
Genet: a Tool for the Synthesis and Mining of Petri Nets
(Tool paper)

J. Carmona
Universitat Politècnica de Catalunya

Barcelona, Spain

J. Cortadella
Universitat Politècnica de Catalunya

Barcelona, Spain

M. Kishinevsky
Intel Corporation
Hillsboro, USA

Abstract

State-based representations of concurrent systems suffer
from the well known state explosion problem. In contrast,
Petri nets are good models for this type of systems both in
terms of complexity of the analysis and in visualization of
the model. In this paper we present Genet, a tool that
allows the derivation of a general Petri net from a state-
based representation of a system. The tool supports two
modes of operation: synthesis and mining. Applications of
these two modes range from synthesis of digital systems to
Business Intelligence.

1 Introduction

In this paper we present Genet, a tool that transforms
a state-based representation of a system (a transition sys-
tem [3]) into an event-based model (a Petri net [10]). Petri
nets represent the concurrency explicitly and therefore are
very good visualization objects for concurrent systems.
Moreover, the complexity of the analysis techniques can
be significantly alleviated if done at the level of the Petri
net. Recently, some techniques have been presented for the
problem of Process Mining [12]: given a set of traces, a pro-
cess model (usually a Petri net) must be obtained to cover
the traces seen so far and maybe more. The idea behind that
is to capture (discover) the behavior that can only be seen
by monitoring a real system.

The input of Genet is a finite transition system TS mod-
elling a concurrent system, and the output is a weighted and
bounded Petri net PN that has a certain relation with the
TS. This relation is: TS ≈ RG(PN) (synthesis mode [7]),
or L(TS) ⊆ L(PN) (mining mode [6]), were ≈ denotes
observational equivalence [3], RG(PN) is the reachability
graph of the Petri net, and L(TS) (L(PN)) is the language
of TS (PN).

Synthesis and mining might derive very different PNs.
Let us use the example of Figure 1 to illustrate this: the TS
depicted in 1(a) satisfies the synthesis conditions (see [7])
and therefore it can be synthesized or mined into a 4-

bounded PN, shown in 1(b). Now imagine that the labels
for arcs 200 a→ 120 and 004 c→ 102 are interchanged result-
ing in TS’. With this change, synthesis conditions from [7]
do not hold and then there is no unique-labelled PN with
reachability graph bisimilar to TS’. However, if mining is
used, the PN of Figure 1(c) is obtained. Notice that some
traces not present in TS′ are possible in this PN, e.g. (ba)∗.
In Process Mining applications, this overapproximation can
be sometimes acceptable because the transition system rep-
resents only part of the possible system behavior.

Related work on synthesis and mining based on re-
gions of languages has been published recently [5, 14], and
some comparisons with the first reference can be found
in [6]. A well-known tool for the synthesis of Petri nets
is petrify [8]. Genet can be considered as an extension
of petrify in the sense that the theory behind is a gener-
alization of the one in petrify: first Genet can synthe-
size k-bounded Petri nets, whereas petrify generates 1-
bounded (safe) Petri nets. Second, Genet can additionally
do mining of k-bounded Petri nets. Hence data structures
and algorithms behind Genet have been designed to cover
the general case, thus being less optimized for the case of
safe Petri nets.

2 Overview of the Theory Behind Genet
Genet is based on the theory of regions [9]. Intuitively,

a region is a set of states in a transition system that has a
homogeneous relation with respect to the events, i.e. ev-
ery event either enters this set, or exits it, or never crosses
its boundary. It corresponds to a place in the derived Petri
net. In Genet, the notion of general region is used, were
the corresponding place can have at most k tokens. Let us
use the example of Figure 1 to illustrate the theory. The
method assume that a k is initially given for the search of
a k-bounded Petri net. The basic idea is that regions are
represented by multisets (i.e., a state might have multiplic-
ity greater than one). Figure 1(a) depicts a TS with 9 states
and 3 events. After synthesis, the Petri net at Figure 1(b) is
obtained. For illustration purpose we label each state with
a 3-digit label that corresponds to the marking of places p1,
p2 and p3 of the Petri net, in the corresponding markings of

2009 Ninth International Conference on Application of Concurrency to System Design

1550-4808/09 $25.00 © 2009 IEEE

DOI 10.1109/ACSD.2009.6

181

a c

b

22

p1

p2 p3

a b
c

2

2

120 111 102

022 013 004031040

b b

b b b b

200
a

a a a

c

c
c

c

(a)

(b) (c)

Figure 1. (a) A transition system, (b) an equiv-
alent bounded Petri net, (c) Petri net mined
from (a) where labels for arcs 200 a→ 120 and
004 c→ 102 are interchanged.

the Petri net reachability graph. The shadowed states rep-
resent the general region that characterizes place p2. Each
grey tone represents a different multiplicity of the state (4
for the darkest and 1 for the lightest). Each event has a
constant gradient with respect to this region (+2 for a, -1
for b and 0 for c). The gradient indicates how the event
changes the multiplicity of the state after firing. Gradients
are used to weight the arcs between places and transitions
in the derived Petri net: the gradient +2 for event a in the
region shown corresponds to the arc with weight 2 between
the transition a and the place p2, meaning that every time
the transition a fires it puts two tokens into p2. Refer to [7]
for further details on the theory.

3 Features of the Tool

Genet is a tool implemented in C++, and uses the fol-
lowing libraries: Cudd [4] (University of Colorado) to sym-
bolically represent transition systems and regions, STL for
data structures and algorithms, and PCCTS [11] for input
parsing. The tool has the following features:
Symbolic representation: Binary Decision Diagrams
(BDD) are used to represent the states of the transition sys-
tem, its (disjunctive) transition relation, and the regions and
intermidiate multisets found in the exploration. The opera-
tions on regions can be performed at the symbolic level. A
symbolic algorithm to compute the regions has been imple-
mented [7]. Different encoding schemes for representing a

state are considered (see the -enc option of the tool).
Regions bound: Genet can be guided to search for re-
gions in a given range. See the -k and -min options of the
tool.
Projections: The tool can project the behavior of the tran-
sition system onto a given set of events before deriving the
Petri net. This projection is done in two steps: first, events
not included in the list of visible events are relabelled as
silent events, and second, the fusion of states connected
through silent events is iteratively applied. See the option
-prj of the tool.

In the synthesis mode, the following features have been
implemented:
Removal of redundant regions: Regions that are not nec-
essary for the synthesis conditions are removed. These re-
dundant regions correspond to redundant places in the cor-
responding Petri net.
Event splitting: When the synthesis conditions do not hold
for the maximal bound allowed, the splitting of some events
is automatically applied. Some heuristics have been pro-
posed to this extent [7].

In the mining mode, the transition system represents a
set of traces (called event log) of a system. The following
features have been implemented:
Upper-bound for the covering: The user can indicate an
upper bound for the number of regions allowed for covering
an event. This may improve the visualization of the Petri
net, but can loosen the overapproximation of the input TS
by including more unspecified traces. See the option -cov.
Marked graph mining: The tool can be requested to mine
marked graphs, a particular class of Petri nets where neither
choice nor merge behavior is allowed. See the option -mg.

4 Experiments

Tables 1 report the results with the current version. Large
examples have been added with respect to the tables in [6,7],
to show the tool capacity. For each benchmark, the size of
the transition system (states and arcs), number of places and
transitions of the derived Petri net, and cpu time is shown.

The examples for the table on the left are syntactic ex-
amples representing typical behavior that can be nicely rep-
resented in a Petri net: a system with shared resources
(ShRes), a producer-consumer environment (ProdCons),
and a pipeline of n processes (BoundPipe). Hence in this
table we show how Petri nets can be synthesized from the
underlying behavior of these benchmarks. Intuitively, both
the bound of the derived net and the size of the transition
system are the main factors that define the complexity of
the underlying algorithms.

The benchmarks on the right are real logs and are used
for testing the mining mode of Genet. It is interesting to
note the succinctness of the derived Petri nets: for the last
example, a state space of more than five thousand states is
summarized in a Petri net with eighteen places.

182

benchmark |S| |E| |P | |T | cpu

SHRES(3,2) 63 186 13 12 0s

SHRES(4,2) 243 936 17 16 0s

SHRES(5,2) 918 4320 24 20 0s

SHRES(4,3) 255 1016 17 16 0s

SHRES(6,4) 4077 24372 25 24 18s

SHRES(7,5) 16362 114408 29 28 25m

PRODCONS(3,2) 24 68 8 7 0s

PRODCONS(4,2) 48 176 10 9 0s

PRODCONS(3,3) 32 92 8 7 0s

PRODCONS(4,3) 64 240 10 9 0s

PRODCONS(6,3) 256 1408 14 13 0s

PRODCONS(8,3) 1024 7424 18 17 2s

PRODCONS(8,5) 1536 11520 18 17 1h10m

BOUNDPIPE(4) 81 135 8 5 0s

BOUNDPIPE(5) 243 459 10 6 1s

BOUNDPIPE(6) 729 1539 12 7 6s

BOUNDPIPE(7) 2187 5103 14 8 48s

BOUNDPIPE(8) 6561 16767 16 9 12m

BOUNDPIPE(9) 19683 54675 18 10 1h50m

benchmark |S| |E| |P | |S| cpu

groupedFollowsa7 18 7 7 11 0s

groupedFollowsal1 15 7 12 15 0s

groupedFollowsal2 25 25 15 25 0s

herbstFig6p21 16 7 11 16 0s

herbstFig6p34 32 12 18 32 0s

herbstFig6p41 20 14 16 18 0s

staffware 15 31 19 19 31 0s

pn ex 10 233 11 16 145 0s

a12f0n50 1 78 77 17 80 0s

a12f0n50 2 151 150 21 92 0s

a12f0n50 3 188 187 21 92 0.5s

a22f0n00 1 1209 1208 16 78 9m

a22f0n00 2 3380 3379 16 78 15m

a22f0n00 3 5334 5333 16 78 32m

Table 1. Synthesis of parameterized benchmarks (left), and mining of event logs obtained from [2]
(right).

Figure 2. Shared resources system: transi-
tion system.

5 Examples on Using the Tool

Examples extracted from real examples or event logs are
presented. Figures 2 and 3 show a transition system and its
corresponding 3-bounded Petri net, synthesized by Genet.
Figure 4 shows how the tool can be used to project part of
the system behavior into a set of events. In the figure, only
the behavior regarding processes P2 . . . P5 is considered.

Figure 5 shows the mining of a complex system. Also,

Figure 3. Shared resources system: Petri net.

Figure 6 shows a situation where mining derives a better
visualization, on the event log represented by the transition
system of Figure 6(a).

6 Tool Availability, Web Page and Tutorial

The tool has been developed and tested under Linux, and
tested in Solaris. It is for the time being text-based. How-
ever, Petri nets and transitions systems can be graphically
drawed with the public domain draw astg tool, avail-
able at [1]. Although the tool is evolving to incorporate
extensions of the existing theory, there is a stable core that
has been reached after several improvements of the initial
prototype of the tool presented in [7]. Some of these im-
provements led, for instance, to a very efficient exploration

183

(a)

(b)

Figure 5. (a) Transition system, (b) Mined Petri net.

Figure 4. Synthesized Petri net for a subset of
a system (processes P2 . . . P5).

of the region space. Moreover, as a tool for Process Min-
ing, Genet is in the process of being incorporated into the
ProM framework [13]. There is a web page for the tool:

http://www.lsi.upc.edu/∼jcarmona/genet.html

were related papers, a tutorial and the Linux/Solaris binaries
can be obtained.

7 Conclusions and future work

Genet is a tool to support the synthesis and mining of
concurrent systems. We foresee several applications of the

tool in areas like knowledge discovery and synthesis of dig-
ital circuits, among others. Our current work is focused into
incorporating clustering techniques to automatically select
parts of the system that can be composed afterwards and
therefore views of the initial system can be produced.

Acknowledgements

We would like to thank Stanislavs Golubcovs for provid-
ing the example of Figure 5. This work has been supported
by the project FORMALISM (TIN2007-66523), and a grant
by Intel Corporation.

References

[1] Petrify. http://www.lsi.upc.edu/∼jordicf/petrify/.

[2] Process mining. www.processmining.org.

[3] A. Arnold. Finite Transition Systems. Prentice Hall,
1994.

[4] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel,
E. Macii, A. Pardo, and F. Somenzi. Algebraic deci-
sion diagrams and their applications. In M. R. Light-

184

ner and J. A. G. Jess, editors, ICCAD, pages 188–191.
IEEE Computer Society, 1993.

[5] R. Bergenthum, J. Desel, R. Lorenz, and S.Mauser.
Process mining based on regions of languages. In
Proc. 5th Int. Conf. on Business Process Management,
pages 375–383, Sept. 2007.

[6] J. Carmona, J. Cortadella, and M. Kishinevsky. A
region-based algorithm for discovering Petri nets from
event logs. In M. Dumas, M. Reichert, and M. C.
Shan, editors, BPM, volume 5240 of LNCS, pages
358–373. Springer, 2008.

[7] J. Carmona, J. Cortadella, M. Kishinevsky, A. Kon-
dratyev, L. Lavagno, and A. Yakovlev. A symbolic
algorithm for the synthesis of bounded Petri nets.
In 29th International Conference on Application and
Theory of Petri Nets and Other Models of Concur-
rency, June 2008.

[8] J. Cortadella, M. Kishinevsky, A. Kondratyev,
L. Lavagno, and A. Yakovlev. Petrify: A tool for ma-
nipulating concurrent specifications and synthesis of
asynchronous controllers. IEICE Trans. on Informa-
tion and Systems, E80-D(3):315–325, Mar. 1997.

[9] A. Ehrenfeucht and G. Rozenberg. Partial (Set) 2-
Structures. Part I, II. Acta Informatica, 27:315–368,
1990.

[10] T. Murata. Petri Nets: Properties, analysis and ap-
plications. Proceedings of the IEEE, pages 541–580,
Apr. 1989.

[11] T. J. Parr. Language Translation Using PCCTS and
C++. 1995.

[12] W. M. P. van der Aalst and C. W. Günther. Finding
structure in unstructured processes: The case for pro-
cess mining. In T. Basten, G. Juhás, and S. K. Shukla,
editors, ACSD, pages 3–12. IEEE Computer Society,
2007.

[13] W. M. P. van der Aalst, B. F. van Dongen, C. W.
Günther, R. S. Mans, A. K. A. de Medeiros, A. Rozi-
nat, V. Rubin, M. Song, H. M. W. E. Verbeek, and A. J.
M. M. Weijters. ProM 4.0: Comprehensive support for
eal process analysis. In J. Kleijn and A. Yakovlev, ed-
itors, ICATPN, volume 4546 of Lecture Notes in Com-
puter Science, pages 484–494. Springer, 2007.

[14] J. M. E. M. van der Werf, B. F. van Dongen, C. A. J.
Hurkens, and A. Serebrenik. Process discovery using
integer linear programming. In Petri Nets, pages 368–
387, 2008.

(a)

(b) (c)

Figure 6. (a) Transition system specifying the
initial log, (b) Synthesized Petri net from the
transition system of Figure 6(a), (c) Mined
Petri net from the transition system of Fig-
ure 6(a).

185

