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Abstract
We present here an approach to component programming
which defines languages and tools at both the product and
the process levels. At the product level, we allow the use
of already existing languages to write functional
specifications and implementations of components; also,
we provide a notation to state their non-functional
specifications, which involve operational attributes as
efficiency. Functional specifications can be employed to
perform prototyping in a mixed execution framework,
which allows the combination of algebraic specifications
and imperative code, while non-functional specifications
are used to select automatically the best implementation of
every component appearing in a software system. At the
process level, we have introduced a set of basic program
development tasks and we have defined a process language
to formulate software process models as particular
combinations of these tasks. A process assistant can be
used to guide software development following any model
defined with this language.

1  Introduction
Component programming is a strategy to develop software
systems as the combination of individual software
components, many of them coming from standard software
libraries. A component consists of two sections, a
specification and an implementation. The specification
describes the relevant properties of the component in an
abstract manner, and it includes two parts: the functional
one, stating how does the component behave, and the   
non-functional one, which declares additional requirements
referred to some operational attributes (as efficiency). The
implementation provides executable code for the
component, usually written in an imperative or       
object-oriented programming language, and it must satisfy
all the properties stated in the specification. Different
software components with the same specification may
differ in their implementation; this happens because given

a functionality, normally it is not possible to develop one
implementation that is the best in all operational respects.

For the time being, there are many projects
addressing to component programming in the software
community. We may cite: the STL approach [16] that
extends C++ with a standard library of templates;
RESOLVE [21], which provides a framework adaptable to
many programming languages, as Ada and C++; and the
Eiffel programming language and environment [18, 19],
which includes a large number of public libraries. In this
paper, we are going to present ComProLab, a new project
in the component programming area. ComProLab can be
viewed as structured in three parts that are presented in the
next three sections:

• The product level. We have adopted and defined a
set of languages to specify and implement software
components.

• The process level. We have defined both a
catalogue of tasks relevant to the development of
systems, and a process language to combine them
in order to formulate particular software process
models.

• The tools. We have designed many tools for
assisting software development in a variety of
ways, emphasising prototyping and reusability of
(implementation of) components.

For lack of space, and being our main goal an overall
presentation of the project, we have decided to describe the
components of ComProLab mainly through a general
description followed by examples, without providing
formal definitions. We refer to previous papers [1, 7, 8, 9,
10] to look into some additional details of our approach.

2  The product level
We present here the languages used to specify and
implement software components in our laboratory, and we
start by determining the organisation of components into
modules. Fig. 1 shows the existence of four modules.
Two of them correspond to the specification,



distinguishing the functional part from the non-functional
one. The other two refer to the implementation, including
the implementation itself (the code) and also a module to
record the non-functional behaviour of the module (for
instance, the efficiency of its operations, its degree of
maintainability, etc.). The reason for keeping functional
and non-functional information in separated modules will
become clear later on.
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Fig. 1: Organising software components into modules.

Next, we address to the languages adopted. A main goal
was to obtain an open environment at the product level, so
that it could be adapted to arbitrary specification or
programming languages. Even more, we have decided to
allow a single system to be specified and/or implemented
in more than one language (improving thus reusability of
components, easiness of specification -using different
formalisms in different places [23]-, etc.). To achieve these
goals, we have defined an intermediate language called
Merlí that includes features to build functional and     
non-functional specifications and implementations. The
tools of our system work on Merlí specifications and
implementations; so, in order to use a particular existing
language in ComProLab it is enough to develop a
translator from it to Merlí, being not necessary to adapt
the existing tools to this language, which would be too
time-consuming. The effort of translation to Merlí depends
just on how far from it the source language is. An
attractive result of this approach is that ComProLab does
not require to learn new languages to be used (although it
is possible to work directly with Merlí, as we are currently
doing).

2.1  Functional specifications
For the time being, we consider two different kinds of
functional specifications:

• Model-oriented specifications. As in Z [22] or

VDM [17], where a model of the component is
stated and the specification is expressed mainly by
means of pre and post conditions over the model.

• Algebraic specifications. As in Larch [11] or OBJ3
[12], the specification consists of a set of
equations. We are particularly interested in the
possibility of using different semantics to interpret
the equations (currently, we are using initial and
behavioural semantics, as Larch does).

In fig. 2, we show the functional specification of a
NETWORK software component, which represents
networks (graphs) with a set of natural numbers as nodes,
and unlabelled connections (edges) between them.
NETWORK imports LIST_OF_NATURAL to form lists
of nodes. We outline the algebraic specification. First, it
introduces the type and the operations. Then, the equations
for the operations appear; note that they may be
conditional. By default, we interpret these equations into
the initial semantics approach [5]; with this meaning, the
equations can be seen as rules that manipulate expressions
of type network until no further simplifications are
possible, obtaining a minimal expression (its normal
form) which involves a minimal subset of the operations
of the component (in our case, empty and add). However,
in the case of top_sort, the key word "behavioural"
preceding its declaration breaks this default rule and so the
last equation is interpreted in the behavioural framework.

 functional specification module NETWORK
imports LIST_OF_NATURAL
type network
operations ...as before, except for
behavioural
      top_sort (network) returns list_of_natural
equations  ...
  remove(empty, m, n) = empty
  [x<>m or y<>n] =>
remove(add(g, m, n), x, y) =
add(remove(g, x, y), m, n)

  remove(add(g, m, n), m, n) = remove(g, m, n)
... rest of equations for the component

  [belongs(succ(d, m), n)] => 
before(top_sort(d), m, n) = true

 end module
Fig. 2: An algebraic specification of the NETWORK

component.

2.2  Non-functional specifications
Non-functional specifications declare which operational
attributes (what we call NF-properties) are relevant to the
component being specified. NF-properties are really
introduced in property modules and then non-functional
specifications just import them. NF-properties may be of
many different kinds, depending of the domain of their



values: boolean (e.g., full portability), numerical (e.g.,
degree of reliability), real (e.g., response time), by
enumeration of values (e.g., kind of user interface -icons,
menu, command language, ...-), string (e.g., programmer
name) and asymptotic (time and space efficiency of types
and operations, measured with the asymptotic big-Oh
notation as defined in [2]). The set of asymptotic        
NF-properties bound to a component is fixed from its
interface. It is possible to declare what we call
measurement units, which represent problem domain sizes
and that may be used as constant values when stating
efficiency.

Once NF-properties have been selected,            
non-functional specifications state restrictions (called  
NF-requirements) over the implementations of the
component. So, it is possible to formulate               
NF-requirements such as "implementations must be fully
portable and user interface must be by means of icons" or
"operations should not waste auxiliary space". Also,    
NF-requirements may appear in property modules to state
universal facts about their NF-properties.

Fig. 3 gives a non-functional specification for
NETWORK, which imports three property modules and
states many NF-requirements over the NF-properties
declared in them; other NF-requirements appear in the
property modules themselves. The measurement units
stand for the number of nodes and the number of
connections in the network. In addition to the             
NF-properties that appear in these property modules,
asymptotic properties such as time(succ) and
space(network) also come into existence without explicit
declaration. We remark that while the last two            
NF-requirements are up to the specifier, the first one state
an universal relationship between the number of nodes and
connections. We remark also the possibility to form
hierarchies of property modules, and this fact (together
with the possibility of declaring derived NF-properties, see
below) allows to create structured catalogues of           
NF-properties.

In fact, the non-functional part of Merlí, called
NoFun, presents more features that the ones shown here.
For instance, it is possible to define derived NF-properties,
which values are computed from other ones, that may also
be derived as well. So, it is possible to create hierarchical
libraries of NF-properties according to standards as [14,
15], defining general software attributes (maintainability,
efficiency, etc.) in terms of more specific ones. Also, we
mention the possibility to bind NF-properties to all the
components in a software system at once, avoiding then
explicit import in every component. We think that these
and other features make NoFun powerful enough to be
interesting in its own, and this is why we are using it in

our laboratory. In fact, unlike the functional case, it is
expected that most ComProLab users will build        
non-functional specifications with NoFun, because of the
lack of notations offering the same capabilities in the
component programming framework (see [20] and [3] as
alternative proposals in this direction).

property module PORTABILITY
propert i e s

boolean fully_portable
end module
property module PROGRAMMER

propert i e s
string programmer_name
boolean external_programmer

end module
property module RELIABILITY

imports PORTABILITY, PROGRAMMER
propert i e s

enumerated reliability = (high, medium, low)
requirements

not fully_portable => reliability <> high
 external_programmer and not fully_portable =>

reliability = low
end module
non-functional specification module NETWORK
  imports PORTABILITY, PROGRAMMER, RELIABILITY

measurement units nbnodes, nbconns
requirements

nbconns <= power(nbnodes, 2)
reliability <> low
time(top_sort) < power(nbnodes, 2)

end module

Fig. 3: Non-functional specification of NETWORK using
many property modules.

2.3  Implementations
As it have become the standard in component
programming, we have chosen the object-oriented
paradigm to implement components; also, imperative
languages may be used. Almost all the constructions that
Merlí provides are the classical ones in this paradigm
(genericity, inheritance, etc.); however, a particular
requirement must be pointed out: every implementation
should include an abstraction function [13] to map a
program object to the value it represents The existence of
this function is required by the mixed execution tool we
will present in the section 4.

We present next an abstraction function for an
implementation of networks. It is characterised by the type
of return, TERM(network), which is an instance of a
generic (and predefined) type TERM to represent
expressions of any kind. The operations over this type are
the ones defined in the signature of the component. Note
that the abstraction function appears in recursive form.



While at first glance it could seem that it is not efficient,
section 4 will show that it is often the other way round.
type network = ^node end type
private type node = record

from, to: integer; next: ^node
end  type
function abs_net (g: network) returns t:TERM(network)

  if g = NIL then t := empty
  else t := add(abs_net(t^.next), t^.from, t^.to)
 end i f

end function

Fig. 4: An abstraction function for NETWORK.

2.4  Non-functional behaviour
Non-functional behaviour of implementations includes: on
the one hand, assignments to all the NF-properties declared
in the non-functional specification; on the other hand,  
NF-requirements stated over the implementations of
imported components to make sure that the assigned
values really hold. So, it is possible to express things as:
"the response time of the operation list_books will not
exceed one minute provided that the sorting algorithm for
the set of books is not quadratic over the size of this set".
As an alternative, an NF-requirement may be a selection of
an implementation directly by its name.

Fig. 5 gives a behaviour module for an
implementation ImpNETWORK of NETWORK; the    
NF-requirement over LIST_OF_NATURAL must be
satisfied by the implementation selected for this
component inside ImpNETWORK.

 behaviour module for ImpNETWORK
     fully_portable; reliability = high
     programmer_name = "Franch"; not external_programmer
     time(succ) = nbnodes; ...
      requirements on LIST_OF_NATURAL:

fully_portable and time(put) = 1
 end module

Fig. 5: Behaviour module for an implementation of the
NETWORK component.

In the general case, a behaviour module may include a list
of NF-requirements over every imported component;  
NF-requirements in the list are considered in order of
appearance (which corresponds to the usual case of having
requirements with different degrees of importance). For
instance, a NF-requirement over LIST_OF_NATURAL in
ImpNETWORK could be: first, implementation must be
as reliable as possible; next, the cost of the operations to
build a list and their auxiliary space must be as fast as
possible (i.e., O(1) in the big-Oh notation); last, the
implementation should be fully portable. The list of   
NF-requirements stating this constraint will be:

     requirements on LIST_OF_NATURAL:
max(reliability);
time(empty, put) = 1 and
         space(ops(LIST_OF_NATURAL)) = 1;
fully_portable

3  The process level
We describe in this section a set of process tasks aimed at
supporting system development in component
programming, emphasising prototyping and component
reusability. In the general case, prototyping could involve
both functional specifications and implementations. The
tasks identified in this catalogue act as primitives of a
process language, which is also outlined here.

3.1  A catalogue of tasks
We have identified a set of tasks which cover all the
aspects of component programming we are dealing with in
ComProLab. The tasks are module-oriented; this is to say,
all of them are referred to one or more particular modules
from all kinds: functional specification, non-functional
specification, implementation, behaviour and property
modules. Many tasks will involve also standard libraries
of components. They may be left temporally incomplete
while performing other ones, or some of them may be
executed simultaneously, provided that relationships
between tasks are not violated (see below); also, many
tasks may be completed by doing nothing (for instance, a
component implementation may be left untested).
Actually, tasks are organised into more specific subtasks,
but we are not going to address this issue in the paper.
The tasks are of three different kinds: for building
functional specifications, for building non-functional
specifications and for building implementations.

It is clear that these tasks satisfy some precedence
relationships that must be followed in order to develop a
correct design for a software system. To modelise these
relationships, we have defined precedence graphs, bound to
particular modules (i.e., relationships are module-oriented,
as well as tasks), such that there is a node for every task in
the catalogue and there is an edge from task u to task v
whenever task u must be performed before than task v1.
The process language presented in the next subsection will
allow to establish relationships between tasks associated
to different components.

                                                
1 In fact, these relationships between subtasks can be
slightly modified with relationships between subtasks.



3.2  Software process modelling
Once we have defined a catalogue of development tasks and
the relationships they should follow, we focus in the
problem of defining particular software process models as
valid combinations of these tasks.

Given the modelisation of precedence relationships
using graphs, we can consider a development strategy as a
set of new edges binding nodes of these graphs.
Sometimes, edges will relate tasks (nodes) in the same
graph, to say things like "the functional specification of a
component must be developed before the non-functional
one"; however, in the general case, edges will involve
tasks appearing in graphs bound to different modules, as in
"it is necessary to specify all the components imported by
a component M before any implementation of M is built".
Also, we define a kind of grouping mechanism to allow
the statement of facts as "functional and non-functional
specification of a component must take place as a whole".
As a result, we identify two different elements to
formulate development strategies: rules and groupings,
which are introduced below.

3.2.1 Precedence rules
We characterise software process models by adding new
precedence relationships between tasks. We define these
relationships as a pair (called rule hereafter) left -> right,
where left and right are sets of tasks. The meaning of the
rule is: if the tasks appearing in left have been completed,
then all the tasks appearing in right can start to be
executed; in other words, the rule is adding an edge from
every task (node) appearing in left to every task appearing
in right. Once again, let us remark that tasks are defined at
the module level; as a result, rules will be parameterised
by the modules appearing in tasks.

Software process models are encapsulated in strategy
modules. It is possible to combine existing strategy
modules to form new ones, adding optionally new rules
and groupings. This property supports incremental
development of strategies as combination of simpler ones,
and improves understandability and reusability of the
modules. Fig. 6 shows a module that determines a kind of
bottom-up specification strategy: before specifying a
component M (with the tasks Fspecify and NFspecify), it
is necessary to specify all the components used by M; so,
many (component-bound) precedence graphs are involved.
As an example, we show in the figure the precedence
graphs for a system with three components with
specifications (A, Anf), (B, Bnf) and (C, Cnf) (functional
and non-functional parts) such that (A, Anf) imports the
other two. Note the use of predefined language constructs
("for all") and predicates ("used_in").

define(B)

Fspecify(B)

NFspecify(B, Bnf)

define(C)

Fspecify(C)

NFspecify(C, Cnf)

Fspecify(A)

NFspecify(A, Anf)

strategy BOTTOM_UP_SPECIFICATION
        X, Z: functional_specification;
        Xnf, Znf: non_functional_specification
for all Z in used_in(X):
        Fspecify(Z) -> Fspecify(X), NFspecify(X, Xnf)
        NFspecify(Z, Znf) -> NFspecify(X, Xnf)
end module

Fig. 6: A strategy module and some new relationships
resulting from it.

3.2.2 Grouping tasks
We introduce here some notation to cover the need of
grouping some related tasks, all of them usually referred to
the same component. This grouping is expressed by
enclosing the set of tasks between parenthesis,       
(task1, ..., taskn). The meaning of this grouping is: once
a task from task1, ..., taskn is started, development must
complete all of them before starting any other task. This
kind of mechanism is a mean to form new tasks as the
joint of existing ones.

Note that grouping does not state nothing about the
order of execution of these tasks (this is done using rules);
also, note that grouping does not oblige neither to
complete a task before starting others of the group nor the
other way round (for instance, the n tasks may be
simultaneously in execution if rules allow this situation).
In fact, groupings can be formulated in terms of tasks: a
grouping (task1, ..., taskn) adds an edge from every
predecessor of every task in task1, ..., taskn to every
successor of every task in task1, ..., taskn; so, the n tasks
must infallibly be carried out as a whole.

Fig. 7 shows two examples of grouping. The first
strategy module forces functional and non-functional
specification of a component to be performed altogether.
As component precedence graphs do not include any
precedence relationship between these two tasks, any order
of execution and state of completion is possible. In the
second one, we show the use of quantifiers in grouping;
the module states that all the functional specifications of
imported components must take place as a whole. Finally,



we include a third strategy module that shows how
strategies may be built in an incremental manner.

strategy WHOLE_SPECIFICATION
        M:functional_specification;
        Mnf:non_functional_specification

(Fspecify(M), NFspecify(M, Mnf))
end module

strategy SPECIFICATION_OF_USED_MODULES
        M, Z:functional_specification;

(for all Z in used_in(M): Fspecify(Z))
end module

strategy BOTTOM_UP_WHOLE_SPECIFICATION
     combines BOTTOM_UP_SPECIFICATION,
                               WHOLE_SPECIFICATION
end module

Fig. 7: Three new strategy modules with groupings.

4  The tools
We present in this section the tools of ComProLab. We
focus on those we think are the most relevant ones: a
mixed execution system, to support prototyping with
specifications and implementations; an implementation
selection algorithm, to select automatically the best
implementation of components in their context of use; a
tool for computing the efficiency of programs; and a
process development assistant, parameterised by the
particular process model being used. The first three tools,
which work at the product level, manipulate Merlí
specifications and programs; software written in others
languages requires thus a previous translation step.

4.1  Mixed execution
A point that is often argued against formal specifications
is the gap between them and the final software system.
Some approaches try to fill this gap by introducing
transformation techniques that automatically derive correct
implementations from specifications. Currently, most of
these approaches present some limitations that difficult
their actual success in the industrial community.

We propose here a different framework that allows to
create preliminary prototypes that combine algebraic
functional specifications and implementations in an
arbitrary manner. This is to say, an initial prototype may
be defined consisting of components for which just a
specification exists, and then they may be implemented
one by one, obtaining at any stage an executable
prototype; furthermore, prototyping is possible even with
components partially implemented, making thus possible
to implement and test operations one by one. On the other
hand, there is no need to specify all the components in the

system; some of them may be directly implemented, and
prototyping will also be possible in this case. We have
explored in previous works [1, 6, 7] the conditions that
should be fulfilled in order to have successful prototyping.

The mixed execution framework combines a term
rewriting system to work with specifications and an
interpreter to deal with implementations. The equations of
the algebraic specification are interpreted as rewrite rules
oriented from left to right. The crucial point during
execution is value passing from the rewriting system to
the interpreter and vice versa. The abstraction function of
implementations play a crucial role in this
communication. Let A and B be two components such
that A is only specified while B has both specification and
implementation, and such that B introduces a type t which
is represented somehow in the implementation, including
an abstraction function abs. If A contains a rewriting rule
F(...x...) --> K, where x is a subexpression of type t, and
given a particular data structure str built with the
implementation of t in B, the rewriting rule is applicable
over str if abs(str) matches x. On the other hand, if we
have an expression x of type t coming from a
manipulation done with the rewriting system, it is enough
to execute this expression using the implementation of B
to obtain a data structure.

Fig. 8 shows an example of mixed execution. We
assume a partial implementation of NETWORK,
providing a type representation by adjacency lists, the
abstraction function and the implementation of empty and
add. Prototyping in this situation may involve the
execution of remove(x, 1, 2), being x a data structure.
Since remove is not implemented, x is converted into an
equivalent expression with the abstraction function, and
the resulting term is rewritten using the equations shown
in fig. 2, obtaining its corresponding normal form that can
be transformed into a data structure again by executing the
operations contained in the nodes of the term using the
partial implementation of NETWORK.

It is clear that mixed execution is a time-consuming
technique. However, it should be noted that it takes place
only during prototyping (not in the final version of the
system); in this stage, we are worried about testing both
system functionality and implementation issues (absence
of errors in the code, user-interface, etc.), not about
efficiency. On the other hand, we have defined some
mechanisms to improve execution time. We remark a kind
of lazy evaluation to find out if a rewriting rule may be
applied or not; if the abstraction function is provided in
recursive form, it may be evaluated partially just to find a
rewriting rule matching the piece of term built. In fig. 8,
just an application of the abstraction function is necessary
to apply the appropriate rewrite rule.
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Fig. 8: An example of mixed execution.

4.2  Automatic selection of implementations
Non-functional specifications and non-functional
behaviour may be used not just as additional information
of components, but also in an operative way to select the
best implementation for a component in a context of use.
So, we have built an algorithm for selecting
implementations of software components with a        
NF-behaviour that satisfy the requirements put on them.

Given an implementation Imp, the algorithm
proceeds by comparing the NF-requirements stated in Imp
over the imported components C1, ..., Ck with the     
NF-behaviour appearing in the implementations of these
C1, ..., Ck. In order to be able to perform these
comparisons, relationships between the measurement units
should be stated; then, it is possible to test if conditions
such as "nbnodes * nbconns < power(nbnodes, 2)" are
satisfied. These relationships may appear in any place of
the software system, but it is advisable not to include
them in generic components as NETWORK, because they
may depend on the context where components appear. So,
two different software systems using NETWORK may
state different relationships between the number of nodes
and the number of connections of their networks; for
instance, a system may state "nbconns = nbnodes" to
modelise a ring computer network, while the other may
declare "nbconns = power(nbnodes, 2)" (the maximum
value allowed by the non-functional specification of
NETWORK) to represent fully connected networks.

Note that, in fact, the algorithm will not bind single
implementations to software components but trees of
implementations, because an implementation may import
other components for which the algorithm must also

proceed. For instance, if we suppose that the
implementation ImpNETWORK (see fig. 5) for
NETWORK is selected inside the implementation
ImpMAIN of a component MAIN that imports
NETWORK, then an implementation for the component
LIST_OF_NATURAL, imported by NETWORK, should
also be selected inside ImpNETWORK; all these
selections are made following the NF-requirements
appearing in the corresponding NF-behaviour modules.
More than this, as far as the software system is a hierarchy
of software components, NF-requirements in upper
modules must be taken somehow into account in lower
ones [9]. For instance, the NF-behaviour of ImpMAIN
(see fig. 9) could also state some NF-requirements over
LIST_OF_NATURAL, which must be combined with
those ones appearing inside the behaviour module of
ImpNETWORK. By default, requirements are combined
and then the implementation of LIST_OF_NATURAL
inside ImpNETWORK must satisfy the constraint
"time(put) = 1 and fully_portable and dynamic_storage",
although there are some constructs in the language that
allow to change this behaviour.

behaviour module for ImpMAIN
    behaviour
    requirements

on NETWORK: time(top_sort) <= power(nbnodes, 2)
on LIST_OF_NATURAL: dynamic_storage

end module

Fig. 9: A module for stating NF-behaviour of a
component using NETWORK.

Finally, it must be noted that the algorithm may select a
component with different implementations in different
places of the system. This situation may be problematic if
two objects of the same type interact during program
execution, as it could happen if we try to concatenate a list
implemented with an array to a list implemented by
pointers. The abstraction function could be a mean to
transform one of the values from one implementation to
another, but as this would take a lot of execution time in
the final version of the system, we have currently preferred
to reject this possibility (although this decision could
change in the future).

4.3  Computing values of NF-properties
We address now to the computation of the (asymptotic
worst-case) execution time of all the operations of
components, the space wasted in representing the values of
all their types, and the auxiliary space needed for executing
the operations.

Efficiency can be computed from three kinds of



information. On the one hand, we have defined some
semantic rules attached to the grammar of Merlí to provide
a default computation. For instance, the semantic rule
bound to (a restricted form of) the conditional instruction,
" if <expr> then <instr> else <instr> end if", is:

     time(<conditional>) =

   time(<expr>)+time(<instr>-1)+time(<instr>-2)

(The sum must be interpreted in the asymptotic big-Oh
notation as [2] does -union of set of functions-. The "-1"
and "-2" are the mean to distinguish between repeated
appearances of the same non-terminal symbol in a
grammar rule.)

In many situations, however, efficiency cannot be
established just from program syntax. The most obvious
case has to be with loops: the execution time of a loop
depends on the number of times it is really performed, and
this information is not inferable from the syntax of the
loop. This implies that the semantic rule for the loop
"while <expr> do <instr> end do" will include an
additional item of information, NB_TIMES, such that:

time(<loop>) =

     NB_TIMES * (time(<expr>) + time(<instr>))

Every loop in the program, then, will include an
assignment to this item, possibly involving one or more
measurement units, as in "NB_TIMES = nbnodes". These
assignments will appear as annotations in the code of
programs, and the translation to Merlí is required to keep
them without any modification, to be used by the tool.

Even in this situation, it may happen that the
complexity of a piece of code cannot be determined exactly
with semantic rules. For instance, fig. 10 presents two
nested loops to visit all the connections of a network N;
the operations of LIST_OF_NATURAL are the usual ones
to get the elements of a list one after the other. The
assignments to NB_TIMES reflect the worst-case
situation, in which every node is connected with the
others, the lists returned from succ being then of length
nbnodes. As a result, the semantic rule computes the
complexity of this piece of program as     
power(nbnodes, 2)) * k, being k the cost of manipulating
the current node in lsucc, and assuming that operations
over lists take constant time and that all_nodes and succ
are as fast as they can be (i.e., proportional to the number
of involved items). However, there are some
implementations of NETWORK which carry out this loop
in a time proportional to the number of connections; if
this number is smaller than power(nbnodes, 2), the
complexity obtained is not accurate anymore.

Fig. 11 shows the solution to this problem. We
introduce a third kind of non-functional information, what
we call component skeletons, which define patterns of use

of components with their complexity and that are declared
in skeleton modules, imported in non-functional
specifications. Skeletons are pieces of programs involving
function calls, variables and non-terminal symbols (as
"<sent>") which can be instantiated. Note that the
program of fig. 10 matches with the skeleton.

lnodes := NETWORK.all_nodes(N)
LIST_OF_NATURAL.reset(lnodes)
while not LIST_OF_NATURAL.end(lnodes) do

 --  NB_TIMES = nbnodes
 lsucc := NETWORK.succ(N, current(lnodes))
 LIST_OF_NATURAL.reset(lsucc)
 while not LIST_OF_NATURAL.end(lsucc) do

--  NB_TIMES = nbnodes
manipulation of current(lsucc)

(* taking O(k) time *)
 LIST_OF_NATURAL.next(lsucc)
 end  while
 LIST_OF_NATURAL.next(lnodes)

end  whi le

Fig. 10: A loop over networks.

skeleton module network_traversal for NETWORK
     lnodes := NETWORK.all_nodes(N)
     LIST_OF_NATURAL.reset(lnodes)
     while not LIST_OF_NATURAL.end(lnodes) do
                      lsucc := NETWORK.succ(N, current(lnodes))
                      LIST_OF_NATURAL.reset(lsucc)
                      while not LIST_OF_NATURAL.end(lsucc) do

 <sent>
 LIST_OF_NATURAL.next(lsucc)

                       end while
                       LIST_OF_NATURAL.next(lnodes)
     end while
end  skeleton module

Fig. 11: A skeleton for NETWORK.

Implementations must give values to skeletons in their
NF-behaviour modules, as if they were normal asymptotic
NF-properties; the assigned values will usually involve
the efficiency of the non-terminal symbols appearing in
the skeleton, which will be unknown as it may be
different in different instances of the skeleton. So, an
adjacency-list representation of NETWORK would assign
(nbnodes + nbconns) * time(<sent>) to the NF-property
time(network_traversal), while an adjacency-matrix one
would assign power(nbnodes, 2) * time(<sent>), requiring
in both cases constant cost in list operations.

Once an instance of a pattern skeleton is found
(applying a kind of pattern-matching technique similar to
the one involved in term-rewriting), its complexity is
determined from that stated in the NF-behaviour of the
involved implementations. In the code of fig. 10, the final
cost in the adjacency-list case would be              



(nbnodes + nbconns) * k, better than before when it holds
that nbconns < nbnodes; using the adjacency-matrix
representation, however, the complexity remains the same.
We remark that is precisely this ability to obtain different
values for the same piece of program what makes
components skeleton attractive.

4.4  The process model assistant
The process model assistant is designed to help developers
in building systems using a strategy defined with the
process language introduced in section 3. In other words,
the assistant is parameterised by the particular process
model used to develop the system. To achieve this goal, it
offers at every moment the tasks that do not violate the
precedences and groupings stated in the strategy module
that define the process model. It is worth to point out that
various tasks may be carried out in parallel respecting this
correctness condition.

A particular point of interest is system
redevelopment. When it is necessary to modify one or
more components in the system, (part of) the tasks
corresponding to these components must be replayed, but
this may require to replay tasks bound to other
components. In the example of fig. 6, if the specification
of the component B is modified, the tasks Fspecify(A) and
NFspecify(A, Anf) must be performed again to avoid the
violation of precedence rules. In this case, the assistant
allows the automatic execution of these tasks as they were
executed before.

5  Conclusions
We have presented ComProLab, a laboratory for
component programming that defines languages and tools
at both the product and process levels.

Concerning languages, we allow the use of arbitrary
specification and programming languages in the
component programming framework and we define an
intermediate language, Merlí, used as a common notation
which specifications and programs are translated to; Merlí
provides features to state non-functional information of
components. Also, a language is introduced to define
software process models as the composition of many
development tasks establishing some precedence and
grouping relationships between them.

Concerning tools, the laboratory includes an
execution module to prototype systems combining
imperative code with algebraic specifications in an
arbitrary manner; a tool to select the best implementation
of components in systems from the non-functional
information stated in components; a tool to compute the
efficiency of implementations; an a process model

assistant able to deal with any model defined with the
process language. Many of these components have been
presented in more detail in previous works, but this is the
first time we have integrated all of our lines of research in
a single project.

We think that the most interesting points of our
approach are the following:

• The product and the process levels are integrated in
an unified framework. This results in an
homogeneous approach, where languages, tools and
methods in both levels are closely related.

• Due to the open architecture of ComProLab, the
laboratory may be used with arbitrary specification
and programming languages in the component
programming framework; this feature is not usual
in component programming projects, that normally
work with a fixed (small) set of languages. Thus,
we could use Z, Larch and OBJ3 to specify
components, and C++, Ada95 and Eiffel to
implement them, just by building a translator from
these languages to the intermediate language Merlí.
We defined Merlí complete enough to support these
translations from a wide class of those languages.

• Non-functional specifications and non-functional
requirements of software are taken into account in
the laboratory. This is a point that makes our
approach attractive, since we know of very few
other approaches addressing to non-functional
issues of software in the component programming
field, although it is widely recognised that they are
as important as functional ones. In fact, [20] is the
only approach that we know in this field that treats
a particular non-functional feature (efficiency)
together with the functional ones.

• Use of formal specifications is supported by a
prototyping tool able to execute programs at
intermediate stage of development, combining code
and specifications in an arbitrary way. The tool is
aimed at covering the gap that exists for the time
being between the initial specification of the
problem and the final delivered system. Other
projects support this kind of execution, but we
only know [4] providing almost identical features
from a compilation point of view.

• We have defined a process language consisting of
very few elements to make it easy to learn and use:
a small catalogue of tasks with well-defined
relationships, two mechanisms to relate tasks (rules
and groupings) and a few additional constructions
(as quantification and many built-in functions).



• Software process models may be defined
incrementally, from the combination of small
strategy modules, each one of them addressing to
particular points of the model. We believe that this
modularity increases understandability, maintenance
and reusability of strategy modules.
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