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Abstract

A class of graphs is bridge-addable if given a graph G in the class, any graph obtained
by adding an edge between two connected components of G is also in the class. We prove a
conjecture of McDiarmid, Steger, and Welsh, that says that if G,, is any class of bridge-addable
graphs on n vertices, and G,, is taken uniformly at random from G,,, then G, is connected with
probability at least ez + o(1), when n tends to infinity. This lower bound is asymptotically
best possible since it is reached for forests.

Our proof uses a “local double counting” strategy that may be of independent interest, and
that enables us to compare the size of two sets of combinatorial objects by solving a related
multivariate optimization problem. In our case, the optimization problem deals with partition
functions of trees relative to a supermultiplicative functional.

1 Introduction, notation, main result

In this paper, unless otherwise stated, all graphs are finite, simple and with vertex set {1,...,n}
for some n > 1. Following [MSWO0G6], we say that a family G of graphs is bridge-addable if the
following is true:

If G is a graph from G, and if e is an edge not in G whose endpoints belong to two
different connected components of G, then the graph G U {e} obtained by adding e to
Gisin G.

The notion of bridge-addability was motivated by the study of connectivity in random planar graphs
(since the class of planar graphs is clearly bridge-addable). Other examples of bridge-addable classes
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include forests, triangle-free graphs, graphs having a perfect matching, or any minor closed class of
graphs whose excluded minors are 2-connected. See [MSWO06, ABMRI12| for even more examples.

In [MSWO05, IMSWO6], the authors investigate the properties of a graph taken uniformly at
random from a bridge-addable class. In particular they show the following;:

Proposition 1 ([MSWO05]). For every € > 0, there exists an ng such that for every n > ngy and
any bridge-addable class G,, of graphs with n vertices, we have

Pr (G, is connected) > (1 — €)e™ !, (1)
where Gy, is chosen uniformly at random from G,.

The authors of [MSWO06] conjectured that the constant e~! in can be improved to e~ /2. If
true, this would be best possible, since it is proved in [Rén59] that if F), is a uniform random forest
on n vertices, then one has when n tends to infinity:

Pr (F, is connected) —» e~ /2,

The first partial result towards the proof of the conjecture was obtained by Balister, Bollobas, and
Gerke [BBGO§] who improved the constant in from e~ ! to e 978 Norin, in an unpublished
draft [Nor|, improves it to e~2/3. Until the present paper these were, as far as we know, the best
results under general hypotheses.

Under the (much) stronger hypothesis that the class is also bridge-alterable (i.e. that the class
is also stable by bridge deletion), Addario-Berry, McDiarmid and Reed [ABMRI12], and Kang and
Panagiotou [KP13] independently improved the constant to the general conjectured value e 1/2,
Both proofs use the fact that graphs from bridge-alterable classes can be encoded by weighted
forests, so that the problem reduces to estimating the connectivity in a random weighted forest.
Unfortunately, this encoding fails for general bridge-addable classes, so these proof techniques do
not apply to the general case. Note also that many bridge-addable classes are not bridge-alterable,
for example graphs that admit a perfect matching, graphs that have a component of large size,
or graphs in any bridge-addable class that contain a given subgraph (for example, planar graphs
containing a path of given length).

In this paper, we prove the general conjecture, i.e. we improve the constant in (1) to e~
using only the hypothesis of bridge-addability. Our main result is the following:

1/2

Theorem 2. The McDiarmid-Steger- Welsh conjecture is true: For every e > 0, there exists an ng
such that for every n > ng and any bridge-addable class G, of graphs with n vertices we have

Pr (G, is connected) > (1 —e)e™ /2 |
where G, is chosen uniformly at random from G,.

We believe that, beyond the own interest of the conjecture, our proof is interesting for several
other reasons. First, the resolution of this problem promotes further this “alternative approach” to
random graphs with constraints, and raises the question of finding other class properties, beyond
bridge-addability, that give rise to interesting and non-trivial predictable asymptotic behaviour. For
example McDiarmid and Scott [MS] have studied block-classes (where the class property is stability
under taking a two-connected component) and Balister, Bollobéds and Gerke [BBGO§| have studied
the property of 2-addability. One can expect that in years to come both more examples and a



greater unification of the techniques will be possible. Second, our proof is based on a combinatorial
technique that we call “local double counting” that is interesting on its own and that we believe may
be useful in many other situations. We give a quick description of this technique in the next section:
roughly speaking, it mixes a classical double counting technique already used in previous works
on this topic with a careful analysis of the local structure of the objects under study. The idea of
taking advantage of the local structure of the graphs to improve the double-counting argument has
already been used in the papers [BBGOS8, [Nor| via a weighted version of the double-counting setup.
As far as we know, the technique we introduce here is of a different nature. In particular, to prevent
any confusion, we mention that the word weight in this paper is used as in statistical mechanics
to refer to the pondering used in the definition of some partition functions that appear in an
optimization problem inherited from our double-counting arguments. However here the underlying
double-counting is unweighted in nature, and the efficiency of our method comes from the fact it is
performed locally (see Section .

Finally, our proof gives more information on random graphs from bridge-addable classes than
what is contained in Theorem We are able to quantify the probability of having any small
number of connected components:

Theorem 3. For every e > 0 and for every k > 0, there exists an ng such that for n > ng one has:
1
Pr (G, has at most k+1 connected components) > Pr (Poisson <2> < k‘> — €.

The proof is a simple extension of the proof of Theorem [2| (that corresponds to k = 0).

In the rest of the paper, we fix an integer n and a bridge-addable class G,, such that all graphs
in G, have n vertices. We let gﬁf) be the graphs in G, having exactly ¢ connected components,
(1)

and we use the shortcut notations A,, := G, ’ and B, := QT(L2). The main ingredient in the proof of
Theorem [2] is the following proposition:

Proposition 4. For all € > 0 there exists ng such that for n > ng one has:
1
Bal < (5+¢) 14l 2)

Structure of the paper. We start in Section [2| with a high level discussion on the “local double
counting” strategy that we use to prove our main result and that may be of independent interest —
the reader only interested in the proofs can skip this discussion. In Section [3] we prove Theorems
and |3| admitting Proposition The proof of Proposition {4| occupies the rest of the paper. In
Section [ we define the local parametrization of our graph classes (Section , we state the
main combinatorial double counting argument (Section , and we use it to obtain a local bound
(Corollary in Section on a functional of some ratios relating the size of A, to the size of
certain subsets of B,. This functional takes the form of a truncated partition function of rooted
trees carrying some supermultiplicative weights. In order to use this bound, we study partition
functions of trees in Section [5l In Section [5.1] we first study untruncated partition functions, and
we relate the rooted and unrooted case via an analogue of the dissymmetry theorem (Lemma .
In Section we transfer the results of Section to the setting of truncated partition functions
(Proposition . Finally, in Section |§|7 we finish the proof of Proposition In Section we
show that we can choose a good local partitioning of our graphs classes, that enables us to apply
the results of Sections [4] and [5] to conclude the proof in Section [6.2



2 The “local double counting” approach.

Previous approaches to the problem are based on double counting arguments that, using the
addability hypothesis, enable to compare the proportion of graphs having different number of
connected components in a class. The basic tool underlying the double counting, which is useful
in many situations in combinatorics, is the following: to compare the sizes of two sets A and B,
construct a bipartite graph H on (A, B) in a way that we can control the degrees of vertices on each
side; if all vertices from A have degree at least d 4, and all vertices from B have degree at most dp,
then |B| < d4/dg|A|. In the context of addable classes, the roles of the sets A and B are played
by A, and B,, with previous notation, and the adjacencies in H are based on the relation of edge
deletion. A classical way to strengthen this method is to apply it with an edge-weighted bipartite
graph structure, for a well chosen notion of weight: this technique is useful in many situations — for
example it is this refinement that is used in [BBGOS8| [Nor|. The weights enable to make the double
counting more sensitive to the particular structure of the elements of A and B. Unfortunately, even
with the use of edge-weights, approaches that are solely based on a global double counting argu-
ment seem to fall short to prove Theorem [2l Our novel approach does not consider edge-weights
and exploits the local structure in a different way.

The main feature of our approach, that enables us to reach a tight bound, is that we exploit
thoroughly the locality of the adjacencies in H. To this end, we design a “local double counting”
strategy, based on several different steps, that we believe deserves to be described at a general
level. Indeed it may be useful in many other situations where one wants to compare the size of two
combinatorial sets and neither a classical double counting nor a weighted one lead to sharp enough
bounds. This is the purpose of this section.

The locality of our approach appears at two different levels. First, to each element in AU B we
associate a statistics a, with value in some finite dimensional space £ that we call the parameter
space, that is such that if two elements a € A and b € B are linked by an edge in the bipartite
graph H, then their corresponding a-statistics are close in the space £. Moreover, if the statistics
« is well chosen, knowing the a-statistics of an element of A U B allows us to give a more precise
bound on its degree in H. For any « € £ we can then group together, in A and B, elements whose
statistics belongs to a small neighbourhood of « into sets Aj, and By, and apply the double
argument locally to obtain a bound on the “local ratio” [B|/[Ajy]-

The second way in which our approach is local is that the statistics that we choose is itself
local. Namely, in our case, the elements of AU B are graphs, and the finite-dimensional parameter
associated to a graph records the number of pendant copies of each tree under a certain size. It
is thus a “local observable” — similar to the observables underlying the local limit convergence
of [BSO1].

In order to make use of this abstract set-up, one needs to be able to work quantitatively with
the bounds obtained from this approach: this is done as follows. On the one hand, for each element
« in the parameter space we have, provided the previous steps were successful, a relation between
each coordinate of v and the ratios |Bjq)|/|A[q|- On the other hand, by construction, the statistics
« satisfies some simple global constraints (in our case, its L'-norm is smaller than n). Putting all
these inequalities together, we obtain some global constraint on a function of the ratio [Bjy|/|Ajql,
and the problem of finding the best possible upper bound on the ratio \B[a]\/ ’A[aﬂ reduces to an
optimization problem: namely, how large can the ratio |Biy|/|Af| be, knowing that the global



constraint holds. The maximum of these bounds then leadsﬂ to a bound on the ratio |B|/|A|.

In the case addressed in the present paper, this optimization problem takes the somewhat
explicit form of optimizing a partition function (or generating function) of unrooted trees, given
the constraint that the corresponding partition function of rooted trees is bounded. It is important
to note that here, the generating functions we study are not the generating functions of the objects
in the graph class under study (which is any bridge-addable class). It is a generating function of
the “local observables” that we have chosen to consider, and that are the same for any graph class.
Hence the role of generating functions in the present work is very different from the cases of exactly
solvable models, such as random series-parallel or planar graphs [BGKNOQT, [GN09|.

Another feature of our method in the present case is that in order to obtain sharper bounds,
we also need to partition the set B into finitely many subsets BY (where, in our case, the index
U is some unlabeled tree from a fixed finite family). This extra partitioning is not a necessary
feature of the “local double counting” strategy we are describing, but it makes it more general. For
each U, we then consider the induced bipartite graph on (A, BU), and in each case, we apply the
previous ideas to get a bound on the local ratios |B[%] |/|Ajq|- We then obtain a bound of the local
ratio |Bjq)|/|Ajq)| as a sum of these bounds. As before, an appropriate global constraint on the
a-statistics gives rise to an optimization problem, which is now multidimensional: how large can
the sum of these bounds be, given the global constraint. The number of variables of the problem
is thus the number of indexing elements U.

To sum up this discussion, the “local double counting” technique may be useful to bound the
ratio of the size of two sets A and B in situations where:

0. a classical double counting technique that constructs a bipartite graph on (A, B) leads to an
interesting bound, but not sharp;

1. there is a natural statistics, with value in some multidimensional parameter space (possibly of
dimension arbitrarily large), that makes the bipartite graph structure “local”; one expects this
statistics to be itself a “local measurement” of the objects under study;

2. one can write a local double counting bound that is more precise than the global one; and

3. there is some global constraint on the statistics that translates into a constraint on the local
ratios;

then the method should apply, and one can get in principle a bound (either lower or upper) on the
ratios as the solution of an optimization problem. In the case where

4. the set B may be split into several sets BY in order to refine the local bounds,

then the method applies as well, but the optimization problem becomes multidimensional. This
will be the case in this paper.

3 Proof of the main results admitting Proposition

In this section, we show how to deduce our main results (Theorems |2 and from Proposition
The proof of Proposition [4] itself is more complicated, and occupies the remaining sections.

First, the following result shows that the inequality relating A, = 7(11) and B, = g,(f) can
be “transferred” to a larger number of connected components:

!The actual situation is a bit more technical. Indeed because the locality of the adjacencies in H is only approx-
imate, there is some overlap between the sets A}, to take into account; this is easily handled with an averaging
argument (Boxing lemma, Lemma.



Proposition 5. Assume that Proposition@ is true. Then for all € > 0, and for each ig > 1, there
exists ng such that for all i < iy and n > ng one has:

(ol 1 i
g+ < (5 +¢) 199

We note that a similar transfer principle was already used in [ABMR12), Lemma 3.1] in the context
of alterable classes and with a different proof specific to that case. A similar argument was used
without proof by Norin in his draft [Nor]. We thank Colin McDiarmid for detecting a technical
flaw in a previous version of the proof of Proposition

Proof. For every i > 1 and disjoint sets V1, ..., V;, we write Pr(V3,...,V;) for the probability that
for each j < 4, the set Vj induces a connected component in the graph G, chosen uniformly at
random from G,,. Beware that in the following we will use this notation in cases where V1, Va. ...,V
is partition of [n] = {1,2,...,n} but also in other cases where it is not.

We consider the following total order on the subsets of [n]; for every Vi, Vo C V we have V} > V,
if [V1] > |Va] or |V1| = |Va2| and the elements of V; are smaller in the lexicographical order, than the
ones in V5. We remark that if V4 > --- > V; is a partition of [n], then |[Vi| > %.

Then, with W denoting the disjoint union, we have:

Pr(G e g{'™Y) = Y Pr(W,... Vip)

V1>'”>VZ-+1
ViWwV; 4 =[n]
i
1
g Pr(‘/la"‘a‘/i‘l*l)
]:1 V1>.4.>V,L.+1
Viw-wV;yq=[n]

N

= ¥ > Pr(WLWE W, . W),

Wy >W; Wy = w2
Wy W, =
1 i=[n] wi>wy wi>w?

where the last equality is just a change of index, that consists in noting V; = Wi, Vigr = W2,
Wi = Vi1 W V1, and in summing first over the set W; and then over its partitions into two sets
(here W, ..., W; denote the remaining sets Vj, for k ¢ {1, + 1}). Note the constraint W} > Wa,
that comes from the fact that V; is the largest set of the partition (for <) before the change of
index. If we remove this constraint, we only make the sum larger and we get the upper bound:

; 1 Z Z
(Z+1) < _ M}l ‘1/2 M/ M/
Pr(GEgn )_ Z Pl"( 15 15 27..., Z)

W1>...>Wi[ : lewlllﬂwf
Wiy -wW;=[n 1 2
Wi>Wy

For any set W C V' we write G[W] for the graph induced by the set of vertices in W. For any graph
Z, we denote by G[W] = Z the event that W induces a connected component that it is isomorphic
to Z. Given a partition Wi ---WW; =V such that W; > --- > W, and graphs Zs, ... Z;, consider
the graph class

H(Wl,WQ...,WZ‘;ZQ,...,ZZ‘):{G[Wﬂ: GEgn and G[Wj}:Zj fOYQSjSi}.



Notice that H(Wy, Wy ..., W;; Za, ..., Z;) is a bridge-addable class on the set of vertices W;. Let H
be a graph chosen uniformly at random from H(Wy, Wy ..., W;; Zo, ..., Z;). By the remark above,
H has order at least ;7. Let ng such that 7 > ng(€’), where ng(¢’) is the constant that appears
in Proposition @l Using this proposition we have

Yoo Pe(W W Wy,. W) = > Pr(HeHB W, Wa... \Wis Zs, ..., Z))

wy=wiuw? 29y 2y
1ow2
wi>w}

‘Pf(H6%(Wl,WQ...,WZ‘;ZQ,...,ZZ‘)

1
< >y (2 + e’) Pr(H € HYWy, Wa ..., W;; Za, ..., Zi))
Zo,o s 7

-PI"(H eH(Wl,WQ...,Wi;ZQ,...,Zi))

1
= (2 + 6/) PI‘(Wl, Wao, ..., Wz) .
Thus returning to the previous bound we obtain:

. . 1
iPr(G e gitt)< (2—|—€/> Z Pr(Wy, Wa, ..., W;)

Wi>-->W;
Wi WW,; =[n]

1 :
= (2 + a) Pr(G e W) . O
To conclude the proof of Theorem |2, we will also need the following observation from [BBGOS].
We include the proof for the sake of completeness.
Lemma 6 ([BBGO0S|). For each i,n > 1 one has:
iG] < 6.
Proof. Construct a bipartite graph H on the vertex set (Qq(f), ,(fﬂ)) by adding an edge between
Gy € gﬁj) and G4 € g}f*” if Gy can be obtained from G by removing an edge. Note that a graph
Gy € fo) has degree at most n — i in H, since G1 has at most n — i cut-edges. Moreover a graph

G € foﬂ) has degree at least i(n —1), by the property of bridge-addability. By counting the edges
of H in two different ways, we thus get:

i(n = DIGYV| < |E(H)| < (n— )G,

which concludes the proof. O

We first prove the main theorem.

Proof of Theorem[2 Let € =In((1 —€)~! —¢€) and let z = § + ¢/ Set iy to be large enough such
that % < € - €'/2. Using Proposition [5| recursively with ¢ and g, we have that there exists an ng
such that for every ¢ < ip and for every n > ng

i '
U] < T

7



Moreover, for every i > iy we have from Lemma [6}

G57] < Sl

Using both inequalities we obtain that for any n > ng
10 i—

LA x 1 1 L1
|gn|:;|g7(z)’§ <Zl (i—l)!+ Z Z') |"4n|§(6 +ZO'> ‘An|

1= i=ig+1

< (e%+6/ +e- 61/2) A = (1 =€) tel/?| A4, .
The probability that a graph G, chosen uniformly at random from G,, is connected is

| An|
|Gnl

provided that n > ng. ]

Pr (G, is connected) = > (1—e)e V2,

We conclude by proving the extension of our main result.

Proof of Theorem[3. Let n be a large constant (to be fixed later) and let M,, be the number of
components of a graph chosen uniformly at random in G,, minus one. By Lemma [6] there exists
ig > 1 such that

Pr(M, >ip+1) <e€/2. (3)

We can assume that k& < iy since otherwise we are done by .

We will use a result on stochastic domination of Poisson distributions given by McDiarmid (see
Lemma 3.3 in [McD12]). Given o > 0 and ko > 1, if X is a non-negative integer-valued random
variable such that for every k =0,1,...,ky — 1 we have

a
e < e
Pr(X =k+1) < o Pr(X = k).
then
Pr(ko > X > k) < Pr(Poisson(a) > k) . (4)

By Proposition [5| with the chosen i, for every € there exists an ng such that if n > ng, the
random variable M,, satisfies the hypothesis of Lemma 3.3 in [McDI12] with o = %—Fe’ . Fix kg = 1p.

Using and , we obtain

Pr(Gy, has at most k+1 connected components) = Pr(M,, < k)
=1—-Pr(iop> M, >k+1)—Pr(M, >iy+1)
> 1 — Pr(Poisson(1/2+€¢) > k+1) —¢/2
= Pr(Poisson(1/2 + €') < k) —¢/2
= Pr(Poisson(1/2) < k) — ¢,

where the last inequality follows provided that € is small enough with respect to e. ]



4 Local double counting and local parameters

We now start the proof of the main technical estimate, namely Proposition The following
reduction will be very useful:

Lemma 7 ([BBGO8, Lemma 2.1]). Assume that Proposition[4) is true under the additional assump-
tion that all graphs in A, and B, are forests. Then it is also true without this assumption.

The proof of this lemma relies on a simple and beautiful argument that consists in splitting the sets
A, and B, into equivalence classes depending on their 2-edge connected blocks, and then choosing
a spanning tree arbitrarily in each block. This construction transforms any bridge-addable class of
graphs into several bridge-addable classes of forests while preserving the distribution of the number
of components, from which the lemma easily follows. We refer to [BBGOS] for the full proof.

Thanks to the last lemma, for the rest of the paper, we will make the following assumption:

Assumption: For alln > 1, all graphs in A, and B,, are forests.

4.1 Local parameters and partitions

In order to compare the sizes of A, and B,,, we will refine the double counting technique used in
the proof of Lemma[6] We will again construct a bipartite graph on the vertex set (A, B,) where
an edge is placed between G; € A, and G2 € B, if one can be obtained from the other by the
deletion of an edge. However, in order to obtain more precise bounds on the degrees of vertices in
this bipartite graph, we will partition the sets A, and B,, according to some local parameters of the
graphs. Namely, to each graph G we will associate a statistics «“ that records, roughly speaking,
the number of pendant copies in G of each tree from some finite family 7y. The vectors o will
be elements of a space called the parameter space and denoted by £. The set B,, will be further
partitioned according to the isomorphism type of the smallest component, and a special role will
be played by subsets where this smallest component belongs to a finite family of trees called Up.
The purpose of this subsection is to set notation and define these partionings.

We write 7 for the family of all rooted unlabeled trees and U for the family of all unrooted
unlabeled trees. We also use 7¢ and U* for the corresponding sets of labeled objects. For every tree
U € U we note by Aut, (U) for the total number of automorphisms of U. For every T' € T we note
by Aut,(7") the number of automorphisms of 7" as a rooted tree (i.e. the number of automorphisms
that fix the root of T).

In this section we will fix two finite families Uy C U and 7y C T such that

e U contains the only unrooted tree of order one (a single vertex).

e 75 is closed under rooted inclusion; that is, if 7' € T with root at v and 77 C T is a subtree
that contains the root, then 77 € T.
We write tmax and umax for the maximum number of vertices of a tree in Ty and Uy respectively.

Following the definition in [ABMRI12], for each tree G and each edge e, the pendant tree of G
in e is denoted by s(G,e) and it is the smallest component of G — e, or the component containing
vertex 1 if the components have equal size. Since the tree G has n—1 edges, every tree on n vertices
has exactly n — 1 pendant trees.

Define the parameter space & = [0..(n — 1)]7°. To each tree G € A, we associate the vector
o € & such that, a%(T) is the number of pendant copies of T in G. Precisely, for every rooted
tree T € T,

a%(T) :=|{e € BE(G) : s(G,e) =T},



where the symbol = denotes isomorphisms of rooted trees. Then, for each tree G € A,,, we have
that

Z a(T) <n—1. (5)

T€To

The definition of a(T') can be extended to forests as follows. If G is a forest with connected com-
ponents G .. .G}, where G is the largest component (or, if there is ambiguity, the one containing
the smallest vertex among the largest ones), then a%(T) = a%1(T) for every rooted tree T' € To.
For every o € £, we use the notation A, , to denote the set of graphs G € A,, such that
= «. In other words, A, o is the set of graphs in A, that have precisely o(T") pendant trees
that are isomorphic to T, for each T € Ty. This partitions A4, into different sets according to their
a-statistics:

ol

An =4 Ana -

a€el

Note that by one can restrict the previous union to vectors a satisfying > rcy a(T) <n — 1.
For every I' C £, we also define

-An,F = L"j -An,a .

acl

For every unrooted tree U € U, we let BY be the subset of B, composed by graphs whose
smallest component (or the one containing vertex 1 if they have the same size) is isomorphic to U.
All the previous definitions for A,, extend naturally to the sets B,, and BY. That is, we can partition
the set B,, according to U € U and the a-statistics:

B, b B = ) W,

veu Uel ael

4.2 The main local double counting lemma

In this subsection we construct the promised bipartite graph structure on (A, B,,), and we analyse
locally the degrees of this graph. This enables us, for each « in the parameter space £, to compare
the number of graphs G in A, and B,, whose statistics a is close to a (Corollary .

Consider a rooted tree T € T and an edge e of T. If we remove e from T, we obtain two
connected components: we note 7_ € T the one containing the root of T, and Uy € U the other
one. We let v_ € V(T_) and vy € V(U4) be the two endpoints of e. We emphasize that T_ is
considered as a rooted tree (rooted at the root of T'), but Uy is considered as an unrooted tree.

Definition 1 (Multiplicities of edges and vertices in rooted or unrooted trees, see Figure . Let

T e, T_,Us,v_,vy be as above. Then:

- The rooted multiplicity of the edge e in T, denoted by mp(e) is the number of distinct edges in
T that are mapped to e by some isomorphism of T' (as a rooted tree).

- The rooted multiplicity of the vertex v_ in T_, denoted by my_(v_) is the number of distinct
vertices in 7_ that are mapped to v_ by some isomorphism of T_ (as a rooted tree, rooted at
the root of T').

- The unrooted multiplicity of vy in Uy, denoted by ny, (v ) is the number of distinct vertices in
U, that are mapped to vy by some isomorphism of Uy (as an unrooted tree).

10



Uy r
,U+l—l mp(e) =2

- mp (v—) =3

nyr (ve) =2
T T Uy ( +>
root of T' root of 7"

Figure 1: Construction of 7 and Uy from T and e, and the relevant multiplicities.

In order to state our main combinatorial lemma, we first need to introduce the concept of boxes.
For every a € £ and w > 1 we define the bozx [a]¥ C & as the parallelepiped:

[ :={d" €&: VT €Ty, a(T) <(T) < a(T) + w}.

The parameters « and w of the box [a|* will be referred to as its lower corner and its width. We
also define the g-neighbourhood of [a]"” as the set of elements in £ that are at distance at most ¢
from the box. Precisely,

[a]f :={a' € &: VT €Ty, (T) —q < (T) <T) +w+q}.

Note that in many cases [a]y is itself a box, but for the structure of our argument it will be

convenient to think of it as a neighbourhood of the box [@]¥ in &, hence our different notation.
Here we show the crucial double counting argument that will allow us to compare the sets A,
and B,,.

Lemma 8 (Local double counting lemma). There exists a constant q. = q.(Uy) < Umax (and
independent from n) such that the following is true. Let T € Ty and let e be an edge of T'. Let
T_,Ut,v_,v4 be as above and assume that T € Ty and Uy € Up.

Then for every o € £ and w > 1 one has:
BY+

n’[a]w

mr(e) - (o(T) +w +g.) - \An,[am

(6)

Proof. The proof of this lemma consists on a simple double counting on the ed%es of the bipartite
graph H with vertex sets (An,[a];u* ) Bifa]w) and where G1 € A, [ojw and G2 € ana]w are joined by
an edge if and only if there exists a copy of T" in G; and an edge e in T such that G; — e = G,
T—e=U;UT_ and s(Gy,e) = Uy.

On the one hand, the number of edges in H is |E(H)| = ZG e degy(Ga2), where degy (G)
2 n,[a]W

>y, (vg) -mr_(v) - o(T2)

denotes the degree of G in H. Since G, is a bridge-addable class of graphs, we can add any bridge
to G2 and stay in the class. Moreover, if (G; can be obtained from Gg by adding a bridge, then G
belongs to the ¢, = |U+| < umax neighbourhood of «a; that is, gluing a tree of size |U, | can change
the statistics of G by at most |U, | in each component (for every T, |a%2(T) — a%1(T)| < |U4|).
Then, an easy argument shows that degy (Ga) = ny, (v4)mr_ (v_)a®?(T_). Thus,

EE)| = Y np(e)mr (02)a%(T0) > n, (v)mr (v-)a(T0)

U
GoeB T
n

[l

BVt

n,[a]®
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On the other hand, the number of edges in H is [E(H)| = > 5, c - degy(G1). In this case,
gy

it suffices to upper bound the degree of G into the set BYt iy . A simple argument also shows that

degy (G1) < mrp(e)a® (T). Thus,

aj

EH) < Y mr(e)a®(T) < mr(e)(a(T) +w + q.)
G1€An7[a]gf*

An oy,

The lemma follows from the two previous inequalities. O

Remark 1. The last lemma is also valid in the following degenerate case. Assume that T', viewed
as an unrooted tree, is an element of Uy, and let Uy = T' (considered as an unrooted tree). Let
conventionally 7_ := (). Then (6) holds with the conventions Aut,(0)) = 1, (@) = n — [T},
mr(e) = 1. In other words, we have, with v, the root of T":

(a(T) + 1w+ a) - [ oy | = nr(vi) (0 = [T

T
B, fage

The proof is similar: we just consider the bipartite graph structure on (A4, e, ,B Tage ») defined by

the fact that G1 € A, ol and Gy € B v are joined by an edge if and only if there exists a copy
of T'in G and an edge e in G; such that s(G1,e) = T. The only thing to note is that for each
Gy € Bn[ ju; there are nr(vy)(n — |T|) ways to add a bridge to G2 between one of the ny(vy)
allowed vertices of its connected component isomorphic to T', to any of the (n — |T'|) vertices of its

other connected component.
Lemma 9. With the above notation, we have:

mr(e) _ mr (v-)ny, (vy)
Aut,(T)  Aut,(T-)Aut,(Us)

Proof. We will prove the equality by counting the labeled rooted trees in 7¢ with a marked edge e
that are isomorphic to the unlabeled rooted tree T' € 7. Recall that T" and e are such that T'—e =
T_ U U4. On the one hand, there are |T'|!/(Aut,(7-)Aut, (U, )) different ways to label T_ U U...
By definition of mz_(v—) and ny, (v4), for each of these labellings, there are mr_(v_)ny, (v4)
ways to select an edge e to connect T_ and Uy, such that we obtain a labelling of the tree T" with
marked edge e (note that all these choices are inequivalent since we work with a labeled structure).
On the other hand, there are |T'|!/Aut, (7)) different labellings of the tree T, and by definition
each of them gives raise to my(e) ways to mark the edge e, by the previous construction. Hence
mr(e)-|T|!/Aut,(T) = mr_(v_)ny, (v4) - |T|!/(Aut,(T-)Aut,(U4)), and the lemma is proved. [

The next corollary follows immediately:

Corollary 10. Let U € Uy. Then for any T,e,T—,U; as in Definition [1] such that Uy = U, and
for any o € € and w > 1, one has:

o Aut(T)  o(T) + w+ g

Aut, (U) - Autr( 5 (T

U
By, fage

Vs

where q. = q«(Upy) is the constant obtained in Lemma @

Observe that the last corollary also holds in degenerate case Uy = T, T_ = (), with the notation of
Remark [l
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4.3 Inductive bounds and tree weights

In this subsection we iterate the bound of Corollary [L0] to obtain, for each @« € £ and T € Ty, a
/ An’[a}éu* for different U € Uy. We then use

inequality to conclude that a certain functional of these ratios is bounded (Corollary . This
is the main combinatorial step towards proving a bound on the sum of these ratios, which is the
quantity revelant to prove Proposition [4] (this will be done in the next section).

Let T € T be a rooted tree. A Uy-admissible decomposition of T is an increasing sequence
T = (T;)i<¢ of labeled trees

lower bound on «(7') in terms of the ratios )Bg [a]v

nc---ch,=T

for some ¢ > 1 called the length, such that 71 € Uy and that for each 2 < i < £, T; is obtained by
joining T;_1 by an edge e; to some tree U; € Uy.

By the choices made at the beginning of Section[d.1]for U (that contains the tree of size one) and
To (that it is closed by inclusion), if T' € Ty, then T has at least one Uy-admissible decomposition
such that T; € Ty for every 1 < i < /.

Fix a € £, w > 1 and let ¢, = ¢.(Up) be the constant obtained from Lemma 8] Throughout this
subsection we will focus on the box [a]”. Let A = (R4 )"0, We define the vector z, o = Zn o]y, =

(Zg,a)UEZ/{o € A by:

1B o U]

U n,[a]

zy o = Auty, (U) ———— (1 - ) : (7)
Observe that if [BY [a]w‘ > 0, then, since the class of graphs is bridge-addable, we have |~An,[a]g’* | > 0.

For any z € A, any T' € T and any Up-admissible decomposition of it T = (T});<¢, the weight of
T with respect to z is defined as w(T,z) = Hle 2Vi where U; = T;\ Tj_1 as an unrooted tree (here

we use the convention Ty = 0).

w(T,z) =2 (zH)2 2"

Figure 2: Two Uy-admissible decompositions T and T’ of the same tree, and the corresponding
weights. In this case we assume that the trees *,— ,V Y belong to Up.

Lemma 11. For any T € T and any Uy-admissible decomposition T of T of length ¢, one has:

AT) | @(T 2na)  (w+g) 2T
n  —  Aut.(T) n ’

13



Proof. Let T1 C --- C Ty = T be the Up-admissible decomposition T. We will show the statement
using induction on the length of T.
If £ =1, then T is a rooted copy of U for some unrooted tree U € Uy. By Remark [1| we have,

n Aut, (T)n ’An,[a]g; n Aut,(T) n Aut,(T) n

where we used the conventions Aut, () = 1 and () = n — |U| and the definition of z¥ .

Let us assume that the inequality is true for every tree T_ € T and for every Uy-admissible
decomposition of T_ of size at most £ — 1. Let T_ be the admissible decomposition induced by T
in T = T;_;. Then letting U = T\ T, we have by Lemma [0}

mr_ (v—)nu (v+)
Aut,.(T-) =
ut (1) = e At (0)
since ny(vy) < Auty(U) and mp_(v-) < |T-| < |T.
By using Corollary [10] and the induction hypothesis on T we obtain

Auty, (U)Aut, (T_)|BY, ..
a(T)> v) (T-)] n.[a] | (T W+ gy

- Aut, (T) < |T|Aut,(T),

n Autr(T)n|An7[a];u*| . n
B zgaAutr(T_) ‘ a(T-) WG
Aut,(T) n—|U| n
ZnaW(T—,Zna) w4 q. (1 Autr(T_)(2lT|)€_2)
Aut,.(T) n Aut,.(T)
w(T,2p0)  (w+q)2T)
Aut,.(T) n .

O

Definition 2. For any z € A and any T € T, we define its mazimum weight with respect to z,
denoted by w(T, z), to be the largest weight w(T, z), where T is a Up-admissible decomposition of T'.
Note that w(T',z) is well defined since each tree 1" has at least one Uy-admissible decompositio

We introduce the following weighted sum, for z € A:
w(T,z)
Yr7.(z) = Z —
o Aut,.(T)
Then we immediately have from the previous lemma:
Corollary 12. Assume that a € € is such that ) peq o(T) < n—1. Then one has

C
Y% (Zn,a) < 1+ 57 (8)

where C = (w + ¢x) (2tmaz )™=~ To| is a constant depending only on Ty, Uy and w (but not on n).

Proof. This is proved by summing the upper bound of Lemma [L1] for the Up-admissible decompo-
sition that gives the maximum weight and over all T € Ty. O

2Here we do a slight abuse of notation by using w(T,z) and w(T,z) to denote, respectively, the weight of a given
decomposition T and the maximum weight of a decomposition of a given tree T'.

14



5 Partition functions and optimization

In Section 4| we have obtained, for each o € £, a bound on a functional of the ratios zg o for
U € Up (Corollary [12]). Note that this functional, namely Y7;(z), resembles a truncated version of
a partition functioof trees weighted by their maximal weight. In this section we are going to
use this fact to prove that some other functional of the zV

.o Which we are directly interested in to
prove Proposition [4] is bounded.

In this section Uy and € > 0 are fized.

5.1 Partition functions of rooted and unrooted trees

In this subsection we consider an infinite version of the partition function appearing in the L.H.S.
of , where the summation on 7 is replaced by a summation on the set of all rooted trees 7. We
are going to show that if this partition function is finite, then the unrooted version of this partition
function is at most 3 (Lemma [14).

Recall that for any rooted tree T, and z € A, we defined w(7,z) as the maximum weight of
an Up-admissible decomposition of T'. For any z € A, we let Y (z) € Ry U {oo} be defined by the
following infinite sum:

where the sum is taken over all rooted (unlabeled) trees. Note that, by double-counting, this sum
is also equal to the following sum, taken on all rooted labeled trees:

w(T,z
Y(z)= ) (‘T“ ).

TeT?t

In words, Y'(z) is the exponential partition function of all rooted labeled trees, counted with their
maximum weight. We let D be the domain of convergence of this sum:

D:={ze A Y(z) < 0}

Lemma 13. D is closed downwards for the product order (i.e. for anyz,2z’ € A such that (2)V < 2V
for every U € Uy, if z € D then 2’ € D) and D is bounded.

Proof. The first assumption is straightforward, so to prove the second one it is enough to see that
for each U € Uy we have Y (z) = oo where z is zero everywhere except for 2V = |U|l. We can
construct a labeled tree of size n|U| by attaching successively n copies of U by edges. The number
of distinct ways to do that is equal to the number of rooted labeled trees of size n, which is n" 1,
times the number of ways to distribute the labels in the different copies of U, which is at least
% (|UF‘UIU|) = % Of course we do not obtain all trees of size n|U| with this construction, but
this is enough to obtain the lower bound:

(o) !

o " nn—l " n
V()2 ) O =3 e G = D

n>1 n>1 n>1

3Here we prefer to use the terminology partition function rather than generating function, since the second termi-
nology usually refers to formal power series. Note that here, since the decomposition of maximal weight underlying
the definition of the numbers w(T,z) depends on z, the quantity w(7T,z) is only piecewise polynomial in the zY,
U € Up, so that Y7 (z) is not a formal power series in z.
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The last sum is divergent, which concludes the proof of the claim. O

We note that w(7,z) does not depend on the root of T, so this quantity is well defined for
unrooted trees U € U. We can thus introduce the “unrooted version” of the partition function Y:

U(g) w(U,z) _ w(U,z)
YA )'_UeuAutu(U) > o

cut

Note that Y"(z) is also given by the following expressions:

w(T,z) w(T,z)
Y%(z) = — T = —
@)= 2 [T = 2 T Aut (T)
eTt TeT
It is clear that Y"(z) < Y (z) and in particular Y"(z) < co if z € D.
The following statement, which is a variant in our context of the celebrated dissymmetry theorem

(see [BLL98]), is where the constant 3 from our main theorem (Theorem [2)) appears:

Lemma 14 (Supermultiplicative dissymmetry theorem). If z € D, then the rooted series and
unrooted series are related by the following inequality:
Y(z) - Y"%(z) >

> ¥ () 9)

In particular for all z € D one has

Y% (z) < (10)

1
5
Proof. Let U € U* be a labeled unrooted tree. Then the number e(U) = |U| — 1 of edges of U and
the number v(U) = |U]| of vertices of U are related by the equation:

v(U)—-1=e(U).

By multiplying this equality by w(U,z)/|U|! and summing over all unrooted labeled trees U, it
follows that the quantity Y¢(z) := Y (z) — Y*%(z) can be interpreted as the exponential partition
function of all labeled trees with one marked edge, counted with their maximum weight. Now let
U be a labeled tree with a marked edge e. Removing e splits U into two connected components
T1,T>» € T* that are naturally rooted at a vertex, and by definition of the maximum weight we
have the supermultiplicativity property:

w(U,z) > w(Th,z) - w(T,z).

Indeed, the right hand side is the weight of the Uy-admissible decomposition of U induced by the
decomposition with maximum weight of each of its components, and the weight of this decomposi-
tion is a lower bound on the maximum weight. Conversely, given any two rooted labeled trees T
and Ty whose sizes add up to |U|, there are % ways to distribute the labels in [1..|U|] between
them to build a labeled tree U of this form, and each tree U with a marked edge is obtained in
exactly two ways by this construction. Since all sums are absolutely convergent, we thus get that

1

V() = SV ()

which gives @D

The bound follows since by definition of D, Y(z) is a well defined real number, and since
forallyeRonehasy—%yQS%. O
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Remark 2. The partition function 7'(x) of all rooted trees, which is solution of the equation
T(x) = wexp(T(x)), has radius of convergence e~!, and its value at the dominant singularity is
T(e~!) = 1. Moreover, it is classical that the generating function of unrooted trees is given by
TU(z) = T(z) — 1T (x)? (see for example [BLL9S]). It follows that, at the dominant singularity, one
has T%(e™1) = % Note that this implies @ in the case where U is a singleton, and that this also
shows that @ is tight. We also note that, using classical singularity analysis [FS09], this enables
one to reprove the result of Rényi [Rén59] that says that a random forest of size n is connected
with probability e~/2 + 0(1) when n tends to infinity.

The last partition functions we define are the functionals Y;; (z) and 175;0 (z), defined by:

w(U, z) 2V
RO S CLLI M VA% P o .
0 = Auty, (U) 0 U;o Auty, (U)

Note that the sums are taken over all the elements of Uy, that are considered as unrooted trees.

5.2 Optimization

In the last subsection we have shown (Lemma that the fact that Y (z) < oo implies that
Y% (z) < % The goal of this subsection, achieved in the next proposition, is to transfer this result
to truncated analogues of these partition functions.

For all k£ > 1, define the following truncated version of Y (z):

w(T,z)

ng(z) = Autr(T) .

TET
|T|<k

Note that Y<;(z) is defined by a finite sum, hence it is a well defined real number for all z € A.
We also define Y_(z) to be the contribution of trees of size exactly k to Y (z):

Yoi(z) := Yep(2) — Yap-1(2).
Proposition 15. There exists a k., depending only on € and Uy, such that for every z € A satisfying
Y<i.(z) < 1.5, we have
~ 1
Vi (z) < 5(1 + €).

Remark 3. If k > k, then Y<i, (z) < Y<i(z). Therefore if necessary the integer k., can be replaced
by any larger value without changing the conclusion of the proposition.

Remark 4. The constant 1.5 in the above proposition could be replaced by any constant larger
than 1 (as the proof will show). To keep the notation light we preferred to fix some arbitrary value
that is good enough for our proof.

Note that for any z € A, if we define z, € A by the fact that for all U € Uy we have z¥ = w(U, z),
then w(7T',z) = w(T,z,) for any tree T € T (this is easily seen by considering maximum weight
decompositions). Since it is always true that 2V §~w(U, z), if follows that replacing z by z, does
not change the value of Y<x(z), while only making Y;y (z) larger or equal. Therefore

U.2) }
(U,z) }. (11)

max{?ﬁo(z) : Yep(z) < 1.5} = max{f/}/%(z) : Yep(z) < 1.5 and VU € Uy, 2Y
= max{Yy (z) : Y<r(z) < 1.5 and YU € Uy, 2V

=w
=w
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Now, let us fix a sequence (2x)k>u,,.., Such that for all k& > w4, we have:
zp € {z: Yor(z) < 1.5 and VU € Uy, 2Y = w(U,2)}.

Note that the set from where z; is selected, is bounded: for k& > umax, we have Y<i(z) >
w(T,z)/Aut,(T) for each rooted tree T' that, as an unrooted tree, belongs to Up. This directly
implies that the sequence zj is uniformly bounded. We can thus extract an increasing sequence k;
such that the corresponding subsequence converges, and we note:

Zoo i= lim 2zy,.
1—00

Our first step in the proof of the proposition is the following lemma.

Lemma 16. The point z., belongs to D (the closure of D).

Proof. We go by contradiction. Suppose z., does not belong to D. Then there exists § > 0 such
that %Jré 0 Zoo & D, where we use the notation o for the scaled multiplication of a vector z € A by
a scalar A € R:

Moz)V =AUV U ey,

We thus have Y(ﬁlé 0Zco) = 00, i.€. D sy Yop(Zoo)(1+ §)~¢ = co. This shows that there exists an
infinite sequence (¢;);>1 tending to infinity such that for all j > 1 one has:
Yoi, (700) > (1+6/2)" .
Now we claim that there exists some ig such that for ¢ > iy one has, for every rooted tree T' € T
s\ 7
w(T,zy,) > w(T, 2s0) (1 — 4) . (12)

If we admit this claim, we can conclude the proof as follows. We have, for i > iy and j > 1:

Yoo (z,) > Yo, (2o) (1—6/4)

> ((1—68/4)(1+6/2)%.

But (1 —6/4)(1+ §/2) is larger than 1 provided we took § small enough (and we can do that), so

there exists some j such that ((1 —&/4)(1 + 5/2))£j > 1.6, which in turns implies that for ¢ > i,
one has Y_y,(zx,) > 1.6. Now we can choose i large enough so that k; > £;, and we get that:

Yﬁki (Zkz) > Y:gj (Zki) > 1.6,

which is a contradiction.
So it just remains to prove the claim in . We let I C Uy denote the set indexing coordinates
of z, that are equal to zero, i.e.:
I:={U €Uy, (200)Y =0}.

(zr,)V
_.v converge

(700

to 1 when 7 tends to infinity, for U € Uy \ I. Therefore there exists ig such that for i > iy, we have

forall U e Up \ I:
(z,)V 1/|U]
<(ZOO)U) !

18

Since zj, converges to Zoo, and since (z«o)Y # 0 for U € Uy \ I, each of the ratios

< 6/4.




We can now prove the claim . First, if w(T, Zoo) = 0 then the claim is obviously true. Otherwise,
consider an Up-admissible decomposition T of T" that gives rise to the maximum weight w (7, zoo).
Since w(T',z~) # 0, the decomposition only uses unrooted trees in Uy \ I. We thus have:

w(T,z, 21 )Y v(U)
e ()

Uelo\I

where v(U) is the number of times U is used in the decomposition T. Since ) ;o [U|v(U) = [T,
the ratio is larger than (1 — 5/4)‘T|, and the claim follows since w(T, zy,) > w(T, zy,). O

We can now prove the proposition:
Proof of Proposition[I5. For every k > upax, we now choose
z), € argmax{Yy (z) : Y<i(z) < 1.5 and YU € Uy, 2V =w(U,2)},
z€A
and we select zo, as before.

From Lemma [16| and the fact that D is closed downwards for the product order, for all § > 0
we have 1—}r5 0 Zoo € D, where we recycle the notation o for the scaled product from the previous

proof. From Lemma it follows that Y*(1 45 ©Zoo) < 35 1. Now, recall that we restricted to z € A
such that 2V = w(z,U) for every U € Uy. This implies that

Y (1+6OZOO>ZYMO<MOZOO>

Moreover, Y, (1+5 ° Zoo> > (146) " "max Y (Zoo ), 80 Vi (Zoo) < (146)Mmax. 3. Since this is true for

any 0 > 0, we obtain that Y} (ze0) < % Since z, converges to Z and Yy (z) is clearly continuous,

we can choose i large enough and k. = k; so that Vg (zx,) < 3(1 +¢€). By the choice of z; and
by (LI), it follows that max{?ﬁo (z) : Y<i,(z) < 1.5} < £(1+4¢), which implies the proposition. [

6 Finishing the proof

In this section we conclude the proof of Proposition [4] (hence of the main theorem). The idea of the
proof is to combine the main results of Section {4| (Corollary and of Section [5| (Proposition
and to apply them to a well chosen set of boxes.

6.1 Boxing lemma

The results of the previous section give us bounds on the variables z,, , defined by , which gives
us some control on the ratio of the sizes of the sets A, o]y, and BY [aJws Where [a]* is some box
inside the parameter space £. In order to use this information in the next subsection, we first show
that there exists a partition of the parameter space £ into disjoint boxes [3;]" such that they are
2¢.-apart and they capture most of the graphs in BY for each U € Up.

Lemma 17 (Box partitioning lemma). For all € > 0, Uy and Ty, there exist q., w and ng such that
for all n > ng the following is true: There exist K and a family of boxes [3;|* C &€ of size K such
that

19



(P1) The q.-neighbourhoods of bozes form a partition of £; i.e.
K
=1
(Py) Bowes capture a large fraction of each set BU; i.e. for each U € Uy, we have:

Z > 1Blsl = (1 -eIB]l.

i=1 Be[B;]v

Proof. Let d = |Ty| and let g, be chosen as in Lemma |8, Choose w > 0 and ng such that for every

n>mn
- w + 2q d 2q —d
1—<1— > <1+ > < et .
n w

Lo={B€&: T €To,3j = 1,j(w+2¢) — 2¢. < B(T) < j(w +2¢:)} .

Consider the following set

The set I'g can be seen as a subset of hyperplanes of width 2¢,. equally spaced at distance w in each

d
direction. Observe that I'; = £ \ ' contains a set of K = (m — 1) boxes of width w that are

(2¢.)-apart. However, these boxes might not contain a negligible part of the graphs in 5,,.
The size of the I'j satisfies,

d d —d
g > wh (— " 1) > (1= W) (2 e
w + 2q, n w

For the remaining of the proof, let us consider Ty C Z¢/E. Choose 3 uniformly at random from
72/E. We write Tg+ 8 = {y+ : v € Ty} to denote the translation of the set Ty by 5. Recall
that |€] = n?. Then

w + 2q, d 244 —d d 14
To+pl=[Tol < { 1= (1———) {1+~ n® < eltp|1n?. (14)

U
We now define the following measure y over the set £. For each U € Uy and ' C &, let bU |L|{ i Bl‘f\

= > b,

Ueldy

Observe that if u(T') < e|tp| ™!, then, for every U € Uy

For every I' C £, we define

1By r| = bF UolIBy | < u(D)tollBy| < €|By]] -

If 8 € £ is chosen uniformly at random and using , we have

Eslu(To + B)] = D u(7) Pr(y € To + ) = ZZbU— elthol ™,

ye€ ye&€ UeUy
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where we used that > ¢ > ey, bg =1.
Thus, there exists a By € € such that u(To + By) < elto| 1. Then, the set T1 = &\ (T + Bo) is
a set of (2q,)-apart boxes [3;]" for ¢ € [1..K] that satisfies

Z Y 1BLgl = 1Bur | = 1BY] = 1B (rypy) = (1= 0)IBL]

i=1 Be[B;]v

for every U € Up. O

6.2 Proof of Proposition

Let € > 0 be fixed, and let € := ¢'/3. Let us choose Uy to be the family of all unrooted unlabeled
trees of size at mMost Umay, Where Umqz is chosen such that (umax) ' < e. Now that Uy is fixed,
we can apply Proposition with our current value of €, and we let k, be the value given by this
proposition. The integer k, depends on € (and also on Uy, that itself depends on €). We now let Ty
be the set of all rooted trees of size at most k..

Now that €, Uy, and Ty are fixed, so is the constant ¢, given by Lemma [8] We can then apply
Lemma [17] to get some constants w and ng, such that for every n > ng there exists a family of K
boxes [f;] satisfying (P;) and (P3). All these constants depend on e (and also on Uy and Ty, that
both also depend on ).

We can now choose ny > ng large enough, so that

(w + q+)(2k) ™ To| < 0.4n,. (15)

Note that the left-hand side is the quantity C that appears in , with tmax = k«. For a further
use, we will also assume that nj > Umax /€.

For n > nq, let [a]¥ (where a = f3;, for some 1 < i < K) be one of the boxes given by the box
partitioning lemma (Lemma . Recall the definition of z, , = (zg o UElU, given in :

B (g U
2V = Aut, (U lo] (1 — ) .
’ ul )lA g |

n

Then we have by Corollary [12| and the bound that:

(T, Zn.q)

—=<14.
Aut,.(T) —

Y<i. (Zn,a) =
T€To

From Proposition this implies that:
U
[04 v | < U] > “n,a v 1
Vi (2na) < 2 (146).
U; |A,, a]q* n = Aut (U) 0 2
Since |U|/n < umax/n < € for all U € Uy, we deduce that we have:

> ‘Bg,[a]”

Ueldy

<3 [ | 0+ -0 (16)
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We now sum the last inequality over all the boxes [5;]* provided by Lemma We obtain:

K K
1 _ 1 _
S =Bl < 3 Bl £ 549U = Y e | < M 1+ (1— )

Uecldy Uely i=1 =1

Here: the central inequality is the summation of the previous bound; the leftmost inequality comes
from Property (P») of Lemma [17| (boxes capture most of the mass of the sets BY); the rightmost
inequality comes from Property (P;) of Lemma (boxes are (2¢.«)-apart, so the sets 3] are
disjoint). We have just proved that for n > nq,

S < S (10 (- A,
Ueldy

Again, using the same simple double counting argument as we used in the proof of Lemma [6 we
have:

umax(n - umax) Z ’Bg’ < n‘ATL’

Ue\Up
By assumption, (umax) ! < €, S0 umax(nn_umx) - umax(l—lumax Ty < 2¢ if n is large enough. Therefore,
for n large enough, we have:
> IBY| < 26| Ayl (17)

Uel\Up

Putting all bounds together, we obtain:

Bal =) 1BII= > 1B+ > IB]|< ((1+6)(1—6)_2+26)%\An|-

Ueu Uelhy Ue\Uo

Now, when €’ is small enough and € := €' /3, we have (1 + ¢) (1 —€)"2+2¢ < (14 2¢/). We thus get:

1
Bal < (5 +¢) 14l
which concludes the proof of Proposition [4
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