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Abstract

The increasing parallelism levels in modern computing systems has extolled the need for a
holistic vision when designing multiprocessor architectures taking in account the needs of
the programming models and applications. Nowadays, system design consists of several
layers on top of each other from the architecture up to the application software. Although
this design allows to do a separation of concerns where it is possible to independently
change layers due to a well-known interface between them, it is hampering future sys-
tems design as the Law of Moore reaches to an end. Current performance improvements
on computer architecture are driven by the shrinkage of the transistor channel width, al-
lowing faster and more power efficient chips to be made. However, technology is reaching
physical limitations where the transistor size will not be able to be reduced furthermore
and requires a change of paradigm in systems design.

This thesis proposes to break this layered design, and advocates for a system where the
architecture and the programming model runtime system are able to exchange informa-
tion towards a common goal, improve performance and reduce power consumption. By
making the architecture aware of runtime information such as a Task Dependence Graph
(TDG) in the case of Asynchronous Task-based Programming (ATaP) models, it is possi-
ble to improve power consumption by exploiting the critical path of the graph. Moreover,
the architecture can provide hardware support to create such a graph in order to reduce the
runtime overheads and making possible the execution of fine-grained tasks to increase the
available parallelism. Finally, the current status of inter-node communication primitives
can be exposed to the runtime system in order to perform a more efficient communication
scheduling, and also creates new opportunities of computation and communication over-
lap that were not possible before. An evaluation of the proposals introduced in this thesis
is provided and a methodology to simulate and characterize the application behavior is
also presented.
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Abstract

El aumento del paralelismo proporcionado por los sistemas de cómputo modernos ha
provocado la necesidad de una visión holística en el diseño de arquitecturas multiproce-
sador que tome en cuenta las necesidades de los modelos de programación y las aplica-
ciones. Hoy en día el diseño de los computadores consiste en diferentes capas de abstrac-
ción con una interfaz bien definida entre ellas. Las limitaciones de esta aproximación
junto con el fin de la ley de Moore limitan el potencial de los futuros computadores.
La mayoria de mejoras actuales en el diseño de los computadores provienen fundamen-
talmente de la reducción del tamaño del canal del transistor, lo cual permite chips mas
rápidos y con un consumo eficiente sin apenas cambios fundamentales en el diseño de
la arquitectura. Sin embargo, la tecnología actual esta alcanzando limitaciones físicas
donde no será posible reducir el tamaño de los transistores motivando así un cambio de
paradigma en la construcción de los computadores.

Esta tesis propone romper este diseño en capas y abogar por un sistema donde la ar-
quitectura y el sistema de tiempo de ejecución del modelo de programación sean capaces
de intercambiar información para alcanzar una meta común: La mejora del rendimiento
y la reducción del consumo energético. Haciendo que la arquitectura sea consciente de
la información disponible en el modelo de programacion, como puede ser el grafo de
dependencias entre tareas en los modelos de programación dataflow, es posible reducir
el consumo energético explotando el camíno crítico del grafo. Además la arquitectura
puede proveer de soporte hardware para crear este grafo con el objetivo de reducir el
overhead de construir este grado cuando la granularidad de las tareas es demasiado fina.
Finalmente, el estado de las comunicaciones entre nodos puede ser expuesto al sistema de
tiempo de ejecución para realizar una mejor planificación de las comunicaciones y cre-
ando nuevas oportunidades de solapamiento entre cómputo y comunicación que no eran
posibles anteriormente. Esta tesis aporta una evaluación de todas estas propuestas así
como una metodología para simular y caracterizar el comportamiento de las aplicaciones.
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1.2. THESIS STRUCTURE

in a task-based runtime system to make better scheduling and task-creation decisions. In
particular, we present two mechanisms for exchanging information between MPI and a
task-based runtime, and analyze their trade-offs. Further, we present a detailed evaluation
of the proposed mechanisms implemented in MPI and a task-based runtime. We show
improvements of up to 16.3% and 34.5% for proxy applications with point-to-point and
collective communication, respectively.

1.2 Thesis Structure

The document contents are organized as follows:

• Chapter 2 reviews parallel architectures and programming models and provides the
necessary information to understand the rest of the chapters.

• Chapter 3 describes all the tools and benchmarks used for the evaluation of the
presented proposals.

• Chapter 4 presents Criticality-Aware Task Acceleration (CATA) a mechanism to
drive the power management of a multi-core chip multiprocessor. The chapter ex-
plains the problems that previous alternatives faced and later describes the proposed
solutions and their evaluation.

• Chapter 5 introduces Task Dependence Manager (TDM) a flexible solution propos-
ing hardware support to accelerate the Task Dependence Graph construction while
keeping the task scheduler in software. First the motivation behind the proposal
is explained by analyzing the bottlenecks of a runtime system, then the architec-
ture of TDM is detailed and a complete design space exploration and evaluation are
provided.

• Chapter 6 explores how the blocking time of worker threads can be reduced when
using MPI taskified calls by exposing MPI and network interface related events
to the ATaP model runtime system. Two alternatives events delivery mechanisms
are described and evaluated, as well as a new proposal for performing computa-
tion/communication overlap when using collectives.

• Chapter 7 details how all these proposals interact together, lays the theoretical foun-
dations of a Runtime Aware Architecture, and explains the operational model and
integration of all the components with their interface.
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Chapter 2

Background and Related Work

This Chapter introduces the background context and does an analysis of the state-of-
the-art for all the concepts laid out in this thesis. Section 2.1 describes multiprocessors
systems focusing on their memory models, shared memory and distributed memory mul-
tiprocessor systems, the concept of asymmetric multiprocessor systems is also detailed.
Section 2.2 explains parallel programming models, starting from the omniscient thread-
ing programming model and OpenMP basic parallel constructs to the more complex ATaP
models that can be used in both shared and distributed memory systems. Section 2.3 in-
troduces OmpSs, the programming model used in this thesis and explains its most relevant
characteristics. Next we detail hardware support for task-based programming models pro-
posals present in the literature. Finally, we focus on distributed environments and explain
the classical MPI programming model and how ATaP models interact with the communi-
cation library.

2.1 Parallel Multiprocessor Systems

Multiprocessor systems date from the era of the large mainframes in the 1960s [47].
However, it was not until the 1980s that these systems became common in computing
infrastructures. The first systems consisted of bus-based multiprocessors with snooping
caches [43] that were primitive implementations of the coherence protocols present on
current multiprocessors. Many advances were done in those years, laying the foundations
for both shared and distributed memory systems.

9









CHAPTER 2. BACKGROUND AND RELATED WORK

cores, the prefetcher aggressiveness, the memory controller or the last-level cache space
assigned to an application can be changed [33, 62, 102]. More recently, reconfigurable
systems that support core fusion or that behave like traditional high performance out-
of-order cores, but can be transformed to a highly-threaded in-order SMT core when
required, have been shown to achieve significant reductions in terms of energy consump-
tion [56, 70]. Also, per-core power gating and DVFS are common reconfiguration tech-
niques available on commodity hardware [36, 68]. However, the problem of optimally
reconfiguring the hardware is not solved in general as all the above mentioned solutions
rely on effective but ad-hoc mechanisms that are applicable to a reduced set of recon-
figuration problems, they are difficult to combine [125], and they introduce a significant
burden on the programmer.

Multiple techniques to exploit heterogeneous architectures and reconfiguration capa-
bilities have been proposed, such as migrating critical sections to fast cores [117], fusing

cores together when high performance is required for single-threaded code [56], recon-
figuring the computational power of the cores [70], folding cores or switching them off
using power gating [125], or using application heartbeats to assign cores and adapt the
properties of the caches and the TLBs according to the specified real-time performance
constraints [52].

2.2 Parallel Programming Models

2.2.1 Threading and Fork-Join Programming Models

One of the most common parallel programming models in production-grade software
nowadays is the explicit use of light-weight processes named threads. A thread is a analo-
gous to a forked process which shares the application text, data and heap segments with its
parent process. A thread also retains its own architectural context such as the CPU regis-
ters including the instruction pointer, and the memory stack. Most common operating sys-
tems provide facilities to create and manage threads through the use of the POSIX Threads
(pthreads) programming interface [86]. Pthreads or System-Level Threads (SLTs) can be
created by a single POSIX API call, and they are scheduled as independent processes that
can run in any core of the system, the pthread interface also provides means to synchro-
nize threads when accessing to shared memory regions through the use of semaphores.

An alternative to SLTs are User Level Threads (ULTs) [83]. ULT libraries allocate a

13



2.2. PARALLEL PROGRAMMING MODELS

set of resources (processors and memory) and manage thread creation and scheduling in
user-level space through a runtime system. ULTs are usually mapped to a pool of existing
SLTs but providing extended capabilities such as more complex and safer synchronization
mechanisms and faster thread creation and context switching or custom scheduling to
better exploit locality.

The complexity of programming using threads has driven the creation of mechanisms
to ease the programmability of parallel systems. OpenMP is a set of compiler directives
for C, C++ and FORTRAN based on pragma annotations. The programmer adds the
#pragma omp parallel directive preceding the blocks of code that will run in parallel.
OpenMP offers a #pragma omp parallel for directive for parallelizing for loops without
inter-iteration dependences. Loop iterations scheduling across threads can be configured
by the schedule directive. Alternatively, work can be distributed among threads by using
the parallel section annotation and the following block of code will be scheduled for
execution in any free thread if no affinity restrictions are placed. In OpenMP, access to
the data can be controlled by declaring data as shared or private in the omp directives;
first private is a special case used to make a local copy of a shared variable before the
execution of the forked code. In addition, thread synchronization and access to shared data
can be protected with the use of critical, atomic or barrier annotations. Figure 2.2 shows
an example of how several threads execute parallel for loop iterations using a dynamic

scheduler which maps iteration ranges to any available free thread.

In OpenMP source codes, the compiler detects the parallel blocks and abstracts them
into functions that are passed as arguments to the OpenMP runtime system API. More-
over, the compiler also inserts the relevant API calls for synchronization in shared data
management. The OpenMP runtime system consists of a pool of worker threads and a
scheduler with work-queues to execute the parallel functions once they are created. This
runtime system is also in charge of coordinating access to the shared data.

OpenMP sets the basis of modern parallel programming models where the cooperation
between the compiler and a runtime systems allows programmers to express parallelism
in easier and platform-agnostic environments closer to the algorithmic concepts rather
than complex operating system level libraries and architectural concepts. Furthermore,
this synergy allows to find hidden parallelism thanks to the analysis of the original source
code and even increase performance by providing means to exploit data locality that pro-
grammers would not be aware of.

14
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Int N = 4;
int a[N];
#pragma omp parallel for \\
first_private(i) shared(a) \\
schedule(dynamic,1)

for(int i=0;i<N;i++){
a[i] = do_stuff(i);

}
For loop iterations are isolated and 
executed in parallel by a pool of 
threads 

Thread Pool 
OMP_NUM_THREADS=4

T0 T1 T2 T3

Figure 2.2: OpenMP parallel for implementation

2.2.2 Asynchronous Task-based Programming Models

Programming current large scale parallel systems has motivated a resurgence of ATaP
models over explicit threading and fork-join approaches due to the programmability-
performance trade-off they offer. This section aims to provide an insight on the most
relevant ATaP models.

Task constructs are subroutines that can be executed asynchronously and in parallel
in different threads. Tasks have synchronizing dependences among them to structure the
control flow of the application. OpenMP 3.0 [91] introduced basic task constructs in the
programming model that OpenMP 4.0[92] extended with data dependences annotations
in order to create a dataflow ATaP programming model. The OpenMP 4.0 runtime system
analyzes this annotations and creates the TDG as will be detailed in section 2.3. Program-
ming models such as OmpSs [38] or StarPU [7] follow this schema.

Habanero [113] proposes a set of extensions to the C and Java languages to create
asynchronous tasks with dataflow capabilities using futures, a language construction that
allows tasks to synchronize and exchange data. Habanero also proposes phasers [112] for
control synchronization. Codelets [128] are collections of instructions that are executed
atomically and created a Codelet Graph (CDG) through the use of data and control de-
pendences. Codelets rely on a hierarchical and heterogeneous abstract machine model to
schedule and execute the work units. Intel Thread Building Blocks (TBB) [103] is a C++
template library with multiple constructions for parallel operations such as parallel_for,

15



2.2. PARALLEL PROGRAMMING MODELS

parallel_scan or parallel containers among many others. TBB allows the use of tasks that
are created in a recursive manner with control dependences to synchronize them through-
out the hierarchy. Furthermore, Intel TBB 4.0 introduces flow graph annotations, which
allow to specify a dataflow graph between different tasks. Cilk [17] includes a set of C
and C++ extensions that allows to spawn and sync tasks. However, dataflow annotations
have been added outside of the standard language by Vandierendonck et al. [124].

Charm++ [2] decomposes work in units called chares. Chares are C++ objects that
offer a series of entry points that other chares can directly invoke. The runtime system
then sends the appropriate messages to synchronize and exchange data between chares
in a transparent way to the programmer. Charm++ offers mechanisms to easily map
chares to tensor-like data structures, distribute them, and overdecompose data volumes
in more chares than processing elements. Moreover, as chares entry method invocation
is non-blocking, Charm++ allows programmers to specify control dependences to ensure
structured flow control between chares.

Legion [11] creates abstractions for both computation and data. Computation is writ-
ten as tasks with data partitions as their inputs and output. The Legion runtime system
then builds a TDG using the inputs and outputs information in a dataflow manner. Par-
titions are logical abstractions of data expressed as array-of-structures or structures-of-
arrays. The Legion programming model allows multiple versions of the data to be alive
at a given moment and the runtime system is responsible for moving the data across the
system to the node where the task requiring that specific version will be executed.

The use of ATaP models provides a hardware abstraction that allows programmers to
efficiently write portable code without caring about low-level details while increasing the
programmability of parallel systems. Moreover, these programming models can increase
the performance of applications through the use of generic optimizations at the runtime
system level such as data locality aware scheduling in NUMA systems, or tasks sched-
ulers that favors load balancing. In addition, some of this programming models, such
as Charm++ or Legion, allow applications to run in distributed computing environments
with virtually no changes to the application code, effectively hiding the complexity of
distributed programming to the application developers. To conclude, the benefits of ATaP
models, portability, programmability and performance are key in modern computing in-
frastructures and noteworthy to remark.

16



CHAPTER 2. BACKGROUND AND RELATED WORK

2.2.3 Programming Models for Distributed Environments

Early distributed systems programming relies on the explicit use of the communication
hardware to send messages across the network interconnecting all the nodes composing
the computer. This approach, while providing great levels of performance hindered appli-
cation portability and programmability as most of the interconnection technologies and
interface code are system-specific. As a result, an effort has been made to provide a layer
of abstraction on top of the communication one to ease programmability and portability
efforts. As a consequence, the current de-facto standard for distributed memory com-
munication is the Message Passing Interface (MPI) [114], an easy-to-use, portable, high-
performing abstraction on top of most low-level communication technologies present in
distributed memory clusters.

MPI provides an interface to send data by calling point-to-point or collective send
and receive operations. Point-to-point primitives involve communication within a pair
of nodes, while collective operations involve a group of nodes. Collective operations
are highly tuned to the underlying communication technology and they execute different
algorithms for a single collective operation based on the network topology and the size of
the messages [120].

MPI offers two communication models; blocking and non-blocking communication.
In the blocking model, whenever a blocking call is invoked the execution cannot progress
until the message has been copied to a safe location. In the alternative non-blocking
communication, the call returns immediately, but it is the programmer’s responsibility
to poll the status of the pending messages to ensure the progress and completion of the
communication. Although, using non-blocking calls allows overlapping communication
and computation, the MPI layer does not make any progress until MPI_Test or Wait calls
on specific requests are invoked, resulting in no effective overlap at all unless explicit
mechanisms are used as demonstrated in [50]. Figure 2.4 shows how the actual message is
not send until a specific wait is invoked on the MPI request, thus overlap is not guaranteed
unless is driven through specific threads.

In order to overcome this limitation, Hoefler and Lumsdaine [50] study the implica-
tions of using a dedicated thread to constantly advance the progress engine. They compare
this approach to manual and hardware interrupts-driven progression by using the Infini-
band RDMA engine. In addition, Buettner et al. [22] propose to taskify communication
and offload the MPI_Test call required to move the progress engine to the OpenMP run-

17



2.2. PARALLEL PROGRAMMING MODELS

Figure 2.3: Non-blocking communication does not guarantee overlapping

time.

This progress engine limitations arise from MPI design being heavily influenced by
Bulk-Synchronous programming models, resulting in limited interoperability with paral-
lel shared-memory programming models. Although the standard [42] and MPI vendors
thrive to enhance this interoperability, some of the MPI characteristics require changes to
the standard or restrict some capabilities such as wildcards in order to efficiently paral-
lelize the MPI message matching engine.

MPI alternatives such as the Adaptive Message Passing Interface (AMPI) [57], ap-
peared to enhance the multi-threading support of MPI. AMPI implements MPI ranks as
user migratable lightweight threads instead of full-fledged OS processes. AMPI is written
in top of Charm++ and takes advantage of the dynamic load-balancing and scheduling al-
gorithms it offers, allowing regular MPI applications to benefit from these characteristics
without the need of being rewritten.

2.2.4 Communication in Hybrid MPI+ATaP Models

MPI is employed inside ATaP programming models using two different approaches. The
explicit communication model requires the programmer to insert the relevant MPI calls in
the application code and do a manual orchestration of all the MPI ranks as illustrated in
figure 2.4 left hand side. OpenMP 4.0 [92], OmpSs [38], Codelets [128], Habanero [113]
or StarPU [7] are ATaP models used for shared memory systems that require explicit
communication in order to take advantage of distributed systems.

Alternatively, other programming models hide communication from the programmer
by letting the runtime detect accesses to remote data and perform the required transfer-
ences. This approach is called implicit communication or Runtime managed as shown in
figure 2.4 right hand side. Some examples of this model follows. Charm++ employs a
communication interface that relies on active messages built on top of MPI. Legion [11]
detects accesses to partitions of data in remote nodes and internally schedules data trans-

18
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Task {
MPI_Sendrecv()

}

Explicit Communication

Data 
A

Node 1 Node 2

- Read A

Runtime

Memory

Node 1 Node 2

Runtime

Managed Communication

Figure 2.4: Different communication mechanisms for ATaP models

ferences by means of communication threads and active messages. HPX [66] offers a
PGAS model in which tasks can directly address memory in any node with the runtime
system taking care of data movement.

Improving the MPI and programming model interoperability has been am extensive
subject of research, Marjanovic et al. [82] present one of the first works focused on the
interoperability of a task-based asynchronous programming models, such as OmpSs,
with MPI. Instead of doing synchronized phases of communication and computation,
as in the Bulk Synchronous Programming Model, MPI calls are placed inside of asyn-
chronous tasks scheduled by the runtime system effectively opening new opportunities
for communication and computation overlap. Chatterjee et al. [29] goes one step further
and integrates MPI within Habanero providing wrapped MPI calls that the runtime ex-
ecutes asynchronously in dedicated communication threads. Labarta et al. [73] present
the Task-Aware MPI library (TAMPI), a similar approach to improve the interoperability
between MPI and OmpSs. TAMPI intercepts blocking calls to MPI and converts them
into their non-blocking counterpart. The resulting MPI calls are managed by the TAMPI
library, which periodically polls for the completion of the MPI calls and ensures correct-
ness. However, TAMPI is limited to point-to-point communications and requires polling
to query for completion of specific calls. Kamal et al. [67] make use of ULTs in the
MPICH 2 [45] to build an MPI-aware scheduler for coroutines that are swapped in and
out for execution depending on the status of the MPI runtime. Lu et al. [77] follow a
similar approach by doing the context switch of ULTs inside the MPI to avoid the expen-
sive MPI locking operations. Stark et al. [115] integrate MPI with Qthreads and convert
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2. Tasks are sent to a ready queue 
once their predecessors complete

Completed task

Ready task

Pending task

Worker

Worker

3. Workers poll tasks 
from the ready queue

#pragma omp task \\
depend (inout:A[N])

{
// Task specific code

} 

1. Tasks are specified 
using annotations and a 
TDG is created by the task-
based runtime system 

Ready queue

Figure 2.5: Execution flow in an asynchronous task-based programming model that uses
a TDG.

blocking MPI calls to non-blocking calls, using their status to drive the scheduler in a
similar way to TAMPI.

2.3 The OmpSs Programming Model

ATaP models such as OpenMP 4.0 [92] and OmpSs [38], conceive the execution of a
parallel program as a set of tasks that may depend upon each other. Typically, the pro-
grammer defines code blocks (functions and/or classes) and adds annotations to declare
1) what constitutes a task, 2) what data is used by each task, called input dependences
or input, and 3) what data is produced by each task, called output dependences or out-
put. Based on this information, the runtime system manages the parallel execution using
a TDG, a directed acyclic graph where the nodes are tasks and the edges are the depen-
dences between these tasks.

Figure 2.5 shows a simple example of a TDG. A task is marked as ready only when all
its predecessors have completed their execution, otherwise it is considered a pending task.
Ready tasks are added to a ready queue (or another appropriate data structure depending
on the scheduling algorithm). When idle, worker threads interact with the scheduler and
retrieve tasks for execution. When a task completes, it is marked as such in the TDG
and its successors are unlocked. Examples of such a programming model are tasks in
OmpSs [38] and OpenMP 4.0 [92] with dependence clause extensions and Legion [11],
in which dependences between tasks are expressed using regions.

This thesis uses the task constructions in OmpSs [38], which have been adopted as the
task extensions for OpenMP 4.0. The programmer creates tasks using pragma annotations
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Algorithm 1: Algorithm for TDG creation.
Data: task object
Data: task memory locations list
for location in locations do

if lastWriter of location != NULL then
lastWriter.successors.add(task) task.predecessors++;

end
if location.dir == IN then

location.readers.add(task);
end
if location.dir == OUT then

for reader in location.readers do
reader.successors.add(task); task.predecessors++;

end
location.readers.flush(); location.lastWriter = task;

end
end

with the input and output dependences specified as shown in Figure 2.5. The compiler
replaces these annotations with calls to the runtime system, and the tasks are dynamically
created and destroyed during the application execution. In this work, we employ Nanos++
0.10a [38], the runtime of OmpSs, which uses pthreads bound to specific cores as worker
threads.

2.3.1 Task Dependence Graph

In ATaP programming models such as OpenMP4 and OmpSs, tasks are declared in the
code by the use of pragma annotations #pragma omp depend(in : (..), out:

(..), inout:(..)). These pragma annotations precede the code blocks that are ex-
ecuted asynchronously and specify the list of memory locations that the tasks read in,
write out or read and write inout. The runtime system takes this information and uses
it to construct the TDG as detailed in Algorithm 1, The runtime system holds several data
structures such as a list of reader tasks and the last writer task for every memory location
expressed as dependences. In addition, tasks hold a list with their successors in the TDG
and the count of their predecessors.

Task dependence analysis can be extended to track memory regions when accessing
data with multiple dimensionality. In this case, the locations object tracks the dimensions
accessed and the TDG creation algorithm uses this information to find the access overlaps
within tasks [21].
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3.2. HPC CLUSTER

in order to be able to carry out the experiments:

• Several errors in the MESI coherence protocol when using the x86 locked read
modify write operations. Eviction of locked lines, and incorrect protocol transient
states were the major issues.

• Interrupt clobbering in the out-of-order pipeline.

• Corrections to the memory consistency model where remote invalidations where
not propagated to the CPU Load Store Queue (LSQ).

• Vectorial registers were not saved in context switches due to a missing interruption
triggered by the APIC.

• Clock-sources not correctly attached to the L1-cache, greatly increasing access
time.

• Clock-sources not correctly synchronized between cores.

Many of these issues have been corrected or reported in the recent gem5 code. Power
and area estimations for the multi-core and added hardware structures are evaluated us-
ing McPAT 1.3 [74], a power and area modelling tool built on top of CACTI 6.0 [87].
McPAT offers models that range from low-power configurations using in-order cores and
low voltage designs, to high performance processors based on aggressive out-of-order
configurations. McPAT also models the cache and interconnection network power con-
sumption. For this thesis, the 22nm technology node with the default clock-gating schema
is employed.

3.2 HPC Cluster

We use the Marenostrum 4 supercomputer at the Barcelona Supercomputing Center for
running our experiments on real machines. Marenostrum consists of 3,456 compute
nodes; every node has two Intel Xeon Platinum 8160 processors each with 24 cores and
96 GB of DDR4-2667 main memory. The interconnection network is a 100 Gb Intel
OmniPath full bisection fat-tree. The software stack comprises SUSE Linux Enterprise
Server 12 SP2 with kernel version 4.4.120-92.70 and includes MVAPICH 2.2 running on
top of Intel PSM2 with our modifications.
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Table 3.1: Processor Configuration.

Chip Details
Core count 32
Core type Out-of-order single threaded
ISA x86-64 ARMv8

Core Details

DVFS Fast cores: 2 GHz, 1.0 V 2GHz
configurations Slow cores: 1 GHz, 0.8 V

25µs reconfiguration lat.
Fetch, issue, 4 instr/cycle
commit bandwidth
Branch predictor 4K selector, 4K G-share Tournament 2K local pred.

4K bimodal 8K global and choice pred.
4-way BTB 4K entries 4-way BTB 4k entries
RAS 32 entries RAS 16 entries

Issue queue Unified 64 entries
Reorder buffer 128 entries
Register file 256 INT, 256 FP
Functional units 4 INT ALU (1 cyc), 2 mult (3 cyc), 2 div (20 cyc)

2 FP ALU (2 cyc), 2 mult (4 cyc), 2 div (12 cyc)
2 Ld/St unit (1 cyc)

Instruction L1 32KB, 2-way, 64B/line (2 cycles hit)
Data L1 64KB, 2-way 32KB, 2 way

64B/line (2 cycles hit) 64B/line (2 cycles hit)
Instruction TLB 256 entries fully-associative (1 cycle hit)
Data TLB 256 entries fully-associative (1 cycle hit)

NoC and shared components
L2 Unified shared NUCA Shared L2 cache

banked 2MB/core, 8-way 4MB 16-way
64B/line 64B/line
15/300 cycles hit/miss

Coherence protocol MESI MOESI
4-way cache directory Fast Atomic Snooping
64K entries

NoC 4⇥ 8 Mesh, link 1 cycle gem5 VExpress
Software Stack

Operating System Gentoo Ubuntu 14.04
Kernel 2.6.28-4 4.3
ATaP model runtime system Nanos++ v.07a Nanos++ v0.10a
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We use 16, 32, 64 and 128 nodes of the cluster. For all benchmarks, 4 MPI processes
are spawned per node, each of which creates 8 worker threads.

3.2.1 Workload Management

The evaluation experiments carried out during this thesis required thousands of executions
of individual experiments in a iterative process of continuous feedback. All these execu-
tions are based on combinations of different parameters feed to an executable by either
configuration files or command line. The combinatorial explosion resulting from these
configurations requires the use of tools for managing all the input parameters and results.
While common shell scripts are used, the need of creating or adapting scripts when using
different environments or programs is still present.

For this thesis, we abstract the characteristics of such workloads and create a software
called Tizona [26]. Tizona relies on platform independent JSON configuration files that
are able to launch all the individual executions of an experiment. The file specifies the
possible values for the parameters and the software creates all the independent executions
to cover the paramete search space. Once experiments are done, results can be retrieved
in CSV files that can be filtered by specifying parameter or execution produced values.
Tizona has support for GridEngine and SLURM workload managers and is able to run
experiments completely out of the box in several supercomputers. Moreover, Tizona is
opensource and available at github [26].

3.3 Softare Stack

3.3.1 Operating System and Build Toolchain

All the simulations are performed under a realistic software environment. A complete
Linux kernel is used for both the x86-64 kernel and ARMv8 configurations with versions
2.6.28-4 and 4.3 respectively. The x86 kernel has been modified to support synchronized
clock sources between cores operating at different frequencies in order to avoid desyn-
chronizations when processes are migrated from one core to another. Moreover, we have
developed a cpufreq framework [94] driver to interface with the gem5 DVFS controller
and integrated it into the x86-64 kernel to do all the experiments of Chapter 4. The ARM
kernel has been compiled with the gem5 support extensions activated. Otherwise it is not
possible to run simulations with more than 8 cores. The Operating System is a complete

34



CHAPTER 3. EXPERIMENTAL FRAMEWORK AND TOOLSET

Gentoo Linux built from scratch using a Stage-2 tarball for the x86-64 architecture, and
Ubuntu 14.04 for ARM. We employ the default set of system libraries and the compiler
used to compile the ATaP runtime system and the environment is gcc 4.6.4 and Mercurium
1.99 [8] with gcc as the backend for the benchmarks.

The Chapter 6 executions are done in a real environment using the software stack
described in Section 3.2

3.3.2 ATaP Model Runtime System

Nanos++ is selected as the task-based runtime system for Chapters 4, 5 and 6. Nanos++
is a runtime system compatible with the OpenMP 4.0 task semantics and the additional
OmpSs constructs. Nanos++ supports different architectures such as SMPs, hybrid GPU
systems or Cell Synergistic Processing Units (SPEs) through a plugin based interface.
The runtime system consits of a core in which abstract worker elements ask for tasks to be
executed by executing a worker idle loop which invokes the scheduler plugin. The worker
specific implementations are defined in the architecture plugins and Nanos++ offers a
plugin system as well to support different scheduling algorithms. Moreover, different
dependence analysis algoritms such as plain dependences, or regions are abstracted as
plugins. This thesis provides plugins to implement the scheduling strategies defined in
Chapters 4 and 5. A dependence analysis plugin to control the hardware dependence
module described in Chapter 5 is also developed so the runtime core functionality remains
unchanged.

We developed a stripped version of the Nanos++ runtime for Chapter 6 that allows the
programmer to explicitly define the TDG and uses lock-free structures for task manage-
ment structures. This runtime implementation is devised to seamlessly integrate with the
MPI runtime in order to implement and evaluate all the mechanisms proposed.

3.3.3 MPI & PSM2

The selected base MPI implementation is MVAPICH 2.2 [121]. MVAPICH is an open-
source implementation of MPI that delivers the best peformance for systems using the
Infiniband interconnection technology as the one used in this thesis. MVAPICH offers
complete support of the MPI 3.0 standard and adds multiple additional extensions target-
ted to PGAS, GPU and Intel MIC interoperability. Finally, MVAPICH is well integrated
with Intel PSM2 library.
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Figure 3.2: Paraver trace of an asymmetric multicore with 4 big and 4 little cores running
Ferret. Upper part shows the task execution timeline and Lower part shows the IPC of
each core for that task.

3.5 Benchmarks

3.5.1 Shared Memory Workloads

The following benchmarks are used to evaluate performance in the shared memory pro-
posals of this thesis. Seven benchmarks of the PARSEC [13] suite are used in the evalua-
tion. These benchmarks are representative state-of-the-art parallel algorithms from differ-
ent areas of computing that use two well-known parallelization approaches. We use the
task-based parallel implementations proposed by Chasapis et al. [28]

We evaluate up to four benchmarks using fork-join parallelism: Blackscholes solves
the Black-scholes Partial Differential Equation to calculate the prices for a portfolio of
European options. The work is divided in blocks with the blocksize being a parameter
and each task is assigned a block, this favours load balancing as the number of tasks can
be greater than the number of threads. In this benchmark, dependences are only between
timesteps: tasks depend on a task doing the previous timestep of the block and there are
no dependences within tasks of different blocks, making this benchmark embarrasingly
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parallel.

Fluidanimate simulates the incompressible fluid interactive animation using the Smoo-
thed Particle Hydrodynamics method. Fluidanimate operates on a 3D volume partitioned
along the X and Z axis with an undefined number of particles per block. Five special
kernels are taskified and executed on every block to rebuild the spatial index, compute
the fluid densities and forces, handle collisions with the scene geometry and update the
particle locations. Tasks depend on the tasks previously executed on the same block and
its neighbors, making it a 9-point stencil.

Swaptions uses the Heath-Jarrow-Morton (HJM) method for pricing derivatives with
Montecarlo simulations. Data is stored in arrays that are partitioned with a single task
doing the calculations on portions of the array. There are no data dependences between
the tasks.

We use thre benchmarks using pipeline parallelism: Streamcluster is a kernel to solve
the online clustering problem that groups a stream of points in a predefined number of
clusters or partitions. The task based implementation keeps the number of tasks indepen-
dent of the number of partitions, with them processing chunks of the input stream. In such
schema, barriers are needed to synchronize the updates of partitions.

Bodytrack is a computer vision application to track the human body without markers.
Several cameras are used through an image sequence and an annealed particle filter is
used with the edges and foreground silhouette as the main features. All the frames are
analyzed in parallel by using coarse-grain tasks that spawn nested tasks to do the particle
filter updates. Once that calculation for a frame finishes, the output writing is also taskified
in order to exploit computation and I/O overlap.

Dedup relies on the deduplication method [101] to compress a data stream using local
and global compression. Dedup parallelization is a pipeline of tasks with 4 tasks doing
computation (Fragment, Refine, Deduplication, Compress) and a task that reorders the
fragments and writes them to a file. Data is divided in chunks and computation tasks can
run in parallel for different chunks. The reorder and output writing tasks impose an order
that serializes execution ensuring that chunk N-1 will be written before chunk N.

Ferret is a content similarity search application that focuses on images. The paral-
lelization is similar to Dedup as for every image a pipeline of 5 tasks performing computa-
tion is spawned with a final task to output the results. The last task imposes a serialization
and reorder of the output writing in the same fashion as Dedup.

In addition to the PARSECSs benchmark suite, some popular and extensively used
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linear algebra kernels are also employed due to their relevance in HPC and their extensive
use of dependences. The task-based implementation of these algorithms applies tiling so
that tasks process 2D blocks of the matrices. The Cholesky factorization decomposes a
hermitian definite positive matrix A in the product of two matrices L · L⇤ where L is a
lower triangular matrix and L

⇤ its the L conjugate transpose. Tasks are in charge of execut-
ing LAPACK routines on different tiles of the matrix. Histogram computes a cumulative
histogram for all pixels of an image using a cross-weave scan [100]. Multiple calcula-
tion tasks acting on individual blocks for different images are overlapped, and reduction
task are executed later based on vertical and horizontal halos obtained by the computation
tasks. The QR factorization of a matrix is a product A = QR with Q orthogonal and R

upper triangular. The multiple tasks implementation relies on LAPACK as cholesky. LU
does a A = L · U decomposition of a matrix with L being a lower diagonal matrix and
U being upper diagonal. As cholesky and QR tasks executes BLAS/LAPACK routines
operating on different tiles.

The input sets for the benchmarks are described in table 3.2

3.5.2 Distributed workloads

3.5.2.1 Point-to-point Benchmarks

We have implemented two stencil-based benchmarks using task semantics. The first
benchmark is based on HPCG [37], a multi-grid Conjugate Gradient solver with a Gauss-
Seidel preconditioner. HPCG uses a 27-point stencil where every block performs a to-
tal of 11 halo-exchanges with its neighbors in each iteration due to the preconditioning
step. In addition, an MPI_Allreduce collective operation is performed at the end of
each iteration. The resulting communication pattern of HPCG is shown in Figure 3.3a,
where darker colors display a larger communications volume between two processes. The
MPI_Allreduce pattern is represented by a light background color as it just involves
communication of a scalar value among all the nodes. In our experiments, we apply
weak scaling and solve global problem sizes of 1024 ⇥ 512 ⇥ 512, 1024 ⇥ 1024 ⇥ 512,
1024⇥ 1024⇥ 1024 and 2048⇥ 1024⇥ 1024 on 64, 128, 256, 512 MPI processes respec-
tively.

The second benchmark is based on MiniFE, a finite element solver using a non-
preconditioned Conjugate Gradient. In contrast to HPCG, MiniFE only performs a single
halo exchange per iteration and has a more irregular communication pattern between pro-
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Table 3.2: Input Sets for Shared Memory Benchmarks

Benchmark Input Size
Shared Memory Benchmarks

Blackscholes Simlarge
Cholesky 2048x2048 dense matrix
Dedup Simlarge
Ferret Simlarge
Fluidanimate Simlarge
Histogram 4096x4096 image
LU 2048x2048 sparse matrix
QR 1024x1024 dense matrix
Streamcluster Simlarge

Distributed Memory Benchmarks
HPCG 1024⇥ 512⇥ 512 volume

1024⇥ 1024⇥ 512 volume
1024⇥ 1024⇥ 1024 volume
2048⇥ 1024⇥ 1024 volume

MiniFE 1024⇥ 512⇥ 512 volume
1024⇥ 1024⇥ 512 volume
1024⇥ 1024⇥ 1024 volume
2048⇥ 1024⇥ 1024 volume

FFT-2D 163842, 327682, 655362, 1310722, and 2621442 elements
FFT-3D 10243, 20483, and 40963 elements
Map-Reduce WordCount 262 ⇤ 106, 524 ⇤ 106, and 1048 ⇤ 106 words
Map-Reduce MatrixVector 10242, 20482, and 40962 matrix
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(a) HPCG (b) MiniFE

Figure 3.3: Communication patterns of HPCG and MiniFE. Dark colors indicate volume
of communication between MPI processes, while white indicates absence of communica-
tion.

cesses, as shown in Figure 3.3b. The lack of a preconditioner step in every iteration
reduces the granularity of the computation tasks, thus providing insights on how the pro-
posed mechanisms behave in fine-grain task environments. Similar to HPCG, each itera-
tion of MiniFE also ends with an MPI_Allreduce. As input, we use 1024⇥512⇥512,
1024⇥ 1024⇥ 512, 1024⇥ 1024⇥ 1024 and 2048⇥ 1024⇥ 1024 unstructured implicit
finite volumes.

In both benchmarks, each processor is assigned a sub-block of the initial 3D domain.
Each sub-block maps to a set of rows in the sparse matrix to be solved by the conju-
gate gradient step. In order to effectively overlap communication and computation in an
execution driven by our stripped version of the Nanos++ runtime system, the sub-block
assigned to a processor is further overdecomposed into smaller sub-blocks. We consider
decomposition factors between 1⇥ (one sub-block per core) and 16⇥ (16 sub-blocks per
core), and report runtime for the best performing decomposition for every configuration.

3.5.2.2 Benchmarks with Collective Communications

To evaluate performance with collective communications, we have implemented several
benchmarks. The first benchmark is a two-dimensional (2D) FFT using a parallel zero-
copy algorithm [49]. In 2D FFT, we initially divide the matrix among MPI processes
using row-wise 1D block partitioning. This enables creation of tasks for executing 1D
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FFTs for each row in parallel. Next, we perform an MPI_Alltoall to transpose the
matrix. Finally, 1D FFTs are calculated again for each row of the transposed matrix. The
matrix is transposed during communication by using MPI derived datatypes, as described
by Hoefler et al. [49]. In order to avoid multiple copies of data, the strides and MPI
extent within rows are specified in two derived datatypes, one for sending and another for
receiving, so the MPI implementation is able to transpose the matrix on-the-fly.

When transposing the matrix using the MPI_Alltoall collective with derived datatypes,
each process receives partial row data from every other process. Typically, it is not pos-
sible to overlap the collective with the computation tasks because tasks computing the
1D FFT require the entire matrix row. However, it is possible to further divide the 1D
FFT into smaller tasks that process data blocks as soon as they are received. The block
size is set to be the size of a row divided by the number of MPI processes, allowing the
execution of partial 1D FFT tasks as the MPI_Alltoall progresses. We evaluate the
performance of 2D FFT for square matrices with 163842, 327682, 655362, 1310722, and
2621442 elements.

The second benchmark is a three-dimensional (3D) FFT. Initially, the 3D volume
is divided into subsets created by 2D decomposition in Y and Z dimensions. 1D FFT
computations are performed along the x-axis, and are followed by MPI_Alltoall calls
within subcommunicators defined along the y-axis. This transposes the volume such that
the subsets are now decomposed in the X and Z dimensions, and 1D FFTs along the y-axis
are performed. Next, MPI_Alltoall calls within the subcommunicators defined along
the z-axis transposes the grid to create the final set of subdomains in which 1D FFT can be
performed along the Z dimension. Thus, while 2D FFT requires one MPI_Alltoall,
the 3D version needs two MPI_Alltoall calls in order to rotate the volume. We have
chosen a 2D decomposition over a 1D decomposition because of its better scalability in
terms of memory and communication [111]. For 3D FFT, we test cubic volumes with
10243, 20483, and 40963 elements.

We also evaluate performance for two MapReduce [34] applications — a simple word-
count algorithm, which counts the occurrence of each word in a text, and a dense matrix
vector product. In MapReduce, the input data is split into independent chunks processed
by the map tasks in parallel. Each map task produces a series of tuples in the form (Key,
Value) (K,V ). The values V0..N�1 associated to the same Ki are coalesced in a list and
each process sends its (Ki, V0..N�1) tuples to another process determined by a function
of the key Nodeid = hash(Ki) in the shuffling stage. Shuffling is done by using the
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MPI_Alltoallv collective as a process may have different number of keys that map
to other processes. Finally, every process applies the reduction operation to the list of
values (V0..N�1) associated with each key; the reductions for different keys can be done
in parallel.

We have implemented a baseline MapReduce framework that uses MPI_Alltoallv
for data shuffling in OmpSs and MPI. In the baseline MapReduce implementation, the
reduction of a single key list of values is a serial operation, while reduction for different
keys can be performed in parallel. However, using our scheme, the reduction tasks can
start to execute as soon as the MPI_Alltoallv receives data from any single rank. This
leads to the creation of several parallel reduction tasks for the same key as multiple list of
values for a single key might be received from different processes.
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Chapter 4
Improving Power Consumption

Through Task Criticality

This work advocates an integrated system in which the task-based runtime system controls
hardware reconfiguration according to the criticality of the different tasks in execution. As
such, the runtime can either schedule the most critical tasks to the fastest hardware com-
ponents or reconfigure those elements where the highly-critical tasks run. In this way,
the programmer only has to provide simple and intuitive annotations and does not need
to explicitly control the way the load is balanced, how the hardware is reconfigured, or
whether a particular power budget is met. Such responsibilities are mainly left to the run-
time system, which decouples the software and hardware layers and drives the design of
specific hardware components to support such functions when required. To reconfigure
the computation power of the system, we consider DVFS, as it is a common reconfigu-
ration capability on commodity hardware. However, our criticality aware approach can
target reconfigurations of any hardware component, as no DVFS specific assumptions are
made.

The most relevant contributions of this Chapter are:

• We compare two mechanisms for estimating task criticality with user-defined static
annotations and with a dynamic solution operating at execution time. Both ap-
proaches are effective, but the simpler implementation of the user-defined static
annotations provides slightly better performance and EDP results.

• We introduce Criticality Aware Task Acceleration (CATA), a runtime system level
technique that reconfigures the frequency of the cores while keeping the whole
processor under a certain power budget. Average improvements reach 18.4% and
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30.1% in execution time and EDP respectively, over a baseline scheduler on a sim-
ulated 32-core system.

• For some applications, the DVFS reconfiguration penalties caused by inherent seri-
alization issues can become a performance bottleneck. To overcome this problem,
we introduce a hardware component denoted Runtime Support Unit (RSU), which
relieves the runtime system of carrying out frequency reconfigurations and can be
easily incorporated on top of existing solutions [5, 54, 76]. For sensitive appli-
cations, up to an additional 8.5% improvement in performance is obtained over
CATA.

4.1 Limitations of scheduling algorithms

Task scheduling is a critical phase in the runtime system of ATaP programming mod-
els since the scheduling algorithm is in charge of mapping the actual tasks to the pro-
cessing elements. In asymmetric systems where processing elements exhibit different
performance rations, a bad decission at schedule time in such systems known as blind

assignment can decrease performance as shown in [32].
CATS or Criticality-Aware Task Scheduler solves the blind assignment problem of

FIFO schedulers by employing the task criticality on scheduling decissions mapping the
most critical tasks to the processing elements with the highest performance ratio when
possible. However, even if it considers the criticality of the tasks, it may present the
following misbehaviors in the scheduling decisions that lead to load imbalance in hetero-
geneous architectures:

• Priority inversion: when a critical task has to be scheduled and all the fast cores are
in use by non-critical tasks, it is scheduled to a slow core.

• Static binding for the task duration: when a task finishes executing on a fast core,
this core can be left idle even if other critical tasks are running on slow cores.

These problems happen because the computational capabilities of the cores are static
and, once a task is scheduled to a core, it is not possible to re-distribute resources if the
original circumstances change. In order to overcome these limitations, this thesis pro-
poses a runtime-driven criticality-aware task acceleration scheme, resulting in a respon-
sive system that executes critical tasks on fast cores and re-distributes the computational
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Finally, the kernel updates all its internal data structures related to the clock frequency
and returns the control to the runtime system.

Although this approach is able to solve the priority inversion and static binding is-
sues by reconfiguring the computational capabilities assigned to the tasks, it raises a new
issue for performance: reconfiguration serialization. Some steps of the software-driven
reconfiguration operations inherently need to execute sequentially, since concurrent up-
dates could transiently set the system in an illegal state that exceeds the power budget.
Furthermore, invoking an interrupt and running the corresponding cpufreq driver in
the kernel space can become a performance bottleneck. As a result, all the steps required
to reconfigure the core frequency can last from tens of microseconds to over a millisecond
in our experiments, becoming a potential point of contention for large core counts.

4.2.2 Architectural Support for DVFS Reconfiguration

With the trend towards highly parallel multicores the frequency of reconfigurations will
significantly increase. This will be exacerbated by the increasing trend towards fine-
grain task programming models with specific hardware support for task creation, data-
dependences detection and scheduling [40, 72, 108]. Consequently, software-driven re-
configuration operations will be inefficient in future multicores. In such systems, hard-
ware support for runtime-driven reconfigurations arises as a suitable solution to reduce
contention in the reconfiguration process.

We propose a new hardware unit, the Runtime Support Unit (RSU), which imple-
ments the reconfiguration algorithm explained in the previous section. The RSU avoids
continuous switches from user to kernel space, reducing the latency in reconfigurations
and removing contention due to reconfiguration serialization. As illustrated in Figure 4.2,
the RSU tracks the state of each core and the criticality of the running tasks to decide
hardware reconfigurations and notify per-core frequency changes to the DVFS controller.

4.2.2.1 RSU Management

The RSU stores the criticality of the task running on each core (Critical, Non-Critical, or
No Task), the status of each core (Accelerated or Non-Accelerated) and the correspond-
ing Accelerated and Non-Accelerated Power Levels to configure the DVFS controller,
together with the overall power budget for the system.

To manage the RSU, the ISA is augmented with initialization, reset and disabling
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evaluate CATA using static annotations for criticality estimation.

Results show that CATA achieves average speedups of 15.9% to 18.4% over FIFO,
and from 8.2% to 12.7% better than CATS+SA. The main improvements of CATA are
obtained in fork-join or stencil applications, in particular Swaptions and Fluidanimate. In
these applications, when tasks finish their execution before a synchronization point, CATA
reassigns the available power budget to the remaining executing tasks, reducing the load
imbalance. In contrast, in Blackscholes the number of tasks is very large and the load
imbalance is low. This causes CATA to provide minimal performance benefits and even
to present slight slowdowns with 24 fast cores. The slowdown is due to the overhead of
frequency reconfigurations. In the applications with pipeline parallelism the performance
improvement over CATS is lower, but still CATA obtains noticeable speedups of up to
28% in Bodytrack with 8 fast cores. CATA average improvements in EDP are significant,
ranging from 25.4% to 30.1%. These gains are larger than the improvements in execu-
tion time as CATA reduces the power consumption of idle cores while it avoids priority
inversion and static binding problems. Benchmarks with a large amount of load imbal-
ance such as Swaptions and Fluidanimate dramatically reduce EDP, halving the baseline
with 24 fast cores. When a task finishes and there are no other tasks ready to execute,
CATA decelerates the core reducing the average number of fast cores decreasing power
consumption.

4.3.3 Architecturally Supported CATA

Despite the significant performance and power benefits, CATA can be further improved
by reducing the overhead of reconfiguring the computational power of the cores. As
described in Section 4.2.2, frequency reconfigurations have to be serialized to avoid po-
tentially harmful power states. In CATA this is done using locks and, as a result, it suffers
from reconfiguration serialization overheads as the number of cores increases. This is-
sue can become a bottleneck when one of the two following conditions holds: i) the
amount of time spent performing reconfigurations is significant, or ii) the distribution of
reconfigurations over time has a bursty behavior, which is the case in applications with
synchronization barriers.

An analysis of the execution of the applications shows that the average reconfiguration
latency of CATA ranges from 11 µs to 65 µs. However, maximum lock acquisition times
in Blackscholes, Fluidanimate and Bodytrack reach several milliseconds (from 4.8 ms to
15 ms) due to lock contention. Additionally, although the average overhead of the recon-
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Figure 5.1: Execution time breakdown of the master and worker threads during the paral-
lel execution. Different states represent dependence management operations during task
creation and task finalization (DEPS), scheduling (SCHED), task execution (EXEC), and
idle time (IDLE).

TDM achieves a 12.3% average speedup and a 20.4% reduction in EDP with respect
to a baseline implemented in software.

• A proof of the potential of TDM when combined with five software schedulers
that exploit the characteristics of different applications. Thanks to this flexibility,
TDM outperforms a runtime fully implemented in hardware by an average 4.2%,
improves EDP by an average 6.2%, and reduces the area overhead by 7.3⇥.

5.1 Characterizing Runtime System Activity

Performance and scalability of parallel programs is fundamentally limited by the over-
heads introduced in the form of idle time and runtime system phases to manage tasks and
dependences [48]. These two sources of overheads are tightly related to the granularity
of the tasks. On the one hand, coarse-grained tasking reduces the overheads of task cre-
ation and dependence management, but compromises load balancing and scalability on
large-scale multi-cores. On the other hand, fine-grained tasking favors load balancing,
but increases the overheads of the runtime system in dependence management and task
scheduling phases. In addition, many operations in the runtime system phases need to
be serialized to avoid race conditions, potentially becoming a bottleneck as concurrency
increases with higher core counts.

We characterize the cost of the runtime system phases in 9 representative task-based
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with extremely fine-grained tasks running on hundreds of cores. However, in scenar-
ios with mid-grained or less extreme fine-grained tasks2, the cost of task scheduling is
relatively low, less than 11% in all benchmarks in Figure 5.1, so the benefits of flexi-
ble software scheduling can be achieved with minimal performance impact. In contrast,
the cost of dependence management operations during task creation is crucial for perfor-
mance because it determines the idle time in the whole execution, so adding hardware
support to perform this operation can effectively reduce the runtime system overheads.

5.2 TDM Design

TDM is a hardware/software co-designed mechanism to support the runtime system.
TDM addresses the performance bottlenecks of pure software dataflow runtime systems
by proposing a hardware/software co-designed mechanism that performs dependence
management operations efficiently in hardware and allows the usage of different task
scheduling policies in the runtime system. Thanks to this separation of concerns, TDM
is able to mitigate the performance overheads introduced in runtime system phases while
providing flexibility to the software layers, so the resulting system is more adaptable,
composable, and is able to capitalize on the benefits of different scheduling policies for
different applications.

TDM balances the higher cost and performance of implementing mechanisms in hard-
ware, with the higher flexibility and adaptability of implementing policies in software. At
the architecture level TDM introduces a DMU that keeps a representation of the TDG
and allows the runtime system to offload costly dependence tracking operations, while
leaving scheduling decisions to the runtime system. As a result, TDM avoids the over-
heads of software runtime systems and maintains the flexibility of supporting software
schedulers.

The runtime system interacts with the DMU to communicate task creation, the data
dependences of the tasks, and task finalization. With this information, the DMU generates
the TDG, tracks dependences between tasks, identifies tasks ready for execution, and
exposes them to the runtime system. The runtime system can request ready tasks to the
DMU, organize them in software data structures, and schedule them to the cores according
to any scheduling policy.

2In this paper we use task granularities up to 3 orders of magnitude bigger than other works of the
literature.
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Figure 5.2: DMU architectural support overview.

5.2.1 Runtime System - Architecture Interface

TDM offers an interface to the runtime system so that it can cooperate with the DMU
in the management of tasks. The interface between the DMU and the runtime system
consists of four new ISA instructions. These instructions are issued by the runtime system
in the task creation and task finalization phases to exchange information with the DMU.

• create_task(task_desc): In the task creation phase, the runtime system uses this
instruction to inform the DMU that a new task is being created. The DMU receives
the task descriptor address of the new task.

• add_dependence(task_desc, dep_addr, size, direction): After creating a task, the
runtime system traverses its list of dependences and uses this instruction to inform
the DMU of the dependences of the task, sending the task descriptor address, the
address of the dependence, the size, and the direction (input or output). With this
information the DMU tracks tasks and dependences and builds the TDG to ensure
dependences between tasks are fulfilled.

• finish_task(task_desc): When a task finishes its execution, the runtime system uses
this instruction to notify it to the architecture. The DMU wakes up the successors
of the task and cleans up the information of the task and its dependences from its
internal structures.

• get_ready_task() ! task_desc, #succ: Just after notifying a task has finished, the
runtime system uses this instruction to request to the DMU the successors of the fin-
ished tasks that have just become ready. This instruction returns the task descriptor
address and its number of successors.
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Figure 5.3: Overview of TAT, DAT, Task and Dependence Table. Two active elements are
presented in each table.

5.2.2 DMU Hardware Design

The DMU is a centralized module connected to the network-on-chip whose main goal is
to keep all the relevant information of the in-flight tasks, track the dependences between
them, and expose ready tasks to the runtime system. Figure 5.2 presents its different
components. Each task or dependence is internally identified by an ID, which maps to
its location in the corresponding table. Tables and list arrays employ SRAM memories,
addressed by the task or dependence IDs. Two set-associative structures, TAT and DAT,
are used to map task descriptor and dependence addresses to internal DMU IDs. The
general behavior of each module follows:

• The Task and Dependence Alias Tables (TAT and DAT) keep a translation of task
descriptor addresses or dependence addresses to internal task or dependence IDs.

• The Task Table and the Dependence Table track all the information of the in-flight
tasks and dependences.

• The List Arrays (Successor, Dependence and Reader) contain lists of elements as-
sociated to in-flight tasks or dependences. The successor and reader lists store task
IDs, while the dependence list stores dependence IDs.
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• The Ready Queue (RQ) is a FIFO queue that contains task IDs ready to be executed.

5.2.2.1 Task and Dependence Identifier Renaming

The alias tables are depicted in Figure 5.3. Both TAT and DAT modules consist of a
directory that maps task descriptor and dependence addresses to task and dependence
IDs, respectively, and an additional queue of free IDs. Both modules are implemented
using set-associative memories.

Selecting the correct bits to index the DAT is crucial to avoid conflicts. It is common
that different tasks access different blocks of the same data structure, so the lower bits of
the addresses of different dependences share the same values. For example, if tasks access
different 4KB blocks of a vector, the lower 12 bits of all the dependences are equal. If
these bits are used to index the DAT, only one set is used and many conflicts happen. To
avoid conflicts, the size of the dependence is used to select the address bits employed as
index, which start at the log2size lower bit.

The alias tables allow the rest of DMU modules to work with internal IDs, which
offers two important advantages. First, the Task and Dependence Tables employ RAM
memories, indexed with the internal task and dependence IDs, avoiding costly associative
lookups of 64-bit task descriptor and dependence addresses keys. Therefore, using TAT
and DAT a single lookup is required per DMU instruction, followed by many subsequent
direct accesses to the Task and Dependence Tables, as explained in Section 5.2.3. Second,
the storage requirements of the list arrays can be reduced significantly, as the size of the
internal IDs is much smaller than the 64-bit identifiers used in the runtime system. Our
experiments in Section 5.3.2 show that DAT and TAT with 2048 entries suffice for any
application, so 11-bit IDs can be used and the size of the list arrays is reduced by a factor
of 5.8⇥.

5.2.2.2 Task and Dependence Tracking

The Task and Dependence Tables are used to keep the information of the tasks and the
dependences. The Task Table is an SRAM indexed by the Task ID. Figure 5.3 shows
each entry of the Task Table containing the relevant information of a task: its descriptor
address, the number of successors and predecessors, and pointers to the lists of successors
and dependences. The Dependence Table follows the same scheme to track dependences,
storing the task ID of the last task that writes the dependence and a pointer to the list of
readers.
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Figure 5.4: Overview of a generic list array.

The lists of successors, dependences and readers are implemented in three list array
structures. As shown in Figure 5.4, each list array is an SRAM that can store multiple
lists. To accommodate a variable number of elements in each list we use a storage layout
inspired by UNIX filesystem inodes. The maximum number of elements in each entry is
fixed by design (4 in the example), but the list can continue in another entry. The Next

control field of every entry points to the entry in the list array where the list continues.
The Next field is set to the current entry number if the list finishes in this entry. Invalid
elements are set to all ones.

The Successor List Array uses this organization to store the lists of successors of
each in-flight task, identified by their task IDs. Task IDs are also stored in the lists of
the Readers List Array, which track the reader tasks of all the in-flight dependences. The
Dependence List Array keeps the lists of dependences of the in-flight tasks, so dependence
IDs are stored in the lists. Note that OpenMP 4.0 uses the input/output dependences
provided by the programmer to build the TDG when tasks are created in program order.
The DMU preserves this model by decoupling the dependences, that are tracked in the
dependence and readers lists, from the edges of the TDG, that are tracked in the successors
lists.

5.2.3 Operational Model

The runtime system triggers DMU operations using the ISA instructions in the task cre-
ation and finalization phases.

5.2.3.1 Task Creation

The runtime system uses the create_task instruction to send the task descriptor address to
the DMU. Then, for every dependence of the task, it uses the add_dependence instruction
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Algorithm 2: Algorithm for add_dependence instruction.
Data: taskID, depID, dir
Insert depID in dependence list of taskID;
if lastWriterID of depID is valid then

Insert taskID in successor list of lastWriterID;
Increment #succ of lastWriterID;
Increment #pred of taskID;

end
if dir is In then

Insert taskID in reader list of depID;
end
if dir is Out then

for readerID in reader list of depID do
Insert taskID in successor list of readerID;
Increment #succ of readerID;
Increment #pred of taskID;

end
Flush reader list of depID;
Set lastWriterID of depID to taskID and mark valid;

end

to inform the DMU.

When the create_task instruction is executed, the DMU uses the TAT to generate
a task ID. The Task Table is indexed with the task ID and the entry is initialized by
setting the task descriptor address, setting to 0 the number of successors and predecessors,
and reserving a new list of successors and a new list of dependences in the Successor
and Dependence List Arrays. If some structure of the DMU has no entries available the
instruction blocks until an entry is freed.

After the task is created, for every add_dependence instruction an entry is allocated
in DAT and Dependence Table. The DMU uses TAT to obtain the task ID and DAT to
obtain the dependence ID. Then, the DMU behaves as described in Algorithm 2. First the
dependence is inserted in the list of dependences of the task and the task ID is inserted in
the successor list of the last writer of the dependence. Then, if the dependence is an input,
the task ID is inserted in the readers list of the dependence. Otherwise, if the dependence
is an output, all the readers of the dependence insert the task in their successor lists, the
reader list is flushed, and the task becomes the last writer of the dependence.
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Algorithm 3: Algorithm implemented by DMU for the finish_task instruction.
Data: taskID
for succID in successor list of taskID do

Decrement #pred of succID;
if #pred of succID = 0 then

Insert succID in the Ready Queue;
end

end
for depID in dependence list of taskID do

Remove taskID from reader list of depID;
if lastWriterID of depID = taskID then

Mark lastWriterID of depID as invalid;
end
if lastWriterID of depID is invalid &&
reader list of depID is empty then

Free reader list of depID;
Free depID entry in DepTable and DAT;

end
end
Free successor list of taskID;
Free dependence list of taskID;
Free taskID entry in TaskTable and TAT;

5.2.3.2 Task Finalization

When a task finishes, the runtime system uses the finish_task instruction to communi-
cate the task descriptor address to the DMU, and this carries out the steps described in
Algorithm 3. In the first loop the DMU wakes up the successor tasks by traversing the
successor list of the task and decrementing the number of predecessors of each successor.
If the number of predecessors becomes zero, the successor task is moved to the Ready
Queue. In the second loop the task is removed from the reader list and the last writer field
of each of its dependences. Finally the DMU frees the entries allocated for the task in the
Task Table, the TAT, and the Successor and Dependence List Arrays.

5.2.3.3 Implementing Task Schedulers in Software

After the finalization of a task the runtime system requests ready tasks to the DMU by
issuing get_ready_task instructions in a loop. For every get_ready_task instruction the
DMU consults the Ready Queue. If it is empty, a null pointer is returned. Otherwise,
the task ID at the head of the queue is retrieved and used to index the Task Table to get
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the task descriptor address and the number of successors that are returned to the runtime
system. Then the runtime system adds the returned task descriptor address to a pool of
ready tasks and stores the number of successors in the task descriptor.

The pool of ready tasks can be used by the runtime system to implement any schedul-
ing policy. The scheduling algorithms can traverse the pool of ready tasks in any order,
move ready tasks to different data structures, or perform any action required by each par-
ticular implementation. By allowing the usage of different task schedulers, TDM provides
flexibility, adaptability and composability to the system.

5.2.4 Additional Considerations

The size of the hardware structures of the DMU limit the number of in-flight tasks and
dependences. To preserve correctness, the TDM ISA instructions have barrier semantics,
so they cannot be re-ordered in the CPUs and younger instructions cannot be executed
before the TDM instructions commit. The DMU processes the instructions sequentially
and, if there is no room available in some structure, the instruction is blocked until some
in-flight task finishes.

TDM manages tasks and dependences inside parallel regions and relies on the runtime
system to handle barriers and other global synchronization points. To do so, the master
thread executes the code sequentially and creates the tasks while the worker threads re-
quest tasks and execute them. The runtime system tracks how many tasks have been
created by the master thread and how many have been executed. When the master thread
reaches the barrier it adopts the behavior of a worker thread, and when all the tasks have
been executed it resumes the sequential execution of the program.

The proposed design of TDM can be easily extended to support context switches and
multiprogrammed workloads. A simple and effective solution is to tag TAT and DAT with
the operating system process ID, so different processes can use TDM concurrently and the
structures of the DMU do not need to be saved and restored at context switch.

The centralized design of the DMU is not a limiting factor for scalability. The DMU
executes several instructions per task that, all together, take tens to hundreds nanoseconds,
while the average task duration in our experiments is 4771 microseconds, as shown in
Section 5.3.1. Given that the task duration is 5 orders of magnitude larger than the latency
of the DMU instructions per task, the DMU is able to scale up to thousands of concurrent
tasks before becoming a bottleneck.
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Figure 5.5: Execution time for different task granularities. The X axis shows the size of
the blocks processed by each task in Blackscholes, Cholesky, Histogram, LU, and QR;
the number of partitions of the 3D volume in Fluidanimate; and the number of points
processed by each task in Streamcluster.

5.3 Design Space Exploration

5.3.1 Benchmarks and Task Granularity

To test TDM we use five benchmarks from PARSECSs [28], a task-based OpenMP 4.0
implementation of the PARSEC [14], together with four benchmarks from the high per-
formance computing domain: Cholesky, Histogram, LU and QR. These benchmarks are
representative algorithms and use different parallelization strategies: Blackscholes and
Streamcluster use fork-join parallelism, Fluidanimate is a 3D stencil, and Dedup and Fer-
ret use pipeline parallelism. Regarding the other four benchmarks, Cholesky performs a
Cholesky decomposition of a matrix, Histogram computes a cumulative histogram for all
pixels of an image, LU does a LU decomposition of a matrix, and QR calculates a QR
factorization of a matrix. Tiling is applied in these algorithms so that tasks process 2D
blocks of the matrices.

The benchmarks are compiled with Mercurium 1.99 source-to-source compiler [8]
with gcc 4.6.4 as backend compiler. Simlarge input sets are used for the PARSEC bench-
marks, Cholesky decomposes a dense 2048⇥ 2048 matrix, histogram processes a 4096⇥
4096 image and generates a histogram with 10 bins, LU decomposes a sparse 2048⇥2048

matrix, and QR a dense 1024⇥ 1024 matrix.

In all benchmarks we ensure that parallel regions scale well to 32 cores using perfor-
mance analysis tools to visualize the parallel executions. The optimal task granularity is
carefully selected to minimize load imbalance and execution time in the baseline software
approach. Figure 5.5 shows the execution time with different task granularities growing
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Table 5.1: Benchmark characteristics. Number of tasks and average task duration with
the optimal task granularity for the software runtime system and for TDM.

Software TDM
# tasks Duration (µs) # tasks Duration (µs)

Blackscholes 3,300 1,770 6,500 823
Cholesky 5,984 183 5,984 183
Dedup 244 27,748 244 27,748
Ferret 1,536 7,667 1,536 7,667
Fluidanimate 2,560 1,804 2,560 1,804
Histogram 512 3,824 512 3,824
LU 1,512 424 1,512 424
QR 1,496 997 11,440 96
Streamcluster 42,115 376 42,115 376
Average 6,584 4,976 8,056 4,771

along the X axis (i.e., smaller to bigger from left to right). Execution time is normalized to
the optimal task granularity. In Dedup and Ferret the task granularity cannot be changed
without modifying the application, as each task processes a pipeline stage. In general,
shorter task duration increases parallelism, but leads to higher runtime system overheads.

Table 5.1 summarizes the number of tasks and their average duration for each bench-
mark. The number of tasks ranges from 244 (Dedup) to 42,115 (Streamcluster), and the
average duration between 96µs (QR) and 27ms (Dedup). The optimal task granularity
is used for the corresponding approach (software or TDM) in all the experiments of the
evaluation.

5.3.2 TAT, DAT and List Arrays

We perform a design space exploration to determine the optimal size of the DMU hard-
ware structures. All the experiments are performed in the gem5 simulator using an ARM
platform consisting of 32 cores and full system simulation as detailed in Section 3.1. We
first study the sizing of TAT and DAT, considering a DMU implementation with N TAT
entries, M DAT entries, and unlimited entries in the list arrays. The size of the TAT and
the DAT determine the size of the Task and Dependence Table, respectively. Figure 5.6
shows the performance obtained when N and M vary between 512 and 4096. Perfor-
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Figure 5.6: Average performance with different sizes of the TAT and DAT. Results are
normalized to an ideal DMU with unlimited entries and equal latency.

mance is normalized to an ideal design with an infinite number of entries in all DMU
structures and same latency.

Figure 5.6 shows results for 5 benchmarks. The rest of benchmarks already achieve
maximum performance with 512 entries in DAT and TAT. The geometric mean considers
all the benchmarks. The figure shows LU and QR are sensitive to the DAT size, achieving
maximum performance with 2048 entries. The other three benchmarks are sensitive to the
TAT size. The most demanding benchmark is Histogram, as its tasks have a significant
amount of dependences between them and the distance between independent tasks is high.
Thus, it requires at least 2048 TAT entries to achieve maximum performance. On average,
with 2048 entries in both DAT and TAT, the DMU only suffers a 0.91% performance
degradation with respect to the ideal case with infinite entries and same latency. We
also explore the associativities of TAT and DAT, results showing that 8-way associative
structures minimize conflicts and offer the best performance.

Next we explore the size of the successor, dependence and reader list arrays. Fig-
ure 5.7 shows the average performance when these structures vary from 128 to 2048
entries, normalized to an ideal design with an infinite number of entries in all DMU struc-
tures and same latency.

These results clearly show that a design with 128 entries in any of the list arrays
leads to suboptimal performance. In contrast, with 1024 entries in all the list arrays,
performance already saturates. On average, with 1024 entries in all list arrays, the DMU
only suffers a 1.1% performance degradation with respect to the ideal case with an infinite
number of entries and same latency. Doubling the size of all list arrays leads to an average
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Figure 5.7: Average performance with different sizes of the list array (LA) structures.
Results are normalized to an ideal DMU with unlimited entries and equal latency.

Figure 5.8: Performance degradation when varying the access time of all DMU structures
from 1 to 16 cycles. Results are normalized to DMU structures with zero latency.

1.0% performance degradation, but requires a significant increase in area. For this reason,
we size all list arrays in the DMU with 1024 entries.

5.3.3 DMU Access Latency

As explained in Section 5.2, the algorithms that implement TDM instructions require ac-
cessing different hardware structures. Also, the lists stored in the list arrays may spread
over multiple entries, which requires multiple accesses to traverse the complete lists. Con-
sequently, DMU operations require multiple cycles to finalize. Next, we evaluate the per-
formance of the DMU when varying the latencies of its hardware structures. In these
experiments we use the sizes of the DMU structures determined in the previous section.

Figure 5.8 shows the performance degradation when increasing the access time of all
DMU structures from 1 to 16 cycles. Most benchmarks do not suffer any performance
degradation due to higher latencies, as with the optimal task granularity DMU operations
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Table 5.2: DMU storage (KB) and area (mm2) requirements.
Storage Area Storage Area

Task Table 23.00 0.026 SLA 12.25 0.019
Dep Table 5.25 0.013 DLA 12.25 0.019
TAT 18.75 0.031 RLA 12.25 0.019
DAT 18.75 0.031 ReadyQ 2.75 0.012

Total 105.25 KB 0.17 mm2

happen infrequently. Only LU and QR are slightly affected by this parameter. On average,
performance degrades only 0.2% with a 1-cycle access time and 0.9% with a 16-cycle
access time.

5.3.4 DMU Area and Power Overhead

Table 5.2 shows the storage and area requirements of the DMU for the sizes selected in
Section 5.3.2. Storage values consider the number of bits of the task and dependence IDs,
which depend on the size of the tables they point to. The structures are modeled in CACTI
6.0 [87] to obtain the area values with a process technology of 22 nm.

The components of the DMU have a negligible effect on the power consumption, less
than 0.01% of the total power. The low power requirements of the DMU combined with
the small sizes of the hardware structures allow to design the DMU with a 1-cycle access
time to each data structure.

As a conclusion of this design space exploration, we select a design with a DAT and
TAT of 2048 entries and all the list arrays of 1024 entries. The storage and area require-
ments for this configuration, 105.25KB and 0.17mm2, are very affordable with current
design technology. The rest of this chapter makes use of this configuration in all the
experiments.

5.3.5 Runtime Overhead Reduction

Next, we measure the impact of TDM in the task creation time. Figure 5.9 shows the
average time spent by the master creating tasks and managing their dependences, which
corresponds to the DEPS category in Figure 5.1. Task creation time is not completely
eliminated with TDM because of the latency of the DMU structures and because some
operations are still performed in the runtime system, such as creating task descriptors, is-
suing TDM instructions, etc. All benchmarks benefit from the hardware support provided
by the DMU, achieving up to a 5.2⇥ reduction in task creation time in Blackscholes.
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Figure 5.9: Percentage of time spent in task creation with a pure software approach (SW)
and with TDM.

On average, task creation is reduced from from 31.0% to 14.5% of the total CPU time,
proving the effectiveness of TDM. This reduction of task creation time has a big impact
on the idle time, that is reduced from 32% to 22% on average, and translates into overall
application speedups as will be shown in Section 5.4.

5.3.6 Index Bit Selection for DAT

We show the importance of selecting the appropriate bits of the dependence addresses to
index the DAT. As described in Section 5.2.2.1, when different blocks of the same data
structure are specified as dependences, many dependence addresses have the same values
in the lower bits, causing conflicts if these bits are selected to index the DAT. To avoid this
problem, the DMU uses the size of the dependence to select the bits of the dependence
addresses to index the DAT.

Figure 5.10 shows the average number of occupied sets in the DAT for the six bench-
marks that are sensitive to this issue. The X axis shows 5 numerical values that corre-
spond to different options to statically select the index bits (e.g., 4 means the index bits
start at the 4th lower bit of the dependence address), and the proposed dynamic mech-
anism (DYN) that uses the size of the dependence. Results show that each fixed value
drastically changes the occupancy of the DAT, from 1% to 88%. More importantly, every
benchmark requires selecting different index bits. This happens because the benchmarks
use different block sizes, so the number of lower bits that are equal in the dependence
addresses changes in every benchmark. By using the size of the dependences provided by
the runtime system to dynamically select the index bits, the DMU avoids conflicts in the
DAT and maximizes its occupancy in all benchmarks.
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become ready before their I/O counterparts, so it fails in overlapping I/O and computa-
tion. However, the successor scheduler harms performance in Cholesky, as it delays the
execution of tasks that process the borders of the matrix, limiting the available parallelism.

Overall, OptSW performs worse than TDM with any scheduler, while the best sched-
uler (Age+TDM) achieves an average 9.1% speedup. More importantly, the best perfor-
mance is achieved with FIFO+TDM, LIFO+TDM, Locality+TDM, Successor+TDM, and
Age+TDM for 2, 2, 2, 2, and 1 different benchmarks, respectively.

When the best scheduler per application is used, average 4.5% and 12.2% performance
improvements are obtained with OptSW and Opt+TDM, respectively. The benefits of
TDM are demonstrated by two facts: first, TDM provides enhanced results for all the
schedulers and, second, TDM exposes the scheduler policy to the software, which yields
large performance benefits due to the flexibility it provides.

5.4.2 Energy Efficiency

This section evaluates the energy efficiency of TDM combined with different schedulers.
The bottom chart of Figure 5.11 shows the EDP of FIFO, LIFO, Locality, Successor and
Age schedulers when combined with TDM. This figure considers the power introduced by
the DMU hardware structures. Results are normalized to a pure software runtime system
with a FIFO scheduler, and a geometric mean (AVG) of the results is shown.

Figure 5.11 shows that TDM provides significant EDP reductions in seven bench-
marks, and minimal reductions are obtained in Ferret and Histogram. On average, EDP
is reduced up to 8.9% with the best software solution (OptSW), while EDP is reduced
between 3.1% and 15.4% when combining different schedulers with TDM. Combining
TDM with the best scheduler per application (OptTDM) yields the best results, achieving
average reductions in EDP of 20.3%.

In terms of power consumption, the DMU consumes a negligible fraction of the total
power, less than 0.01%. All benchmarks consume very similar power with the considered
schedulers on a software runtime system and when they combine the schedulers with
TDM (less than 1.0% difference). In addition, average power results show less than 1.0%
variation between different schedulers. Since the average power consumption does not
significantly change, the improvements in total energy to solution follow the same trends
as Figure 5.11.
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7.2. THE RUNTIME-AWARE ARCHITECTURE HARDWARE EXTENSIONS

is being expected, the tasks associated to the dependence are retrieved from the depen-
dence readers list and we use the same algorithms described in Chapter 5 to release them.
Figure 7.2 shows how the dependence table is extended to hold the expected MPI mes-
sage tag, source, and the timestamp when the dependence is created in order to preserve
MPI ordering semantics. The received tag and source are successfully checked against a
Bloom filter and then the complete table is iterated until it finds the minimum matching
timestamp request with the same source and tag values. The resulting task is then used to
address the task table and unlock its successors.

task ID Src Tag Timestamp Received

15 24 0xABCD 12602 0
2 23 0xBBB 22229 0
0 24 0xABCD 12202 0

Communication Dependence Table

Bloom Filter

Table 
Iterator

== Min Matching 
Time Stamp<

12602

12202

Src: 24

Tag: 0xABCD

Positive

(Src, Tag)

Figure 7.2: Tag and source matching from an incoming message

On the other hand, if an unexpected message arrives and the receiving task has not
been created in this node yet, a new dependence entry is allocated on the table and a flag
to notify that the message arrived is set. This flag is used on task creation to let the RSU
know that it does not need to add the message as a dependence anymore, because it is
ready to be received.

In the case of the tag-matching engine providing back an MPI_Request object instead
of a source and tag pair, the MPI_Request object address was set as the actual dependence,
so it only accesses the DAT to get the internal address and release the associated task.

One limitation of this approach is that only inter-node messages are detected. In
order to also support intra-node MPI communications, this must be done through the
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