Transport mechanisms in silicon heterojunction solar cells with molybdenum oxide as a hole transport layer

R. García-Hernansanz1*, E. García-Hemme1, D. Montero1, J. Olea1, A. del Prado1, I. Mártí1, C. Voz2, L.G. Gerling2, J. Puigdollers2, R. Alcubilla2

1Dept. de Física Aplicada III (Electricidad y Electrónica), Univ. Complutense de Madrid, 28040 Madrid, Spain

2Departament d'Enginyeria Electrònica. Universitat Politècnica de Catalunya. 08034 Barcelona (Spain)

*corresponding author: rodgar01@ucm.es. Univ. Complutense de Madrid, 28040 Madrid, Spain

Abstract:

Heterojunction solar cells based on molybdenum sub-oxide (MoOx) deposited on n-type crystalline silicon have been fabricated. The hole selective character of MoOx is explained by its high workfunction, which causes a strong band bending in the Si substrate. This bending pushes the surface into inversion. In addition, the sub-stoichiometry of the evaporated MoOx layers leads to a high density of states within the bandgap. This is crucial for charge transport. The J-V electrical characteristics at several temperatures were analysed to elucidate the dominant charge transport mechanisms of this heterojunction structure. We have identified two different transport mechanisms. At low bias voltage, transport is dominated by hole tunneling through the MoOx gap states. At higher voltage the behavior is similar to a Schottky junction with a high barrier value, due to the high MoOx work function. These results provide a better understanding of the hole selective...
character of MoOx/n-type silicon heterocontacts, which is key to further improve this new kind of solar cells.

KEYWORDS: Molybdenum oxide, Multitunneling, gap states, heterocontact.

1. **Introduction**

The present record energy conversion efficiency of silicon-based solar cells is 26.3% [1], which is close to the Shockley–Queisser limit for a single junction silicon solar cell [2]. Such a high efficiency has been achieved by Kaneka combining the HIT (Heterojunction with Intrinsic thin Layer) concept with an interdigitated back contact (IBC) structure. This record efficiency exceeds by 1% the best silicon homojunction solar cells [3]. Nevertheless, conventional silicon p-n junctions still dominate the solar cell market owing to their simpler fabrication, which enable lower manufacturing costs. The need of comparatively complex PECVD deposition systems and the need of hazardous precursors slow down the adoption of heterojunction technology.

A limitation of conventional two-side HIT solar cells is the parasitic light absorption of amorphous silicon layers, which reduces the photocurrent [4]. On the other hand, the absence of high temperature processes makes this technology more processing-friendly with thinner wafers, as opposed to conventional homojunction solar cells. These standard cells also have other limitations such as recombination losses [5] and heavy doping effects[6], which impose a limit on their efficiency.

In the last few years several works have been published aiming to replace doped emitters of classical Si junctions with alternative materials. The aim is to achieve a “carrier-selective” interface with the absorber [7],[8][9]. The charge separation occurs because one type of charge is blocked while the flow of the opposite one is allowed[10]. The incorporation of such carrier selective heterocontact structures could improve some
fundamental limitations of conventional solar cells. Furthermore, most of these materials can be deposited by evaporation or even solution-processed[11]. If these simple technologies could be integrated in a commercial route then higher-efficiency cells could be cost-effectively manufactured. There are different materials reported in the literature that have demonstrated excellent carrier-selective properties on c-Si: organic films[12][13], fluoride salts[8][14] or transition metal oxides (TMOs)[15][16]. At present, organic semiconductors are unstable when exposed to the atmosphere and suffer photodegradation effects[17]. For this reason, inorganic alternatives in combination with silicon absorbers are actively researched. Lithium fluoride[8][18], and titanium dioxide[19] layers have been used as electron collectors on n-type Si substrates, while molybdenum oxide (MoO$_x$) and tungsten oxide (WO$_x$) have been used as hole collectors also for n-type Si[20][21][22]. Recently, a conversion efficiency of 22.5 % has been obtained for a solar cell with a MoO$_x$ hole collector on n-type silicon[23]. However, this device still required a very thin intrinsic amorphous silicon layer between the silicon substrate and the MoO$_x$ layer for interface passivation.

TMOs have been studied in depth for organic semiconductor devices[24][25][26], for electronic applications [27][28] and more recently some works have studied these materials deposited on silicon heterojunctions. The physical principles explaining the collection of photogenerated charge-carriers in these devices have been proposed by Battaglia et al.[22]. Nevertheless, a deeper understanding of the mechanisms governing charge-carrier transport without illumination is still needed. An accurate analysis and understanding of the J-V electrical characteristics in dark can provide guidelines to improve the V_{oc} values of these devices.

2. Experimental methods
In Fig. 1 we present the structure of the MoO$_x$ heterojunction solar cells studied in this work. The substrate was a double-side polished, 300 µm thick, n-type (2.5 Ω·cm) crystalline silicon wafer. First, the substrate was cleaned by a standard RCA cleaning process with a subsequent dip in HF solution (1%) until it became hydrophobic. Then, it was loaded into a PECVD system to deposit a stack of layers on the rear side. This stack consisted of a 4 nm intrinsic a-SiC$_x$:H (x~0.2) passivation layer and a 15 nm phosphorous-doped a-Si:H layer (15 nm). An additional stoichiometric a-SiC$_x$:H (x~1) layer was deposited to protect the stack and as a back reflector coating (BRC). Afterwards, the rear side was laser-fired to obtain an array of locally-diffused point contacts with a contacted area ratio of 0.5%. This optimized laser process allows to combine low series resistance with reduced surface recombination at the rear contact [29]. On the front side, after another HF dip, a 15 nm MoO$_x$ layer was thermally evaporated directly on the c-Si substrate, without an a-Si:H passivation layer. We cannot discard the presence a thin interfacial SiO$_2$ layer (~2 nm) between the Si substrate and the MoO$_x$ that grows spontaneously[30]. Subsequently an indium-tin-oxide (ITO) front electrode was deposited by RF magnetron sputtering. Solar cells with 1 cm2 and 4 cm2 active area were defined by a lithographic process and a wet etching of the ITO and MoO$_x$ layers. The front electrode is finished by thermally evaporating a 2 µm thick silver grid. This electrode covers less than 5% of the device area. Finally, the rear electrode consisted in a 1 µm thick aluminium layer evaporated on the laser-fired contacts.

The current density as a function of applied voltage (J-V characteristic) was measured with an Agilent 2400 SourceMeter. The J-V curves were measured in darkness and under 1-sun AM1.5 illumination with an ORIEL 94021A (Newport) solar simulator. The light irradiance was properly calibrated by means of a pyrometer. The external quantum efficiency curve was measured using a commercial instrument QEX10 from PV
Measurements. After the initial room temperature characterization, the solar cell was mounted inside the chamber of a closed-loop helium cryostat, which controls temperature with an additional heater. Then, J-V characteristics in darkness were measured at temperatures from 360 K to 220 K. All these electrical measurements were done in a 4 wire configuration to minimize the contribution of the copper cables to the series resistance. The well-known two-diode model was used to fit the measured J-V curves[31][32] according to the following expression:

\[J = J_{D1} + J_{D2} + J_{SHUNT} \]

\[J = J_{0,1}(T)[e^{A_1(T)(V-JR_S)} - 1] + J_{0,2}(T)[e^{A_2(T)(V-JR_S)} - 1] + \frac{V-JR_S}{R_{Shunt}} \tag{1} \]

In this expression \(J_{D1} \) and \(J_{D2} \) correspond to the two main conduction mechanisms, where \(J_{0,1} (T) \) and \(J_{0,2} (T) \) are the saturation current densities and \(A_1 (T) \), \(A_2 (T) \) are the exponential factors of each mechanism. Also, the parasitic series resistance \(R_S \) and parallel resistance \(R_{Shunt} \) were considered in the equivalent circuit. We can determine the different conduction mechanisms by studying the temperature dependences of the fitting parameters of equation (1). It is known that the saturation current density and the exponential factor will adjust to the following expressions[33][34]:

\[J_{0,i} = J_{0,0,i} \cdot e^{-\frac{E_{a,i}}{kT}} \tag{2} \]

\[A_i(T) = \frac{q}{n_i kT} \tag{3} \]

where \(E_{a,i} \) is the activation energy of each mechanism and \(n_i \) the corresponding diode ideality factor. Finally, to analyse the electrical characteristics measured at reverse bias polarization we used the following equation[31][35]:

\[J_R = J_{rev,0}e^{\left(\frac{-E_{a,rev}}{kT}\right)}(V_D - V)^b \tag{4} \]
where $J_{rev,0}$ is a base current, V_D a constant voltage, $E_{a,rev}$ an activation energy of the process and b is a temperature independent coefficient.

3. Results and discussion

Figure 2 shows the EQE and J-V characteristic curve of a representative MoO$_x$ based solar cell at room temperature under 1-sun illumination. All the fabricated devices showed a similar behaviour, either for 1 cm2 or 4 cm2 cells. These solar cells have a $V_{OC} = 614$ mV, $J_{SC} = 32.8$ mA/cm2 and F.F. = 73.2 %, resulting in a photovoltaic conversion efficiency of 14.7%. To our knowledge this is the best efficiency reported for a direct heterojunction between MoO$_x$ and n-type c-Si without passivation layers. The V_{OC} and F.F. values are significantly higher than those previously reported[9]. Although the J_{SC} value is lower in our cells, but is rather good for a non-textured surface.

In Fig. 3 we present the forward J-V characteristics in darkness of a representative 1 cm2 MoO$_x$ based solar cell measured from 360 K to 220 K, at intervals of 20 K. In the same figure the blue lines represent the curves fitted to equation (1) for each temperature. We can observe the good agreement between the measurements and the fitted curves in all the temperature range. At high bias the effect of series resistance is observed, with values lower than 2 Ω·cm2 for all curves. The shunt resistance is not observed in any of the curves measured under dark conditions. The curves present clearly two different slopes, at low bias ($V < 0.4 – 0.6$ V depending on the temperature) and at high bias ($V > 0.4 – 0.6$ V). This indicates that two different conduction mechanisms with exponential behaviour are taking place. In Fig. 4 we plot the parameters $A_1(T)$ (high voltage range) and $A_2(T)$ (low voltage range) obtained from the fittings. While $A_1(T)$ has a strong temperature dependence, $A_2(T)$ remains roughly constant. Fitting the high voltage mechanism to equation (3) we obtain a constant diode factor of $n_1 = 1.20 \pm 0.09$. On the
other hand, if the same equation is used to fit $A_2(T)$ the obtained diode factor value is between 3 and 4 depending on temperature. The diode ideality factor, which is deduced from dark electrical characteristics, indeed has influence on the solar cell efficiency. A high n-value not only degrades the FF, but it is also a signal of higher recombination. Therefore, it can be related to lower open-circuit voltages and, as a consequence, reduced efficiencies. In fact, as the diode ideality factor increases (from the ideal value of $n = 1$), the voltage at the maximum power point decreases, and therefore the efficiency of the device [36]. As the V_{OC} value of our cells is 614 mV, the efficiency of the cell will be determined by the dominant transport mechanism at these voltage range, that is the one with $n_1 = 1.20$. Therefore, if we would like to obtain better efficiencies, we should obtain cells with lower diode factor in this process, close to $n = 1$. Concerning the other mechanism observed in the J-V characteristics, a temperature depended diode factor is common in trap-assisted tunneling processes [37]. This temperature dependence can be relate with an interface state density distribution [38, 39], quantum mechanical tunnelling [39, 40] or image force lowering [40]. In Fig. 5 we present the Arrhenius plots of the saturation current densities related to the high and low voltage processes. An activation energy (E_a) of 0.90 eV was obtained for the high voltage mechanism and an $E_a = 0.30$ eV was obtained for the low voltage one. These values clearly differ from a typical recombination diode and must be explained by other mechanisms. The high values of n_2, together with the moderate temperature dependence of A_2 and the E_a value of 0.3 eV, suggest that at low voltage the current is dominated by a tunnelling process [31][35].

In order to support this conclusion we analysed the electrical characteristics measured under reverse bias. In Fig. 6 we represent ln (J_R) vs ln (V) and these data are fitted to equation (4). A linear behaviour with very similar slope (b in equation (4)) is obtained for all measurements in the studied temperature range. The approximately
constant value obtained for the slope is \(b = 0.74 \pm 0.03 \). By contrast, the intercept with the ordinate axis (when \(\ln(V) = 0 \)) shows a temperature dependence. In Fig. 7 we represent each intercept with the ordinate axis as a function of \(1/T \), and the linear fitting which results in an activation energy of \(E_{(a,rev)} = 0.27 \) eV. This value for the activation energy, within experimental error, points to the same tunnel mechanism observed at low forward bias. These results are very relevant because the current measured in dark under reverse bias has the same direction as it has under illumination at low forward bias. Therefore, the conduction mechanisms taken place should be the same.

To explain these results, in Fig. 8 we present a qualitative band diagram of a MoO\(_x\) heterojunction solar cell, which can help to understand the conduction mechanisms of these devices. This figure is based on the band diagrams presented in Refs. [22],[41],[42]. The high work function of the MoO\(_x\) [16] produces a large band bending of the n-type silicon surface. In fact, an inversion layer appears at the interface with a hole concentration larger than the substrate doping concentration[21]. This p-type inversion layer near the surface is shown as the yellow region in Fig. 8. Furthermore, the MoO\(_x\) presents a high density of oxygen vacancies, which results in a quasi-continuous distribution of energy levels within its bandgap. In fact, Battaglia et al.[22] describe this quasi-continuous distribution of energy levels as a defect band. Other authors have referred to these gap states as a “quasi-conduction band” for oxides[28]. These states in the bandgap seem to play a capital role to explain the good hole injection and extraction properties of the MoO\(_x\) layer.

It has been suggested that the passivating behaviour of the MoO\(_x\) layer is due to the spontaneous formation of an ultrathin SiO\(_x\) layer[30] between the Si substrate and the MoO\(_x\). Since all the currents must flow across this SiO\(_x\) layer, the observed tunnelling mechanism in the J-V characteristic cannot be explained by processes within the SiO\(_x\). If
that were the case, such tunnelling process would limit the current in the whole voltage range. Because of this, we conclude that the observed tunnelling process consists of holes transported across the MoOx gap states, labelled by (1) in Fig. 8. This tunnelling process is similar to that explained by Schulze et al.\cite{31} for a-Si/c-Si heterojunction solar cells using the multitunnelling capture emission (MTCE) theory, where carriers from the c-Si tunnel into states within the amorphous silicon bandgap and then recombine through carrier capture or reemission. The saturation current density in MTCE is exponentially dependent on \(1/T\) following an expression similar to Eq. 2.\cite{43}. The activation energy of \(E_a=0.30 \pm 0.01\) eV obtained from Fig. 5 by fitting the Arrhenius plot is consistent with the MTCE values reported in the study for different heterojunctions on silicon\cite{31},\cite{44}. The agreement between experimental results and the MTCE model supports our explanation of a tunnelling process dominant at low voltages.

On the other hand, there are two processes that could be related with a diode factor of \(n_1 = 1.20\) and an activation energy of 0.90 eV: diffusion/recombination in the silicon bulk (labelled by (3) in Fig.8) and the transport of electrons between the c-Si and MoOx conduction bands (labelled by (2) in Fig.8). Although the obtained values are coherent with diffusion/recombination values reported for silicon heterojunctions\cite{31}, we believe that this cannot be the observed process. According to Fig. 3, the low voltage tunnelling process and this high voltage process operate in parallel, adding both currents. However, as it can be observed in figure 8, any transport process involving hole diffusion into the n-type c-Si would be in series with the hole tunnelling across the MoOx. The same applies for any process involving the recombination of electrons coming from the c-Si before they reach the MoOx. The only conduction process in parallel with the hole MoOx tunnelling is the injection of electrons from the c-Si over the barrier voltage into the MoOx conduction band.
As it can be observed in Fig. 8, this structure is similar to a Schottky junction with a high barrier value due to the high MoOx work function. The strong inversion induced at the silicon surface explains the high activation energy of 0.9 eV. Concerning the diode ideality factor, a value of $n = 1.20$ is higher than that expected for Schottky barriers ($n = 1$). This higher value could be related with a voltage drop across the MoOx, and therefore it depends on its thickness[45].

4. Conclusions

We have fabricated a set of MoOx solar cells with conversion efficiency of 14.7\%, $V_{OC} = 614$ mV, $J_{SC} = 32.8$ mA/cm2 and F.F. = 73.2 \%. These values are lower than the state-of-the-art, but among the highest reported for direct MoOx/n-type c-Si heterojunctions without any additional passivation layer. From the dark J-V characteristics as a function of temperature, two different transport processes were identified: a Schottky behaviour process with an ideality factor $n_1 = 1.20$, and a tunnelling process characterized by an ideality factor n_2 with values in the 3-4 range. This tunnelling process determines the electrical characteristic at low voltages. The exponential dependence of the saturation current density as a function of $1000/T$ suggests a multitunnelling capture emission process. We obtained an activation energy $E_a=0.30\pm0.01$ eV for this mechanism, which agrees with the MTCE model for silicon heterojunctions. Finally, when biased at high voltages and at usual operation temperatures, the current of these devices is mainly determined by the barrier between the MoOx and the c-Si conduction bands.

Acknowledgements:
Authors would like to acknowledge the CAI de Técnicas Físicas of the Universidad Complutense de Madrid for the use of its laboratories. This work was partially supported
by the Project MADRID-PV (Grant No. 2013/MAE-2780) funded by the Comunidad de Madrid, by the Spanish MINECO (Ministerio de Economía y Competitividad) under grants TEC 2013-41730-R, TEC2017-84378-R and ENE2016-78933-C4-1-R. Also by the Universidad Complutense de Madrid (Programa de Financiación de Grupos de Investigación UCM–Banco Santander) under grant 910173-2014. D. Montero acknowledges the Spanish MINECO (Ministerio de Economía y Competitividad) for financial support under contract BES-2014-067585 and L.G. Gerling the support from Mexico’s grant program CONACyT.
Figure 1:
Figure 2:

![Figure 2: EQE vs. Wavelength](image)

- $V_{oc} = 614$ mV
- $J_{sc} = 32.8$ mA/cm2
- FF = 73.2%
- Efficiency = 14.7%

EQE (%)

Wavelength (nm)

1 sun

Room temperature
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:

\[\ln(J_{rev}E_s/kT) = -0.513077x \]

\[E_{a,rev} = 0.27 \text{ eV} \]
Figure 8:
Figure Captions:

Fig. 1. MoO₃ solar cell structure fabricated for this study. The MoO₃ layer acts as a hole selective contact on n-type silicon.

Fig. 2. J-V and EQE characteristic of a MoO₃ based solar cell under illumination at 1 sun at room temperature.

Fig. 3. Dark J-V characteristics of the solar cell, measured (stars) and fitted (blue lines), at different temperatures, from 360 K to 220 K. The black arrow goes from the highest temperature in this study (360 K) to the lowest (220 K). The temperature difference between consecutive curves is 20 K.

Fig. 4. Exponential factor for the two conduction mechanisms predominant in the solar cell. We can observe a temperature dependence in $A_1(T)$ for the high voltage process while the low voltage process $A_2(T)$ remains almost constant.

Fig. 5. Saturation current as a function of $1000/ T$ for both mechanisms. We obtained an activation energy of $E_a = 0.90 \pm 0.06 \text{ eV}$ and $E_a = 0.30 \pm 0.01 \text{ eV}$ for each process.

Fig. 6. Reverse bias characteristic under dark conditions, for temperatures from 360 K to 220 K in 20K steps. The respective fits (lines) were calculated using eq. (4).

Fig. 7. Ordinate intercept of the fittings of eq. (4) as a function of $1/ T$ for the temperature range used in this study. We obtained an activation energy of $E_a = 0.27 \pm 0.01 \text{ eV}$.

Fig. 8. Proposed equilibrium band diagram of a MoO₃ silicon based solar cell and the current transport mechanisms identified with numbers: (1) tunnelling mechanism, (2) Schottky barrier, (3) diffusion/recombination mechanism. The observed tunnel in reverse bias is the same than (1), but in the opposite direction.
References:

