going to use: the SDN controller and the orchestrator.

3.1.1. OpenDaylight: the SDN controller

OpenDaylight is an open project written in Java organized by The Linux Foundation in

2013. Its objective is to accelerate the adoption of SDN networks and create a solid

base to network virtual functions (NFV). The members of this project did it with the

main goal to be a open platform so it can be used by different companies, avoiding the

limitation of the proprietary systems and reducing the developments costs.

OpenDaylight does not have a single company. It operates through an open and active

community in which anyone can join. The only requisite is to contribute on it, offering

help on the development field, marketing or project management. Cisco, IBM or

Microsoft are some of the members of the project.

Hydrogen was the first version of the project. It was launched in 2014 and it consisted

in a simple functionality SDN controller, overlay networks, plug-ins protocols and

improvements in the communication devices. After it, Helium version was launched,

making OpenDaylight very popular between developers and operators.

The main advantage of this controller is that removes the adoption barriers due to the

fact that there are some organizations that don’t want to get attached to a determined

seller or manufacturer. With this solution, the companies could choose different

technologies of different sellers, making them inter-operable.

Fig. 10 Opendaylight logo

Master Thesis UPC, TU/e

24

3.1.2. OpenStack: the orchestrator

The OpenStack project is a cloud computing platform created around 7 years ago,

being nowadays one of the most successful tools when implementing a private or

public cloud providing an easy IaaS solution to implement.

Similar than in OpenDaylight, OpenStack is not owned by any company. It’s a

foundation called OpenStack Foundation on which different members can participate to

it.

As we have said, OpenStack provides an IaaS solution using interrelated services. This

cloud platform tool is quite well-known due to its easy-going APIs and its modularity.

Each of these modules are implemented using Python and are in charge of a specific

service:

• Horizon: dashboard

• Nova: virtual machines configuration

• Cinder: block storage

• Keystone: authentication and authorization

• Swift: object storage

• Glance: images configuration

• Neutron: SDN management (networks)

A typical example of functionality could be the following: first of all the user is

authenticated in Keystone, so he/she obtains a session token that will let perform the

rest of the actions without having to authenticate again. Then, the user asks Glance the

available images to use. After selecting one and specifying the instance characteristics

(flavours), the user asks Nova to start a new instance. Finally, the Neutron service is in

charge of the virtual network configuration for it.

Fig. 11 Openstack logo

Master Thesis UPC, TU/e

25

3.2. Orchestrated SDN-enabled OPSquare DCN
With the tools needed presented, we are ready to present our scenario. The

explanation is easy to understand looking at Fig. 12

We can divide the scenario in 3 parts: the physical layer (Optical Data Plane), the

OpenDaylight (SDN Controller) and the OpenStack (Orchestrator).

The first part is the Optical Data Plane. In this scenario, we are using OPSquare

architecture, an optical DCN (Data Center Network) architecture based on fast SOA-

based optical switches. There are N NxN intra-cluster (IS) switches and M NxN inter-

cluster (ES) switches. Both types interconnect the clusters of ToR (Top of the Racks),

implemented by the FPGAs. OPSquare is also based on the Optical Flow Control

(OFC) with the main goal to solve possible packet contentions at the switches. That

means that the packets with high priority are directly forwarded by the switches, but the

packets with low priority will be retransmitted if there is a packet collision. So, we have

an scenario that using the optical data plane an the OFC protocol the data traffic an be

sent between ToRs in only nanoseconds.

The second part is the SDN Controller. In the switches, there is also an OpenFlow (OF)

Agent, which is in charge to collect and send information to the SDN controller. As we

have seen, we are using the OpenDaylight controller, so it receives this information and

decides the actions to the ToRs, with the aim to reconfigure the look-up tables of the

switches or to assign packets priority depending on the applications running on each

Fig. 12 Our scenario

Master Thesis UPC, TU/e

26

Network Slice (NS). As we see in Fig. 12, there are some important blocks inside the

controller:

• Manager Topology: we can find the data plane layout and the physical

distribution information

• Optical Provisioning Manager: is in charge of the switches and ToRs

configuration for the Network Slices connectivity.

Finally, at the top of the structure we have the orchestrator, in our case, the

OpenStack. This element has two differentiated elements:

• Monitoring Engine: in charge of collecting the data plane statistics, such as the

lost packets or the number of collisions, through the information collected by the

SDN controller.

• Path Computation Engine: here is where the monitoring information is used to

compute some path algorithms, with the main goal of achieving the expected

QoS. This block relies on the Optical Provisioning Manager of the SDN

controller providing a new path or a flow priority service.

To sum up, we are implementing our system on a OPSquare DCN architecture with a

SDN controller that controls the configurations of it and with an orchestrator that

implements the management operations.

It’s important to keep in mind the goal of the project: implement the Monitoring Engine

module to be able to collect the monitoring information coming from the SDN controller,

so we can take some actions in the Path Computation Engine to the deployment of the

service VDC affected.

Master Thesis UPC, TU/e

27

3.3. The implementation

3.3.1. First approach

The first idea when starting the project was to install a combined infrastructure of the

SDN controller and the orchestrator in one computer located in the IPI-ECO laboratory

in TU/e (Eindhoven University of Technology). That means, a full installation of

OpenDaylight and OpenStack.

The configuration of both tools was successful, and we achieved connection from

OpenDaylight to the Java Agent of the switches. However, the problem we faced was

with connection between OpenDaylight and OpenStack, as we found some

compatibility problems due to the versions used. In the past, Universitat Politècnica de

Catalunya (UPC) and Eindhoven University of Technology (TU/e) worked together in

the COSIGN project, in which they achieved the integration of OpenDaylight and

OpenStack by means of the VTN module of OpenDaylight. However, the version of

OpenStack that they used (Liberty) is not available anymore. And moreover, the

version of OpenDaylight used (Lithium - SR2) is a very old one. In the recent years,

post-versions have been implemented, such as Carbon, Oxygen, Fluorine or Neon,

with improved features and new tools. So after this discussion, we decided that it was a

must to upgrade as much as possible our infrastructure, in other words, to use one of

the last versions of both tools. In that moment, we faced the problem of the

compatibility versions, as when trying to make the integration of both components

using the last versions, the connection between them was not successful anymore.

After spending a significant amount of time on this, we decided to approach main goal

of the thesis in another way.

3.3.2. Second approach

The main goal of the project remained the same: implementation of the monitoring

module of OpenStack to be able to reconfigure the DCN in the Path Computation

Engine block. But now the approached changed: instead of integrating OpenDaylight

and OpenStack, the main idea is to deploy both components independently, so the

collection of statistics will be done separately. The approach is described in the

following picture:

Master Thesis UPC, TU/e

28

As we can see, two modules have been included inside the Monitoring box: an

OpenStack Monitoring, which will monitor the IP network and an OpenDaylight

Monitoring, which will monitor the optical network.

3.3.2.1. OpenStack

In this case, OpenStack will be deployed using 3 components, as explained in Fig. 14,

where we can see an illustration of what we’re targeting to achieve in the installation of

it. Therein, there is a Management Network on top of the nodes that provides

interconnection between them (192.168.0.0/24). We have also deployed an OpenStack

control node and a compute node. The nova service are enabled in both nodes, which

means that we have 2 instances created and running: one in the controller node and

the other one in the compute node. Finally, the Mininet is intended to simulate the

“Physical DC Network”, by deploying a three OVS switches topology to connect both

instances. This interconnection is done through the tunnel network (10.10.10.0/24).

Fig. 13 Final approach of the thesis

Master Thesis UPC, TU/e

29

Fig. 14 OpenStack deployment

The instances created in the controller node and in the compute node are intended to

be the TX and the RX. So the monitoring module will consists on collecting data

statistics from both instances.

To develop the OpenStack Monitoring module, we will use an extra service that

OpenStack provides: the Ceilometer (Telemetry Service), which will collect the traffic

statistics across the various OpenStack components. In our project, we will get:

• CPU utilization

• Memory usage

• Network incoming/outcoming packets

• Network incoming/outcoming dropped packets

The version used for OpenStack is Ocata.

3.3.2.2. OpenDaylight

The installation of OpenDaylight is easy to do and to configurate: we used the

Beryllium version. OpenDaylight incorporates a service called DLUX, in which we can

see in a graphical way the switches that are connected to some OF Agent. We used 3

switches to simulate the same network as we did in the previous section.

Master Thesis UPC, TU/e

30

To collect the statistics from each switch, we will use the OpenFlow plugin, which

automatically collects traffic statistics from each element:

• Packets TX/RX

• Packets dropped TX/RX

• Packets rate TX/RX

• Collisions

The OpenDaylight scenario can be summarized in the following picture, where we can

see that the SDN controller can send an OpenFlow message to the OF Agents of the

ToR and the OPS.

Fig. 15 OpenDaylight DLUX

Master Thesis UPC, TU/e

31

3.3.2.3. Monitoring information

To develop the monitoring modules, we will use a Java application to connect to both

components separately. Using REST API services, the application will get all the

information in JSON format and will translate it to a graphical and structured way. This

process is explained deeply in the next section of the thesis.

Fig. 16 SDN-based control for OPS

Master Thesis UPC, TU/e

32

4. The results

After the implementation of the scenario, we achieved the collection of statistical

information on both parts:

• IP network, through OpenStack monitoring module

• OPS network, through OpenDaylight monitoring module

The installation of OpenStack and OpenDaylight was successful. For example, in Fig.

17 we can see a screenshot of an OpenFlow packet that the SDN controller sends

when a new node is connected. This message is also known as a FlowMod. When a

OF Agent receives this type of message, it is able to configure the hardware flow tables

according to the flow requirements. In the screenshot, we can also see some periodical

statistics requested by the controller to the OP node.

So, let’s show in a graphical and easy way to understand the statistics obtained

through both components.

Fig. 17 OpenFlow packet

Master Thesis UPC, TU/e

33

On the one hand, in Fig. 18 we can see the output of the OpenStack monitoring

module. In this case, we have 2 instances (VM1 and VM2), with their respective IP

addresses and their statistics about the CPU and memory usage, incoming packets,

outgoing packets and so on. The CPU util is measures in % and the memory usage in

MB. The incoming/outgoing packets are measured in packets, an the

incoming/outgoing packets the rate in packets/s.

On the other hand, in Fig. 19 we can see the output of the OpenDaylight monitoring

block. In the figure we can only see 2 switches, each one of one port. The reason for

this is because there were not sufficient FPGA in the TU/e laboratory, so we can

connect the three OF Agent wit the FPGA. In this test, there were no collisions and no

errors, as we are using a test scenario with only 2 switches. But if errors in

transmission or reception occurred, it will appear in the results, so the Path

Computation Engine could take some actions in the DCN.

It’s extremely important to remark the difference of packets that we can see in the

previous figures. The packets monitored in the OpenStack module are electric packets,

as it controls the IP network. However, the packets monitored in the OpenDaylight

module are optical packets. Remember that the switches that we can see in

Fig. 18 OpenStack statistics

Fig. 19 OpenDaylight statistics

Master Thesis UPC, TU/e

34

OpenDaylight DLUX refer to the OF Agents of the ToRs and the OPS, so this traffic is

in optical format.

4.1. Path Computation Engine
Once the Monitoring module is completed and provides the necessary information to

the Path Computation Engine, it’s time to work on what to do with this data. We have

two sources from statistics: from the IP network and from the DCN. The main goal is to

combine them and, upon some decision and benefiting from the multiple path

connections among racks in the OPSquare architecture, OpenDaylight is able to

reconfigure the paths to reduce packet loss maintaining the required level of QoS.

Due to a lack of time, it has not ben possible to complete this module. However, some

ideas have been discussed to a future work on it.

• Packets Priority: we are using the Optical Flow Control (OFC) with the aim to

solve packet contention, using packet retransmission. However, this

retransmission increases the end-to-end latency. If we want to maintain the

required latency , packets priority assignment is a solution. The packets with

high priority will have priority when they arrive at the OPS, while the traffic with

low priority will be retransmitted in case of contention. This process is shown in

Fig. 20, where we can see two packets generated from two different ToRs. Both

of them are destined to the same output of IS, so in the OPS there is packet

contention. As packet 1 has a higher priority than packet 2, packet 1 will be

forwarded to the output port in the IS with the aim to avoid packet loss and not

to increase the end-to-end latency. This process of assigning dynamically the

priority in optical packets can be done using 4 bits of the packet label, so we

can define 16 different transmission priority classes.

Fig. 20 Packet priority example

Master Thesis UPC, TU/e

35

• Load Balancing: using the monitoring statistics collected from the Monitoring

Engine module, load balancing could be another option to reduce the number of

packets lost in the OPS. As exemplified in Fig. 21, there are 2 packets that are

sent from different instances, but both are destined to the same output port in

IS. As the load increases, the packet contention that is produced at that port

would cause more number of lost packets from both instances. Using a good

combination of the instances (VMs) statistics and of the physical switches

statistics, it’s possible to reconfigure the connectivity to balance the load to the

ports with less usage. What is needed to define is which threshold of packet

loss guarantees the required QoS for the service.

Fig. 21 Load balancing example

Master Thesis UPC, TU/e

36

5. Conclusions

In this project we have studied the use of Virtual Data Centers (VDC) in Data Center

Networks (DCN). We studied the benefits of using an OPSquare architecture based on

fast optical switches (SOA) and optical flow control, which features low latency and

high connectivity as well as low cost and power consumption. We used OpenDaylight

as a SDN controller, a software defined networking control plane to provide dynamic

provisioning and reconfiguration of VDCs services. And we used OpenStack as an

orchestrator to be able to trigger the operation of path computing engine, so some

actions can be taken in the physical infrastructure to avoid packet loss and to decrease

the end-to-end latency.

But this engine’s decision cannot be made without the Monitoring Engine module,

which we have implemented during the thesis. Inside it, we demonstrate the capability

to monitor the traffic that is exchanged in the OPSquare architecture, where the OF

Agents and ToRs switches reside, and in the IP network, where the instances for the

different VDC services are launched. This real-time data is provided to the SDN

controller and therefore, to the orchestrator as statistics. The orchestrator layer has the

necessary tools to perform path computation taking into account the monitoring data

obtained from both networks.

As a future work, the next step should be to implement the Path Computation Engine

module. In this project some ideas have been discussed, such as load balancing or

priority class assignment algorithms. But it’s important to keep in mind that after a

decision is taken by the orchestrator (OpenStack), then the SDN controller

(OpenDaylight) is able to reconfigure the paths and data plane resources in order to

increase the number of lost packets and the end-to-end latency, with always the main

goal of maintaining the requested level of Quality of Service (QoS).

Master Thesis UPC, TU/e

37

6. References

[1] W.Miao, F.Yan, O.Raz, N.Calabretta. OPSquare: Assessment of a Novel Flat

Optical Data Center Network Architecture under Realistic Data Center Traffic.

Article. 2016.

[2] N.Calabretta, F.Yan, W.Miao. OPSquare: towards Petabits/s Optical Data Center

Networks based on Fast WDM Cross-Connect Switches and Optical Flow Control.

Article. 2017.

[3] W.Miao. Flow-controlled and SDN-enabled Optical Switching System for High-

capacity and Low-latency Flat Data Center Networks. PhD tesis. 2017.

[4] N.Calabretta, W.Miao, K. Mekonnen, K.Prifti, K.Williams. Monolithically

Integrated WDM Cross-Connect Switch for High-perfomance Optical Data Center

Networks. Article. 2017.

[5] Server-world. How to use Ceilometer. [online] [Consulted on 20th April]

https://www.server-world.info/en/note?os=Ubuntu_18.04&p=openstack_rocky4&f=3

[6] OpenStack. OpenStack Docs. [online] [Consulted on 16th May]

https://docs.openstack.org/stein/

[7] F.Agraz. OpenDaylight / OpenStack Integration Tests. How-to. 2015.

[8] D.Sánchez. Gestión de data centers virtuales mediante OpenStack/SDN. Bachelor

thesis. 2016.

[9] D.Sánchez. Gestión de data centers virtuales mediante OpenStack/SDN. Bachelor

thesis. 2016.

[10] Universitat Politècnica de Catalunya. SDN/NFV and Orchestration for Optical

Transport Network: Practical use cases. Slides. 2018.

[11] A.Viñés. Network Service orchestration for SDN based Data Centers: an

OpenStack approach. Bachelor thesis. 2016.

[12] S.Subramanian, S.Voruganti. Software-Defined Networking (SDN) with

OpenStack. Book. 2016.

[13] OpenDaylight. OpenDaylight. [online] [Consulted on 2th April]

https://www.opendaylight.org/

Master Thesis UPC, TU/e

38

7. Annex

ANNEX

How-to install

OpenStack integrated
with a Mininet

Master in Telecommunications Engineering (MET)

Universitat Politècnica de Catalunya (UPC)

Eindhoven University of Technology (TU/e)

30th May 2019

Surname Name

Gonzalez Sans Xavi

Master Thesis UPC, TU/e

Pàg. 1

CONTENTS

1.	 SCENARIO 2	

2.	 MININET 3	

2.1.	 ODL CONTROLLER 3	
2.2.	 MININET VM 4	

3.	 OPENSTACK 6	

3.1.	 CENTOS INSTALLATION ON VIRTUALBOX 6	
3.2.	 OPENSTACK INSTALLATION 8	

Master Thesis UPC, TU/e

Pàg. 2

1. Scenario
Our scenario will be based in the following picture.

Fig. 1 Scenario

We will have two networks:
• Management Network: used for administration purposes, API access, public

network access and so on.
• Data Network: connectivity between instances of OpenStack

We will have three nodes:

• OpenStack Controller Node: the nova service is enabled.
• OpenStack Compute Node: the nova service is enabled.
• Mininet: this will simulate a Data Center (DC), composed by 3 SW.

In this manual, we will use VirtualBox. Before starting, we need to configure our
management network. Let’s create a NAT Network in the VirtualBox preferences. Go to
VirtualBox ! Preferences ! Network. Add a Network with the address
192.168.0.0/24.

Now, we can start with the setup.

Master Thesis UPC, TU/e

Pàg. 3

2. Mininet
2.1. ODL Controller
In order to make the Mininet block working properly, we need a OpenDayLight
controller.

1. Download Ubuntu and install it in a VirtualBox VM:
https://www.ubuntu.com/download/desktop. Configure a NAT Network adapter
with the network created at the start of this manual (192.168.0.0/24).

2. Execute the command apt-get update

3. Configure the etc/network/interfaces:
auto enp0s3
iface enp0s3 inet static
 address 192.168.0.20
 netmask 255.255.255.0
 broadcast 192.168.0.255
 gateway 192.168.0.1

4. Restart the VM and check that the interface has been assigned with the @IP
provided.

5. Install the ODL controller. In this case, we are using the version 0.3.4 Lithium-
SR4. Download it using the following command:
wget https://nexus.opendaylight.org/content/repositories/public/org/opendayli
ght/integration/distribution-karaf/0.3.4-Lithium-SR4/distribution-karaf-0.3.4-
Lithium-SR4.zip

6. Unzip the file:
unzip distribution-karaf-0.3.4-Lithium-SR4.zip

7. Start the ODL Controller:
cd distribution-karaf-0.3.4-Lithium-SR4.zip
./bin/karaf

8. Install the following features:
feature:install odl-openflowplugin-all-li odl-l2switch-all odl-dlux-all odl-
restconf odl-mdsal-apidocs

9. Wait until all features are installed and running. Make sure that the ODL
Controller is listening to ports 8080, 6633 and 6653.

Master Thesis UPC, TU/e

Pàg. 4

2.2. Mininet VM
1. Download the Mininet VM at mininet.org/download

2. Configure three interfaces at this VM using VirtualBox:

a. eth0: configured as a NAT Network Adapter in order to provide
connectivity to the Management Network to reach the ODL Controller.

b. eth1: configured as an Internal Network Adapter and attached to the
internal network (intnet) in order to allow connectivity towards the
Control Node.

c. eth1: configured as an Internal Network Adapter and attached to the
internal network (intnet2) in order to allow connectivity towards the
Compute Node.

3. Important note. After starting the VM the interfaces recently configured will
switch places (not sure why the Mininet VM does this), in this case eth0 will be
now eth2 and eth1, eth2 will change to eth0, eth1 respectively.

a. eth0 ! eth2
b. eth1 ! eth0
c. eth2 ! eth1

4. Configure the etc/network/interfaces file, so all interfaces are enabled at boot

time.

auto eth0
auto eth1
auto eth2
iface eth2 inet static
 address 192.168.0.21
 netmask 255.255.255.0
 broadcast 192.168.0.255
 gateway 192.168.0.1

5. Restart the VM and verify that eth2 has been assigned the @IP written as before
and that it reaches the ODL Controller.

6. Create a new custom topology (test.py) at /home/mininet/mininet/custom
folder. In our case, we have used the topology depicted in Fig. 2.

7. Start Mininet using sudo python /home/mininet/mininet/custom/test.py

Master Thesis UPC, TU/e

Pàg. 5

Fig. 2 Mininet topology file

Master Thesis UPC, TU/e

Pàg. 6

3. OpenStack
3.1. CentOS Installation on VirtualBox

1. Download the Minimal ISO of CentOS from https://www.centos.org/download/

2. Install 2 VM CentOS in Virtual Box. One for the Controller Node and one for
the Compute Node.

• Controller Node
• RAM: 6144MB
• Memory: 20GB
• 2 network interfaces:

o NAT Network Adapter, using the network created before
(192.168.0.0/24)

o Internal Network Adapter (intnet).

• Compute Node
• RAM: 4096MB
• Memory: 10GB
• 2 network interfaces

o NAT Network Adapter, using the network created before
(192.168.0.0/24)

o Internal Network Adapter (intnet2).

3. Run both VM. Follow the installation setup with:
• Installation Destination: automatic partitioning selected
• Kdump: disabled
• Securiy police: disabled

4. In both VM, execute yum -y update and reboot the machines

5. Populate the /etc/environment file with below locale settings in both VM:

LANG=en_US.utf-8
LC_ALL=en_US.utf-8

6. Stop and disable the firewalld service of both VM:
systemctl stop firewalld
systemctl disable firewalld

7. Stop and disable the NetworkManager service of both VM:
systemctl stop NetworkManager
systemctl disable NetworkManager

8. Enable and start network service of both VM:
systemctl enable network
systemctl start network

9. Configure the management interface of both nodes. Edit the file in
/etc/sysconfig/network-scripts/ifcfg-enp0s3 with the following:

Master Thesis UPC, TU/e

Pàg. 7

TYPE=Ethernet
BOOTPROTO=none
DEFROUTE=yes
IPV4_FAILURE_FATAL=no
IPV6INIT=no
NAME=enp0s3
DEVICE=enp0s3
ONBOOT=yes
IPADDR=192.168.0.11 (controller) // 192.168.0.44 (compute)
PREFIX=24
GATEWAY=192.168.0.1
DNS1=8.8.8.8

Remember to put the correct @IP in the IPADDR field depending which VM
you are configuring (controller or compute).

10. Configure the tunnel traffic interface of both nodes. Edit the file in
/etc/sysconfig/network-scripts/ifcfg-enp0s8 with the following:

TYPE=Ethernet
BOOTPROTO=static
IPV4_FAILURE_FATAL=no
IPV6INIT=no
DEVICE=enp0s8
ONBOOT=yes
IPADDR=10.10.10.2 (controller) 10.10.10.3 (compute)
NETMASK=255.255.255.0
DNS1=8.8.8.8

Remember to put the correct @IP in the IPADDR field depending which VM
you are configuring (controller or compute).

11. Disable selinux from both VM in the config file /etc/selinux/config:
SELINUX=disabled

12. Edit the file /etc/sysconfig/network with:
• In the Controller Node: HOSTNAME=controller.localdomain
• In the Compute Node: HOSTNAME=computenode1.localdomain

13. Edit the hostname of both VM:

• In the Controller Node: hostname controller.localdomain
Go to /etc/hostname and change it for controller.localdomain

• In the Compute Node: hostname computenode1.localdomain
Go to /etc/hostname and change it for computenode1.localdomain

Master Thesis UPC, TU/e

Pàg. 8

14. Change the file /etc/hosts of both VM and change it for:
• In the Controller Node:

127.0.0.1 controller controller.localdomain localhost4 localhost4.localdomain4
::1 controller controller.localdomain localhost6 localhost6.localdomain6

• In the Compute Node:

127.0.0.1 computenode1 computenode1.localdomain localhost4 localhost4.localdomain4
::1 computenode1 computenode1.localdomain localhost6 localhost6.localdomain6

15. Reboot both VM.

16. Check ping connectivity in the management network (192.168.0.11 !
192.168.0.44)

17. Check ping connectivity in the tunnel traffic network (10.10.10.2 ! 10.10.10.3).
This traffic should go through the Mininet topology.

3.2. OpenStack installation

1. In the Controller node, install the OpenStack package. In our case, we used the
ocata version.
sudo yum install -y centos-release-openstack-ocata

2. In the Controller node, update the current packages and install the packstack
installer.
sudo yum -y update
sudo yum install -y openstack-packstack

3. Generate the answer file in the Controller node:
packstack --gen-answer-file=/root/answer.txt

4. Edit the answer file /root/answer changing the following parameters:

CONFIG_NEUTRON_OVS_TUNNEL_IF=enp0s8
CONFIG_NEUTRON_OVS_TUNNEL_SUBNETS=10.10.10.0/24
CONFIG_NEUTRON_OVS_BRIDGE_MAPPINGS=extent:br-ex
CONFIG_NEUTRON_ML2_TYPE_DRIVERS=vxlan,flat
CONFIG_PROVISION_DEMO=n
CONFIG_KEYSTONE_ADMIN=admin
CONFIG_COMPUTE_HOSTS=192.168.0.11,192.168.0.14

Master Thesis UPC, TU/e

Pàg. 9

5. Install Openstack. Execute the following command in the Controller node:
packstack --answer-file=/root/answer.txt

6. Wait until the installation is successfully completed. It may take about an hour
depending on your hardware.

7. Configure the file /etc/sysconfig/network-scripts/ifcfg-enp0s3 of Controller
Node replacing the content of the file with the following:

TYPE=OVSPort
NAME=enp0s3
DEVICE=enp0s3
DEVICETYPE=ovs
OVS_BRIDGE=br-ex
ONBOOT=yes

8. Configure the file /etc/sysconfig/network-scripts/ifcfg-br-ex of Controller
Node with the following:

DEVICE=br-ex
DEVICETYPE=ovs
TYPE=OVSBridge
BOOTPROTO=static
IPADDR=192.168.0.11
NETMASK=255.255.255.0
GATEWAY=192.168.0.1
IPV4_FAILURE_FATAL=no
IPV6INIT=no
DNS1=8.8.8.8
ONBOOT=yes

9. Restart the network service using service network restart

10. In the Controller node, acess the OpenStack admin privileges using
source keystonerc_admin

11. Run this command to create the provider network for instances so they can
communicate with the outside world
neutron net-create external_network --provider:network_type flat --
provider:physical_network extent --router:external

12. Run this command to create the subnet attached to the provider network. This
configuration should match the LAN your linux machine is connected to.
neutron subnet-create --name public_subnet --enable_dhcp=False
--allocation-pool start=192.168.0.100,end=192.168.0.120
--gateway=192.168.0.1 external_network 192.168.0.0/24

Master Thesis UPC, TU/e

Pàg. 10

13. Create a network to allocate the VM instances:
openstack network create admin intent

14. Create the subnet attached to the previous network:
openstack network subnet create subnet1 --subnet-range 10.5.5.0/24
--dns-nameserver 8.8.8.8 --network intent

15. Create the router that will connect both networks and add the correct interface:
openstack router create R1

openstack router add subnet R2 subnet1

neutron router-gateway-set R2 external_network

16. Create a Cirros image:
curl -o /root/cirros-0.3.4.img http://download.cirros-cloud.net/0.3.4/cirros-
0.3.4-x86_64-disk.img

openstack image create --min-disk 1 --disk-format qcow2 --file /root/cirros-
0.3.4.img cirros

17. Add rules to the default security group to allow ping and SSH traffic from/to the
instances:
openstack security group rule create --src-ip 0.0.0.0/0 --protocol icmp --ingress

openstack security group rule create --src-ip 0.0.0.0/0 —dst-port 22 —protocol
tcp --ingress

18. Create two instances. One will be located on the controller node and the other on
the compute node. To get the netID parameter use openstack network list.

openstack server create --image cirros --flavor 1 --nic net-id=<netID>
--availability-zone nova:controller:controller.localdomain.com VM1

openstack server create --image cirros --flavor 1 --nic net-id=<netID>
--availability-zone nova:compute:compute.localdomain.com VM2

19. Create floating @IP to access the VM from the external network. The
paramaters subnet_ID and network_ID can be known using openstack subnet
list.

openstack floating ip create --subnet <subnet_ID> <network_ID>

20. The floating @IP will be shown in the output of the previous command. Now
execute:
openstack add floating ip VM1 <floating_IP>

21. Repeat the previous 2 steps to assign an instance to VM2.

Master Thesis UPC, TU/e

Pàg. 11

22. Ping both VM’s through floating @IP

23. SSH both VM’s through floating @IP

24. From VM1, ping VM2 (using the internal @IP assigned to that instance). In our
case, the internal network is 10.5.5.0/24. This traffic should pass through the
Mininet.

