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Abstract

This work presents an extension of the discrete p-center problem. In this new model,
called Stratified p-Center Problem (SpCP), the demand is concentrated in a set of sites
and the population of these sites is divided into different strata depending on the kind
of service that they require. The aim is to locate p centers to cover the different types
of services demanded minimizing the weighted average of the largest distances associated
with each of the different strata. In addition, it is considered that more than one stratum
can be present at each site. Different formulations, valid inequalities and preprocessings
are developed and compared for this problem. An application of this model is presented
in order to implement a heuristic approach based on the Sample Average Approximation

method (SAA) for solving the probabilistic p-center problem in an efficient way.

Keywords: Location, p-center, discrete optimization, Sample Average Approximation.

1 Introduction

Discrete location problems have been widely studied since the seminal paper Balinski (1965),
where the first MILP formulation for such a problem was proposed. Among the fundamental
problems in this area, the p-Center Problem (pCP) aims at selecting, from n given sites, the
locations of p service centers that minimize the maximum distance between any of the sites
and its closest service center. This model, in contraposition to the p-median problem, was
motivated by the need not to discriminate spatially dispersed clients when locating essential

or emergency centers (see Garfinkel et al., 1977; Calik et al., 2015, for more details).



Both, continuous and discrete versions have already been addressed by several authors.
Examples of works concerning the continuous version are Callaghan et al. (2017) and Elshaikh
et al. (2016) where the planar version is analyzed. This paper focuses on an extension of the
discrete pCP. The discrete pCP, also known as vertex pCP, has been proven to be NP-hard
(Kariv and Hakimi, 1979). However, many efficient exact and heuristic algorithms have been
introduced for this problem. See for instance, Contardo et al. (2019); Calik and Tansel (2013)
or Irawan et al. (2016).

In the last decades, several extensions of the discrete pCP have been introduced in the
literature. These include variants considering capacities (Ozsoy and Pmar, 2006; Albareda-
Sambola et al., 2010; Quevedo-Orozco and Rios-Mercado, 2015) or pre-existing centers, as in
the conditional p-center problem (Drezner, 1989). Other extensions, such as the a-neighbor
p-center problem, consider the largest distance of a demand point to its « closest centers, see
Chen and Chen (2013).

In addition, the pCP with uncertain parameters has been addressed both, from the per-
spective of robust optimization (Averbakh and Berman, 1997; Lu and Sheu, 2013) and of
stochastic programming (Revelle and Hogan, 1989; Espejo et al., 2015; Martinez-Merino
et al., 2017). In particular, in Martinez-Merino et al. (2017) the probabilistic p-center prob-
lem (PpCP) is introduced. In this problem, the goal is to minimize the expected largest
distance between any demand point and its corresponding center. The PpCP considers that
the demand can occur independently at each demand site with a certain known probability.
Observe, that the pCP is a particular case of this problem where all sites have demand with
probability one. In this paper, we will introduce a heuristic method for the PpCP making
use of the formulations of the pCP extension that will be proposed.

A common characteristic of most of the considered problem variants is that customers
are assumed to be homogeneous in the sense that they are all considered in the same way in
the objective function. The only exception would be the weighted pCP, where the distances
between each site and its closest center are affected by site-dependent weights. See, for
instance, Jeger and Kariv (1985) where the particular case of this problem defined on trees
is addressed.

In this paper, we consider situations where, for instance, the population of a region is

divided into different strata, and people of different strata can live together in the same



cities. The goal of the problem is to locate centers in such a way that the weighted sum
of the largest distance associated with each stratum is minimized. This problem is called
the Stratified p-Center Problem (SpCP) and it could be applied when the evaluation of the
service is measured separately for each stratum due to social or political reasons. The idea of
analyzing demands distributed in a spatially different way has been used in covering problems
(Schilling et al., 1979) but, up to the best of our knowledge, it has not been applied in the
context of the pCP.

A possible real life application could be the location of centers in an humanitarian relief
planning framework. The purpose is to locate centers that provide different essential services
and where not all demand points need all the services. This is the case of underdeveloped
countries where humanitarian aid centers offering assistance (medical supplies, basic goods,
clothes, etc.) need to be located. Note that in this context, the opening of many aid centers
could be very costly, for instance, due to safety reasons. The model that we propose takes into
account the largest distance associated with each of the provided services in contrast with
the pCP, where only the largest distance is considered. Consequently, the SpCP evaluates
the performance of each of the services.

Another application of this model could be the location of warehouses for different per-
ishable items (fruits, vegetables, seafood) whose demand sites are not the same for all the
items. In this case, the warehouses should be located in such a way that the clients of each
kind of item could be served as soon as possible to avoid the damage of the products.

Besides, this model could also be useful to locate social service centers that offer support
to different social minorities needing assistance. The SpCP model allows to minimize the
weighted sum of the largest distance associated with each minority. In all the above mentioned
applications, the weight associated with each stratum could be related to its importance or
its associated cost.

The paper is organized as follows. In Section 2, a formulation for the SpCP based on the
Daskin (1995) and Calik and Tansel (2013) formulations for the pCP is introduced. In Section
3, some alternative formulations together with some valid inequalities are proposed. Section
4 applies the results in previous sections for an efficient implementation of a Sample Average
Approximation heuristic for the probabilistic p-center problem (see Martinez-Merino et al.,

2017). Section 5 reports the computational results comparing all the proposed formulations



and the results of using Sample Average Approximation. Finally, Section 6 gathers the

conclusions of the paper.

2 Notation and classical formulation

Let N = {1,...,n} be a given set of sites and p > 2 the number of facilities to be located. For
each pair ¢,j € IV, let d;; be the distance from location i to j. Besides, d;; = 0 for 7 € N and
d;j > 0 for ¢ # j. In the following we use the next notation. The sorted distances associated

with pairs of sites are denoted by
0=dq) <dp) <...<d@-
The sorted distances from a site ¢ € N to the remaining sites are denoted by
0=d;n) <dijz) < ... <dyq,)-

In the previous notation G and G; are the number of different distances between pairs of sites
and between i and any other site, respectively (removing possible multiplicities).

Moreover, the population of each site 1,...,n is partitioned into a set of strata, taking
into account that more than one stratum can be present in a site ¢ and not always all the
strata are present in a site. Given S the set of strata in which the population is divided, we
consider a family of subsets {N*®}scs such that N C N is the set of sites where stratum s
is present for s € §. Then, the sorted distances from a stratum, i.e., the sorted sequence of

family {d;;}icns jen is denoted by
0 == dfl) < d?Z) < ... < dst),

where G* is the number of different distances of the family {d;;}icns jen-

The problem addressed in this work is based on the classical pCP. However, in contrast
with the pCP, this new problem considers that population of the sites is divided in different
strata depending on the kind of service that they require. For a given stratum s, this problem
takes into account the largest distance from the sites where stratum s is present and their
corresponding closest service facility. Recall that in the same site there can be inhabitants

belonging to more than one stratum.



For each site j € N, and each stratum s € S, the following binary parameter is defined:

1, ifje N?%,
0, otherwise.

Besides, each stratum has an associated weight, (ws, s € §) that is used to balance the
cost related to the different strata in the objective function. The weights can be interpreted
in different ways. For instance, they can measure the importance given to a certain stratum.

Given the former parameters, the aim of this problem is to locate p service facilities
minimizing the weighted sum of the largest assignments within each stratum. Therefore, the

problem can be expressed synthetically in the following way:

min > wed(P,N*), (1)
|P]=p s€5

where P is a subset of facilities to open and d(P, N*) = max mi}g d;;. For a given site j € N, we
JENS 1€

will refer to Izrélll;l d;;j as the allocation distance of site j, so d(P, N*) is the maximum allocation
distance among the sites with presence of stratum s, or equivalently within stratum s.

The problem previously described can be formulated using the classic p-center formulation
(see Daskin, 1995). With this purpose, the following variables are defined:

1, if site j is assigned to center i,
Tij = fori,j € N. (2)

0, otherwise,

0° = largest allocation distance for the sites where stratum s is present, s € S. (3)

Using these variables, the derived formulation is,

(F1) min Z wgb* (4)

SES
s.t. Z Tii = D, (5)
iEN
iEN
Tij < Tig, i,j €N, (7)
9522617;;'961‘]’7 s€S,jeN?, (8)
iEN



Tij € {07 1}7 Zv.] € N7 (9)

0° > 0, seSs. (10)

Constraint (5) restricts that there are p centers. Constraints (6) indicate that each site
is associated with only one center. Constraints (7) restrict that sites must be assigned to
an open center. Constraints (8) ensure that the largest allocation distance within stratum
s is not smaller than the allocation distance of any site where stratum s is present. As
mentioned before, the objective function is the weighted sum of the largest distances within
each stratum.

To the best of our knowledge, the most recent formulation for the p-center problem was
given by Calik and Tansel (2013) providing very good results. We propose a formulation of

our problem inspired in Calik and Tansel (2013) using the following families of variables.

1, if d, is the largest allocation distance among the sites in N°*,
Usr =

0, otherwise,

seS,r=1,...,G.

1, if a center is placed at i,
Yi = fori € N.

0, otherwise,

Using these families of variables, the new formulation is given by

G
(F2) min Y > wd tisk (11)

seS k=1
st Y yi=p, (12)
iEN
G
Ugp, = 1, s€S, (13)
k=1
k—1
Uy < Y Yin  SESJENk=2,...,G, (14)
k=1 iEN
dij<d(k)
yie{oal}a i€N7 (15)
usk € {0, 1}, seS,k=1,...,G. (16)



Constraint (12) restricts that there are p centers. Constraints (13) ensure that for each
stratum, only one of the distances is the largest allocation distance. Constraints (14) de-
termine that the largest allocation distance within a stratum s will be among the first k
distances if there is a center with a distance smaller than or equal to d() with respect to any
site in N¥.

Observe that @-variables determine the largest allocation distance among the sites where
each stratum s € S is present. As a consequence, only the distances associated with sites in
N? will be necessary to obtain the largest distance with respect to s. Therefore, the number

of variables can be reduced defining @-variables in the following way,

1, if dfk) is the largest allocation distance for the sites in V¥
Usk, = seS,k=1,...,G°

0, otherwise,
Observe that in the original formulation F2, the number of u-variables is |S|G. However,

by doing this reduction, the obtained number of variables is Z G®. Taking advantage of this

sES
reduction of the number of variables, the new objective function for the model is

Gs
Z Zwsdfk)ﬂsk, (17)

seS k=1

and constraints (14) can be replaced by

k—1
Zask’< Z Yi, 8687j€N87k227"'7G8' (18)
k'=1 iEN

dij<d‘<gk)

Therefore, this new family of u-variables allows us to provide a new formulation with a smaller
number of variables and constraints. Moreover, the following result allows to strengthen this

new formulation.

Proposition 2.1 For s € S and j € N®, let I3, € {1,...,G*} be such that dj,) = al‘(glsf )
Jar

Considering formulation F2 with @ variables (instead of 4 variables), the objective function

(17) and replacing (14) by

12,-1
dg < Y. wi sESJEN r=2,....Gj (19)
k'=1 ieN

dij<d(l§r>

results in a valid equivalent formulation F2’ with a smaller number of constraints.



Proof:
We prove that constraint families (18) and (19) are equivalent. Let § € S,j € N® and

7 €{2,...,Gs}. Consider the following subset of constraints of family (18),

k—1
S dgw < >y ke{ls +1,... 15} (20)
k'=1 iEN_
dij<dfk)
Observe that Z Yi=...= Z 1;, then since
ieN ieN
dig<d® _ dig<d?
= G ro1th) = (57)
By 151
Zﬂgk/ < .. g Z agk/,
k'=1 k'=1
151
the family of constraints (20) is dominated by Z Ugpr < Z Yi-
k'=1 iEN

dij<d§ =
)
Therefore, the obtained formulation F2’ is equivalent to F2 with less constraints. In

fact, the number of constraints (18) is Z Z&jGS and the number of constraints (19) is
jEN s€8

Z ijGj. It is straightforward that for each pair, s € §,j € N° , G; < G* since, at least,

JEN seS
the distances associated with location 7 must be among the distances related to stratum s.

g

3 Formulation using covering variables

In this section we introduce three formulations making use of stratum-covering and site-
covering variables. The idea behind these formulations is to take advantage of the information
provided by considering the ordered sequence of possible assignment distances. In particular,
the variables defined for these formulations determine whether the largest assignment distance
associated with a stratum s is at least the one in a certain position of the sorted vector d*®
(stratum-covering variables) and whether the allocation distance associated with a site i is
at least the one in a certain position of the sorted vector d; (site-covering variables). In this
section we will see that the use of these variables associated with sorted vectors allows to

propose new efficient formulations.



3.1 Formulation with stratum-covering variables

In this subsection we present a formulation based on the use of y-variables described in the

previous section and the following family of variables:

1, if the largest allocation distance for the sites in N? is at least d‘("k),

0, otherwise,

forseS, k=2,...,G°.

Observe that we have used the same strategy as in the former section, so that for each s € §
the number of u variables will be equal to the number of different distances associated with
s. The use of this type of variables for the classical pCP was introduced by Elloumi et al.

(2004). Inspired in this idea, we provide the following formulation for the SpCP.

Gs
(F3) min Zws <Z( k) — dfkl))usk> (21)

seS k=2
ieN
usk = 1= Y i, seS,jeN k=2,...,G°  (23)
iEN
dij<d?k)
yi € {0,1}, 1 €N, (24)
ugk € {0,1}, seS,k=2,...,G". (25)

As it can be seen in (21), the objective function for this formulation can be expressed using
a telescopic sum. Constraint (22) ensures that there are p open centers. Constraints (23)
determine that if there is not a center at a distance smaller than d‘(sk) from a site j € N?,

then ug, = 1.

Proposition 3.1 Replacing (23) in F3 by the following families of constraints

us,lir>1_ Z Yiy SGS,jGNs,TZQ,...,Gj, (26)
iEN
dij<dj(r)
Usk < Us,k—1, 5 € Sa k= S GS7 (27)

results in an equivalent formulation, F3-(23)+(26)+(27).



Proof:

Let (j,5) € N x S such that §j§ =1land 7,7+ 1 € {2,...,Gj}. Consider the following

subset of constraints of family (23),

Observe that

nated by

dij<d(lj§

ugp 21— Z i ke {1+ 1. 05 (28)
iEN.
dij<d?k)
Z Yi=...= Z ¥;, then using (27), the family (28) is domi-
ieN ieN
-1t dij<d(15§f)

ugs > 1 - Z Yi.

ieN
dig<d?
YA

Remark 3.1 Formulation F3-(23)+(26)+(27) has a smaller number of constraints than F3

if

D g -cy-a+2| =0

seS \JjEN

3.2 Formulation with site-covering variables

In this section we propose a new formulation for our problem using the following set of

variables, inspired in the ones defined by Garcia et al. (2011) for the pCP:

1, if the allocation distance of site i is at least d;(,,

forie N,r=2,...,G;.

0, otherwise,

10



Based in this set of variables and #*-variables defined by (3), we propose the following for-

mulation for our problem:

(F4) min Z wg6*

seS
s.t. Z Zio =n —p, (29)
iEN
Z (1—2’1'2)21—2’]‘7,, jGN,T:?),...,Gj (30)
iEN
dij <dj(r)
QSZdj(T)er, SES,jENS,’I“ZQ,...,Gj, (31)
ijE{O,l}, JjeEN,r=2,...,Gj, (32)
0° >0, seS. (33)

Constraint (29) indicates that there are p centers. Constraints (30) ensure that if z;. = 0
then, there is at least one center at ¢ with d;; < dj(,, i.e., location j is served by a center at
a distance smaller than d;(,y. Finally, constraints (31) ensure that 6 is the largest allocation

distance for sites in NN®.

Proposition 3.2 Formulation FJ is still valid after relaxing the integrality of variables z;.

forie N, r=3,...,G;.

Proof:
Let (0, 2) be an optimal solution of F4 relaxing z;. fori € N, r = 3,...,G;. We distinguish
between two cases.

If Z (1 — Z;2) = 0 then Z;,,, > 1 due to constraints (30). Therefore, Z;,,, = 1.

iEN
di ig<digr

If Z (1 — Zi2) > 1, then constraints (30) reduce to z;,,, = 0. Since positive values

i€EN
di,io <di07‘0

of Zi,r, penalize the objective function due to constraints (31), then Z;,,, = 0. O
Preliminary computational results show that this relaxation does not improve computa-

tional times of formulation F4.

Proposition 3.3 Replacing constraints (31) in F4 by
Gj
0° > Z(dj(T) — dj(r_l))zjr, s€S,jEN?, (34)

r=2

11



results in a valid formulation F4-(31)+(34) for the problem with less constraints, that domi-
nates F4.

Proof:
Let s € §,j € N®. Note that, due to constraints (30) and constraints (34) it holds that

Zjr < zjr—1 for r € {3,...,G;} since,
dooA-z) = Y. (1-zw)
iEN ieN
dij<dj(r) dij<dj(r—1)

and z-variables penalize in the objective function through constraints (34). Hence, since

zjr € {0,1} we have that

G
0" = max g(djm — dj(r—1))Zr

and then the formulation F4-(31)+(34) is valid. Moreover, for the relaxed problem we have
that

Gj

Z(dj(r) - dj(rfl))zjr =  max ‘dj(r)er, VseS§,je N?,

=1,...,
r=1 " 7

i.e., this formulation dominates F4. Besides, the number of constraints (31) is Z Zf;Gj
jEN s€8

and the number of constraints (34) is Z Zﬁj . Then, formulation F4-(31)+(34) has a

jEN se8
smaller number of constraints than F4. O

We have also studied alternative formulations using a non-cumulative version of the z-

variables, i.e., defining

1, if the allocation distance of site 7 is d;(,,
Zirp = forie N,r=2,...,G;.
0, otherwise.

Nevertheless, a preliminary computational analysis of these formulations shows a worse per-
formance with respect to F4.
3.3 Formulation with stratum- and site-covering variables

The last formulation that we propose combines two families of covering variables, one asso-

ciated with the distances from each stratum s € S (u-variables) and another one with the

12



allocation of each site i € N (z-variables). The combination of both families of variables is

inspired in the formulation of Marin et al. (2009) for the Discrete Ordered Median problem.
For each s € S, k € {2,...,G*} and i € N we define

r, ifr€{l,...,G;} exists such that d;;,) = dfk) and & =1,

ik —
0, otherwise.

Then, the obtained formulation is

GS
(F5)  min > 3 we(dg,) — df,_))usk (35)
sES k=2

s.t. (29), (30),

Usk = Zifs SESiEN k=2...G°: [} >0, (36)
Us k—1 = Usk, se8S,k=3,...,G°, (37)
ug, € {0,1}, seS,k=2,...,G", (38)
zir € {0,1}, 1€ N,r=2,...,G;. (39)

Constraints (36) determine the largest allocation distance among the sites in N®. Observe
that constraints (37) are valid inequalities for formulation F5. Indeed, if in a particular
solution us, = b and ug,_1 = a with b > a, then, a feasible solution with lower objective
value can be found by taking us;, = a. Constraints (37) are included in the formulation from
the beginning since they provided good results in a preliminary computational study.

Note that constraints (36) can be equivalently written in the following way,
us,lfr>zir SES,iENS,T’ZQ,...,Gi. (40)

Where I7 is the index already defined in Proposition 2.1. To derive another valid formulation

from (F5), we include the following notation,
, min{r : dy) > dfk)}, if iy < dicy)
G;+1, otherwise.
Proposition 3.4 By replacing (36) in F5 by
sk >z, SESIEN k=2,...,G 5L G, (41)
a valid formulation, F5-(36)+(41), with a larger number of constraints is obtained.

13



Proof:

First, formulation F5-(36)+(41) is valid, since (41) determine the largest allocation dis-
tance among the sites where stratum s is present.

Observe that family of constraints (36) is a subset of constraints (41) since I = I3,
when d;(;) = dfy,) for some r € {2,...,G;} and & = 1. Therefore F5-(36)+(41) dominates
formulation F5. Concretely, the number of constraints (41) is Z Z & (G®—1). The number

1€EN s€S
of constraints (36) is ZZ{f(Gz — 1). As stated before G; < G*® for s € S,i € N°*.
1€EN s€S
Consequently, the number of constraints (41) is larger than the number of constraints (36).

g

Proposition 3.5 i) Constraints (36) can be replaced by their following aggregated form:

NekUsk = Zziﬁk seS,k=2,...,G°, (42)
iENS '
1570
where ng, = |{i € N° and there evists v € {2,...,G;} such that d;,y = dfk)}\. This

yields the new valid formulation, F5-(36)+(42).

i1) Constraints (41) can be replaced by their aggregated form that can be expressed as

Ngllgl = z seS,k=2,...,G°, (43)

lsy
(2
iENS
S
l’ikgGi

Where ng = |N®|. This yields the new valid formulation F5-(36)+(43).
Proof:

i) Observe that, by (42), variables ug take the value 1 if the maximum distance among
the sites in IV® is at least d‘(*k). Indeed, if this allocation distance is at least d‘(*k) then,

by (30), there exists a site j € N* such that zji:, = 1 and then, by (42), ug, = 1.
J

Moreover, (42) are valid since ng is the maximum value that the right hand side of

constraints (42) can take.

ii) By an argument analogous to the one discussed in i), we have that formulation F5-

(36)+(43) is valid for the SpCP.

14



Besides, another aggregated version of constraints (36) is:

> ugs > (Z 55) Zip i€N,r=2...,G; (44)
sES:&f:l seS
5, >2

Some computational studies have been carried out with formulation F5-(36)+(44). However,

it provides worse running times that formulations presented in Proposition 3.5.

Proposition 3.6 Formulation F5 and all its variants (F5-(36)+(40), F5-(36)+(41), F5-
(36)+(42), F5-(36)+(43), F5-(36)+(44)) remain valid if integrality of variables zi, is relaved
forie N,r=3,...,Gj;.

Proof:

Let (@,Z) be an optimal solution of the model relaxing z; for i € N, r = 3,...,G;.
If (@,2) are all binary, we are done. Otherwise, there is at least one 0 < Z;,,, < 1 with
io € N, r9 € {3,...,G;}. For this variable, Constraint (30) reduces to z;,r, = 0, since z; are
binary for ¢« € N. Hence Z;,,, value can be replaced by 0 without violating these constraints.
Besides, constraints (36), (40), (41), (42), (43) or (44) (depending on the variant of F5) are

not violated if z;,,, takes value 0 and the objective value is not worse. O

Computational results in Section 5 show that this relaxation improves the times of for-

mulation F5-(36)+(43).

Proposition 3.7 Formulations F5, F5-(36)+(40) and F5-(36)+(41), remain valid if we relazx

S

the integrality condition of ug, variables for s € S, k=2,...,G* and z; variables fori € N,

T€{3,...,Gi}.

Proof:
Since z-variables take integer values as observed in Proposition 3.6 and since ugy for s € S,
k = 2,...,G® penalize the objective function, it holds that ug, take integer values due to

constraints (36) (or equivalently, due to constraints (40) or (41)). O

Preliminary computational results show that the relaxations introduced in Proposition

3.7 do not improve the running times of the corresponding models.

15



3.4 Reducing the number of covering variables

Observe that some of z-variables described in formulations of subsections 3.2 and 3.3 could
be fixed. Since p centers are located in the SpCP, then the distance associated with a client
1 will not be among the p — 1 worst possible ones. Then, the following constraints allow to
fix some variables.

Let czi(l) < &1(2) <...< Jz’éi be the sorted distances of all possible assignments of site ¢

(observe that this sequence of distances can contain repeated values), then
zip =0 Vi € N,r € {2,...,G;} such that di(y > dign_pi1)- (45)

Consequently, for each ¢ € N it is only necessary to define z;,. for r = 2,..., G; such that

di(r) < din—p+1) -

Regarding u-variables appearing in formulations F3 and F5, observe that these are binary
variables indicating for each stratum s € & whether the largest distance associated with
stratum s is at least d‘(*k) or not, where k = 2,...,G*®. The number of u-variables for each
stratum s € S is G*—1, i.e, the number of different distances from sites in N* to all candidate
locations (excluding distance 0). In this subsection, we analyze if the number of u-variables
can be reduced for each stratum.

In fact, the number of w-variables could be reduced if tighter bounds on the largest

allocation distance associated with each stratum for the SpCP were known. The following

proposition exploits this argument.

Proposition 3.8 For each stratum s € S, let v(pCPs) be the optimal value of a p-center
problem where the set of candidates centers is N and the set of demand points is N*, from
now on, denoted with pCPs. Then, the largest allocation distance associated with s is at least

v(pCPs) in the optimal solution of the SpCP.

Proof:
Observe that the solution of the SpCP is feasible for the pCPs. Then, given a solution of

SpCP, its objective value for pCPg will be greater than or equal to v(pCPs). O

As a result, if a lower bound or the optimal value of pCPj is obtained, then the number
of u-variables associated with stratum s can be reduced. To reduce the number of variables

we can follow the next scheme for each s € S:
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e Obtain a lower bound on the pCP or its optimal objective value. This value can be

denoted as LBs.

e Define ugy, variables for all k € {h:2 < h < G*® and dfh) > LBs}.

e For each s € §, given that d‘("ks) is the largest distance associated with stratum s such

that dfks) < LB, the considered objective function will be:

GS

Zws Z <d€ks) + (dfk) - dfkfl))“sk)

SES k=ks+1

Observe that this is equivalent to fix ug, = 1 for k < ks, s € S.

Several criteria can be used to obtain an adequate bound LBy for each stratum. In
particular, in the computational experiments of this work we present two ways for obtaining
these bounds. The first one uses the linear relaxation of the pC P, using the classic formulation
of Daskin (1995). The second one consists in using the binary algorithm proposed in Calik
and Tansel (2013).

Observe that the argument described in constraints (45) for z-variables could be also

useful to fix some of the u-variables. In particular, the following variables can be fixed:
usk =0, (s,k) € K, (46)

where K is the set of pairs (s, k) € Sx{2,...,G*} such that for every i € N*, dfk) > Ji(n,pﬂ).
Summing up, u-variables can be reduced using the scheme described before and con-
straints (46). In section 5 we study the percentage of z- and u- variables fixed by applying

the former criteria.

3.5 Valid inequalities for F5

Some constraints related to closest assignments could be applied for this problem. Some of
the constraints appearing in Espejo et al. (2012) have been adapted for formulation F5 (the
most promising formulation as we will see in Section 5). However, the only valid inequality

that presents good results is the one described below:

Zir < 252 /Lm] € N7T = 27 v G’L : di(r—l) = dl]7 (47)
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These constraints could be considered as derived from the ones proposed by Dobson and Kar-
markar (1987). As observed, given 4, j € N these constraints restrict the distance associated
with ¢ to be smaller than or equal to the distance d;; if a center is located at j.

In the following we introduce other valid inequalities that take advantage of the relation-

ship between two different strata.

G*1 G2
D (dihy = dih_ sk <Y (dlh) = diL_ sk, s1,52 € S N C N2, (48)
k=2 k=2

These constraints state that the largest allocation distance associated with stratum s; will
be smaller than or equal to the one associated with stratum so if stratum s is present in

each site of N*1. Similarly the next constraints follow:

Us ke < Usyl, S1,52 € S,k =2,...,G°, [ =2,...,G* : N°* C N52,d‘(9]i) :dff), (49)

Constraints (49) hold since if the largest allocation distance associated with sg is smaller than
dff) and N® C N*2 then the largest allocation distance within s; cannot be greater than or

equal to d“zf) = dfé). The accumulated version of these valid inequalities is:

Gs1 G2
Zuslk<2u82k,$1,$265:]\751 C N2, (50)
k=2 k=2

Other valid inequalities are those ensuring that z variables are sorted in non-increasing

order for each i € N, i.e.,
Zir>zi,r+17 ZEN7r:277G’L_]— (51)

All these valid inequalities will be analyzed in Section 5.

4 Using SpCP to implement a SAA for solving the PpCP

Recall from Martinez-Merino et al. (2017) that the Probabilistic pCP (PpCP) is defined as
the variant of the pCP where sites represent potential demand points, and the locations of
the p centers have to be decided before the actual subset of sites that need to be served is
revealed. In this problem, the goal is to minimize the expected maximum distance between

a site with demand and its closest center. Here, expectation is computed with respect to the
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probability distribution of the binary random vector defining the subset of sites that have
demand.

Notice that, in fact, when uncertainty is modeled by means of a set of scenarios, the PpCP
can be cast as a SpCP. In this case, each stratum would represent the set of sites having
demand at a given scenario, and the stratum weight would correspond to the corresponding
scenario probability. This suggests exploiting the SpCP formulations presented in this paper
to solve the PpCP using the well-known Sample Average Approximation method (SAA).

SAA is based on using Monte Carlo Sampling in the probability space defined by the ran-
dom variables involved in a problem definition (see Homem-de-Mello and Bayraksan, 2014).
Although this idea was already used before for solving stochastic programming problems (Ru-
binstein and Shapiro, 1990; Robinson, 1996), the term SAA was formally defined in Kleywegt
et al. (2002). We next provide a sketch of this methodology; for more details, see Shapiro
(2013) or Linderoth et al. (2006).

Consider the two stage program (P) z* = mingex f(x)+Q(z), where the recourse function
is defined as Q(x) = E¢[v(z, £)] and, given a solution  and a realization of the random vector

, €0, the so-called second stage problem is v(x, &y) = min,cy q(y; x,&). Note that if
y€Y (z,80)

I7£0
is a discrete random vector with a finite support, 2, and each scenario s € 2 has a known
probability p®, then, by replicating the variables of the second stage problem, (P) can be
equivalently expressed as:
(P") z* =minf(z) + Y _pq(y*; 2, &%) (52)
seQ)

s.t. x € X,

y® e Y(z, &%), s €.
Accordingly, using a random sample QM ¢ Q, with M = |QY]|, P can be approximated as

(PM) M =min f(x) + 1= 3 alus2,€) (5)

seQM

s.t. e X,

y® e Y(z, &%), se M,

Problem PM is often referred to as sample average approximation problem. It is well

known that given M, the expected value of this problem, E(2M), is a lower bound on z* and
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it converges to z* as N increases. Moreover, under some mild conditions on X and v, the

M. representing the optimal solution to P becomes arbitrarily close to the

random vector x
set of optimal solutions to P with probability 1. A common way to estimate E(z™) is to
solve a sequence of realizations of PM for a given sample size M, and use the average of the
corresponding optimal values as an estimate of E(z™). The sequence is evaluated iteratively,
and the termination criterion is most often related with the convergence of this average. The
best of the solutions obtained in that sequence of problems is kept as a good approximation
of the optimal solution.

Compared to other heuristics, the main advantage that SAA provides is the theoretical
results that ensure the convergence of the method. In the case of the PpCP, we propose a
classical SAA method in which the novelty is that the resulting problem in each iteration
is a SpCP. Consequently, we can exploit the characteristics of the best formulations for the
SpCP to enhance the performance of the SAA method. The pseudocode given in Algorithm
1 describes the SAA for case of the PpCP.

In the next section we will show some computational results of SAA using random samples

of size M = 10. Besides, we will see how the use of different formulations of SpCP can affect

the performance of the SAA.

5 Computational results

This section is devoted to the computational studies of the formulations described along the
paper for the SpCP. The instances used in this computational experience are based on the
p-median instances from the ORLIB!.

For the smallest instances (n = 6, ...,75), the used matrices are submatrices of instances
pmedl, pmed2, pmed3, pmed4 and pmed5 from the ORLIB data. For instances with n =
100, 200, 300, 400, the matrices are those corresponding to instances pmedl-pmed20. In all
cases, several p values are considered ranging between p = 2 (for the smallest instances)
to p = 60 (for the largest instances). Finally, in Table 7 all the ORLIB distance matrices

together with their corresponding p values are studied.

!Electronically available at http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/
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Algorithm 1: SAA for the PpCP.

/* K is a maximum number of iterations and, Auvj,s and Av,e, are the
average of the objective value solutions related to the last
iterations (conveniently initialized to 1 and 2, respectively).

k=1, Avgs := 1, Avpeyw = 2, K := 500.

while k < K and |Avpew — Avjgst| > 0.0005 - Avygs do

/* Step 1:Generation of a random sample 2 € Q.

for ¥ =1to k' = M do

fori=1toi=ndo

have demand.

if r < ¢; then
‘ §Zk/ =1,

end
else
‘ §Zk/ = 0.
end

sk/ = (61’-, 55/7 e 7§n/)

end

end
QF = {s!,...,sM}.
/* Step 2: Solving of the sample average approximation problem.

Solve the SpCP where S = QF and W = ﬁ for ¥ = 1,...,M. Use one of the

problem.

/* Step 3: Evaluation of the solution.
after a number of iterations:
Auvyast := Average of the optimal objective values in the last k — 1 iterations.

Avpew = Average of the optimal objective values in the last k iterations.

upper bound for the PpCP. (UB)

if £k =1 then

| UBpest :=UB
end
else

if UB < U Bpest then
| UBpest := UB.

end

end

end

/* Avjgs and Avpe, allow to compare the average of objective values

Fix the solution of the SpCP in the objective function of the PpCP obtaining an

*/

*/

Create a random number 7 € [0,1). Let ¢; be the probability of client i to

*/

formulations in sections 2 or 3. Denote by wal the optimal objective value of this

*/

*/
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For each instance, a total of |S| = 10 strata are generated. Besides, each stratum (s) is
independently created. First, a number ¢; € (0,1) is associated with each ¢ € N. Then a
random number in r € [0,1) is created. If r < ¢;, then {7 = 1. Otherwise, £ = 0.

The formulations are implemented in the commercial solver Xpress 8.0 using the modeling
language Mosel. All the runs are carried out on the same computer with an Intel(R) Core(TM)
i7-4790K processor with 32 GB RAM. We remark that the cut generation of Xpress is disabled
to compare the relative performance of formulations cleanly.

First, we report a comparison of all proposed formulations in sections 2 and 3. In this
study, we observe that the best results are provided by a variant of formulation F5. After
that, we analyze if valid inequalities and the reduction of variables improve the computational
times. Finally, Sample Average Approximation for PpCP is implemented using some of the

SpCP formulations presented before.

5.1 Comparison of formulations

Before the comparison of the different formulations, we include an example along with its

data that illustrates a solution of the SpCP for a specific instance.

Example 5.1 Let N be a set of sites with |N| = 10 in which the distances between each pair
of sites are given by the next distance matriz:

0 77 139 135 157 174 193 204 206 209
T 0 62 107 129 146 161 150 146 149
139 62 0 90 112 129 117 106 102 105
135 107 90 0 22 39 58 69 73 76
157 129 112 22 0 17 36 47 51 54
174 146 129 39 17 0 19 30 34 37
193 161 117 58 36 19 0 11 15 18
204 150 106 69 47 30 11 0 4 7

206 146 102 73 51 34 15 4 0 3

209 149 105 76 54 37 18 7 3 0
Besides, the demand is divided into ten strata. Fach stratum is present in a subset of

sites as shown in Table 1. This table also includes the weight associated with each stratum.
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Table 1: Strata data for Example 5.1.

sites weight sites weight
sit {1,2,3.67,9) wi: 0.05 | se: {2,3,6,8,10} we:  0.05
so:  {6,8} wo: 0.1 st {3,4,5,6,8,9,10} w7z  0.05
s3: {6,9} wsg: 0.1 | ss:  {2,5,7} ws:  0.05
sq: {6,7} wy: 0.1 s9:  {5,7,8,10} wg: 0.1
ss5: {2,5,10} ws: 0.3 s10: {2,6,7,8} wig: 0.1

The solution for this example is to open the facilities at sites 2, 5 and 10 with an objective
value of 19.75. Consequently, demand points 1, 2 and 3 will be served by the center in 2,
points 4, 5 and 6 will be covered by the facility in 5 and the remaining sites will be served
by facility opened in 10. The largest distances associated with each stratum will be the ones

given in the first row of Table 2.

Table 2: Largest distance associated with each stratum for the optimal solution (first row) and another

feasible solution (second row) in Example 5.1.

Solution\ stratum | s S S3 sS4 S5 Sg St Ss S9  S1i0

{2,5,10} 17 17 18 0 62 62 18 18 18

{1,2,6} 62 30 34 19 37 62 62 19 37 30

Observe that this solution for the Stratified p-center problem is not an optimal solution
for the p-center problem. Particularly, the optimal solution for the p-center is the location of
centers in sites 1, 2 and 6. The second row of Table 2 shows the largest distance associated
with each stratum when using the optimal solution of the p-center problem. Note that the
mazximum distances in the strata with larger weights (sa2, s3, Sa, S5, S9 and s19) are reduced
if the Stratified p-center solution is used. We can conclude that SpCP is worth it in order to

obtain a better average performance among the strata.

Table 3 reports the results of the SpCP formulations proposed in sections 2 and 3. As
can be observed, some formulations include several variants replacing some of the constraints

by others. With these new constraints, the aim is to improve the running times of some of
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these formulations. Table 3 reports two columns for each formulation. The first one shows
the average running time for solving the model and the second column reports the average

OPT —LP
_— .1 h PT i
OPT 00, where O is

the optimal objective value and LP is the objective value of its linear relaxation. Observe

LP gap (in percentage, %). The LP gap is calculated as

that OPT is known for all the instances used in Table 3 since F5-(36)+(43)* model allows to
solve them in less than two hours.

Note that each entry corresponds to the average over five instances of the same size and
that the reported average running time is the average among the instances that are solved
in less than two hours. The number of unsolved instances after two hours is reported in

parentheses. In the LP gap column, the average final gaps for those instances that were not
UBbes 7LBbes .
B t.100

best

solved in two hours is shown in parentheses. This final gap is obtained as
where UBys; is the objective value of the best feasible solution obtained in two hours and
LBypest is the best lower bound obtained in two hours. Besides, observe that formulation
F5-(36)+(43)* corresponds to formulation F5 replacing constraints (36) by constraints (43)
relaxing variables z;, fori € N, r € {3,...,G;}.

In terms of running times, observe that for n = 100 some of the instances cannot be solved
in less than two hours if formulations F1, F2 or F3 are used. However, the reported results
of F2’ and F3-(23)4(26)+(27) are much better than those corresponding to F2 or F3. Note
that times of F4 are similar in many of the cases to those required by F3-(23)4(26)+(27)
and all the instances can be solved in less than two hours.

Observe also that F5 seems to provide better results than F4. Furthermore, it is clear
that the best formulation is F5 replacing constraints (36) by constraints (43) and relaxing
the integrality of variables z;, fori € N, r € {3,...,G;}. By using this variant of formulation
F5, the results show that running times are (in average) not bigger than 65 seconds in any
of the cases.

In contrast, the LP gaps of F2, F2’, F'3, F3-(23)+(26)+(27), F5 and F5-(36)+(41), which
always coincide, are the smallest ones. Although F5-(36)+(43)* is the formulation that
provides the best computational times, the reported LP gaps are the largest ones if we
compare them with the remaining formulations.

Since F5-(36)+(43)* is the best formulation in terms of times, next subsection is devoted

to the computational study of this formulation reducing the number of variables and using
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valid inequalities.

5.2 Reduction of variables and valid inequalities for F5-(36)-+(43)*

In this subsection we observe the results of using a preprocessing phase to reduce the number
of variables in formulation F5-(36)4(43)* and we will also report the results when applying
valid inequalities.

In Subsection 3.4 a preprocessing phase to reduce the number of z- and u-variables is de-
scribed. Concretely, constraints (45) allow to reduce the number of defined z-variables. Simi-
larly, constraints (46) decrease the number of u-variables. Besides, a reduction of u-variables
based on obtaining an adequate lower bound of the p-center objective value considering each

stratum independently is described.

Table 4: Percentage of z- and u-variables reduced with respect to the original ones.

Yoz Tou
n p | (45) | (46)+clas. Rel (46)+Binary alg.
75 5] 6.35 29.47 43.11
75 10 | 13.61 23.58 36.63
75 151 20.21 21.75 32.79
100 10 | 10.74 25.44 37.32
100 15 | 16.13 23.75 34.84
100 25 | 26.01 22.55 31.68
200 10 9.26 30.23 40.72
200 20 | 16.93 25.66 35.33
200 30 | 22.88 24.82 33.96

In particular, we mention two ways to obtain these lower bounds. The first one is to
solve the linear relaxation for the pC'P using the classic formulation of Daskin (1995). The
second way consists in using the binary algorithm proposed in Calik and Tansel (2013).
Table 4 reports the percentage of fixed z- and u-variables in formulation F5-(36)+(43)* when
the former criteria for fixing variables are applied. The first column corresponds to the
percentage of reduced z-variables if constraints (45) are applied. The second column reports
the percentage of fixed u—variables when using constraints (46) together with the reduction

strategy based on the solving of Daskin (1995) relaxed formulation for each stratum. Finally
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the last column reports the percentage of reduction when (46) and Binary Algorithm specified
in Calik and Tansel (2013) for each stratum are applied. Observe that between 6.35% and
26.01% of the z-variables could be fixed. In the case of u-variables the largest number of fixed
u-variables (boldfaced) is obtained when applying the Binary Algorithm. With this strategy

and (46), more than a 31% of u-variables are fixed in average.

Table 5: Times and LP gaps reducing the number of z- and u-variables in formulation F5-(36)+(43).

F5-(36)+(43) F5-(36)+(43)* Classic rel Binary Binary*

n p | Time LP Gap | Time LP Gap | t prepro t total LP Gap | t prepro t total LP Gap | t prepro t total LP Gap
7 5| 24.48 54.79 18.73 54.79 1.53  19.53 33.56 0.52  12.50 8.55 0.51 7.95 8.55
75 10 | 26.83 59.35 19.97 59.35 1.09  16.60 41.45 0.49  13.56 10.82 0.49  11.04 10.82
75 15| 28.21 64.43 23.56 64.43 0.93 18.85 48.96 0.49 12.87 18.42 0.46  10.95 18.42

100 10 | 63.53 59.06 64.09 59.06 2.54  56.19 39.43 1.08  42.19 10.94 1.14  29.22 10.94

100 15| 77.88 61.87 64.12 61.87 2.06  63.73 44.93 0.93 3741 15.45 0.95 30.26 15.45

100 25 | 78.34 69.13 64.62 69.13 1.63  43.27 56.49 091 31.84 23.35 091 28.95 23.35

200 10 | 440(1) 56.86 | 1248.75 56.86 26.75  739.05 33.83 9.28 368.87 8.95 9.19 275.96 8.95

200 20 | 440.19 58.97 | 436.89 58.97 19.01 267.61 39.59 9.58 118.36 11.04 9.60  82.42 11.04

200 30 | 349.71 62.75 | 503.01 62.75 13.78  199.57 46.25 7.80 111.97 15.28 7.84  89.68 15.28

Table 5 reports the computational times and LP gaps for n € {75,100, 200} if the former
preprocessing phase for fixing variables are used in order to reduce the number of variables.
The first block of columns corresponds to the formulation without any preprocessing phase
and the second one corresponds to the formulation relaxing z;. for i € N, r = 3,...,G;.
After these two blocks, different options for the preprocessing are studied. In those cases, a
first column indicating the preprocessing time is included in each block.

Columns in block “classic rel.” report the results if a preprocessing using (45) and (46)
based on the relaxed formulation from Daskin (1995) is used. “Binary” shows the results if
Binary algorithm proposed in Calik and Tansel (2013) is used to obtain a lower bound on
the p-center for each stratum and the criteria given by (45) and (46) are applied. In columns
under heading “Binary*”, the same preprocessing is used but, in this case, z;. variables are
relaxed for ¢ € N, r = 3,...,G;. The largest differences in CPU time among the variants
can be observed in instances with n = 200. In this case, the best results regarding CPU time
are the ones reported in column “Binary®’. It is worth noting that the preprocessing times

represent only a small fraction of the overall solution time in all the instances reported in this
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table. Observe also that the LP gaps are considerably reduced if binary algorithm together
with (45) and (46) is used.

Table 6: Times of F5-(36)4(43)* using binary algorithm to reduce the number of u-variables and

different valid inequalities.

n p | Binary* (47) (48) (49) (50) (51) (40)

7w 5 7.95 12.61 8.02 8.02 7.95 11.95 6.03

75 10 11.04 13.95 11.08 11.11 11.02 16.25 15.90

75 15 10.95 12.96 11.09 11.08 11.01 14.24 9.44
100 10 29.22 37.42 29.21 29.13 29.27 43.85  24.17
100 15 30.26 45.75 30.29 30.28 30.22 46.58  28.28
100 25 28.95 37.38 28.82 28.73 28.76 44.35 36.95
200 10 275.96  539.47  275.58 27537  276.19 289.21 162.02
200 20 82.42  161.46 82.49 82.69 82.66 92.31 93.18
200 30 89.68  176.37 90.28 90.04 90.00  120.44  164.50
300 15 509.79 1298.54  512.82  513.38  510.10  523.33 271.05
300 30 315.13 591.42  318.61  316.23 316.46 372.64 228.18
300 45 535.69  813.88  538.52 53347  532.62 442.23 610.77
400 20 | 1017.28 3305.29 1011.01 1012.90 1014.40 722.30 450.12

400 40 | 663.16 1863.28 666.45 660.53 663.98 805.02  954.81

400 60 475.14 1246.22 474.36  475.05  474.23 735.84 816.77

Table 6 reports the average times required to solve the same instances with formulation
F5-(36)+(43)* using Binary Algorithm, (45) and (46) to reduce the number of variables and
adding some of the constraints explained in Subsection 3.5. Regarding the reported results in
Table 6, the time performance is significantly improved in some cases if constraints (40) are
included as valid inequalities for the formulation. The remaining valid inequalities appearing
in this table, except maybe for (47), do not worsen the times in general, but they neither
provide a significant improvement.

Finally, Table 7 reports the time results using ORLIB data with the same p values as in
the original instances and using random strata. For solving these instances, formulation F5-
(36)+(43)* was used with Binary Algorithm and adding (45) and (46) to reduce the number
of variables. The results shows that only two instances remain unsolved after two hours using
the model with the proposed preprocessing phase (underlined cpu time). In this table, we

give separately the time to solve the formulation, under heading t4,),, the preprocessing time,
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under ¢prep and the overall time, tiota1. Additionally, we provide the number of nodes explored

in the branch and bound tree. The LP gap is also provided and, in the cases in which the
UBpest — LP

UBbest
is the best objective value obtained in two hours. In these instances (pmed23 and pmed40),

model is not solved in two hours, the LP gap is calculated as - 100, where Best
the final gap after two hours is shown inside the parentheses in the LP Gap column. Finally,
column ‘Obj. Val.” shows the optimal objective value for each instance except for pmed23
and pmed40 where the best obtained solutions for the unsolved instances in two hours are
reported.

In this table we observe that varying p has a strong effect on the CPU times, both, in the
preprocessing phase and when solving the final formulation. Moreover, the effect is different
in both cases, yielding curious situations, where the preprocessing time can be larger than

the actual solution time. We can also observe that the most demanding instances tend to be

250

200
@
i
150 ~
~ 4
a ( .
. A
100 o () / i \\
gy 1
- o gy MM
50 . \’L, fHy *
=N ) / -
o Y \»//,\/, DT
P o o 6 (il
0 S (

Figure 1: CPU times (circle size) as a function of n and p

those with p ~ 10% - n. This behavior can be better appreciated in Figure 1.

5.3 SAA for PpCP

In this subsection, the time and gap results of SAA for the PpCP are analyzed. Table 8 shows
the results of SAA in comparison with PpCP formulation presented in Martinez-Merino et al.
(2017).

The first column corresponds to the running time of the probability chain PpCP formula-
tion described in Martinez-Merino et al. (2017) where we have established a time limit of 24

hours. “F1 SAA” shows the results of SAA if formulation F1 of the SpCP is used. “Binary*
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SAA” resports again the results of SAA but using formulation F5 with constraints (36) re-
placed by (43), using Binary Algorithm as a preprocessing phase and relaxing z; variables
fori € N and r € {3,...,G;} . For each block of columns, the gap column reports the gap
(in percetage, %) between the best obtained solution in the SAA heuristic and the PpCP
objective value. In addition, the time column reports the running time of the procedures.

Regarding the running times of SAA, we observe a significant difference between SAA
when using formulation F1 and the remaining SAA columns that use formulation F5. As
observed, times in “Binary®* SAA” grow much slower than when using F1 so that, even if for
the smallest instances they seem to be worse, they become much better for n > 30. Consid-
ering the gaps we see that in none of the cases, the gaps are bigger than 0.64%. Moreover,
both versions of the SAA found the optimal solution for at least half of the instances. As
explained in Section 4, we can find theoretical results that guarantee the goodness of the
obtained solution when using the SAA.

Table 9 reports the average results of the instances with (n,p) € {(75,10), (100, 10),
(100, 15), (100, 25) }. First column reports the necessary time for solving the PpCP using the
probability chain formulation, observe that none of the instances were solved in 24 hours.
“Gappg” column reports the gap between the best solution obtained by SAA method and
the best solution of PpCP within the time limit. Finally, SAA time is reported. Observe that

?

in all unsolved instances after 24 hours “Gappg” column reports negative gaps. This is due
to the fact that the best solution given by SAA is better than the best solution provided by

PpCP formulation after 24 hours.
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Table 8: SAA results

PpCP F1 SAA Binary* SAA

n P Time | Gap Time | Gap Time
6 2 0.01 | 0.00 0.10 | 0.00 0.45
10 3 0.03 | 0.00 0.54 | 0.00 0.87
10 5 0.03 | 0.00 0.49 | 0.03 1.49
13 3 0.07 | 0.00 0.91 | 0.00 1.53
13 5 0.07 | 0.00 1.10 | 0.24 2.21
13 8 0.05 | 0.00 1.32 | 0.00 2.20
15 3 0.10 | 0.00 1.77 | 0.00 1.88
15 7 0.13 | 0.00 1.73 | 0.10 3.56
15 10 0.07 | 0.00 1.84 | 0.56 2.65
20 3 0.32 | 0.00 3.40 | 0.00 4.18
20 7 0.63 | 0.64 3.67 | 0.00 8.49
20 10 0.49 | 0.10 428 | 0.14 5.62
25 3 0.84 | 0.00 6.73 | 0.00 7.42
25 7 3.48 | 0.05 8.96 | 0.23 9.50
25 10 5.13 | 0.02 9.48 | 0.01 14.34
30 3 2.01 | 0.00 13.90 | 0.00 11.27
30 7 13.61 | 0.14 12.78 | 0.15 9.40
30 10 2299 | 0.00 16.24 | 0.00 16.54
40 3 8.28 | 0.00 40.90 | 0.00 19.94
40 7 148.22 | 0.01 98.39 | 0.20 19.45
40 10 295.52 | 0.01 96.68 | 0.01 19.52
50 5 243.17 | 0.03 162.76 | 0.00 44.68
50 10 4083.75 | 0.01  462.26 | 0.12 67.74
50 15| 21782.53 | 0.21  794.07 | 0.01 71.63
75 5 4108.22 | 0.03 1386.77 | 0.03 150.28
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Table 9: SAA results for larger instances.

n p | PpCP Time Gapps SAA Time
75 10 > 86400 -2.55 200.57
7 15 > 86400 -5.67 258.32

100 10 > 86400 -10.25 491.73

100 15 > 86400 -15.31 449.02

100 25 > 86400 -20.40 850.55

6 Conclusions

This paper presents an extension of the p-center problem called the Stratified p-Center Prob-
lem (SpCP). This extension could be applied in cases where the population is divided into
different strata and the evaluation of the service must be separately measured for each stra-
tum. In the model, it is assumed that more than one stratum can be present at each demand
point.

Different formulations were introduced together with a detailed study of variants, variable
reduction processes and valid inequalities. Regarding the computational results, the best
performance was obtained using a formulation based on covering variables.

The SpCP allows to implement a heuristic approach based on the Sample Average Ap-
proximation (SAA) method to obtain good feasible solutions for the probabilistic p-center

problem. This heuristic approach provides good upper bounds in acceptable times.
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