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Abstract. We show that for all d ∈ {3, . . . , n − 1} the size of the largest component of a

random d-regular graph on n vertices around the percolation threshold p = 1/(d−1) is Θ(n2/3),
with high probability. This extends known results for fixed d ≥ 3 and for d = n− 1, confirming
a prediction of Nachmias and Peres on a question of Benjamini. As a corollary, for the largest
component of the percolated random d-regular graph, we also determine the diameter and the
mixing time of the lazy random walk. In contrast to previous approaches, our proof is based on
a simple application of the switching method.

1. Introduction

For every d ∈ {3, . . . , n − 1}, let Gn,d be the set of all simple and vertex-labelled d-regular
graphs on n vertices and let Gn,d be a graph chosen uniformly at random from Gn,d. For p ∈ [0, 1],
let Gn,d,p be a graph obtained from Gn,d by retaining each edge independently with probability
p. The goal of this paper is to study the order of the largest component of Gn,d,p, denoted by
L1(Gn,d,p), in terms of n, d and p.

Most of the literature in the area focuses either on fixed d ≥ 3 or on d = n − 1. Goerdt [8]
showed the existence of a critical probability, pcrit := 1/(d − 1), such that for every fixed
d ≥ 3 and every ε > 0 the following holds with probability 1 − o(1): if p ≤ (1 − ε)pcrit, then
L1(Gn,d,p) = O(log n), while if p ≥ (1 + ε)pcrit, then L1(Gn,d,p) = Θ(n). Similar results were
also obtained in a more general setting by Alon, Benjamini and Stacey [1]. For d = n − 1, the
random graph Gn,d,p corresponds to the classic Erdős-Rényi random graph Gn,p. In their seminal
paper [5], Erdős and Rényi proved that for every ε > 0, the following holds with probability
1 − o(1): if p ≤ (1 − ε)/n, then the largest component of Gn,p has order O(log n), if p = 1/n

(critical probability), then it has order Θ(n2/3), while if p ≥ (1 + ε)/n, then it has linear order.
Both for fixed d ≥ 3 and for d = n − 1, the behaviour around the critical probability has

attracted a lot of interest. It is well established that the critical window in Gn,p around p = 1/n

is of order n−1/3 (see e.g. [21]). More precise estimates can be found in [14]. Benjamini posed
the problem of determining the width of the critical window in Gn,d,p around pcrit = 1/(d −
1) (see [20, 22]). Nachmias and Peres [20] and Pittel [22], independently showed that the
critical window exhibits mean-field behaviour for fixed d ≥ 3, namely, the following holds with

probability 1− o(1): for every fixed λ ∈ R, if p = 1+λn−1/3

d−1 , then L1(Gn,d,p) = Θ(n2/3). See also

Riordan [23] for more precise results on L1(Gn,d,p) in the critical window.
The case when d is an arbitrary function of n is much less understood. It follows from existing

results in the literature1 that for every d ∈ {3, . . . , n−1}, the critical probability for the existence
of a linear order component in Gn,d,p is 1/(d − 1). Results inside the critical window for given
d-regular graphs have also been obtained in the context of transitive graphs under the finite
triangle condition [4] or under certain expansion conditions [18].

Finally, similar results have been obtained for irregular degree sequences whenever the average
degree is bounded by a constant [3, 6, 7, 10].

In view that both the sparse regime (fixed d ≥ 3) and the densest one (d = n − 1) exhibit
similar properties, Nachmias and Peres [20] suggested that the mean-field behaviour extends to

The first author was supported by the EPSRC, grant no. EP/M009408/1.
1The non-existence of a linear order component when p ≤ (1 − ε)pcrit follows from Proposition 1 in [20]. The
existence of a linear order component when p ≥ (1 + ε)pcrit follows from the expansion properties of Gn,d (see
Corollary 2.8 in [13]) and the results on (n, d, λ)−graphs in [12].
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every d ∈ {3, . . . , n − 1}. In this paper we confirm this prediction in the critical window and
thus answer the question posed by Benjamini for all d ∈ {3, . . . , n− 1}.

Theorem 1. Suppose λ ∈ R and d, n ∈ N such that 3 ≤ d ≤ n − 1 and n is sufficiently large.

Let p = 1+λn−1/3

d−1 . Then for every sufficiently large A = A(λ), we have

P[L1(Gn,d,p) /∈ [A−1n2/3, An2/3]] ≤ 20A−1/2 .

The upper bound in Theorem 1 directly follows from the upper bound for d-regular graphs
in Proposition 1 in [20]. The proof of the lower bound is more intricate and we devote the rest
of the paper to it.

Most of the previous work on the component structure of Gn,d,p uses the configuration model
introduced by Bollobás in [2]. The configuration model, denoted by G∗n,d, is a model of random
d-regular multigraphs on n vertices. Conditional on G∗n,d being simple, one obtains the uniform

distribution on Gn,d. It is well-known (see for example [24]) that

P[G∗n,d simple] = e−Ω(d2) . (1)

While P[G∗n,d simple] is constant for fixed d ≥ 3, it quickly tends to 0 if d grows with n, and new
ideas are needed to study Gn,d. A standard tool to estimate probabilities for Gn,d when d grows
with n is the switching method, introduced by McKay in [16]. For instance, this method has
been used to estimate (1) for d = o(

√
n) [17] or to determine several combinatorial properties of

Gn,d when d grows with n [13].
The proof of the lower bound in Theorem 1 is based on the analysis of an exploration process

in Gn,d,p using the switching method. The central quantity that we track through the process is
the number of edges between the explored and unexplored parts of the graph, denoted by Xt.
Our proof relies on sharp estimations of the first and second moments of Xt.

This approach is inspired by recent developments of the switching method for the study of
the component structure of random graphs with a given degree sequence [7, 11]. We take this
opportunity to illustrate the use of our method with a simple proof that makes no assumptions
on d.

The critical window. Theorem 1 shows that the critical window has width Ω(n−1/3).
Proposition 1 in [20] implies that, as λ → −∞, the typical order of the largest component is

o(n2/3). Following analogous ideas as the ones used in the proof of Theorem 1, one obtains that,

as λ → ∞, the typical order of the largest component is ω(n2/3). More precisely, there exist

constants c, C > 0 such that for every 3 ≤ d ≤ n− 1 and λ > 0, if p = 1+λn−1/3

d−1 , then

P
[
L1(Gn,d,p) ≤ c · λn2/3

]
≤ Cλ−1 .

The proof of this statement is simpler than the proof of our main theorem, since the assumption
λ > 0 implies thatXt has positive drift. In particular, the first part of the exploration process can
be analysed using a first moment argument only and for the entire process it suffices to control
the variance of Xt from above. It follows that the width of the critical window is Θ(n−1/3).

In its current form, our method does not give sharp estimates for L1(Gn,d,p) in the barely
subcritical and barely supercritical regimes. However, we believe that similar estimates as the
ones in Lemma 6 hold in general and may be used to extend the results of Nachmias and Peres
in [20] to all d ∈ {3, . . . , n− 1}.

Diameter and Mixing Time. We present a consequence of Theorem 1. For a component
C, let diam(C) denote its diameter and let Tmix(C) denote the mixing time of the lazy random
walk on C. Theorem 1.2 in [19] implies the following corollary.

Corollary 2. Suppose λ ∈ R and d, n ∈ N such that 3 ≤ d ≤ n − 1 and n is sufficiently large.

Let p = 1+λn−1/3

d−1 . Let C be the largest component of Gn,d,p. Then, for every ε > 0, there exists

A = A(λ, ε) such that

P[diam(C) /∈ [A−1n1/3, An1/3]] < ε .
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and
P[Tmix(C) /∈ [A−1n,An]] < ε .

Organisation of the paper. The paper is organized as follows. In Section 2, we describe
our exploration process of Gn,d,p and introduce different quantities we will track during the
process. In Section 3, we present our main combinatorial tool (switching method) and prove
two technical lemmas. In Section 4, we use these lemmas to study a single step of the exploration
process. Finally, in Section 5, we conclude with the proof of the lower bound in Theorem 1.

2. The exploration process

Before describing the exploration process, we briefly introduce some notation. For a graph G,
a subset of vertices X of G, and a vertex u of G, we write dG(u) for the number of neighbours
of u in G and dG,X(u) for the number of neighbours of u in G that belong to X. We also write
∆(G) for the maximum degree of G. Finally, for p ∈ [0, 1], we write Gp for the graph where
each edge in G is independently retained with probability p.

We will use an exploration process to reveal the component structure of Gn,d,p. Let us denote
the vertex set by V , which we equip with a linear order (from now on V is always a vertex set
of size n). For technical reasons, we perform our exploration process not on Gn,d,p, but on what
we call an input. An input is a tuple (G,S), where G ∈ Gn,d and S = {σv}v∈V is a collection
of n permutations of length d. For each vertex of G, arbitrarily label the edges incident to it
with distinct elements from {1, . . . , d}. Thus every edge receives two labels. In fact, we may
think about this as a labelling of the semi-edges of G. Let I be the set of all inputs (G,S)
where G ∈ Gn,d and S is a collection of n permutations of length d. Observe that every graph
in G ∈ Gn,d gives rise to exactly (d!)n inputs. Thus, choosing an input uniformly at random
from I and ignoring the edge-labels is equivalent to choosing Gn,d. Let Sn,d be a collection of
n permutations of length d each chosen independently and uniformly at random. Hence, if an
input is chosen uniformly at random from I, then this input is distributed as (Gn,d,Sn,d).

Next, we describe our exploration process on an input (G,S). First, for every uv ∈ E(G), we
denote by I(uv) the indicator random variable that is 1 if uv belongs to Gp (it percolates) and
0 otherwise. If I(uv) is revealed, we say that the edge uv has been exposed. For each integer
t ≥ 0, the set St consists of the vertices explored up to time t (with S0 = ∅); the bipartite graph
Ft, with bipartition (St, V \St), consists of all edges in G between St and V \St that have been
exposed and have failed to percolate; and the graph Ht, with vertex set St, consists of all edges
in G within St, that is, Ht := G[St]. Let Ht be the history of all random choices we make until
time t (which we will treat as an event).

We now describe how to obtainHt+1, givenHt. Suppose there exists at least one vertex u ∈ St
such that dHt(u) + dFt(u) < d. Among all such vertices u, let vt+1 be the vertex which comes
first in the linear order of V . Let wt+1 be the vertex w ∈ V \St with vt+1w ∈ E(G) \E(Ft) that
minimizes σvt+1(`(w)), where `(w) is the label of the semi-edge incident to vt+1 that corresponds
to vt+1w. Thereafter, we expose vt+1wt+1. If I(vt+1wt+1) = 0, then we set St+1 := St, Yt+1 := 0,
Zt+1 := 0 and we let Ft+1 be the graph obtained from Ft by adding vt+1wt+1. If I(vt+1wt+1) = 1,
then we set

St+1 := St ∪ {wt+1}, Yt+1 := dFt(wt+1), Zt+1 := dG,St(wt+1)− Yt+1 − 1,

and we let Ft+1 be the graph obtained from Ft by deleting all edges incident to wt+1 and moving
wt+1 to the other side of the bipartition. Since Ht+1 = G[St+1], we also reveal all the edges
between wt+1 and St. Observe that Zt+1 counts the number of neighbours of wt+1 in St \{vt+1}
whose corresponding edge has not yet been exposed.

If dHt(u) + dFt(u) = d for all u ∈ St, that is, every edge incident to a vertex in St has
been exposed, then we pick a vertex x ∈ V \ St that minimises dFt(x) and set wt+1 := x,
St+1 := St ∪ {wt+1}, Yt+1 := dFt(wt+1), Zt+1 := 0 and we let Ft+1 be the graph obtained
from Ft by deleting all edges incident to wt+1 and by moving wt+1 to the other side of the
bipartition. Observe that, in any of the above-mentioned cases, |E(Ft+1)| ≤ |E(Ft)| + 1 and
hence |E(Ft)| ≤ t.



4 FELIX JOOS AND GUILLEM PERARNAU

A crucial parameter of our exploration process is the number of edges between St and V \ St
which have not yet been exposed:

Xt :=
∑
u∈St

(d− dHt(u)− dFt(u)) .

For the sake of simplicity, we define ηt+1 := Xt+1 −Xt. If Xt > 0, then

ηt+1 = −(1− I(vt+1wt+1)) + I(vt+1wt+1)(d− 2− Yt+1 − 2Zt+1) , (2)

and if Xt = 0, then

ηt+1 = d− Yt+1 . (3)

Note that Yt+1 and Zt+1 are measurable random variables givenHt and thus ηt+1 is a predictable
sequence with respect to Ht.

3. The switching method and some applications

In this section we explain the switching method and we present two simple applications. In
Lemma 3 we use the switching method to bound the probability from above that two vertices
are adjacent. In Lemma 4 we provide an upper bound on the expectation of the number of
neighbours of a vertex in a specified set of vertices.

Let G be a graph and let x1, x2, x3, x4 be distinct vertices of G. Suppose x1x2, x3x4 ∈ E(G)
and x1x4, x2x3 /∈ E(G). A switching on the 4-cycle x1x2x3x4 transforms G into a graph G′ by
deleting x1x2, x3x4 and adding x1x4, x2x3. Observe that the degree sequence of G is preserved by
the switching. In particular, if G is d-regular, then so is G′. Moreover, the switching operation
is reversible: if G can be transformed into G′ by a switching, then G can be also obtained from
G′ by a switching on the same 4-cycle. Finally, there is a natural way to extend the notion of a
switching from graphs to inputs by simply preserving the labels on each semi-edge.

Switchings can be used to obtain bounds on the probability that Gn,d satisfies a certain
property. Suppose A,B are disjoint subsets of Gn,d. Suppose that for every graph G ∈ A, there
are at least a switchings that transform G into a graph in B and for every graph G′ ∈ B, there
are at most b switchings that transform G′ into a graph in A. By double-counting the number
of switchings between A and B, we obtain a|A| ≤ b|B|. Thus aP[A] ≤ bP[B], where we define
P[S] := |S|/|Gn,d| for every S ⊆ Gn,d.

Lemma 3. Suppose d, n ∈ N such that 3 ≤ d ≤ n/4 and S ⊆ V such that |S| ≤ n/6. Let H
be a graph with vertex set S and let F be a bipartite graph with vertex partition (S, V \ S) with
∆(F ∪H) ≤ d. Let u ∈ S and v ∈ V \ S such that uv /∈ E(F ). Then

P[uv ∈ E(Gn,d) | Gn,d[S] = H, F ⊆ Gn,d] ≤
6(d− dH(u)− dF (u))

n
.

Proof. Let F+ be the set of graphs G ∈ Gn,d such that G[S] = H, F ⊆ G and uv ∈ E(G), and
let F− be the set of graphs G ∈ Gn,d such that G[S] = H, F ⊆ G but uv /∈ E(G). We will only
perform switchings that involve edges and non-edges that are not contained in E(H) ∪ E(F ).
This ensures that the graph G′ obtained from a switching also satisfies G′[S] = H and F ⊆ G′.

Suppose G ∈ F+. In order to bound the number of switchings from below it suffices to switch
on a cycle uvxy that satisfies xy ∈ E(G), uy, vx /∈ E(G), and x, y ∈ V \ S. There are at least
dn− 2d|S| ordered edges xy with both endpoints in V \ S. There are at most d2 edges xy such
that x is at distance at most 1 from v and at most d2 edges xy such that y is at distance at most
1 from u. Thus, there are at least dn − 2d|S| − 2d2 ≥ dn/6 switchings that transform G into
a graph in F−. Suppose now G ∈ F−. Then there are clearly at most d · (d − dH(u) − dF (u))
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switchings that transform G into a graph in F+. It follows that

P[uv ∈ E(Gn,d) | Gn,d[S] = H, F ⊆ Gn,d]

≤ d(d− dH(u)− dF (u))

dn/6
· P[uv /∈ E(Gn,d) | Gn,d[S] = H, F ⊆ Gn,d]

≤ 6(d− dH(u)− dF (u))

n
. �

Lemma 4. Suppose d, n ∈ N such that 3 ≤ d ≤ n/4 and S ⊆ V such that |S| ≤ n/6. Let H
be a graph with vertex set S and let F be a bipartite graph with vertex partition (S, V \ S) with
∆(F ∪H) ≤ d. Let v ∈ V \ S. Then

E[dG,S(v)− dF (v) | Gn,d[S] = H, F ⊆ Gn,d] ≤ 6d|S|/n.

Proof. For every k ≥ 0, let Fk be the set of graphs G ∈ Gn,d such that G[S] = H, F ⊆ G, and
dG,S(v)−dF (v) = k. As in Lemma 3, we will only perform switchings using edges and non-edges
that are not contained in E(H) ∪ E(F ).

Consider a graph in Fk. There are at most (d− dF (v)) · d|S| ≤ d2|S| switchings that lead to
a graph in Fk+1. For every graph in Fk+1, we can use a switching on a cycle uvxy that satisfies
uv, xy ∈ E(G) \ E(F ), uy, vx /∈ E(G) and u ∈ S, and v, x, y ∈ V \ S. There are k + 1 choices
for uv and, for any particular choice of uv, there are at least dn − 2d|S| − 2d2 ≥ dn/6 choices
for the (ordered) edge xy. Hence, there are at least (k+ 1)dn/6 switchings that lead to a graph
in Fk. Thus, for every k ≥ 0, we obtain

P[Fk+1] ≤ 6d|S|/n
(k + 1)

· P[Fk] . (4)

Let X be a Poisson distributed random variable with mean 6d|S|/n. Lemma 3.4 in [15] together
with (4) implies that for every m ≥ 0

P[dG,S(v)− dF (v) ≥ m | Gn,d[S] = H, F ⊆ Gn,d] ≤ P[X ≥ m] ,

which implies the statement of the lemma. �

4. Analysis of the exploration process

In this section we show how to control the expectation of ηt and η2
t . We first use Lemmas 3

and 4 to bound the expectation of Yt+1 and Zt+1 from above.

Lemma 5. Suppose d, n ∈ N such that 3 ≤ d ≤ n− 1 and n is sufficiently large. Fix p ∈ [0, 1].
Consider the exploration process described above on (Gn,d,Sn,d) with percolation probability p

and suppose t ≤ dn2/3. Conditional on Ht satisfying |St| ≤ 5n2/3, we have

E[Yt+1|Ht] ≤ 20dn−1/3 and E[Zt+1|Ht] ≤ 180dn−1/3 .

Proof. If Ht satisfies Xt = 0, then Yt+1 ≤ t/(n − |St|) ≤ 2dn−1/3 by our choice of wt+1 (we
always choose the vertex x that minimises dFt(x)) and |E(Ft)| ≤ t. Note that Zt+1 = 0 by
definition. Hence we may assume from now on that Xt > 0.

Note that if d ≥ n/4, then the lemma follows directly from the fact that Yt+1 ≤ |St| ≤ 5n2/3 ≤
20dn−1/3, and similarly for Zt+1. Thus, in the following we assume that d ≤ n/4.

Given w ∈ V \St such that vt+1w /∈ E(Ft), we apply Lemma 3 with S = St, F = Ft, H = Ht,
u = vt+1 and v = w to obtain

P[vt+1w ∈ E(Gn,d) | vt+1w /∈ E(Ft),Ht] ≤
6(d− dHt(vt+1)− dFt(vt+1))

n
.

Observe that we run our exploration process on inputs. In order to apply Lemma 3, we fix the
semi-edge labelings and perform switchings on the graphs.

Since σvt+1 is a random permutation, each edge incident to vt+1 that is not contained in
E(Ft) ∪ E(Ht) is chosen with the same probability to continue the exploration process. Hence,



6 FELIX JOOS AND GUILLEM PERARNAU

given that vt+1w ∈ E(Gn,d) \E(Ft), the probability that wt+1 = w is precisely (d− dHt(vt+1)−
dFt(vt+1))−1. Therefore,

P[wt+1 = w | vt+1w /∈ E(Ft),Ht]

= P[wt+1 = w | vt+1w ∈ E(Gn,d) \ E(Ft),Ht] · P[vt+1w ∈ E(Gn,d) | vt+1w /∈ E(Ft),Ht] ≤
6

n
.

Since P[wt+1 = w | vt+1w ∈ E(Ft),Ht] = 0, it follows that for every w ∈ V \ St

P[wt+1 = w | Ht] ≤
6

n
. (5)

Using that |E(Ft)| ≤ t, we conclude

E[Yt+1|Ht] =
∑

w∈V \St

dFt(w)P[wt+1 = w|Ht]
(5)

≤ 6

n

∑
w∈V \St

dFt(w) ≤ 6

n
· t ≤ 6dn−1/3 .

We now prove the second statement. Given w ∈ V \ St with P[wt+1 = w | Ht] > 0 (that is,
vt+1w /∈ E(Ft)), we apply Lemma 4 with S = St, F obtained from Ft by adding vt+1w, H = Ht,
and v = w, to obtain

E[Zt+1|Ht] =
∑

w∈V \St

E[Zt+1|wt+1 = w, vt+1w /∈ E(Ft),Ht]P[wt+1 = w | vt+1w /∈ E(Ft),Ht]

(5)

≤
∑

w∈V \St

6d|St|
n
· 6

n
≤ 180dn−1/3 . �

Lemma 6. Suppose µ ≥ 0 and d, n ∈ N such that 3 ≤ d ≤ n − 1 and n is sufficiently large.

Consider the exploration process described above on (Gn,d,Sn,d) with p = 1−µn−1/3

d−1 and suppose

t ≤ dn2/3. Conditional on |St| ≤ 5n2/3, then

E[ηt+1|Ht] ≥ −(570 + µ)n−1/3 and E[η2
t+1|Ht] ≥ d/4 .

Moreover, if Xt > 0, then E[η2
t+1|Ht] ≤ d.

Proof. First assume that Xt > 0. Recall that for any Ht and for any edge uv that has not been
exposed yet, we have E[I(uv) | Ht] = p = (1 − µn−1/3)/(d − 1). Recall that Yt+1 and Zt+1 are
measurable with respect to Ht. Taking conditional expectations on (2) and using Lemma 5, we
obtain

E[ηt+1|Ht] = −

(
1− 1− µn−1/3

d− 1

)
+

1− µn−1/3

d− 1
(d− 2− E[Yt+1|Ht]− 2E[Zt+1|Ht])

≥ −E[Yt+1|Ht] + 2E[Zt+1|Ht]
d− 1

− µn−1/3

≥ −380dn−1/3

d− 1
− µn−1/3 ≥ −(570 + µ)n−1/3 ,

since d ≥ 3.
Again, by Lemma 5 and (2), we obtain

E[η2
t+1|Ht] =

(
1− 1− µn−1/3

d− 1

)
(−1)2 +

1− µn−1/3

d− 1
E[(d− 2− Yt+1 − 2Zt+1)2 | Ht]

≥ d− 2

d− 1
+

(1− µn−1/3)(d− 2)2

d− 1
− 2(d− 2)(E[Yt+1|Ht] + 2E[Zt+1|Ht])

d− 1

≥ (1− µn−1/3)(d− 2)− 2(E[Yt+1|Ht] + 2E[Zt+1|Ht])

≥ (1− µn−1/3)(d− 2)− 760dn−1/3

≥ d/4 ,



CRITICAL PERCOLATION ON RANDOM REGULAR GRAPHS 7

where the last inequality holds since d ≥ 3 and n is sufficiently large. Observe that E[η2
t+1|Ht] ≤ d

follows from a similar argument as (d− 2− Yt+1 − 2Zt+1)2 ≤ (d− 2)2.
If Xt = 0, then clearly E[ηt+1|Ht] ≥ 0 and, since E[η2

t+1|Ht] = E[(d− Yt+1)2|Ht], similarly as

before, one can prove that E[η2
t+1|Ht] ≥ d/4. �

Lemma 7. Suppose µ ≥ 0 and d, n ∈ N such that 3 ≤ d ≤ n − 1 and n is sufficiently large.

Consider the exploration process described above on (Gn,d,Sn,d) with p = 1−µn−1/3

d−1 . Then, for

every fixed δ > 0 and all 0 ≤ t1 ≤ t2 ≤ 5dn2/3, we have

P
[
|St2 \ St1 | −

t2 − t1
d− 1

≥ −δn2/3

]
= 1− o(n−2) and

P
[
|St2 \ St1 | −

t2 − t1
d− 1

−
⌈

t2
5d/6

⌉
≤ δn2/3

]
= 1− o(n−2) .

Proof. We add a vertex to St either if I(vt+1wt+1) = 1 or if we start exploring a new component
of Gn,d,p at time t+1. Thus, |St2 \St1 | stochastically dominates a binomial random variable with

parameters t2 − t1 and (1 − µn−1/3)/(d − 1). A standard application of Chernoff’s inequality
implies the first statement.

Let At ⊆ St be the set of vertices that start a new component in Gn,d,p. For every 0 ≤
t ≤ 5dn2/3, let at := |At|, let ct := |St \ At| and let bt := |St \ (St1 ∪ At)|. Observe that ct is
stochastically dominated by a binomial random variable with parameters t and 1/(d−1). Using

Chernoff’s inequality, we have ct ≤ 8n2/3 with probability 1− o(n−2) for any t ≤ 5dn2/3.

We claim that for every 0 ≤ t ≤ 5dn2/3 and conditional on ct ≤ 8n2/3, we have at ≤ d t
5d/6e.

Indeed, the claim is true for t ∈ {0, 1}. Assume that t ≥ 2 and that the claim holds for every
t′ ∈ {0, . . . , t− 1}. If Xt−1 > 0, then at = at−1 and we are done. Thus, assume that Xt−1 = 0.
Let s be the largest integer s′ ∈ {0, . . . , t − 2} such that Xs′ = 0 (it exists since X0 = 0 and
t ≥ 2). Recall that ws+1 is a vertex x ∈ V \ Ss that minimises dFs(x). It follows that

dFs(ws+1) ≤ |E(Fs)|
n− (as + cs)

≤ s

n− ds/(5d/6)e − 8n2/3
≤ d

6
,

provided that n is large enough. Hence, Xs+1 ≥ 5d/6 and the process will not start a new
component for the next 5d/6 steps. In particular, s + 5d/6 ≤ t. This implies at = as + 1 ≤
d s

5d/6e+ 1 ≤ d t
5d/6e.

Since |St2 \ St1 | ≤ at2 + bt2 , the second part of the lemma now follows from the upper bound

on at2 (which holds as we assume ct ≤ 8n2/3) and an upper bound on bt2 obtained by Chernoff’s
inequality. �

5. Proof of Theorem 1

As we mentioned in the introduction, due to the result of Nachmias and Peres, we only need
to prove a lower bound. Since it suffices to prove the lower bound of the statement for λ ≤ 0,
we use the definition µ := −λ. We now present a brief overview of the proof. In the first phase,
we show that with probability at least 1−A−1/2, the process Xt exceeds A−1/4dn1/3 in the first
dn2/3 steps. In the second phase and conditional on the success of the first phase, we show
that Xt stays positive for at least 2A−1dn2/3 steps with probability at least 1 − A−1/2. From
standard concentration inequalities, this gives the existence of a component of order at least
A−1n2/3, concluding the proof. This proof strategy was introduced by Nachmias and Peres to
prove the same statement for fixed d ≥ 3 [20] and for d = n − 1 [21]. We remark that, in
comparison to [20], our analysis of the exploration process is simpler, as we do not need to track
the number of vertices x ∈ V \St which satisfy dFt(x) = k for k ∈ {0, 1, . . . , d}. If d ≥ 3 is fixed,
as in [20], almost every vertex x satisfies dFt(x) ∈ {0, 1}. However, this is no longer true if d
is an arbitrary function of n. We avoid the technicalities involved with this issue by averaging
over the values of dFt(x).
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First phase: We start with the definition of a few parameters. Let h := A−1/4dn1/3, T1 :=
5dn2/3/6 and T2 := 2A−1dn2/3. In addition, we define the following stopping times:

τh := min{t : Xt ≥ h} ∧ T1

τ1
S := min{t : |St| ≥ 3n2/3}
τ1 := τh ∧ τ1

S .

Recall that Xt+1 = ηt+1 +Xt. Note also that for every t < τ1, we have Xt ≤ h and |St| ≤ 5n2/3.
Hence, Lemma 6 implies that

E[X2
t+1 −X2

t |Ht] ≥ E[η2
t+1|Ht] + 2E[ηt+1Xt|Ht] ≥ d/4− 2 · (570 + µ)n−1/3h ≥ d/5 ,

provided that A is large enough with respect to µ (and thus, with respect to λ). Hence X2
t∧τ1 −

(t ∧ τ1)d/5 is a submartingale. By the Optional Stopping theorem for submartingales (see for
example [9] p.491), E[X2

τ1 −
d
5τ1] ≥ E[X2

0 ] = 0, which implies that E[τ1] ≤ 5
dE[X2

τ1 ]. Since

X2
τ1 ≤ (h+ d)2 ≤ 2h2, we obtain

P[τ1 = T1] ≤ E[τ1]

T1
≤

5E[X2
τ1 ]

dT1
≤ 10h2

dT1
= 12A−1/2 .

By Lemma 7 with t1 = 0 and t2 = T1, we have P[τ1
S ≤ T1] = o(1). Thus

P[{τh = T1} ∪ {τ1
S ≤ τh}] ≤ P[τ1 = T1] + P[τ1

S ≤ T1] ≤ 12A−1/2 + o(1) ≤ 13A−1/2 . (6)

We conclude that the event E := {τh < T1, τh < τ1
S} holds with probability at least 1− 13A−1/2.

In particular, with probability at least 1 − 13A−1/2, the random process Xt exceeds h before
time T1.

Second phase: Write P∗ and E∗ for the probability and the expectation conditional on E . We
define

τ0 : = min{t : Xτh+t = 0} ∧ T2

τ2
S : = min{t : |Sτh+t \ Sτh | ≥ 2n2/3}
τ2 : = τ0 ∧ τ2

S .

Consider the random variable
Wt := h−min{h,Xτh+t} .

Hence

W 2
t+1 −W 2

t ≤ (h−min{h,Xτh+t} − ητh+t+1)2 − (h−min{h,Xτh+t})2

= η2
τh+t+1 − 2ητh+t+1(h−min{h,Xτh+t})

≤ η2
τh+t+1 − 2ητh+t+1h .

If t < τ2 and n is sufficiently large, we can apply Lemma 6 and this leads to (provided A is
sufficiently large with respect to µ)

E∗[W 2
t+1 −W 2

t | Hτh+t] ≤ d+ 2 · (570 + µ)n−1/3 · h ≤ 2d .

Thus, W 2
t∧τ2 − 2d(t ∧ τ2) is a supermartingale. Similar as before, we use the Optimal Stopping

theorem to conclude that

E∗[W 2
τ2 ] ≤ 2dE∗[τ2] ≤ 2dT2 .

Thus

P∗[τ2 < T2] = P∗[τ0 < T2, τ
2
S > T2] + P∗[τ2

S ≤ T2]

≤ P∗[Wτ2 ≥ h] + P∗[|Sτh+T2 \ Sτh | ≥ 2n2/3]

≤ P∗[W 2
τ2 ≥ h

2] + o(1)

≤
E∗[W 2

τ2 ]

h2
+ o(1) ≤ 5A−1/2 ,
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where we used Lemma 7 with t1 = τh and t2 = τh + T2 for the second inequality. (Observe
that we cannot apply Lemma 7 directly, because we assume E holds and τh is a random time.
However, as τh ≤ T1, a simple union bound with t1 = k and t2 = k + T2 for all k ≤ T1 together
with the fact that P[E ] ≥ 1− 13A−1/2 ≥ 1/2, yields the desired result.) It follows that

P[{τ2 < T2} ∪ {τh = T1} ∪ {τ1
S ≤ τh}] ≤ P[{τh = T1} ∪ {τ1

S ≤ τh}] + P∗[τ2 < T2]

(6)

≤ 13A−1/2 + 5A−1/2 = 18A−1/2 .

Since all the vertices explored from time τh to τh+τ2 belong to the same component of Gn,d,p,

there exists a component of size at least |Sτh+τ2 \Sτh |. As τ2 = T2 = 2A−1dn2/3 with probability

at least 1 − 18A−1/2, by Lemma 7 with t1 = τh and t2 = τh + T2 (as above, strictly speaking,
we apply Lemma 7 with t1 = k and t2 = k+ T2 for all k ≤ T1 and use the fact that P[E ] ≥ 1/2)

with probability at least 1− 18A−1/2 − o(1) ≥ 1− 19A−1/2, there exists a component of size at

least A−1n2/3.
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