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Abstract

We presenthere an approachto componenfprogramming
which defines languages amools at both the productand
the process levels. Ale productlevel, we allow the use
of already existing languages to write functional
specificationsand implementationsof componentsalso,
we provide a notation to state their non-functional
specifications, which involve operational attributes as
efficiency.Functional specificationscan be employedto
perform prototyping in a mixed execution framework,
which allows the combinationof algebraic specifications
and imperative code, while non-functional specifications

a functionality, normally it is not possibte developone

implementation that is the best in all operational respects.

For the time being, there are many projects
addressingto componentprogrammingin the software
community. We may cite: the STL approach[16] that
extends C++ with a standard library of templates;
RESOLVE [21], which provides lameworkadaptablgo
many programminglanguagesas Ada and C++; and the
Eiffel programminglanguageand environment[18, 19],
which includesa large numberof public libraries. In this
paper, we are going to presédwmProLab,a new project
in the componenfprogrammingarea.ComProLabcanbe

are used to select automatically the best implementation gfewed as structured in three parts thegpresentedn the

everycomponenfppearingin a softwaresystem.At the
processevel, we haveintroduceda set of basic program
development tasks and we halafineda processlanguage
to formulate software process models as particular
combinationsof thesetasks. A processassistantcan be
usedto guide softwaredevelopmenfollowing any model
defined with this language.

1 Introduction

Component programming is a strategy to develop software

systems as the combination of individual software

components, many of them coming from standard software

libraries. A component consists of two sections, a
specificationand an implementation. The specification
describeghe relevantpropertiesof the componentin an
abstractmanner,andit includestwo parts:the functional
one, stating how doesthe componentbehave,and the
non-functional one, whicleclaresadditionalrequirements
referred tosomeoperationalattributes(as efficiency). The
implementation provides executable code for the
component, usually written in an imperative or
object-oriented programming language, anuhitst satisfy
all the propertiesstatedin the specification. Different
software componentswith the same specification may
differ in their implementation; thisappendecausegiven

next three sections:

« The productlevel. We haveadoptedand defined a
set of languages to specindimplementsoftware
components.

¢ The processlevel. We have defined both a
catalogueof tasksrelevantto the developmentof
systems,anda procesdanguageto combinethem
in order to formulate particular software process
models.

« The tools. We have designed many tools for
assisting software developmentin a variety of
ways, emphasisingprototyping and reusability of
(implementation of) components.

For lack of space,and being our main goal an overall

presentation of the project, we have decitiedescribethe

componentsof ComProLabmainly through a general
description followed by examples, without providing

formal definitions. We refer to previous papers [18,/9,

10] to look into some additional details of our approach.

2 Theproduct level

We present here the languagesused to specify and
implement software components in our laboratarydwe
startby determiningthe organisationof componentsnto
modules.Fig. 1 showsthe existenceof four modules.
Two of them correspond to the specification,



distinguishing the functiongdart from the non-functional
one. The other two refdéo the implementation,including
the implementatioritself (the code)andalso a moduleto
record the non-functional behaviour of the module (for
instance,the efficiency of its operations,its degree of
maintainability, etc.). The reasonfor keepingfunctional
and non-functionalinformationin separatesnoduleswill

become clear later on.

specification
FUNCTIONAL NON-FUNCTIONAL
SPECIFICATION SPECIFICATION
MODULE MODULE
implementation
' relation
IMPLEMENTATION BEHAVIOUR
MODULE MODULE
implementation

Fig. 1: Organising software components into modules.

Next, we addresgo the languagesadopted.A main goal
was to obtain an open environment at the product level,
that it could be adaptedto arbitrary specification or
programminglanguages. Evemore, we have decidedto
allow asingle systemto be specifiedand/orimplemented
in more than onéanguage(improving thus reusability of
components,easinessof specification -using different

formalisms in different places [23]-, etc.). To achieve thes¢

goals, we have defined an intermediatelanguagecalled
Merli that includes features to build functional and
non-functional specificationsand implementations. The
tools of our systemwork on Merli specificationsand
implementationsso, in orderto usea particularexisting
languagein ComProLabit is enough to develop a
translatorfrom it to Merli, being not necessarnto adapt
the existing tools to this language ,which would be too

time-consuming. The effort of translation to Merli depends

just on how far from it the source languageis. An
attractive resulbf this approachs that ComProlLabdoes
not require to learn nevanguagedo be used(althoughit

VDM [17], where a model of the componentis
statedandthe specificationis expressednainly by
means of pre and post conditions over the model.
« Algebraic specifications. As in Lardthi1] or OBJ3
[12], the specification consists of a set of
equations.We are particularly interestedin the
possibility of usingdifferent semanticgo interpret
the equations(currently, we are using initial and
behavioural semantics, as Larch does).
In fig. 2, we show the functional specification of a
NETWORK software component, which represents
networks (graphs) with a sef naturalnumbersas nodes,
and unlabelled connections (edges) between them.
NETWORKimports LIST_OF_NATURALto form lists
of nodes.We outline the algebraicspecification.First, it
introduces the type and the operations. Thenethmtions
for the operations appear; note that they may be
conditional. By default, we interprettheseequationsinto
the initial semantics approa¢8]; with this meaning,the
equations can be seen as rulegt manipulateexpressions
of type network until no further simplifications are
possible, obtaining a minimal expression(its normal
form) whichinvolves a minimal subsetof the operations
of the componen(in our case,emptyandadd. However,
in the case of top_sort the key word "behavioural"
receding its declaration breaks this defaulé and so the

st equation is interpreted in the behavioural framework.

functional specification module NETWORK
imports LIST_OF_NATURAL
type network
operations ...as before, except for
behavioural
top_sort (network)returns list_of natural
equations ...
remove(empty, m, n) = empty
[x<>m or y<>n] =>
remove(add(g, m, n), x, y) =
add(remove(g, X, y), m, n)
remove(add(g, m, n), m, n) = remove(g, m, n)
... rest of equations for the component
[belongs(succ(d, m), n)] =>
before(top_sort(d), m, n) = true
end module
Fig. 2: An algebraic specification of the NETWORK
component.

is possible to work directly with Merli, as we are currentlys o Non-functional specifications

doing).

2.1 Functional specifications
For the time being, we considertwo different kinds of
functional specifications:

« Model-orientedspecifications.As in Z [22] or

Non-functional specifications declare which operational
attributes (whatve call NF-propertiesiare relevantto the
component being specified. NF-properties are really
introducedin property modules and then non-functional
specifications justmport them. NF-propertiesmay be of
many different kinds, dependingof the domain of their



values:boolean(e.g., full portability), numerical (e.g.,
degree of reliability), real (e.g., responsetime), by
enumeration of/alues(e.g., kind of userinterface-icons,
menu,commandanguage,..-), string (e.g., programmer
name)andasymptotic(time and spaceefficiency of types
and operations,measuredwith the asymptotic big-Oh
notation as defined in [2]). The set of asymptotic
NF-propertiesboundto a componentis fixed from its
interface. It is possible to declare what we call
measurement units, which represent probtkmmainsizes
and that may be used as constantvalues when stating
efficiency.

Once NF-properties have been selected,
non-functional specifications state restrictions (called
NF-requirements) over the implementations of the
component. So, it is possible to formulate
NF-requirementsuchas "implementationsmust be fully
portable and user interface mii&t by meansof icons” or
"operations should not waste auxiliary space”. Also,
NF-requirements magippearin propertymodulesto state
universal facts about their NF-properties.

Fig. 3 gives a non-functional specification for
NETWORK which imports three property modulesand
states many NF-requirementsover the NF-properties
declaredin them; other NF-requirementsappearin the
property modules themselves.The measurementunits
stand for the number of nodes and the number of
connections in the network. In additon to the
NF-propertiesthat appearin these property modules,
asymptotic properties such as time(sucg and
spacefetwork also comeinto existencewithout explicit
declaration. We remark that while the last two
NF-requirements are up to tpecifier,the first one state
an universal relationship between the numberaafesand
connections.We remark also the possibility to form
hierarchiesof property modules, and this fact (together
with the possibility of declaring derived NF-propertiese
below) allows to create structured catalogues of
NF-properties.

In fact, the non-functional part of Merli, called
NoFun, presentsmore featuresthat the onesshown here.

our laboratory.In fact, unlike the functional case,it is
expected that most ComProLab users will build
non-functionalspecificationswith NoFun, becausef the
lack of notations offering the same capabilitiesn the
componentprogrammingframework(see[20] and [3] as
alternative proposals in this direction).

property module PORTABILITY
properties
boolean fully_portable
end module

property module PROGRAMMER
properties
string programmer_name
boolean external_programmer
end module
property module RELIABILITY
imports PORTABILITY, PROGRAMMER
properties
enumerated reliability = (high, medium, low)
requirements
not fully_portable => reliability <> high
external_programmer and not fully_portable =>
reliability = low
end module
non-functional specification module NETWORK
imports PORTABILITY, PROGRAMMER, RELIABILITY
measur ement units nbnodes, nbconns
requirements
nbconns <= power(nbnodes, 2)
reliability <> low
time(top_sort) < power(nbnodes, 2)
end module

Fig. 3: Non-functional specification of NETWORK using
many property modules.

2.3 Implementations

As it have become the standard in component
programming, we have chosen the object-oriented
paradigm to implement components;also, imperative
languages may besed.Almost all the constructionghat
Merli provides are the classicalones in this paradigm
(genericity, inheritance, etc.); however, a particular
requirementmust be pointed out: every implementation
should include an abstractionfunction [13] to map a

For instance, it is possible to define derived NF—propertie?Jrogram object to thealueit representdhe existenceof

which values are computed from other ones, thay also
be derived as well. Sdt, is possibleto createhierarchical
libraries of NF-propertiesaccordingto standardsas [14,
15], defining generalsoftware attributes (maintainability,
efficiency, etc.)in termsof more specificones.Also, we
mentionthe possibility to bind NF-propertiesto all the
componentsn a softwaresystemat once, avoiding then
explicit import in everycomponentWe think that these
and other featuresmake NoFun powerful enoughto be
interesting in its ownandthis is why we areusingit in

this function is requiredby the mixed executiontool we
will present in the section 4.

We presentnext an abstraction function for an
implementation of networks. It is characterised by the type
of return, TERMnetworR, which is an instanceof a
generic (and predefined) type TERM to represent
expressions of any kind. The operatiangr this type are
the onesdefinedin the signatureof the componentNote
that the abstractionfunction appearsin recursive form.



While at first glance itould seemthat it is not efficient,
section 4 will show that it is often the other way round.
type network = “nodeend type
private type node =record

from, to: integer; next: “node

end type

function abs_net (g: network)jeturns t:TERM(network)
if g = NIL then t := empty
else t := add(abs_net(t*.next), t*.from, t*.to)
endif

end function

Fig. 4: An abstraction function for NETWORK.

2.4 Non-functional behaviour
Non-functional behaviour of implementations includes:

the one hand, assignments to all the NF-properties declarB

in the non-functional specificationpn the other hand,
NF-requirementsstated over the implementations of
imported componentsto make surethat the assigned
values really hold. So, it ipossibleto expresshings as:
"the responsetime of the operationlist_bookswill not
exceed one minutgrovidedthat the sorting algorithm for
the set of books is not quadratic ovtke size of this set".
As an alternative, an NF-requirement may be a selection
an implementation directly by its name.

Fig. 5 gives a behaviour module for an
implementation INpPNETWORK of NETWORK the
NF-requirement over LIST_OF_NATURAL must be
satisfied by the implementation selected for this
component insidempNETWORK

behaviour module for ImpNETWORK
fully_portable; reliability = high

time(succ) = nbnodes; ...
requirementson LIST_OF_NATURAL:
fully_portable and time(put) = 1
end module

Fig. 5: Behaviour module for an implementation of the
NETWORK component.

In the general case, a behaviour modukbey include a list

of NF-requirementsover every imported component;
NF-requirementsin the list are consideredin order of

appearance (which corresponds toulseal caseof having
requirementswith different degreesof importance).For
instance, a NF-requiremeater LIST_OF_NATURALINn

ImpNETWORKcould be: first, implementationmust be
as reliable as possiblegxt, the costof the operationsto

build a list and their auxiliary spacemust be as fast as
possible (i.e., O(1) in the big-Oh notation); last, the
implementationshould be fully portable. The list of

NF-requirements stating this constraint will be:

requirements on LIST_OF_NATURAL:
max(reliability);
time(empty, put) = 1 and
space(ops(LIST_OF _NATURAL)) = 1;
fully_portable

3 The process level

We describe in this section a sdtprocesstasksaimedat
supporting system development in  component
programming, emphasisingprototyping and component
reusability. In the generalase,prototyping could involve
both functional specificationsand implementations.The
tasksidentified in this catalogueact as primitives of a
gpcess language, which is also outlined here.

3.1 A catalogue of tasks

We have identified a set of tasks which cover all the
aspects of component programming we are dealingiwith
ComProLab. The tasks are module-oriented; this satg
all of themarereferredto one or more particularmodules
from all kinds: functional specification, non-functional
ghecification, implementation, behaviour and property
modules.Many taskswill involve also standardlibraries
of componentsThey may be left temporally incomplete
while performing other ones, or some of them may be
executed simultaneously, provided that relationships
betweentasks are not violated (see below); also, many
tasks may be completdsy doing nothing (for instancea
component implementation may be left untested).
Actually, tasksare organisednto more specific subtasks,
but we arenot going to addressthis issuein the paper.

programmer_name = "Franch"; not external_programmerThe tasks are of three different kinds: for building

functional specifications,for building non-functional
specifications and for building implementations.

It is clear that thesetasks satisfy some precedence
relationshipsthat must be followed in orderto developa
correctdesignfor a software system.To modelisethese
relationships, we have definpcecedence graphsoundto
particular modules (i.erelationshipsare module-oriented,
as well as tasks), such that there is a node for every task
the catalogueandthereis an edgefrom task u to task v
whenevertask u must be performedbefore than task v1.
The process language presented in the next subsedgtion
allow to establishrelationshipsbetweentasks associated
to different components.

1 |n fact, these relationships between subtasks can be
slightly modified with relationships between subtasks.



3.2 Software process modelling

Once we have defined a catalogue of development tasks an

the relationshipsthey should follow, we focus in the
problem ofdefining particular softwareprocessmodelsas
valid combinations of these tasks.

Given the modelisationof precedenceelationships
using graphs, we can considedevelopmenstrategyas a
set of new edges binding nodes of these graphs.
Sometimes,edgeswill relate tasks (nodes)in the same
graph, to say things like "theinctional specificationof a
componentmust be developedbefore the non-functional
one"; however,in the general case, edgeswill involve

tasks appearing in graphs bound to different modules, as i

"it is necessary to specify all ttemponentsmportedby
a componenM before any implementation ™ is built".
Also, we definea kind of grouping mechanismto allow
the statementof facts as "functional and non-functional
specification of a component must take plas&a whole".
As a result, we identify two different elements to
formulate developmentstrategies:rules and groupings,
which are introduced below.

3.2.1 Precedence rules

We characterisesoftware processmodelsby adding new
precedenceaelationshipsbetweentasks. We define these
relationshipsas a pair (calledrule hereafter)eft -> right,
whereleft andright are setsof tasks. The meaningof the
rule is: if the tasks appearing left have beercompleted,
then all the tasks appearingin right can start to be
executedjn otherwords,the rule is addingan edgefrom
every task (node) appearingleft to everytask appearing
in right. Once again, let us remark that tasksdefinedat
the modulelevel; asa result, ruleswill be parameterised
by the modules appearing in tasks.

Software process models agrcapsulateth strategy
modules It is possible to combine existing strategy
modulesto form new ones, adding optionally new rules
and groupings. This property supports incremental
development of strategies as combinatiosiafpler ones,
and improves understandabilityand reusability of the
modules. Fig. 6 shows a module that determakid of
bottom-up specification strategy: before specifying a
componenM (with the tasksFspecifyand NFspecify, it
is necessary to specify all the componeargsdby M; so,
many (component-boundprecedencgraphsare involved.
As an example,we show in the figure the precedence
graphs for a system with three components with
specifications 4, Anf), (B, Bnf) and(C, Cnf) (functional
and non-functionalparts)suchthat (A, Anf) imports the
other two.Note the use of predefinedanguageconstructs
("for all*) and predicates ("used_in").

strategy BOTTOM_UP_SPECIFICATION

d X, Z: functional_specification;
Xnf, Znf: non_functional_specification

for all Zin used_in(X):
Fspecify(Z) -> Fspecify(X), NFspecify(X, Xnf)
NFspecify(Z, Znf) -> NFspecify(X, Xnf)

end module

NFspecify(B, Bnf
\

define(B)

\ i \ \ N
FspeC|fy(B,\>%§

/ Fspecify(C\/ 3
défine(C) <

N \Especify (G, Cnf)/

Fig. 6: A strategy module and some new relationships
resulting from it.

Fspecify(A)

NFspecify(A, Anf)l

3.2.2 Grouping tasks

We introduce here some notation to cover the need of
grouping some related tasks, all of them usually referred to
the same component. This grouping is expressedby
enclosing the set of tasks between parenthesis,
(taskl, ..., taskn)The meaningof this groupingis: once
a task fromtaskl, ..., tasknis started,developmenmust
completeall of them beforestartingany othertask. This
kind of mechanisnis a meanto form new tasks as the
joint of existing ones.

Note that grouping doesot statenothing aboutthe
order of execution of these tasks (this is dosimg rules);
also, note that grouping does not oblige neither to
complete a task before starting others ofgh&up nor the
other way round (for instance,the n tasks may be
simultaneously in execution ifilesallow this situation).
In fact, groupingscan be formulatedin termsof tasks: a
grouping (taskl, ..., taskn) adds an edge from every
predecessoof every task in taskl, ..., tasknto every
successor of every task task1, ..., tasknso,the n tasks
must infallibly be carried out as a whole.

Fig. 7 showstwo examplesof grouping. The first
strategy module forces functional and non-functional
specificationof a componento be performedaltogether.
As component precedencegraphs do not include any
precedence relationship between thesettvgis, any order
of executionandstate of completionis possible.In the
secondone, we showthe useof quantifiersin grouping;
the modulestatesthat all the functional specificationsof
imported components must take place as a wiotally,



we include a third strategy module that shows how
strategies may be built in an incremental manner.

strategy WHOLE_SPECIFICATION
M:functional_specification;
Mnf:non_functional_specification
(Fspecify(M), NFspecify(M, Mnf))
end module

strategy SPECIFICATION_OF_USED_MODULES
M, Z:functional_specification;
(for all Zin used_in(M): Fspecify(Z))
end module

strategy BOTTOM_UP_WHOLE_SPECIFICATION
combines BOTTOM_UP_SPECIFICATION,
WHOLE_SPECIFICATION

end module

Fig. 7: Three new strategy modules with groupings.

4 Thetools

We presentin this sectionthe tools of ComProLab.We

focus on those we think are the most relevant ones: a
mixed executionsystem, to support prototyping with

specificationsand implementations;an implementation
selection algorithm, to select automatically the best
implementationof componentsn their contextof use; a
tool for computing the efficiency of programs;and a
process development assistant, parameterisedby the
particular process modbking used.The first threetools,
which work at the product level, manipulate Merli

specificationsand programs; software written in others
languages requires thus a previous translation step.

4.1 Mixed execution

A point that is often arguedagainstformal specifications
is the gap betweenthem and the final software system.
Some approachedry to fill this gap by introducing
transformation techniques thatitomaticallyderive correct
implementationdrom specifications.Currently, most of
theseapproachegpresentsome limitations that difficult
their actual success in the industrial community.

We propose here a different framework that alldavs
create preliminary prototypes that combine algebraic
functional specifications and implementations in an
arbitrary manner. This i® say, aninitial prototypemay
be defined consisting of componentsfor which just a
specificationexists, and then theymay be implemented
one by one, obtaining at any stage an executable
prototype; furthermore, prototypirig possibleevenwith
componentgartially implementedmaking thus possible
to implement and test operations one by one. Orotiher
hand, there is no need to specify all the comporniantise

system;someof them may be directly implemented,and
prototypingwill alsobe possiblein this case.We have
exploredin previousworks[1, 6, 7] the conditionsthat

should be fulfilled in order to have successful prototyping.

The mixed executionframework combinesa term
rewriting system to work with specificationsand an
interpreter to deal with implementatiornihe equationsof
the algebraicspecificationare interpretedas rewrite rules
oriented from left to right. The crucial point during
executionis value passingfrom the rewriting systemto
the interpreterandvice versa.The abstractiorfunction of
implementations play a crucial role in this
communication.Let A and B be two componentssuch
thatA is only specified whild has bothspecificationand
implementation, and such thaintroduces a typé which
is representedomehowin the implementation,ncluding
an abstraction functioabs If A containsa rewriting rule

given a particular data structure str built with the
implementation of in B, the rewriting rule is applicable
over str if abs(str)matchesx. On the other hand,if we
have an expression x of type t coming from a
manipulation done with the rewriting system, iteisough
to execute thigxpressiorusing the implementationof B
to obtain a data structure.

Fig. 8 showsan exampleof mixed execution.We
assume a partial implementation of NETWORK
providing a type representatiorby adjacencylists, the
abstraction function and thimplementationof emptyand
add Prototyping in this situation may involve the
executionof remove(x,1, 2), being x a data structure.
Sinceremoveis not implementedx is convertedinto an
equivalentexpressionwith the abstractionfunction, and
the resultingterm is rewritten using the equationsshown

in fig. 2, obtaining its corresponding normal form that can

be transformed into a data structure adajirexecutingthe
operationscontainedin the nodesof the term using the
partial implementation dNETWORK

It is clear that mixedxecutionis a time-consuming
technique. However, ghouldbe notedthat it takesplace
only during prototyping(not in the final version of the
system);in this stage,we areworried abouttesting both
systemfunctionality and implementationissues(absence
of errors in the code, user-interface,etc.), not about
efficiency. On the other hand, we have defined some
mechanisms to improve execution time. We remakkd
of lazy evaluationto find out if a rewriting rule may be
appliedor not; if the abstractionfunction is providedin
recursive form, it may be evaluatedrtially just to find a
rewriting rule matching theieceof term built. In fig. 8,
just an application of the abstractiumction is necessary
to apply the appropriate rewrite rule.
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Fig. 8: An example of mixed execution.

4.2 Automatic selection of implementations

Non-functional specifications and non-functional
behaviourmay be usednot just as additionalinformation
of components, but also i&n operativeway to selectthe
best implementation for a componénta contextof use.
So, we have built an algorithm for selecting
implementations of software components with a
NF-behaviour that satisfy the requirements put on them.
Given an implementation Imp, the algorithm
proceeds by comparirtfpe NF-requirementstatedin Imp
over the imported componentsC1, ..., Ck with the
NF-behaviourappearingn the implementationsof these
C1, ..., Ck. In order to be able to perform these

proceed. For instance, if we suppose that the
implementation ImMpNETWORK (see fig. 5) for
NETWORK is selected inside the implementation
ImpMAIN of a component MAIN that imports
NETWORK thenanimplementationfor the component
LIST_OF_NATURALimportedby NETWORK should
also be selected inside IMpNETWORK all these
selections are made following the NF-requirements
appearingin the correspondingNF-behaviour modules.
More than this, as far as the software system is a hierarchy
of software components, NF-requirements in  upper
modulesmust be taken somehowinto accountin lower
ones[9]. For instance,the NF-behaviourof ImpMAIN
(seefig. 9) could also state some NF-requirementover
LIST_OF_NATURAL which must be combined with
those ones appearinginside the behaviour module of
ImMpNETWORK By default, requirementsare combined
and then the implementationof LIST _OF_NATURAL
inside IMpNETWORK must satisfy the constraint
"time(put) = 1 and fully_portable and dynamic_storage",
althoughthere are some constructsin the languagethat
allow to change this behaviour.

behaviour module for ImpMAIN
behaviour
requirements
on NETWORK: time(top_sort) <= power(nbnodes/| 2)
on LIST_OF_NATURAL: dynamic_storage
end module

Fig. 9: A module for stating NF-behaviour of a
component using NETWORK.

Finally, it mustbe notedthat the algorithm may selecta

comparisons, relationships between the measurement unf@mponentwith different implementationsin  different

shouldbe stated;then, it is possibleto testif conditions
such as "nbnodes* nbconns< power(nbnodes?)" are
satisfied.Theserelationshipsmay appearin any place of
the software system, but it is advisablenot to include
them in generic components H&E TWORK becausghey
may depend on the contexherecomponentsappear.So,
two different software systemsusing NETWORK may
statedifferent relationshipsbetweenthe numberof nodes
and the number of connectionsof their networks; for
instance,a system may state "nbconns= nbnodes"to
modelisea ring computernetwork, while the other may
declare "nbconns = power(nbnodes2)" (the maximum
value allowed by the non-functional specification of
NETWORKto represent fully connected networks.

Note that, in fact, the algorithm will ndiind single
implementationsto software componentsbut trees of
implementations, becausa implementationmay import
other componentsfor which the algorithm must also

places of the system. This situation may be problenifatic
two objects of the sametype interact during program
execution, as it could happen if we try to concatenate a list
implementedwith an array to a list implemented by
pointers. The abstractionfunction could be a mean to
transformone of the valuesfrom one implementationto
another, but as this woulkdke a lot of executiontime in

the final version of the system, we have curreptferred

to reject this possibility (although this decision could
change in the future).

4.3 Computing values of NF-properties

We addressnow to the computationof the (asymptotic
worst-case) execution time of all the operations of
components, the space wasted in representing the values of
all their types, and the auxiliary space needeckarcuting

the operations.

Efficiency can be computedfrom three kinds of



information. On the one hand, we have defined some
semantic rules attached to the grammar of Mentirtwide
a default computation. For instance,the semanticrule
bound to (a restrictefbrm of) the conditionalinstruction,
"if <expr>then <instr>else <instr>end if", is:
time(<conditional>) =

time(<expr>)+time(<instr>-1)+time(<instr>-2)
(The sum must be interpretedin the asymptoticbig-Oh
notation ag2] does-union of setof functions-.The "-1"
and "-2" are the meanto distinguish betweenrepeated
appearancesof the same non-terminal symbol in a
grammar rule.)

In many situations, however, efficiency cannot be
establishedust from programsyntax. The most obvious
casehasto be with loops: the executiontime of a loop
depends on the number of times itéally performed,and
this informationis not inferable from the syntax of the
loop. This implies that the semantic rulefor the loop
"while <expr> do <instr> end do" will include an
additional item of informationNB_TIMES such that:

time(<loop>) =

NB_TIMES * (time(<expr>) + time(<instr>))
Every loop in the program, then, will include an
assignment tahis item, possibly involving one or more
measurement units, as INB_TIMES = nbnodes".These
assignmentswill appearas annotationsin the code of
programs, andhe translationto Merli is requiredto keep
them without any modification, to be used by the tool.

Even in this situation, it may happenthat the
complexity of a piece of code cannot be determieeattly
with semanticrules. For instance,fig. 10 presentstwo
nestedoops to visit all the connectionf a networkN;

the operations dfIST_OF_NATURAIlare the usual ones

to get theelementsof a list one after the other. The
assignmentsto NB_TIMES reflect the worst-case
situation, in which every node is connectedwith the
others,the lists returnedfrom succ being then of length
nbnodes As a result, the semantic rulecomputesthe
complexity of this piece of program as
powerfibnodes?)) * k, beingk the cost of manipulating
the currentnodein Isucg and assumingthat operations
over lists take constanttime andthat all_nodesand succ
are as fast as they can be (i@gportionalto the number
of involved items). However, there are some
implementations oONETWORKwhich carry out thidoop
in atime proportionalto the numberof connections;f
this number is smaller than powerfibnodes 2), the
complexity obtained is not accurate anymore.

Fig. 11 showsthe solution to this problem. We
introduce a third kinaf non-functionalinformation, what
we callcomponent skeletonwhich definepatternsof use

of components with theicomplexity andthat are declared
in skeleton modules, imported in non-functional
specifications. Skeletons are piecepaigramsinvolving
function calls, variables and non-terminal symbols (as
"<sent>") which can be instantiated. Note that the
program of fig. 10 matches with the skeleton.

Inodes := NETWORK.all_nodes(N)
LIST_OF_NATURAL.reset(Inodes)
while not LIST_OF_NATURAL.end(Inodesjo
-- NB_TIMES = nbnodes
Isucc := NETWORK.succ(N, current(Ilnodes))
LIST_OF_NATURAL.reset(Isucc)
while not LIST_OF_NATURAL.end(lsucciio
-- NB_TIMES = nbnodes
manipulation of current(lsucc)
(* taking O(k) time *)
LIST_OF_NATURAL.next(Isucc)
end while
LIST_OF_NATURAL.next(Inodes)
end while

Fig. 10: A loop over networks.

skeleton module network_traversafor NETWORK
Inodes := NETWORK.all_nodes(N)
LIST_OF_NATURAL.reset(Inodes)
while not LIST_OF_NATURAL.end(Inodegjo
Isucc := NETWORK:.succ(N, current(Inodes))
LIST_OF_NATURAL.reset(Isucc)
while not LIST_OF_NATURAL.end(Isucalo
<sent>
LIST_OF_NATURAL.next(Isucc)
end while
LIST_OF _NATURAL.next(Inodes)
end while
end skeleton module

Fig. 11: A skeleton for NETWORK.

Implementationamust give valuesto skeletonsin their
NF-behaviour modules, as if they warermal asymptotic
NF-properties;the assignedvalueswill usually involve
the efficiency of the non-terminalsymbols appearingin
the skeleton, which will be unknown as it may be
different in different instancesof the skeleton. So, an
adjacency-listepresentatiomf NETWORKwould assign
(nbnodest nbconn} * time(<sent) to the NF-property
timg(network_traversg| while an adjacency-matrixone
would assign powenpnodes?2) * time(<sent), requiring
in both cases constant cost in list operations.

Once an instanceof a pattern skeleton is found
(applying a kind of pattern-matchindechniquesimilar to
the one involved in term-rewriting), its complexity is
determinedfrom that statedin the NF-behaviourof the
involved implementations. In the code of fig. 1Be final
cost in the adjacency-list case would be



(nbnodest nbconn3 * k, better tharbeforewhenit holds assistantable to deal with any model defined with the
that nbconns < nbnodes using the adjacency-matrix procesdanguageMany of thesecomponentshave been
representation, however, the complexity remains the samgresented in more detail in previous workast this is the
We remark that is precisethis ability to obtain different  first time we have integrated all of olimes of researchn
values for the same piece of program what makes a single project.

components skeleton attractive. We think that the most interesting points of our
approach are the following:
4.4 The process model assistant » The product and the procdssels areintegratedin
The process model assistant is desigioetlelp developers an unified framework. This results in an
in building systemsusing a strategy defined with the homogeneous approach, where languages, &nals
procesdanguagentroducedin section3. In other words, methods in both levels are closely related.
the assistantis parameterisecby the particular process ¢ Dueto the open architectureof ComProLab,the
model used to develop the system. To achievegthdd, it laboratory maybe usedwith arbitrary specification
offers at everymomentthe tasksthat do not violate the and programming languagesin the component
precedenceand groupingsstatedin the strategymodule programmingframework;this featureis not usual
that define the process model. It is worttptuint out that in component programming projects, tmarmally
various tasks may be carried outparallel respectinghis work with a fixed (small) set of languagesThus,
correctness condition. we could use Z, Larch and OBJ3 to specify
A particular point of interest is system components,and C++, Ada95 and Eiffel to
redevelopmentWhen it is necessaryto modify one or implement them, just by building teanslatorfrom
more componentsin the system, (part of) the tasks these languages to the intermediateguageMerli.
corresponding tthesecomponentsnust be replayed but We defined Merli complete enough to supgbese
this may require to replay tasks bound to other translations from a wide class of those languages.
components. In the exampdé fig. 6, if the specification « Non-functional specificationsand non-functional
of the componerB is modified, the taskEspecify(A)and requirement®f softwarearetakeninto accountin
NFspecify(A,Anf) must be performedagainto avoid the the laboratory. This is a point that makes our
violation of precedenceules. In this case,the assistant approachattractive, since we know of very few
allows the automatic execution of these taskthag were other approachesaddressing to non-functional
executed before. issuesof softwarein the componentprogramming

field, although it iswidely recognisedhat they are
as important as functional ones.fhact, [20] is the
only approach that we know in thigld that treats
a particular non-functional feature (efficiency)
together with the functional ones.

« Use of formal specificationsis supportedby a
prototyping tool able to execute programs at
intermediate stage afevelopmentcombining code
andspecificationdn an arbitraryway. Thetool is
aimedat coveringthe gapthat existsfor the time
being between the initial specification of the
problem and the final delivered system. Other
projectssupport this kind of execution, but we
only know [4] providing almost identical features
from a compilation point of view.

« We havedefineda procesdanguageconsisting of
very few elements to make it easyl¢éarnanduse:
a small catalogue of tasks with well-defined
relationships, two mechanisms to relate tasks (rules
andgroupings)and a few additional constructions
(as quantification and many built-in functions).

5 Conclusions

We have presented ComProLab, a laboratory for
component programminthat defineslanguagesandtools
at both the product and process levels.

Concerning languages, we alldte useof arbitrary
specification and programming languages in the
componentprogramming framework and we define an
intermediate languag®erli, usedasa commonnotation
which specifications androgramsare translatedo; Merli
providesfeaturesto state non-functional information of
components.Also, a languageis introducedto define
software processmodels as the composition of many
developmenttasks establishing some precedenceand
grouping relationships between them.

Concerning tools, the laboratory includes an
execution module to prototype systems combining
imperative code with algebraic specifications in an
arbitrary manner; a todb selectthe bestimplementation
of componentsin systems from the non-functional
information statedin componentsa tool to computethe
efficiency of implementations; an a process model



* Software process models may be defined
incrementally, from the combination of small
strategymodules,eachone of them addressingo
particular points of the model. Weelievethat this

Conferenceon Reliable Software Technologies(to be
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Verlag, 1997.
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