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Abstract:
Linked Data repositories have become a popular source of publicly-available data. Users accessing
this data through SPARQL endpoints usually launch several restrictive yet similar consecutive
queries, either to find the information they need through trial-and-error or to query related re-
sources. However, instead of executing each individual query separately, query augmentation aims
at modifying the incoming queries to retrieve more data that is potentially relevant to subsequent
requests. In this paper, we propose a novel approach to query augmentation for SPARQL end-
points based on machine learning. Our approach separates the structure of the query from its
contents and measures two types of similarity, which are then used to predict the structure and
contents of the augmented query. We test the approach on the real-world query logs of the Spanish
and English DBpedia and show that our approach yields high-accuracy prediction. We also show
that, by caching the results of the predicted augmented queries, we can retrieve data relevant to
several subsequent queries at once, achieving a higher cache hit rate than previous approaches.

1 INTRODUCTION

Linked Data repositories have grown to provide
a wealth of publicly-available data, with some
repositories containing millions of concepts de-
scribed by RDF triples (e.g. DBpedia1, FOAF2,
GeoNames3). Users access the data in these
repositories through public SPARQL endpoints
that allow them to issue SPARQL queries, the
standard query language for RDF stores. Consec-
utive queries received from the same client usually
exhibit some patterns, such as querying identical
or similar resources than previous queries.

Caching query results was first proposed to
keep recently retrieved data in a memory cache
for use with later queries (Dar et al., 1996; Mar-
tin et al., 2010; Yang and Wu, 2011). However,
caching only works if the exact same data is ac-
cessed multiple times. In reality, it is more com-

1DBpedia: https://wiki.dbpedia.org/
2FOAF: http://www.foaf-project.org/
3GeoNames: http://www.geonames.org/

mon to have similar consecutive queries that re-
trieve related resources from the repository (Boni-
fati et al., 2017; Mario et al., 2011). Query
augmentation takes advantage of this fact, re-
trieving data that will potentially be used by fu-
ture queries before the queries are received by
the SPARQL endopint. Previous approaches to
query augmentation are divided into two main
categories, (1) techniques based on information
found in the data source, and (2) techniques
based on analysis of previous (historic) queries,
as discussed in section 2.

In this paper, we present an approach to query
augmentation for SPARQL endpoints based on
detecting recurring patterns in historic query
logs. The novelty of our approach is that we
measure two independent types of similarity be-
tween queries: structural similarity and triple-
pattern similarity. Using the structural similarity,
we apply a machine learning algorithm to predict
the structure of the next query. Afterwards, we
use the triple-pattern similarity to construct aug-



mented triple patterns and predict which should
be combined with the predicted structure to con-
struct the augmented query. By doing so, we con-
struct an augmented query that takes into con-
sideration the structure of the next query and, at
the same time, retrieves data relevant to several
subsequent queries.

In our approach study, we show the accuracy
of our prediction algorithm using query logs of
both the English and Spanish DBpedia. We also
estimate the cache hit rate that can be achieved
by caching the results of the predicted augmented
queries, finding that our method achieves a higher
hit rate than previous approaches with a smaller
number of cached queries.

The rest of this paper is organized as follows:
section 2 reviews the related work in the fields of
‘SPARQL query analysis’ and ‘SPARQL Query
Augmentation’. Section 3 lists some SPARQL
preliminaries and introduces a running example.
Section 4 describes and formalizes the proposed
approach. Section 5 details our experimental
study and shows the viability of our approach.
Finally, section 6 concludes the paper and high-
lights some future work.

2 RELATED WORK

In this section, we provide an overview of the
most important approaches in the two fields from
which we draw our work: (1) SPARQL Query
Analysis, and (2) SPARQL Query Augmentation.

2.1 SPARQL Query Analysis

The motivation to analyze the queries logged
by SPARQL endpoints started with the work of
Moller et al. (Möller et al., 2010), who promoted
the creation of the USEWOD workshop4. They
used the information in the query logs to show
that, for the 4 data sets they studied, more than
90% of queries were SELECT queries.

Mario et al. (Mario et al., 2011) used the USE-
WOD 2011 dataset (7 million SPARQL queries
from DBpedia and SWDF) to find the most used
features and concluded that most queries are sim-
ple and include a few triple patterns and joins
(Groppe et al., 2009). They also pointed that
99.7% of valid queries were SELECT queries.

Raghuveer et al. used the USEWOD 2012
dataset to manually collect what they called

4USEWOD Workshop: http://usewod.org/

‘canonical form’ of SPARQL queries in order
to detect repetitive patterns in the creation of
queries (Raghuveer, 2012). This might seem sim-
ilar to our approach to detect query templates,
but we introduce the concepts of ‘inner tree’ and
‘surface form’ and we can extract these structures
automatically from any query.

The work of Bonifati et al. is based on the
largest studied set of SPARQL query logs to
date (Bonifati et al., 2017). They used over 170
million queries from 14 different sources to per-
form a multi-level analysis of common features in
SPARQL queries. They reached similar conclu-
sions to previous studies regarding the common-
ality of SELECT queries and the fact that most
of these queries are simple and only contain one
or two triple patterns (Bonifati et al., 2017).

Finally, Dividino and Groner classify the
existing methods to measure the similarity of
SPARQL queries in 4 categories: structure, con-
tent, language and result set (Dividino and
Gröner, 2013). Depending on the application
purposes, a combination of these 4 dimensions
provides the best metric. In our approach, we
perform a structural categorization of queries and
combine it with content-similarity measures to
match SPARQL queries in a query log.

2.2 SPARQL Query Augmentation

Query augmentation, also called query relaxation,
aims at retrieving related information based on a
user query that is potentially needed for subse-
quent queries. There are two main categories of
query augmentation techniques: (1) techniques
based on information found in the data source,
and (2) techniques based on analysis of previous
historic queries.

In the first category, Hurtado et al. suggest
logical augmentations based on ontological meta-
data (Hurtado et al., 2008). In contrast, Hogan
et al. propose an approach that relies on pre-
computed similarity tables for attribute values
(Hogan et al., 2012), whereas Elbassuoni et al.
utilize a language model derived from the knowl-
edge base to perform query augmentation (Elbas-
suoni et al., 2011). Given that these techniques
need data from the data source, they require at
least some precomputations to be performed be-
fore they can be applied. Furthermore, they are
not portable across data sources since the re-
quired information might not always be available.

In contrast, techniques that are based on his-
toric query logs are more portable across data



sources since they do not require any specific in-
formation from the data source. Lorey et al. pro-
pose the first work in this category by detecting
recurring patterns in past queries and creating
query templates based on a bottom-up graph pat-
tern matching algorithm (Lorey and Naumann,
2013b). The same authors extend their work
by combining these templates with four different
query augmentation strategies but do not reach
any conclusive results on which strategy offers the
best results (Lorey and Naumann, 2013a). An-
other approach is proposed by Zhang et al. who
measure similarity between SPARQL queries us-
ing a Graph Edit Distance (GED) function and
use similar previous queries to ‘suggest’ data for
prefetching (Zhang et al., 2016).

Our approach belongs to the second group of
query augmentation strategies, since it is based
on analyzing queries received by the SPARQL
endpoint. However, unlike previous approaches,
we do no directly launch an augmented query
but use a two-step prediction process to predict
the structure of the augmented query before indi-
vidually predicting which triple patterns to use.
This separation allows us to take the query struc-
ture into account without performing any graph
matching between each pair of SPARQL queries.

3 SPARQL PRELIMINARIES
AND MOTIVATING
EXAMPLE

SPARQL queries have four different query
forms, namely SELECT, DESCRIBE, ASK and
CONSTRUCT. Previous studies show that the
most common query starts with one or more
PREFIX items followed by a SELECT struc-
ture (Mario et al., 2011; Möller et al., 2010).
Therefore, in our approach we only consider
SPARQL queries of the SELECT form and we do
not study the less common forms.

The central construct of a SPARQL SELECT

query is a ‘Triple Pattern’. A triple pattern is
defined as T = 〈s, p, o〉 ∈ (V ∪ U) × (V ∪ U) ×
(V ∪U∪L) where V is a set of variables, U a set of
URLs and L a set of literals (Pérez et al., 2009).
The three parts of a triple pattern correspond to
a subject, a predicate and an object.

A set of one or more triple patterns constitute
a Basic Graph Pattern (BGP). A SELECT query
can contain one or more BGPs, joined with the
SPARQL keywords AND, UNION or OPTIONAL.

These BGPs form the query’s graph pattern. Our
approach takes into account the triple patterns of
a query graph pattern and does not consider other
features such as FILTER, LIMIT or ORDER BY.

We call a consecutive sequence of queries re-
ceived by the SPARQL endpoint from the same
client a ‘Query Session’. As previous studies have
demonstrated, queries in the same session tend to
be similar to each other with only minor changes
occurring between them (Dividino and Gröner,
2013; Picalausa and Vansummeren, 2011). In this
paper, we define the length of a query session to
be a one-hour time window.
Example. Listing 1 shows a query session con-
sisting of four SELECT queries received by a
SPARQL endpoint that will be used as a running
example throughout the paper. The queries in
this session look up former teams of different foot-
ball players and ask for some properties of these
teams. We use the line numbers in the listing to
refer to the triple patterns. For instance, we refer
to the triple pattern dbr:Cristiano_Ronaldo dbo:

formerTeam ?team on line 4 as T4.
We can see that the triple patterns of the

queries in Listing 1 are quite similar to each other.
For instance, T10 is identical to T4 whereas T19

and T25 have a different subject but the same
predicate and object. Our approach uses a super-
vised learning algorithm to capture the repetitive
patterns of the changes occurring between the
triple patterns to predict the changes that lead
to the triple patterns of the augmented queries.

4 PROPOSED APPROACH

The main goal of our approach is to construct
augmented queries that retrieve data relevant to
subsequent queries received by a SPARQL end-
point. To do so, we first extract the structure
of the queries and construct query types (Sec-
tion 4.1). Second, we perform a matching of
triple patterns between the queries received by
the SPARQL endpoint (Section 4.2) and then
construct individual augmented triple patterns
using the generated matchings (Section 4.3). Af-
terwards, we use supervised machine learning al-
gorithms to capture the repetitive patterns be-
tween previous queries and apply a two-step pre-
diction process: (1) we first predict which query
type should come next, and, (2) we predict which
augmented triple patterns should be combined
with the predicted query type to construct the
augmented query (Section 4.4).



Listing 1: Example query session of SPARQL SE-
LECT queries

1 Q1 : PREFIX dbr: <http://dbpedia.org/
resource/>

2 PREFIX dbo: <http://dbpedia.org/
ontology/>

3 SELECT * WHERE {
4 dbr:Cristiano_Ronaldo dbo:

formerTeam ?team .
5 }
6

7 Q2 : PREFIX dbr: <http://dbpedia.org/
resource/>

8 PREFIX dbo: <http://dbpedia.org/
ontology/>

9 SELECT * WHERE {
10 dbr:Cristiano_Ronaldo dbo:

formerTeam ?team .
11 OPTIONAL {
12 ?team dbo:manager ?manager .
13 }
14 }
15

16 Q3 : PREFIX dbr: <http://dbpedia.org/
resource/>

17 PREFIX dbo: <http://dbpedia.org/
ontology/>

18 SELECT * WHERE {
19 dbr:Iker_Casillas dbo:

formerTeam ?team .
20 }
21

22 Q4 : PREFIX dbr: <http://dbpedia.org/
resource/>

23 PREFIX dbo: <http://dbpedia.org/
ontology/>

24 SELECT * WHERE {
25 dbr:Gerard_Pique dbo:

formerTeam ?team .
26 ?team dbo:manager ?manager .
27 }

4.1 Query Types (Q-Types)

The aim of a ‘Query Type’, also denoted Q-Type,
is to capture the syntactic structure of a given
SELECT query. We compute the Q-Type of a
query by generating the query’s parse tree (fol-
lowing the SPARQL 1.1 grammar), removing the
leaves of the tree and serializing the resulting tree.
We denote ‘surface form’ to the leaves of the tree,
and ‘inner tree’ to the rest of the tree. Therefore,
we say that two queries have the same Q-Type,
and hence are structurally similar, if they differ
only in their ‘surface form’. That is, they have
the same ‘inner tree’ but different variable names,
resources and literals in their ‘surface form’.

Example. Listing 2 shows a sample SPARQL
SELECT query with one triple pattern.

Listing 2: Example of a SPARQL SELECT query

PREFIX foaf: <http://xmlns.com/foaf
/0.1/>

SELECT * WHERE
{
?x foaf:mbox ?mbox .

}

Figure 1 shows the parse tree of the SPARQL

query from Listing 2. The query’s surface form,
which represents the text seen in the decoded
query, is located in the leaf nodes of the tree.
Listing 3 shows the serialization of the parse tree
in Figure 1 following a top-down, left to right,
visiting algorithm.

Listing 3: Serialization of the parse tree in Figure 1

(QUERY (PROLOGUE
(PREFIX foaf:
<http://xmlns.com/foaf/0.1/>))

(SELECT (SELECT_CLAUSE *)
(WHERE_CLAUSE

(GROUP_GRAPH_PATTERN
(TRIPLES_SAME_SUBJECT
(SUBJECT ?x)
(PREDICATE (PATH

(PATH_SEQUENCE
(PATH_ELT_OR_INVERSE

(PATH_PRIMARY foaf:mbox))))
(OBJECT ?mbox)))))))

Finally, Listing 4 is the serialization of its inner
tree, that is, after eliminating the surface form
of the query. Note that this serialization only
contains the tokens of the SPARQL grammar.

Listing 4: Serialization of the inner tree in Figure 1

QUERY ( PROLOGUE ( PREFIX ( ) )
SELECT ( SELECT_CLAUSE ( )
WHERE_CLAUSE

( GROUP_GRAPH_PATTERN
( TRIPLES_SAME_SUBJECT
( SUBJECT ( )
PREDICATE ( PATH

( PATH_SEQUENCE (
PATH_ELT_OR_INVERSE

( PATH_PRIMARY ( ) ) ) )
OBJECT ( ) ) ) ) ) ) )

This inner tree represents the Q-Type that allows
us to group structurally-similar queries. For in-
stance, examples of queries with the same Q-Type
are Q1 and Q3 from the sequence of queries shown
in Listing 1. We can see that both queries have
the same inner structure and the differences are
only present in their surface forms. On the other
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Figure 1: Parse tree of the SPARQL SELECT query in Listing 2.

hand, queries Q2 and Q4 have different Q-Types,
since their structure is different.

As we can see, the Q-Types capture the struc-
ture of a SPARQL query, including how its triple
patterns form BGPs and, if necessary, how the
BGPs connect with each other using the keywords
AND, UNION and OPTIONAL. This eliminates
the need to do graph matching to measure the
structural similarity between queries and allows
to only perform simple triple pattern matching.

4.2 Triple Pattern Matching

In order to capture the changes that occur be-
tween the triple patterns of the queries received
by a SPARQL endpoint, we match the most simi-
lar triple patterns together. We do so by counting
the number of triple pattern parts (i.e. subjects,
predicates and objects) that are different between
two triple patterns. In this measure, we say that
two triple pattern parts are identical, and hence
their distance is 0, if they are both variables or
have the same URL or literal. Otherwise, we say
that their distance is 1. More formally, assuming
that x1, x2 are either the subjects, predicates or
objects of two triple patterns T1 = 〈s1, p1, o1〉 and
T2 = (s2, p2, o2), we define the distance between

the two parts ∆(x1, x2) as:

∆(x1, x2) =

{
0, if (x1 ∈ V ∧ x2 ∈ V ) ∨ (x1 = x2)

1, otherwise

(1)

We then determine the overall distance be-
tween the two triple patterns by aggregating the
individual triple pattern part distances as follows:

∆(T1, T2) = ∆(s1, s2)+

∆(p1, p2) + ∆(o1, o2) (2)

This function is based on the distance func-
tion defined by Lorey et al. (Lorey and Naumann,
2013a). In the original definition, the authors use
a Levenshtein distance to compare two URLs or
literals when measuring the distance between two
triple pattern parts ∆(x1, x2) and then use a more
complex aggregation to compute ∆(T1, T2). We
modified it in our approach since we are only in-
terested in counting the number of different triple
pattern parts between T1 and T2, regardless of
whether they are variables, URLs or literals.

We also introduce a restriction not found
in the original definition to guarantee that the



matched triple patterns are not too different from
each other. We do so by limiting the distance be-
tween the matched triple patterns to ∆(T1, T2) ≤
1, i.e. the two triple patterns are different in at
most one part. If more than one triple pattern
can be matched with the same distance, the one
that occurs most recently in the query session is
considered. If no such match can be found, we
say that the triple pattern is “unmatched”.

Example. Looking at the queries in Listing
1, we match their triple patterns as follows:
• Q1: the first query in the session and there

are no previous queries to do the matching.
• Q2: the first triple pattern T10 is identical to

T4 while the second triple pattern T12 is un-
matched.

• Q3: its triple pattern T19 is matched to T10

with a change in the subject.
• Q4: the first triple pattern T25 is matched to

T19 with a change in the subject. The second
triple pattern T26 is identical to T12.

4.3 Augmented Triple Patterns

For each pair of triple patterns matched as de-
scribed in Section 4.2, we construct an Aug-
mented Triple Pattern aug(T1, T2). If the
matched triple patterns are identical, the aug-
mented triple pattern is identical to both of them
as well. Otherwise, we construct the augmented
triple pattern by substituting the part that is dif-
ferent between them with a variable. For con-
sistency, the same URL or literal is always re-
placed with the same variable. If a triple pattern
is unmatched, then the corresponding augmented
triple pattern is identical. Formally, we define
aug(x1, x2) as the augmented part of two triple
pattern parts as follows:

aug(x1, x2) =


x1 = x2, if ∆(x1, x2) = 0

?vari where ?vari = aug(x1, xi)

∀xi, otherwise

(3)

We then define aug(T1, T2) for a pair of
matched triple patterns as:

aug(T1, T2) = 〈aug(s1, s2),

aug(p1, p2), aug(o1, o2)〉 (4)

The aim of augmented triple patterns is two-
fold. First, they capture the changes that occur
between the triple patterns of queries in a ses-
sion. This allows us to use them to predict the

triple patterns of the augmented query based on
changes in previous queries in the session. Sec-
ond, they are more abstract than the original
triple patterns occurring in the queries and hence
they retrieve additional data that is potentially
relevant for subsequent queries as well.

Example. Given the matchings between the
triple patterns of the queries in Listing 1, we con-
struct the following augmented triple patterns:

• aug1 = aug(T10, T4) = T10 = T4: since T10

and T4 are identical.

• aug2 = aug(T19, T10) = aug(T25, T19) =
?var1 dbo:formerTeam ?team: since
T10, T19 and T25 only differ from each other
in the subject

• aug3 = aug(T26, T12) = T26 = T12: since T26

and T12 are identical.

4.4 Constructing Augmented
Queries

To predict and construct an augmented query, we
use the Q-Types and augmented triple patterns of
previous queries in the same query session. More
precisely, we use the Q-Types of previous queries
to predict the Q-Type, and hence structure, of the
next query in the query session. Afterwards, we
predict which augmented triple patterns should
be combined with the Q-Type to construct the
‘surface form’ of the augmented query. By do-
ing so, we construct an augmented query that
takes into account the structure of the next query
and retrieve data relevant to several subsequent
queries at the same time.

We formulate the prediction process as a
multi-class classification problem, using one clas-
sifier to predict the Q-Type of the upcoming
query and one classifier to predict each aug-
mented triple pattern in that Q-Type. For the
Q-Type classifier, we use as features the Q-Types
of previous queries in the session. As for the
augmented triple patterns, the feature vectors in-
clude one feature for each augmented triple pat-
tern of each of the previous queries in the session,
regardless of their position in the original query.
The classifier is then used to predict which aug-
mented triple pattern should come in the ith po-
sition of the predicted Q-Type.

Example. Using the queries in Listing 1, and
assuming we use 2 previous queries in the classi-
fier model, we would have the following features:



q-type(Q1), q-type(Q2)→ q-type(Q3)

q-type(Q2), q-type(Q3)→ q-type(Q4)

Similarly, the feature vectors of the augmented
triple pattern classifiers would be the following.
The first two features correspond to augmented
triple patterns of Q1, the next two features to Q2

and so on. Note that if a query has less triple
patterns than the maximum, we use the question
mark ‘?’ to indicate that this feature is missing.
Classifier features for first triple pattern:

aug1, ?, aug1, aug3 → aug2

aug1, aug3, aug2, ?→ aug2

Classifier features for second triple pattern:

aug1, ?, aug1, aug3 →?

aug1, aug3, aug2, ?→ aug3

We then train the classifiers on historical data
and when a new query arrives to the SPARQL
endpoint, we compute its Q-Type and augmented
triple patterns and run the information through
the trained classifier to obtain the predicted aug-
mented query. For instance, using the queries
in Listing 1, let’s assume that the classifiers
predict that the next query, Q5, is of type
q-type(Q2) and that its augmented triple patterns
are aug2 and aug3. Using these predictions, the
surface form of the constructed augmented query
would be the one shown in Listing 5. This query
is then used to retrieve the data retrieved by the
original next query, as well as related data poten-
tially relevant to subsequent queries.

Listing 5: Surface form of a constructed augmented
query

1 Q5 : PREFIX dbr: <http://dbpedia.org/
resource/>

2 PREFIX dbo: <http://dbpedia.org/
ontology/>

3 SELECT * WHERE {
4 ?var1 dbo:formerTeam ?team .
5 OPTIONAL {
6 ?team dbo:manager ?manager .
7 }
8 }

5 APPROACH STUDY

We evaluated our approach by studying the Span-
ish DBpedia (esDBpedia) query logs extracted

Table 1: Characteristics of the datasets used in our
experiments. Numbers of queries and distinct queries
refer to SELECT queries only.

esDBpedia enDBpedia

Total Queries 167,810 203,874
Distinct Queries 46,397 105,284
Distinct IPs 2,197 8,918
Sessions 963 619
Months Covered 12 3

directly from the esDBpedia SPARQL endpoint
and the English DBpedia (enDBpedia) logs pub-
lished for the 2013 USEWOD workshops5. The
log files contain a sequence of requests received
by the respective public SPARQL endpoints and
cover different periods between 2012 and 2013.
We extracted the SPARQL SELECT queries from
other SPARQL queries and HTTP requests for
use in our experiments. Table 1 shows the most
relevant facts about the extracted datasets. As
we can see, the esDBpedia dataset covers more
months but the enDBpedia has a more diverse
dataset, both in terms of distinct SELECT queries
and IPs from which the queries were made.

We divided the logs according to the request-
ing IP and considered the n previous queries from
the same IP in our classifiers. We experimented
with different values of n to see the influence of
the number of considered queries on the clas-
sifiers’ results. For the esDBpedia dataset, we
included the time intervals between consecutive
queries as additional classifier features. We could
not do the same with the enDBpedia dataset
because the published logs did not include the
queries’ timestamps.

We also calculated the number of queries made
from each IP and concluded that it seems to fol-
low a power-law distribution, that is, a small
number of IP addresses is responsible for a big
number of queries. The main implication of such
a generalized behavior is that the SPARQL end-
points of the Linked Data repositories could be
optimized to take advantage of this 80-20 behav-
ior. Due to space limitations, we do not include
the implications of this behavior on our approach
in this paper and leave it to future work.

For our classification problem, we used the
J48 decision tree classifier (using Weka 3.8.16)
and tested the classifiers by using 10 fold cross-
validation. In all of our experiments, we used as

5
2013 USEWOD Workshop: https://eprints.soton.

ac.uk/379399/
6Weka: https://www.cs.waikato.ac.nz/

ml/index.html



a baseline the ZeroR classifier, which predicts all
instances to be of the most common class. To
ensure the reproducibility of our experiments, we
have made all of the training datasets and ex-
perimental results publicly available at http:
//prefetch.linkeddata.es.

5.1 Q-Type Prediction

We started our study by calculating the number
of generated Q-Types. We found that the queries
of the esDBpedia dataset correspond to 943 Q-
Types whereas in the enDBpedia logs we found
3,139 Q-Types. Figure 2 shows the distribution
of queries among the computed Q-Types plotted
in logarithmic scale. We can see from Figure 2
that the distribution of Q-Types is very skewed,
with a large number of Q-Types corresponding
to few queries and only a handful of Q-Types
corresponding to the majority of queries. Given
this distribution, in the rest of the experiments
we only consider the most common Q-Types that
cover the vast majority of the queries. More pre-
cisely, we consider 56 Q-Types that cover 98.5%
of all queries in the esDBpedia dataset, whereas
in the enDBpedia dataset we consider 60 Q-Types
that cover 98.1% of all queries.

Using the most common Q-Types, we eval-
uated the classifier’s precision in predicting the
Q-Type of the next query when considering dif-
ferent numbers of previous queries, n. Figure 3
shows the classifier precision on both datasets.
For esDBpedia, the classifier achieves high ac-
curacy even when n = 2 and reaches a peak of
96.34% when n = 15. As for the enDBpedia
dataset, the classifier’s peak precision of 89.95%
is achieved when n = 10. In general, the classi-
fier achieves worse precision with the enDBpedia
dataset, which indicates that the queries received
by the enDBpedia SPARQL endpoint are more
diverse and do not follow a predictable pattern
such as with esDBpedia. Note that the baseline
for this experiment is 22.09% for esDBpedia and
15.35% for enDBpedia.

We also evaluated the accuracy of the classi-
fier with less-common Q-Types. Figure 4 shows
the classifier’s precision (number of correctly-
classified instances divided by the total num-
ber of classified instances) and recall (number of
correctly-classified instances divided by the total
number of instances of the class) for each of the
included Q-Types in both datasets. We chose the
values of n that offer the highest overall accuracy
to perform this experiment, namely with n = 15
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Figure 2: Number of queries (in log scale) correspond-
ing to each of the computed Q-Types. The x-axis
ranks the Q-Types from most common (left) to least
common (right).
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Figure 3: Precision of the Q-Type classifier.

for esDBpedia and n = 10 for enDBpedia.

For the esDBpedia dataset, we can see that the
classifier has both precision and recall of over 80%
in the majority of cases and its recall only drops
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Figure 4: Q-Type classifier precision and recall for
each of the included Q-Types. The x-axis ranks the
Q-Types from most common (left) to least common
(right). Each marker represents the precision (black)
or recall (orange) for a Q-Type.

below 50% for 3 of the included Q-Types. On the
other hand, the classifier registers a similar drop
with 8 Q-Types in the case of enDBpedia. The
classifier performs badly with these types because
it cannot distinguish them from other types with
the used features. We argue that the solution
could be to include other features in the classifier
models, such as the time interval between queries
in the enDBpedia.

5.2 Prediction of Augmented
Triple Patterns

After evaluating the Q-Type prediction algo-
rithm, we studied the accuracy of the classifiers in
predicting the augmented triple patterns (as dis-
cussed in section 4.2) that are used with the pre-
dicted Q-Type to construct the augmented query.
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Figure 5: Precision of the triple patterns classifiers
on the studied datasets.

Figure 5 shows the classifier’s precision on both
datasets, the x-axis indicates the number of aug-
mented triple patterns in the predicted Q-Type
and the two series show the results when con-
sidering 5 and 10 previous queries. A common
behavior that can be observed in figure 5 in both
datasets is that, unlike the Q-Type classifier, in-
creasing n does not always increase the precision
of the augmented triple-pattern classifiers. This
indicates that the predicted triple patterns ap-
pear in previous queries even when n = 5 or
n = 10 and any further increase only adds more
unnecessary data points to the classifiers model.

It is also worth noting that the classifier re-
sults are completely different when considering
queries that have more than 6 triple patterns,
with the precision increasing to around 98% with
esDBpedia and dropping to below 50% with
enDBpedia. This can be explained as follows:
21.3% of queries in esDBpedia have more than
6 triple patterns, of which 98.2% are duplicates.
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Figure 6: Cache Hit Rate based on the constructed
augmented queries.

On the other hand, the percentage of queries with
more than 6 triple patterns drops to only 10.8%
in the enDBpedia, out of which only 33.7% are
duplicates. The extremely high duplicates rate
explains the high accuracy of the classifier with
esDBpedia, while the small number of queries
with more than 6 triple patterns in the enDB-
pedia dataset, coupled with the low duplication
rate, is not sufficient to train a classifier model
with high accuracy.

5.3 Cache Hit Rate

We performed a final experiment to estimate the
‘cache hit rate’ that our approach can achieve by
caching the predicted augmented queries. We did
so by calculating the percentage of queries for
which all triple patterns occur in an augmented
query previously predicted in the same session.
When this happens, assuming that we cache the
results of the predicted queries, we have a ‘cache
hit’ since the cached results will also be results of
the query being predicted.

Figure 6 shows the cache hit rates that can
be achieved by caching different numbers of pre-
dicted augmented queries. It indicates that, for
esDBpedia, we can have cached results for be-
tween 92.63% and 96.80% of future queries, de-
pending on the number of cached queries. On the
other hand, the hit rate for enDBpedia ranges be-
tween 67.70% when only caching 10 augmented
queries and 88.10% when caching 1,000 aug-
mented queries.

Compared to previous approaches, Zhang et
al. reported an average cache hit rate of 76.65%
using a dataset of enDBpedia queries of a simi-

lar size (Zhang et al., 2016) and a cache of 1,000
queries. We could not readily compare our ap-
proach to the work of Lorey et al. since the
authors do not provide comparable measures in
their evaluation (Lorey and Naumann, 2013b).

6 CONCLUSIONS AND
FUTURE WORK

In this paper, we presented a novel approach to
query augmentation in SPARQL endpoints based
on measuring two independent types of similar-
ity between SPARQL SELECT queries. We use
syntactic parse trees to measure the structural
similarity of SPARQL queries and create Query
Types which we use to predict the structure of the
next query. Independently, we measure the sim-
ilarity between the queries’ triple patterns, and
use the similarities to construct augmented triple
patterns. We then combine the two predictions to
construct an augmented query that can be used
to retrieve data relevant to subsequent queries in
the query session.

We evaluated our approach on the SPARQL
endpoint query logs of the Spanish and English
DBpedia. The results show that the prediction
of both Q-Types and augmented triple patterns
does not require a large number of queries, only
between 10 to 15, to achieve high precision. This
indicates that our approach can be used in both
long and short query sessions alike. In general,
the classification precision is higher for the esDB-
pedia dataset, due to the fact that the enDB-
pedia logs are more diverse and contain more
unique queries. For a minority of cases, namely
for queries containing more than 6 triple pat-
terns, the classifier accuracy drops for the enDB-
pedia due to the insufficient size of this subset of
queries. However, our approach can still achieve
a cache hit rate of around 85% for the enDBpedia
dataset, which is considerably higher than previ-
ous augmentation approaches.

In the future, we intend to implement a full
caching and prefetching system using our pro-
posed query augmentation approach. We also
plan to extend our prediction method to take into
account other features of SELECT queries, such
as FILTER clauses, as well as other less common
forms of SPARQL queries. Finally, we want to
distinguish human query sessions from sessions
made by machine agents to test the effectiveness
of our approach on both types and optimize it
accordingly.
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