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Abstract

This work presents an extension of the discrete p-center problem. In this new model,

called Stratified p-Center Problem (SpCP), the demand is concentrated in a set of sites

and the population of these sites is divided into different strata depending on the kind

of service that they require. The aim is to locate p centers to cover the different types

of services demanded minimizing the weighted average of the largest distances associated

with each of the different strata. In addition, it is considered that more than one stratum

can be present at each site. Different formulations, valid inequalities and preprocessings

are developed and compared for this problem. An application of this model is presented

in order to implement a heuristic approach based on the Sample Average Approximation

method (SAA) for solving the probabilistic p-center problem in an efficient way.

Keywords: Location, p-center, discrete optimization, Sample Average Approximation.

1 Introduction

Discrete location problems have been widely studied since the seminal paper Balinski (1965),

where the first MILP formulation for such a problem was proposed. Among the fundamental

problems in this area, the p-Center Problem (pCP) aims at selecting, from n given sites, the

locations of p service centers that minimize the maximum distance between any of the sites

and its closest service center. This model, in contraposition to the p-median problem, was

motivated by the need not to discriminate spatially dispersed clients when locating essential

or emergency centers (see Garfinkel et al., 1977; Calik et al., 2015, for more details).
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Both, continuous and discrete versions have already been addressed by several authors.

Examples of works concerning the continuous version are Callaghan et al. (2017) and Elshaikh

et al. (2016) where the planar version is analyzed. This paper focuses on an extension of the

discrete pCP. The discrete pCP, also known as vertex pCP, has been proven to be NP-hard

(Kariv and Hakimi, 1979). However, many efficient exact and heuristic algorithms have been

introduced for this problem. See for instance, Contardo et al. (2019); Calik and Tansel (2013)

or Irawan et al. (2016).

In the last decades, several extensions of the discrete pCP have been introduced in the

literature. These include variants considering capacities (Özsoy and Pınar, 2006; Albareda-

Sambola et al., 2010; Quevedo-Orozco and Ŕıos-Mercado, 2015) or pre-existing centers, as in

the conditional p-center problem (Drezner, 1989). Other extensions, such as the α-neighbor

p-center problem, consider the largest distance of a demand point to its α closest centers, see

Chen and Chen (2013).

In addition, the pCP with uncertain parameters has been addressed both, from the per-

spective of robust optimization (Averbakh and Berman, 1997; Lu and Sheu, 2013) and of

stochastic programming (Revelle and Hogan, 1989; Espejo et al., 2015; Mart́ınez-Merino

et al., 2017). In particular, in Mart́ınez-Merino et al. (2017) the probabilistic p-center prob-

lem (PpCP) is introduced. In this problem, the goal is to minimize the expected largest

distance between any demand point and its corresponding center. The PpCP considers that

the demand can occur independently at each demand site with a certain known probability.

Observe, that the pCP is a particular case of this problem where all sites have demand with

probability one. In this paper, we will introduce a heuristic method for the PpCP making

use of the formulations of the pCP extension that will be proposed.

A common characteristic of most of the considered problem variants is that customers

are assumed to be homogeneous in the sense that they are all considered in the same way in

the objective function. The only exception would be the weighted pCP, where the distances

between each site and its closest center are affected by site-dependent weights. See, for

instance, Jeger and Kariv (1985) where the particular case of this problem defined on trees

is addressed.

In this paper, we consider situations where, for instance, the population of a region is

divided into different strata, and people of different strata can live together in the same
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cities. The goal of the problem is to locate centers in such a way that the weighted sum

of the largest distance associated with each stratum is minimized. This problem is called

the Stratified p-Center Problem (SpCP) and it could be applied when the evaluation of the

service is measured separately for each stratum due to social or political reasons. The idea of

analyzing demands distributed in a spatially different way has been used in covering problems

(Schilling et al., 1979) but, up to the best of our knowledge, it has not been applied in the

context of the pCP.

A possible real life application could be the location of centers in an humanitarian relief

planning framework. The purpose is to locate centers that provide different essential services

and where not all demand points need all the services. This is the case of underdeveloped

countries where humanitarian aid centers offering assistance (medical supplies, basic goods,

clothes, etc.) need to be located. Note that in this context, the opening of many aid centers

could be very costly, for instance, due to safety reasons. The model that we propose takes into

account the largest distance associated with each of the provided services in contrast with

the pCP, where only the largest distance is considered. Consequently, the SpCP evaluates

the performance of each of the services.

Another application of this model could be the location of warehouses for different per-

ishable items (fruits, vegetables, seafood) whose demand sites are not the same for all the

items. In this case, the warehouses should be located in such a way that the clients of each

kind of item could be served as soon as possible to avoid the damage of the products.

Besides, this model could also be useful to locate social service centers that offer support

to different social minorities needing assistance. The SpCP model allows to minimize the

weighted sum of the largest distance associated with each minority. In all the above mentioned

applications, the weight associated with each stratum could be related to its importance or

its associated cost.

The paper is organized as follows. In Section 2, a formulation for the SpCP based on the

Daskin (1995) and Calik and Tansel (2013) formulations for the pCP is introduced. In Section

3, some alternative formulations together with some valid inequalities are proposed. Section

4 applies the results in previous sections for an efficient implementation of a Sample Average

Approximation heuristic for the probabilistic p-center problem (see Mart́ınez-Merino et al.,

2017). Section 5 reports the computational results comparing all the proposed formulations
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and the results of using Sample Average Approximation. Finally, Section 6 gathers the

conclusions of the paper.

2 Notation and classical formulation

Let N = {1, . . . , n} be a given set of sites and p > 2 the number of facilities to be located. For

each pair i, j ∈ N , let dij be the distance from location i to j. Besides, dii = 0 for i ∈ N and

dij > 0 for i 6= j. In the following we use the next notation. The sorted distances associated

with pairs of sites are denoted by

0 = d(1) < d(2) < . . . < d(G).

The sorted distances from a site i ∈ N to the remaining sites are denoted by

0 = di(1) < di(2) < . . . < di(Gi).

In the previous notation G and Gi are the number of different distances between pairs of sites

and between i and any other site, respectively (removing possible multiplicities).

Moreover, the population of each site 1, . . . , n is partitioned into a set of strata, taking

into account that more than one stratum can be present in a site i and not always all the

strata are present in a site. Given S the set of strata in which the population is divided, we

consider a family of subsets {N s}s∈S such that N s ⊆ N is the set of sites where stratum s

is present for s ∈ S. Then, the sorted distances from a stratum, i.e., the sorted sequence of

family {dij}i∈Ns,j∈N is denoted by

0 = ds(1) < ds(2) < . . . < ds(Gs),

where Gs is the number of different distances of the family {dij}i∈Ns,j∈N .

The problem addressed in this work is based on the classical pCP. However, in contrast

with the pCP, this new problem considers that population of the sites is divided in different

strata depending on the kind of service that they require. For a given stratum s, this problem

takes into account the largest distance from the sites where stratum s is present and their

corresponding closest service facility. Recall that in the same site there can be inhabitants

belonging to more than one stratum.
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For each site j ∈ N , and each stratum s ∈ S, the following binary parameter is defined:

ξsj =


1, if j ∈ N s,

0, otherwise.

Besides, each stratum has an associated weight, (ws, s ∈ S) that is used to balance the

cost related to the different strata in the objective function. The weights can be interpreted

in different ways. For instance, they can measure the importance given to a certain stratum.

Given the former parameters, the aim of this problem is to locate p service facilities

minimizing the weighted sum of the largest assignments within each stratum. Therefore, the

problem can be expressed synthetically in the following way:

min
P⊆N
|P |=p

∑
s∈S

wsd(P,N s), (1)

where P is a subset of facilities to open and d(P,N s) = max
j∈Ns

min
i∈P

dij . For a given site j ∈ N , we

will refer to min
i∈P

dij as the allocation distance of site j, so d(P,N s) is the maximum allocation

distance among the sites with presence of stratum s, or equivalently within stratum s.

The problem previously described can be formulated using the classic p-center formulation

(see Daskin, 1995). With this purpose, the following variables are defined:

xij =


1, if site j is assigned to center i,

0, otherwise,

for i, j ∈ N . (2)

θs = largest allocation distance for the sites where stratum s is present, s ∈ S. (3)

Using these variables, the derived formulation is,

(F1) min
∑
s∈S

wsθ
s (4)

s.t.
∑
i∈N

xii = p, (5)

∑
i∈N

xij = 1, j ∈ N, (6)

xij 6 xii, i, j ∈ N, (7)

θs >
∑
i∈N

dijxij , s ∈ S, j ∈ N s, (8)
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xij ∈ {0, 1}, i, j ∈ N, (9)

θs > 0, s ∈ S. (10)

Constraint (5) restricts that there are p centers. Constraints (6) indicate that each site

is associated with only one center. Constraints (7) restrict that sites must be assigned to

an open center. Constraints (8) ensure that the largest allocation distance within stratum

s is not smaller than the allocation distance of any site where stratum s is present. As

mentioned before, the objective function is the weighted sum of the largest distances within

each stratum.

To the best of our knowledge, the most recent formulation for the p-center problem was

given by Calik and Tansel (2013) providing very good results. We propose a formulation of

our problem inspired in Calik and Tansel (2013) using the following families of variables.

ūsr =


1, if d(r) is the largest allocation distance among the sites in N s,

0, otherwise,

s ∈ S, r = 1, . . . , G.

yi =


1, if a center is placed at i,

0, otherwise,

for i ∈ N .

Using these families of variables, the new formulation is given by

(F2) min
∑
s∈S

G∑
k=1

wsd(k)ūsk (11)

s.t.
∑
i∈N

yi = p, (12)

G∑
k=1

ūsk = 1, s ∈ S, (13)

k−1∑
k′=1

ūsk′ 6
∑
i∈N

dij<d(k)

yi, s ∈ S, j ∈ N s, k = 2, . . . , G, (14)

yi ∈ {0, 1}, i ∈ N, (15)

ūsk ∈ {0, 1}, s ∈ S, k = 1, . . . , G. (16)
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Constraint (12) restricts that there are p centers. Constraints (13) ensure that for each

stratum, only one of the distances is the largest allocation distance. Constraints (14) de-

termine that the largest allocation distance within a stratum s will be among the first k

distances if there is a center with a distance smaller than or equal to d(k) with respect to any

site in N s.

Observe that ū-variables determine the largest allocation distance among the sites where

each stratum s ∈ S is present. As a consequence, only the distances associated with sites in

N s will be necessary to obtain the largest distance with respect to s. Therefore, the number

of variables can be reduced defining ũ-variables in the following way,

ũsk =


1, if ds(k) is the largest allocation distance for the sites in N s

0, otherwise,

s ∈ S, k = 1, . . . , Gs.

Observe that in the original formulation F2, the number of ū-variables is |S|G. However,

by doing this reduction, the obtained number of variables is
∑
s∈S

Gs. Taking advantage of this

reduction of the number of variables, the new objective function for the model is

∑
s∈S

Gs∑
k=1

wsd
s
(k)ũsk, (17)

and constraints (14) can be replaced by

k−1∑
k′=1

ũsk′ 6
∑
i∈N

dij<ds(k)

yi, s ∈ S, j ∈ N s, k = 2, . . . , Gs. (18)

Therefore, this new family of ũ-variables allows us to provide a new formulation with a smaller

number of variables and constraints. Moreover, the following result allows to strengthen this

new formulation.

Proposition 2.1 For s ∈ S and j ∈ N s, let lsjr ∈ {1, . . . , Gs} be such that dj(r) = ds(lsjr)
.

Considering formulation F2 with ũ variables (instead of ū variables), the objective function

(17) and replacing (14) by

lsjr−1∑
k′=1

ũsk′ 6
∑
i∈N

dij<ds(ls
jr

)

yi, s ∈ S, j ∈ N s, r = 2, . . . , Gj , (19)

results in a valid equivalent formulation F2’ with a smaller number of constraints.
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Proof:

We prove that constraint families (18) and (19) are equivalent. Let s̃ ∈ S, ̃ ∈ N s and

r̃ ∈ {2, . . . , G̃}. Consider the following subset of constraints of family (18),

k−1∑
k′=1

ũs̃k′ 6
∑
i∈N

dĩ<d
s̃
(k)

yi, k ∈ {ls̃̃,r̃−1 + 1, . . . , ls̃̃r̃}. (20)

Observe that
∑
i∈N

dĩ<d
s̃

(ls̃
̃,r̃−1

+1)

yi = . . . =
∑
i∈N

dĩ<d
s̃

(ls̃
̃r̃

)

yi, then since

ls̃̃r̃−1∑
k′=1

ũs̃k′ 6 . . . 6

ls̃̃r̃−1∑
k′=1

ũs̃k′ ,

the family of constraints (20) is dominated by

ls̃̃r̃−1∑
k′=1

ũs̃k′ 6
∑
i∈N

dĩ<d
s̃

(ls̃
̃r̃

)

yi.

Therefore, the obtained formulation F2’ is equivalent to F2 with less constraints. In

fact, the number of constraints (18) is
∑
j∈N

∑
s∈S

ξsjG
s and the number of constraints (19) is∑

j∈N

∑
s∈S

ξsjGj . It is straightforward that for each pair, s ∈ S, j ∈ N s , Gj 6 Gs since, at least,

the distances associated with location j must be among the distances related to stratum s.

�

3 Formulation using covering variables

In this section we introduce three formulations making use of stratum-covering and site-

covering variables. The idea behind these formulations is to take advantage of the information

provided by considering the ordered sequence of possible assignment distances. In particular,

the variables defined for these formulations determine whether the largest assignment distance

associated with a stratum s is at least the one in a certain position of the sorted vector ds

(stratum-covering variables) and whether the allocation distance associated with a site i is

at least the one in a certain position of the sorted vector di (site-covering variables). In this

section we will see that the use of these variables associated with sorted vectors allows to

propose new efficient formulations.
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3.1 Formulation with stratum-covering variables

In this subsection we present a formulation based on the use of y-variables described in the

previous section and the following family of variables:

usk =


1, if the largest allocation distance for the sites in N s is at least ds(k),

0, otherwise,

for s ∈ S, k = 2, . . . , Gs.

Observe that we have used the same strategy as in the former section, so that for each s ∈ S

the number of u variables will be equal to the number of different distances associated with

s. The use of this type of variables for the classical pCP was introduced by Elloumi et al.

(2004). Inspired in this idea, we provide the following formulation for the SpCP.

(F3) min
∑
s∈S

ws

(
Gs∑
k=2

(ds(k) − d
s
(k−1))usk

)
(21)

s.t.
∑
i∈N

yi = p, (22)

usk > 1−
∑
i∈N

dij<ds(k)

yi, s ∈ S, j ∈ N s, k = 2, . . . , Gs, (23)

yi ∈ {0, 1}, i ∈ N, (24)

usk ∈ {0, 1}, s ∈ S, k = 2, . . . , Gs. (25)

As it can be seen in (21), the objective function for this formulation can be expressed using

a telescopic sum. Constraint (22) ensures that there are p open centers. Constraints (23)

determine that if there is not a center at a distance smaller than ds(k) from a site j ∈ N s,

then usk = 1.

Proposition 3.1 Replacing (23) in F3 by the following families of constraints

us,lsjr > 1−
∑
i∈N

dij<dj(r)

yi, s ∈ S, j ∈ N s, r = 2, . . . , Gj , (26)

usk 6 us,k−1, s ∈ S, k = 3, . . . , Gs, (27)

results in an equivalent formulation, F3-(23)+(26)+(27).
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Proof:

Let (̃, s̃) ∈ N × S such that ξs̃̃ = 1 and r̃, r̃ + 1 ∈ {2, . . . , G̃}. Consider the following

subset of constraints of family (23),

us̃k > 1−
∑
i∈N

dĩ<d
s̃
(k)

yi, k ∈ {ls̃̃,r̃−1 + 1, . . . , ls̃̃r̃}. (28)

Observe that
∑
i∈N

dĩ<d
s̃

(ls̃
̃,r̃−1

+1)

yi = . . . =
∑
i∈N

dĩ<d
s̃

(ls̃
̃r̃

)

yi, then using (27), the family (28) is domi-

nated by

us,ls̃̃r̃
> 1−

∑
i∈N

dĩ<d
s̃

(ls̃
̃r̃

)

yi.

�

Remark 3.1 Formulation F3-(23)+(26)+(27) has a smaller number of constraints than F3

if ∑
s∈S

∑
j∈N

ξsj (G
s −Gj)−Gs + 2

 > 0.

3.2 Formulation with site-covering variables

In this section we propose a new formulation for our problem using the following set of

variables, inspired in the ones defined by Garćıa et al. (2011) for the pCP:

zir =


1, if the allocation distance of site i is at least di(r),

0, otherwise,

for i ∈ N , r = 2, . . . , Gi.
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Based in this set of variables and θs-variables defined by (3), we propose the following for-

mulation for our problem:

(F4) min
∑
s∈S

wsθ
s

s.t.
∑
i∈N

zi2 = n− p, (29)

∑
i∈N

dij<dj(r)

(1− zi2) > 1− zjr, j ∈ N, r = 3, . . . , Gj (30)

θs > dj(r)zjr, s ∈ S, j ∈ N s, r = 2, . . . , Gj , (31)

zjr ∈ {0, 1}, j ∈ N, r = 2, . . . , Gj , (32)

θs > 0, s ∈ S. (33)

Constraint (29) indicates that there are p centers. Constraints (30) ensure that if zjr = 0

then, there is at least one center at i with dij < dj(r), i.e., location j is served by a center at

a distance smaller than dj(r). Finally, constraints (31) ensure that θs is the largest allocation

distance for sites in N s.

Proposition 3.2 Formulation F4 is still valid after relaxing the integrality of variables zir

for i ∈ N , r = 3, . . . , Gi.

Proof:

Let (θ̃, z̃) be an optimal solution of F4 relaxing zir for i ∈ N , r = 3, . . . , Gi. We distinguish

between two cases.

If
∑
i∈N

di,i0<di0r0

(1− z̃i2) = 0 then z̃i0r0 > 1 due to constraints (30). Therefore, z̃i0r0 = 1.

If
∑
i∈N

di,i0<di0r0

(1 − z̃i2) > 1, then constraints (30) reduce to zi0r0 > 0. Since positive values

of z̃i0r0 penalize the objective function due to constraints (31), then z̃i0r0 = 0. �

Preliminary computational results show that this relaxation does not improve computa-

tional times of formulation F4.

Proposition 3.3 Replacing constraints (31) in F4 by

θs ≥
Gj∑
r=2

(dj(r) − dj(r−1))zjr, s ∈ S, j ∈ N s, (34)
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results in a valid formulation F4-(31)+(34) for the problem with less constraints, that domi-

nates F4.

Proof:

Let s ∈ S, j ∈ N s. Note that, due to constraints (30) and constraints (34) it holds that

zjr 6 zj,r−1 for r ∈ {3, . . . , Gj} since,∑
i∈N

dij<dj(r)

(1− zi2) >
∑
i∈N

dij<dj(r−1)

(1− zi2),

and z-variables penalize in the objective function through constraints (34). Hence, since

zjr ∈ {0, 1} we have that

θs = max
j∈Ns


Gj∑
r=2

(dj(r) − dj(r−1))zjr


and then the formulation F4-(31)+(34) is valid. Moreover, for the relaxed problem we have

that
Gj∑
r=1

(dj(r) − dj(r−1))zjr > max
r=1,...,Gj

dj(r)zjr, ∀s ∈ S, j ∈ N s,

i.e., this formulation dominates F4. Besides, the number of constraints (31) is
∑
j∈N

∑
s∈S

ξsjGj

and the number of constraints (34) is
∑
j∈N

∑
s∈S

ξsj . Then, formulation F4-(31)+(34) has a

smaller number of constraints than F4. �

We have also studied alternative formulations using a non-cumulative version of the z-

variables, i.e., defining

z̄ir =


1, if the allocation distance of site i is di(r),

0, otherwise.

for i ∈ N , r = 2, . . . , Gi.

Nevertheless, a preliminary computational analysis of these formulations shows a worse per-

formance with respect to F4.

3.3 Formulation with stratum- and site-covering variables

The last formulation that we propose combines two families of covering variables, one asso-

ciated with the distances from each stratum s ∈ S (u-variables) and another one with the
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allocation of each site i ∈ N (z-variables). The combination of both families of variables is

inspired in the formulation of Maŕın et al. (2009) for the Discrete Ordered Median problem.

For each s ∈ S, k ∈ {2, . . . , Gs} and i ∈ N we define

l̄sik =


r, if r ∈ {1, . . . , Gi} exists such that di(r) = ds(k) and ξsi = 1,

0, otherwise.

Then, the obtained formulation is

(F5) min
∑
s∈S

Gs∑
k=2

ws(d
s
(k) − d

s
(k−1))usk (35)

s.t. (29), (30),

usk > zi,l̄sik , s ∈ S, i ∈ N s, k = 2, . . . Gs : l̄sik > 0, (36)

us,k−1 > usk, s ∈ S, k = 3, . . . , Gs, (37)

usk ∈ {0, 1}, s ∈ S, k = 2, . . . , Gs, (38)

zir ∈ {0, 1}, i ∈ N, r = 2, . . . , Gi. (39)

Constraints (36) determine the largest allocation distance among the sites in N s. Observe

that constraints (37) are valid inequalities for formulation F5. Indeed, if in a particular

solution usk = b and usk−1 = a with b > a, then, a feasible solution with lower objective

value can be found by taking usk = a. Constraints (37) are included in the formulation from

the beginning since they provided good results in a preliminary computational study.

Note that constraints (36) can be equivalently written in the following way,

us,lsir > zir s ∈ S, i ∈ N s, r = 2, . . . , Gi. (40)

Where lsir is the index already defined in Proposition 2.1. To derive another valid formulation

from (F5), we include the following notation,

l
′s
ik =


min{r : di(r) > d

s
(k)}, if ds(k) 6 di(Gi)

Gi + 1, otherwise.

Proposition 3.4 By replacing (36) in F5 by

usk > zi,l′sik
, s ∈ S, i ∈ N s, k = 2, . . . , Gs, l

′s
ik 6 Gi. (41)

a valid formulation, F5-(36)+(41), with a larger number of constraints is obtained.
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Proof:

First, formulation F5-(36)+(41) is valid, since (41) determine the largest allocation dis-

tance among the sites where stratum s is present.

Observe that family of constraints (36) is a subset of constraints (41) since l
′s
ik = l̄sik

when di(r) = ds(k) for some r ∈ {2, . . . , Gi} and ξsi = 1. Therefore F5-(36)+(41) dominates

formulation F5. Concretely, the number of constraints (41) is
∑
i∈N

∑
s∈S

ξsi (G
s−1). The number

of constraints (36) is
∑
i∈N

∑
s∈S

ξsi (Gi − 1). As stated before Gi 6 Gs for s ∈ S, i ∈ N s.

Consequently, the number of constraints (41) is larger than the number of constraints (36).

�

Proposition 3.5 i) Constraints (36) can be replaced by their following aggregated form:

nskusk >
∑
i∈Ns
l̄sik 6=0

zil̄sik
s ∈ S, k = 2, . . . , Gs, (42)

where nsk = |{i ∈ N s and there exists r ∈ {2, . . . , Gi} such that di(r) = ds(k)}|. This

yields the new valid formulation, F5-(36)+(42).

ii) Constraints (41) can be replaced by their aggregated form that can be expressed as

nsusk >
∑
i∈Ns
l′sik6Gi

z
i,l
′s
ik
, s ∈ S, k = 2, . . . , Gs, (43)

Where ns = |N s|. This yields the new valid formulation F5-(36)+(43).

Proof:

i) Observe that, by (42), variables usk take the value 1 if the maximum distance among

the sites in N s is at least ds(k). Indeed, if this allocation distance is at least ds(k) then,

by (30), there exists a site j ∈ N s such that zjl̄sjk
= 1 and then, by (42), usk = 1.

Moreover, (42) are valid since nsk is the maximum value that the right hand side of

constraints (42) can take.

ii) By an argument analogous to the one discussed in i), we have that formulation F5-

(36)+(43) is valid for the SpCP.
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�

Besides, another aggregated version of constraints (36) is:

∑
s∈S:ξs

i
=1

lsir>2

us,lsir >

(∑
s∈S

ξsi

)
zir i ∈ N, r = 2, . . . , Gi. (44)

Some computational studies have been carried out with formulation F5-(36)+(44). However,

it provides worse running times that formulations presented in Proposition 3.5.

Proposition 3.6 Formulation F5 and all its variants (F5-(36)+(40), F5-(36)+(41), F5-

(36)+(42), F5-(36)+(43), F5-(36)+(44)) remain valid if integrality of variables zir is relaxed

for i ∈ N , r = 3, . . . , Gi.

Proof:

Let (ũ, z̃) be an optimal solution of the model relaxing zir for i ∈ N , r = 3, . . . , Gi.

If (ũ, z̃) are all binary, we are done. Otherwise, there is at least one 0 < z̃i0r0 < 1 with

i0 ∈ N , r0 ∈ {3, . . . , Gi}. For this variable, Constraint (30) reduces to zi0r0 > 0, since zi2 are

binary for i ∈ N . Hence z̃i0r0 value can be replaced by 0 without violating these constraints.

Besides, constraints (36), (40), (41), (42), (43) or (44) (depending on the variant of F5) are

not violated if z̃i0r0 takes value 0 and the objective value is not worse. �

Computational results in Section 5 show that this relaxation improves the times of for-

mulation F5-(36)+(43).

Proposition 3.7 Formulations F5, F5-(36)+(40) and F5-(36)+(41), remain valid if we relax

the integrality condition of usk variables for s ∈ S, k = 2, . . . , Gs and zir variables for i ∈ N ,

r ∈ {3, . . . , Gi}.

Proof:

Since z-variables take integer values as observed in Proposition 3.6 and since usk for s ∈ S,

k = 2, . . . , Gs penalize the objective function, it holds that usk take integer values due to

constraints (36) (or equivalently, due to constraints (40) or (41)). �

Preliminary computational results show that the relaxations introduced in Proposition

3.7 do not improve the running times of the corresponding models.
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3.4 Reducing the number of covering variables

Observe that some of z-variables described in formulations of subsections 3.2 and 3.3 could

be fixed. Since p centers are located in the SpCP, then the distance associated with a client

i will not be among the p − 1 worst possible ones. Then, the following constraints allow to

fix some variables.

Let d̃i(1) 6 d̃i(2) 6 . . . 6 d̃iG̃i be the sorted distances of all possible assignments of site i

(observe that this sequence of distances can contain repeated values), then

zir = 0 ∀i ∈ N, r ∈ {2, . . . , Gi} such that di(r) > d̃i(n−p+1). (45)

Consequently, for each i ∈ N it is only necessary to define zir for r = 2, . . . , Gi such that

di(r) 6 d̃i(n−p+1) .

Regarding u-variables appearing in formulations F3 and F5, observe that these are binary

variables indicating for each stratum s ∈ S whether the largest distance associated with

stratum s is at least ds(k) or not, where k = 2, . . . , Gs. The number of u-variables for each

stratum s ∈ S is Gs−1, i.e, the number of different distances from sites in N s to all candidate

locations (excluding distance 0). In this subsection, we analyze if the number of u-variables

can be reduced for each stratum.

In fact, the number of u-variables could be reduced if tighter bounds on the largest

allocation distance associated with each stratum for the SpCP were known. The following

proposition exploits this argument.

Proposition 3.8 For each stratum s ∈ S, let v(pCPs) be the optimal value of a p-center

problem where the set of candidates centers is N and the set of demand points is N s, from

now on, denoted with pCPs. Then, the largest allocation distance associated with s is at least

v(pCPs) in the optimal solution of the SpCP.

Proof:

Observe that the solution of the SpCP is feasible for the pCPs. Then, given a solution of

SpCP, its objective value for pCPs will be greater than or equal to v(pCPs). �

As a result, if a lower bound or the optimal value of pCPs is obtained, then the number

of u-variables associated with stratum s can be reduced. To reduce the number of variables

we can follow the next scheme for each s ∈ S:
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• Obtain a lower bound on the pCPs or its optimal objective value. This value can be

denoted as LBs.

• Define usk variables for all k ∈ {h : 2 6 h 6 Gs and ds(h) > LBs}.

• For each s ∈ S, given that ds(ks) is the largest distance associated with stratum s such

that ds(ks) 6 LBs, the considered objective function will be:

∑
s∈S

ws

Gs∑
k=ks+1

(
ds(ks) + (ds(k) − d

s
(k−1))usk

)
Observe that this is equivalent to fix usk = 1 for k 6 ks, s ∈ S.

Several criteria can be used to obtain an adequate bound LBs for each stratum. In

particular, in the computational experiments of this work we present two ways for obtaining

these bounds. The first one uses the linear relaxation of the pCPs using the classic formulation

of Daskin (1995). The second one consists in using the binary algorithm proposed in Calik

and Tansel (2013).

Observe that the argument described in constraints (45) for z-variables could be also

useful to fix some of the u-variables. In particular, the following variables can be fixed:

usk = 0, (s, k) ∈ K, (46)

where K is the set of pairs (s, k) ∈ S×{2, . . . , Gs} such that for every i ∈ N s, ds(k) > d̃i(n−p+1).

Summing up, u-variables can be reduced using the scheme described before and con-

straints (46). In section 5 we study the percentage of z- and u- variables fixed by applying

the former criteria.

3.5 Valid inequalities for F5

Some constraints related to closest assignments could be applied for this problem. Some of

the constraints appearing in Espejo et al. (2012) have been adapted for formulation F5 (the

most promising formulation as we will see in Section 5). However, the only valid inequality

that presents good results is the one described below:

zir 6 zj2 i, j ∈ N, r = 2, . . . Gi : di(r−1) = dij , (47)
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These constraints could be considered as derived from the ones proposed by Dobson and Kar-

markar (1987). As observed, given i, j ∈ N these constraints restrict the distance associated

with i to be smaller than or equal to the distance dij if a center is located at j.

In the following we introduce other valid inequalities that take advantage of the relation-

ship between two different strata.

Gs1∑
k=2

(ds1(k) − d
s1
(k−1))us1k 6

Gs2∑
k=2

(ds1(k) − d
s1
(k−1))us2k, s1, s2 ∈ S : N s1 ⊆ N s2 . (48)

These constraints state that the largest allocation distance associated with stratum s1 will

be smaller than or equal to the one associated with stratum s2 if stratum s2 is present in

each site of N s1 . Similarly the next constraints follow:

us1k 6 us2l, s1, s2 ∈ S, k = 2, . . . , Gs1 , l = 2, . . . , Gs2 : N s1 ⊆ N s2 , ds1(k) = ds2(l), (49)

Constraints (49) hold since if the largest allocation distance associated with s2 is smaller than

ds2(l) and N s1 ⊆ N s2 , then the largest allocation distance within s1 cannot be greater than or

equal to ds2(l) = ds1(k). The accumulated version of these valid inequalities is:

Gs1∑
k=2

us1k 6
Gs2∑
k=2

us2k, s1, s2 ∈ S : N s1 ⊆ N s2 . (50)

Other valid inequalities are those ensuring that z variables are sorted in non-increasing

order for each i ∈ N , i.e.,

zir > zi,r+1, i ∈ N, r = 2, . . . , Gi − 1. (51)

All these valid inequalities will be analyzed in Section 5.

4 Using SpCP to implement a SAA for solving the PpCP

Recall from Mart́ınez-Merino et al. (2017) that the Probabilistic pCP (PpCP) is defined as

the variant of the pCP where sites represent potential demand points, and the locations of

the p centers have to be decided before the actual subset of sites that need to be served is

revealed. In this problem, the goal is to minimize the expected maximum distance between

a site with demand and its closest center. Here, expectation is computed with respect to the
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probability distribution of the binary random vector defining the subset of sites that have

demand.

Notice that, in fact, when uncertainty is modeled by means of a set of scenarios, the PpCP

can be cast as a SpCP. In this case, each stratum would represent the set of sites having

demand at a given scenario, and the stratum weight would correspond to the corresponding

scenario probability. This suggests exploiting the SpCP formulations presented in this paper

to solve the PpCP using the well-known Sample Average Approximation method (SAA).

SAA is based on using Monte Carlo Sampling in the probability space defined by the ran-

dom variables involved in a problem definition (see Homem-de-Mello and Bayraksan, 2014).

Although this idea was already used before for solving stochastic programming problems (Ru-

binstein and Shapiro, 1990; Robinson, 1996), the term SAA was formally defined in Kleywegt

et al. (2002). We next provide a sketch of this methodology; for more details, see Shapiro

(2013) or Linderoth et al. (2006).

Consider the two stage program (P) z∗ = minx∈X f(x)+Q(x), where the recourse function

is defined as Q(x) = Eξ[v(x, ξ)] and, given a solution x and a realization of the random vector

ξ, ξ0, the so-called second stage problem is v(x, ξ0) = miny∈Y (x,ξ0) q(y;x, ξ0). Note that if ξ

is a discrete random vector with a finite support, Ω, and each scenario s ∈ Ω has a known

probability ps, then, by replicating the variables of the second stage problem, (P) can be

equivalently expressed as:

(P ′) z∗ =minf(x) +
∑
s∈Ω

psq(ys;x, ξs) (52)

s.t. x ∈ X,

ys ∈ Y (x, ξs), s ∈ Ω.

Accordingly, using a random sample ΩM ⊂ Ω, with M = |ΩM |, P can be approximated as

(PM ) zM =min f(x) +
1

M

∑
s∈ΩM

q(ys;x, ξs) (53)

s.t. x ∈ X,

ys ∈ Y (x, ξs), s ∈ ΩM .

Problem PM is often referred to as sample average approximation problem. It is well

known that given M , the expected value of this problem, E(zM ), is a lower bound on z∗ and
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it converges to z∗ as N increases. Moreover, under some mild conditions on X and v, the

random vector xM,∗ representing the optimal solution to PM becomes arbitrarily close to the

set of optimal solutions to P with probability 1. A common way to estimate E(zM ) is to

solve a sequence of realizations of PM for a given sample size M , and use the average of the

corresponding optimal values as an estimate of E(zM ). The sequence is evaluated iteratively,

and the termination criterion is most often related with the convergence of this average. The

best of the solutions obtained in that sequence of problems is kept as a good approximation

of the optimal solution.

Compared to other heuristics, the main advantage that SAA provides is the theoretical

results that ensure the convergence of the method. In the case of the PpCP, we propose a

classical SAA method in which the novelty is that the resulting problem in each iteration

is a SpCP. Consequently, we can exploit the characteristics of the best formulations for the

SpCP to enhance the performance of the SAA method. The pseudocode given in Algorithm

1 describes the SAA for case of the PpCP.

In the next section we will show some computational results of SAA using random samples

of size M = 10. Besides, we will see how the use of different formulations of SpCP can affect

the performance of the SAA.

5 Computational results

This section is devoted to the computational studies of the formulations described along the

paper for the SpCP. The instances used in this computational experience are based on the

p-median instances from the ORLIB1.

For the smallest instances (n = 6, . . . , 75), the used matrices are submatrices of instances

pmed1, pmed2, pmed3, pmed4 and pmed5 from the ORLIB data. For instances with n =

100, 200, 300, 400, the matrices are those corresponding to instances pmed1-pmed20. In all

cases, several p values are considered ranging between p = 2 (for the smallest instances)

to p = 60 (for the largest instances). Finally, in Table 7 all the ORLIB distance matrices

together with their corresponding p values are studied.

1Electronically available at http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/
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Algorithm 1: SAA for the PpCP.

/* K is a maximum number of iterations and, Avlast and Avnew are the

average of the objective value solutions related to the last

iterations (conveniently initialized to 1 and 2, respectively). */

k := 1, Avlast := 1, Avnew := 2, K := 500.

while k < K and |Avnew −Avlast| > 0.0005 ·Avlast do

/* Step 1:Generation of a random sample Ωk ∈ Ω. */

for k′ = 1 to k′ = M do

for i = 1 to i = n do

Create a random number r ∈ [0, 1). Let qi be the probability of client i to

have demand.

if r < qi then

ξk
′
i := 1,

end

else

ξk
′
i := 0.

end

sk
′

:= (ξk
′

1 , ξ
k′
2 , . . . , ξ

k′
n )

end

end

Ωk = {s1, . . . , sM}.

/* Step 2: Solving of the sample average approximation problem. */

Solve the SpCP where S = Ωk and wsk′ = 1
M for k′ = 1, . . . ,M . Use one of the

formulations in sections 2 or 3. Denote by val the optimal objective value of this

problem.

/* Step 3: Evaluation of the solution. */

/* Avlast and Avnew allow to compare the average of objective values

after a number of iterations: */

Avlast := Average of the optimal objective values in the last k − 1 iterations.

Avnew := Average of the optimal objective values in the last k iterations.

Fix the solution of the SpCP in the objective function of the PpCP obtaining an

upper bound for the PpCP. (UB)

if k = 1 then
UBbest := UB

end

else

if UB < UBbest then
UBbest := UB.

end

end

end
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For each instance, a total of |S| = 10 strata are generated. Besides, each stratum (s) is

independently created. First, a number qi ∈ (0, 1) is associated with each i ∈ N . Then a

random number in r ∈ [0, 1) is created. If r < qi, then ξsi = 1. Otherwise, ξsi = 0.

The formulations are implemented in the commercial solver Xpress 8.0 using the modeling

language Mosel. All the runs are carried out on the same computer with an Intel(R) Core(TM)

i7-4790K processor with 32 GB RAM. We remark that the cut generation of Xpress is disabled

to compare the relative performance of formulations cleanly.

First, we report a comparison of all proposed formulations in sections 2 and 3. In this

study, we observe that the best results are provided by a variant of formulation F5. After

that, we analyze if valid inequalities and the reduction of variables improve the computational

times. Finally, Sample Average Approximation for PpCP is implemented using some of the

SpCP formulations presented before.

5.1 Comparison of formulations

Before the comparison of the different formulations, we include an example along with its

data that illustrates a solution of the SpCP for a specific instance.

Example 5.1 Let N be a set of sites with |N | = 10 in which the distances between each pair

of sites are given by the next distance matrix:

d =



0 77 139 135 157 174 193 204 206 209

77 0 62 107 129 146 161 150 146 149

139 62 0 90 112 129 117 106 102 105

135 107 90 0 22 39 58 69 73 76

157 129 112 22 0 17 36 47 51 54

174 146 129 39 17 0 19 30 34 37

193 161 117 58 36 19 0 11 15 18

204 150 106 69 47 30 11 0 4 7

206 146 102 73 51 34 15 4 0 3

209 149 105 76 54 37 18 7 3 0



.

Besides, the demand is divided into ten strata. Each stratum is present in a subset of

sites as shown in Table 1. This table also includes the weight associated with each stratum.

22



Table 1: Strata data for Example 5.1.

sites weight sites weight

s1: {1,2,3,6,7,9} w1: 0.05 s6: {2,3,6,8,10} w6: 0.05

s2: {6,8} w2: 0.1 s7: {3,4,5,6,8,9,10} w7: 0.05

s3: {6,9} w3: 0.1 s8: {2,5,7} w8: 0.05

s4: {6,7} w4: 0.1 s9: {5,7,8,10} w9: 0.1

s5: {2,5,10} w5: 0.3 s10: {2,6,7,8} w10: 0.1

The solution for this example is to open the facilities at sites 2, 5 and 10 with an objective

value of 19.75. Consequently, demand points 1, 2 and 3 will be served by the center in 2,

points 4, 5 and 6 will be covered by the facility in 5 and the remaining sites will be served

by facility opened in 10. The largest distances associated with each stratum will be the ones

given in the first row of Table 2.

Table 2: Largest distance associated with each stratum for the optimal solution (first row) and another

feasible solution (second row) in Example 5.1.

Solution\ stratum s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

{2,5,10} 77 17 17 18 0 62 62 18 18 18

{1,2,6} 62 30 34 19 37 62 62 19 37 30

Observe that this solution for the Stratified p-center problem is not an optimal solution

for the p-center problem. Particularly, the optimal solution for the p-center is the location of

centers in sites 1, 2 and 6. The second row of Table 2 shows the largest distance associated

with each stratum when using the optimal solution of the p-center problem. Note that the

maximum distances in the strata with larger weights (s2, s3, s4, s5, s9 and s10) are reduced

if the Stratified p-center solution is used. We can conclude that SpCP is worth it in order to

obtain a better average performance among the strata.

Table 3 reports the results of the SpCP formulations proposed in sections 2 and 3. As

can be observed, some formulations include several variants replacing some of the constraints

by others. With these new constraints, the aim is to improve the running times of some of

23



these formulations. Table 3 reports two columns for each formulation. The first one shows

the average running time for solving the model and the second column reports the average

LP gap (in percentage, %). The LP gap is calculated as
OPT − LP

OPT
· 100, where OPT is

the optimal objective value and LP is the objective value of its linear relaxation. Observe

that OPT is known for all the instances used in Table 3 since F5-(36)+(43)* model allows to

solve them in less than two hours.

Note that each entry corresponds to the average over five instances of the same size and

that the reported average running time is the average among the instances that are solved

in less than two hours. The number of unsolved instances after two hours is reported in

parentheses. In the LP gap column, the average final gaps for those instances that were not

solved in two hours is shown in parentheses. This final gap is obtained as UBbest−LBbest

UBbest
· 100

where UBbest is the objective value of the best feasible solution obtained in two hours and

LBbest is the best lower bound obtained in two hours. Besides, observe that formulation

F5-(36)+(43)* corresponds to formulation F5 replacing constraints (36) by constraints (43)

relaxing variables zir for i ∈ N , r ∈ {3, . . . , Gi}.

In terms of running times, observe that for n = 100 some of the instances cannot be solved

in less than two hours if formulations F1, F2 or F3 are used. However, the reported results

of F2’ and F3-(23)+(26)+(27) are much better than those corresponding to F2 or F3. Note

that times of F4 are similar in many of the cases to those required by F3-(23)+(26)+(27)

and all the instances can be solved in less than two hours.

Observe also that F5 seems to provide better results than F4. Furthermore, it is clear

that the best formulation is F5 replacing constraints (36) by constraints (43) and relaxing

the integrality of variables zir for i ∈ N , r ∈ {3, . . . , Gi}. By using this variant of formulation

F5, the results show that running times are (in average) not bigger than 65 seconds in any

of the cases.

In contrast, the LP gaps of F2, F2’, F3, F3-(23)+(26)+(27), F5 and F5-(36)+(41), which

always coincide, are the smallest ones. Although F5-(36)+(43)* is the formulation that

provides the best computational times, the reported LP gaps are the largest ones if we

compare them with the remaining formulations.

Since F5-(36)+(43)* is the best formulation in terms of times, next subsection is devoted

to the computational study of this formulation reducing the number of variables and using
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valid inequalities.

5.2 Reduction of variables and valid inequalities for F5-(36)+(43)*

In this subsection we observe the results of using a preprocessing phase to reduce the number

of variables in formulation F5-(36)+(43)* and we will also report the results when applying

valid inequalities.

In Subsection 3.4 a preprocessing phase to reduce the number of z- and u-variables is de-

scribed. Concretely, constraints (45) allow to reduce the number of defined z-variables. Simi-

larly, constraints (46) decrease the number of u-variables. Besides, a reduction of u-variables

based on obtaining an adequate lower bound of the p-center objective value considering each

stratum independently is described.

Table 4: Percentage of z- and u-variables reduced with respect to the original ones.

%z %u

n p (45) (46)+clas. Rel (46)+Binary alg.

75 5 6.35 29.47 43.11

75 10 13.61 23.58 36.63

75 15 20.21 21.75 32.79

100 10 10.74 25.44 37.32

100 15 16.13 23.75 34.84

100 25 26.01 22.55 31.68

200 10 9.26 30.23 40.72

200 20 16.93 25.66 35.33

200 30 22.88 24.82 33.96

In particular, we mention two ways to obtain these lower bounds. The first one is to

solve the linear relaxation for the pCP using the classic formulation of Daskin (1995). The

second way consists in using the binary algorithm proposed in Calik and Tansel (2013).

Table 4 reports the percentage of fixed z- and u-variables in formulation F5-(36)+(43)* when

the former criteria for fixing variables are applied. The first column corresponds to the

percentage of reduced z-variables if constraints (45) are applied. The second column reports

the percentage of fixed u−variables when using constraints (46) together with the reduction

strategy based on the solving of Daskin (1995) relaxed formulation for each stratum. Finally
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the last column reports the percentage of reduction when (46) and Binary Algorithm specified

in Calik and Tansel (2013) for each stratum are applied. Observe that between 6.35% and

26.01% of the z-variables could be fixed. In the case of u-variables the largest number of fixed

u-variables (boldfaced) is obtained when applying the Binary Algorithm. With this strategy

and (46), more than a 31% of u-variables are fixed in average.

Table 5: Times and LP gaps reducing the number of z- and u-variables in formulation F5-(36)+(43).

F5-(36)+(43) F5-(36)+(43)* Classic rel Binary Binary*

n p Time LP Gap Time LP Gap t prepro t total LP Gap t prepro t total LP Gap t prepro t total LP Gap

75 5 24.48 54.79 18.73 54.79 1.53 19.53 33.56 0.52 12.50 8.55 0.51 7.95 8.55

75 10 26.83 59.35 19.97 59.35 1.09 16.60 41.45 0.49 13.56 10.82 0.49 11.04 10.82

75 15 28.21 64.43 23.56 64.43 0.93 18.85 48.96 0.49 12.87 18.42 0.46 10.95 18.42

100 10 63.53 59.06 64.09 59.06 2.54 56.19 39.43 1.08 42.19 10.94 1.14 29.22 10.94

100 15 77.88 61.87 64.12 61.87 2.06 63.73 44.93 0.93 37.41 15.45 0.95 30.26 15.45

100 25 78.34 69.13 64.62 69.13 1.63 43.27 56.49 0.91 31.84 23.35 0.91 28.95 23.35

200 10 440(1) 56.86 1248.75 56.86 26.75 739.05 33.83 9.28 368.87 8.95 9.19 275.96 8.95

200 20 440.19 58.97 436.89 58.97 19.01 267.61 39.59 9.58 118.36 11.04 9.60 82.42 11.04

200 30 349.71 62.75 503.01 62.75 13.78 199.57 46.25 7.80 111.97 15.28 7.84 89.68 15.28

Table 5 reports the computational times and LP gaps for n ∈ {75, 100, 200} if the former

preprocessing phase for fixing variables are used in order to reduce the number of variables.

The first block of columns corresponds to the formulation without any preprocessing phase

and the second one corresponds to the formulation relaxing zir for i ∈ N , r = 3, . . . , Gi.

After these two blocks, different options for the preprocessing are studied. In those cases, a

first column indicating the preprocessing time is included in each block.

Columns in block “classic rel.” report the results if a preprocessing using (45) and (46)

based on the relaxed formulation from Daskin (1995) is used. “Binary” shows the results if

Binary algorithm proposed in Calik and Tansel (2013) is used to obtain a lower bound on

the p-center for each stratum and the criteria given by (45) and (46) are applied. In columns

under heading “Binary*”, the same preprocessing is used but, in this case, zir variables are

relaxed for i ∈ N , r = 3, . . . , Gi. The largest differences in CPU time among the variants

can be observed in instances with n = 200. In this case, the best results regarding CPU time

are the ones reported in column “Binary*’. It is worth noting that the preprocessing times

represent only a small fraction of the overall solution time in all the instances reported in this
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table. Observe also that the LP gaps are considerably reduced if binary algorithm together

with (45) and (46) is used.

Table 6: Times of F5-(36)+(43)* using binary algorithm to reduce the number of u-variables and

different valid inequalities.

n p Binary* (47) (48) (49) (50) (51) (40)

75 5 7.95 12.61 8.02 8.02 7.95 11.95 6.03

75 10 11.04 13.95 11.08 11.11 11.02 16.25 15.90

75 15 10.95 12.96 11.09 11.08 11.01 14.24 9.44

100 10 29.22 37.42 29.21 29.13 29.27 43.85 24.17

100 15 30.26 45.75 30.29 30.28 30.22 46.58 28.28

100 25 28.95 37.38 28.82 28.73 28.76 44.35 36.95

200 10 275.96 539.47 275.58 275.37 276.19 289.21 162.02

200 20 82.42 161.46 82.49 82.69 82.66 92.31 93.18

200 30 89.68 176.37 90.28 90.04 90.00 120.44 164.50

300 15 509.79 1298.54 512.82 513.38 510.10 523.33 271.05

300 30 315.13 591.42 318.61 316.23 316.46 372.64 228.18

300 45 535.69 813.88 538.52 533.47 532.62 442.23 610.77

400 20 1017.28 3305.29 1011.01 1012.90 1014.40 722.30 450.12

400 40 663.16 1863.28 666.45 660.53 663.98 805.02 954.81

400 60 475.14 1246.22 474.36 475.05 474.23 735.84 816.77

Table 6 reports the average times required to solve the same instances with formulation

F5-(36)+(43)* using Binary Algorithm, (45) and (46) to reduce the number of variables and

adding some of the constraints explained in Subsection 3.5. Regarding the reported results in

Table 6, the time performance is significantly improved in some cases if constraints (40) are

included as valid inequalities for the formulation. The remaining valid inequalities appearing

in this table, except maybe for (47), do not worsen the times in general, but they neither

provide a significant improvement.

Finally, Table 7 reports the time results using ORLIB data with the same p values as in

the original instances and using random strata. For solving these instances, formulation F5-

(36)+(43)* was used with Binary Algorithm and adding (45) and (46) to reduce the number

of variables. The results shows that only two instances remain unsolved after two hours using

the model with the proposed preprocessing phase (underlined cpu time). In this table, we

give separately the time to solve the formulation, under heading tsolv, the preprocessing time,
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under tprep and the overall time, ttotal. Additionally, we provide the number of nodes explored

in the branch and bound tree. The LP gap is also provided and, in the cases in which the

model is not solved in two hours, the LP gap is calculated as
UBbest − LP

UBbest
· 100, where Best

is the best objective value obtained in two hours. In these instances (pmed23 and pmed40),

the final gap after two hours is shown inside the parentheses in the LP Gap column. Finally,

column ‘Obj. Val.’ shows the optimal objective value for each instance except for pmed23

and pmed40 where the best obtained solutions for the unsolved instances in two hours are

reported.

In this table we observe that varying p has a strong effect on the CPU times, both, in the

preprocessing phase and when solving the final formulation. Moreover, the effect is different

in both cases, yielding curious situations, where the preprocessing time can be larger than

the actual solution time. We can also observe that the most demanding instances tend to be

0

50

100

150

200

250

0 200 400 600 800 1000

p

n

ttotal

Figure 1: CPU times (circle size) as a function of n and p

those with p ' 10% · n. This behavior can be better appreciated in Figure 1.

5.3 SAA for PpCP

In this subsection, the time and gap results of SAA for the PpCP are analyzed. Table 8 shows

the results of SAA in comparison with PpCP formulation presented in Mart́ınez-Merino et al.

(2017).

The first column corresponds to the running time of the probability chain PpCP formula-

tion described in Mart́ınez-Merino et al. (2017) where we have established a time limit of 24

hours. “F1 SAA” shows the results of SAA if formulation F1 of the SpCP is used. “Binary*
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SAA” resports again the results of SAA but using formulation F5 with constraints (36) re-

placed by (43), using Binary Algorithm as a preprocessing phase and relaxing zir variables

for i ∈ N and r ∈ {3, . . . , Gi} . For each block of columns, the gap column reports the gap

(in percetage, %) between the best obtained solution in the SAA heuristic and the PpCP

objective value. In addition, the time column reports the running time of the procedures.

Regarding the running times of SAA, we observe a significant difference between SAA

when using formulation F1 and the remaining SAA columns that use formulation F5. As

observed, times in “Binary* SAA” grow much slower than when using F1 so that, even if for

the smallest instances they seem to be worse, they become much better for n > 30. Consid-

ering the gaps we see that in none of the cases, the gaps are bigger than 0.64%. Moreover,

both versions of the SAA found the optimal solution for at least half of the instances. As

explained in Section 4, we can find theoretical results that guarantee the goodness of the

obtained solution when using the SAA.

Table 9 reports the average results of the instances with (n, p) ∈ {(75, 10), (100, 10),

(100, 15), (100, 25)}. First column reports the necessary time for solving the PpCP using the

probability chain formulation, observe that none of the instances were solved in 24 hours.

“GapBS” column reports the gap between the best solution obtained by SAA method and

the best solution of PpCP within the time limit. Finally, SAA time is reported. Observe that

in all unsolved instances after 24 hours “GapBS” column reports negative gaps. This is due

to the fact that the best solution given by SAA is better than the best solution provided by

PpCP formulation after 24 hours.
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Table 8: SAA results

PpCP F1 SAA Binary* SAA

n p Time Gap Time Gap Time

6 2 0.01 0.00 0.10 0.00 0.45

10 3 0.03 0.00 0.54 0.00 0.87

10 5 0.03 0.00 0.49 0.03 1.49

13 3 0.07 0.00 0.91 0.00 1.53

13 5 0.07 0.00 1.10 0.24 2.21

13 8 0.05 0.00 1.32 0.00 2.20

15 3 0.10 0.00 1.77 0.00 1.88

15 7 0.13 0.00 1.73 0.10 3.56

15 10 0.07 0.00 1.84 0.56 2.65

20 3 0.32 0.00 3.40 0.00 4.18

20 7 0.63 0.64 3.67 0.00 8.49

20 10 0.49 0.10 4.28 0.14 5.62

25 3 0.84 0.00 6.73 0.00 7.42

25 7 3.48 0.05 8.96 0.23 9.50

25 10 5.13 0.02 9.48 0.01 14.34

30 3 2.01 0.00 13.90 0.00 11.27

30 7 13.61 0.14 12.78 0.15 9.40

30 10 22.99 0.00 16.24 0.00 16.54

40 3 8.28 0.00 40.90 0.00 19.94

40 7 148.22 0.01 98.39 0.20 19.45

40 10 295.52 0.01 96.68 0.01 19.52

50 5 243.17 0.03 162.76 0.00 44.68

50 10 4083.75 0.01 462.26 0.12 67.74

50 15 21782.53 0.21 794.07 0.01 71.63

75 5 4108.22 0.03 1386.77 0.03 150.28
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Table 9: SAA results for larger instances.

n p PpCP Time GapBS SAA Time

75 10 > 86400 -2.55 200.57

75 15 > 86400 -5.67 258.32

100 10 > 86400 -10.25 491.73

100 15 > 86400 -15.31 449.02

100 25 > 86400 -20.40 850.55

6 Conclusions

This paper presents an extension of the p-center problem called the Stratified p-Center Prob-

lem (SpCP). This extension could be applied in cases where the population is divided into

different strata and the evaluation of the service must be separately measured for each stra-

tum. In the model, it is assumed that more than one stratum can be present at each demand

point.

Different formulations were introduced together with a detailed study of variants, variable

reduction processes and valid inequalities. Regarding the computational results, the best

performance was obtained using a formulation based on covering variables.

The SpCP allows to implement a heuristic approach based on the Sample Average Ap-

proximation (SAA) method to obtain good feasible solutions for the probabilistic p-center

problem. This heuristic approach provides good upper bounds in acceptable times.
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