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Ab initio dissipative solitons in an all-photonic crystal resonator
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We identify dissipative solitons in a Kerr-nonlinear all-photonic crystal resonator by solving Maxwell’s
equations directly. The photonic crystal allows for diffraction management, leading to solitons with unique
properties. These results are compared to a mean-field model based on Bloch waves, finding excellent agreement
even for a high-contrast photonic crystal. By adjusting the quality factor and resonance frequencies of the
resonator, optimal Bloch cavity solitons in terms of width and pump energy are identified. In particular, the width
is independent of the quality factor, in contrast to the usual homogeneous cavity.
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The existence of localized solutions or cavity solitons (CSs)
in passive planar or ring resonators filled with a nonlinear
material is an intriguing fact. Typically they are found in
regions of bistability of the homogeneous solutions. Here they
may be associated with a modulational instability of the upper
branch. In the pioneering work [1] CSs are regarded as locked
switching waves of stable homogeneous solutions. Bistability
is not necessary to have CSs [2–4]. CSs belong to the class of
dissipative solitons, because of the permanent energy exchange
between the cavity and the environment.

Cavity solitons were found in resonators filled with different
nonlinear materials. In Refs. [1] and [3] the Maxwell-Bloch
equations for a two-level system were reduced to an equation
for the field with a saturable Kerr nonlinearity. One- and
two-dimensional (2D) stable CSs were found. In the simpler
case of a Kerr medium, stable 2D CSs were identified in a
narrow region in parameter space in Ref. [5]. In the case of
the full Maxwell-Bloch equations for two levels, CSs were
found in the limit of nascent bistability, where the dynamics
can be described by the Swift-Hohenberg equation [6]. A more
complicated case is a resonator filled with a material with a
second-order nonlinearity. A variety of CSs was found. The
system can be pumped either at the fundamental [4,7] or the
second harmonic frequency (for an overview, see Ref. [8]).

An important example is a resonator filled with a semicon-
ductor since it is more or less easily accessible to experiments.
2D CSs were predicted in Refs. [9] and [10] and found
experimentally in Refs. [11] and [12]. Earlier experimental
evidence of CSs was found in degenerate four-wave mixing
[13].

Recently the idea of combining a nonlinear cavity with
a photonic crystal (PhC) to tailor the diffraction properties
of light was proposed [14,15]. For a weak modulation of
the refractive index only in the transverse direction, one-
dimensional CSs were found for third- or second-order
nonlinearity [16,17]. More recently, for a cavity weakly
modulated in the transverse and the longitudinal direction,
one-dimensional so-called Bloch cavity solitons (BCSs) were
identified [14,15]. The periodicity of the weak modulation
has to be relatively large compared to the wavelength. This is
detrimental to the advantage of a diffraction-managed soliton,

allowing, for instance, for the reduction of the soliton width. In
order to exploit the diffraction management at most, also the
modulation should be on the smallest possible spatial scale.
This leads to the idea of spatial solitons in an intracavity PhC
with a strong index modulation on the wavelength scale.

Up to now CSs were treated as envelope solitons of
either paraxial roundtrip models for forward and backward
propagating waves, together with appropriate cavity boundary
conditions, or a mean-field approach for the transmitted field
derived from this. In this Rapid Communication we aim
at a direct simulation of Maxwell’s equations without an
approximation. This was performed by means of a nonlinear
version of the finite-difference time-domain (FDTD) method
[18], allowing also for the treatment of structures with a strong
dielectric modulation and for a direct proof of the above idea
of diffraction-managed solitons. We identify different types
of Bloch cavity solitons as a direct solution of Maxwell’s
equations. They are supported by a focusing or defocusing
nonlinearity and may have an extremely small width. We then
introduce a mean-field model based on Bloch waves to see
how this compares to the direct approach.

Maxwell’s equations with a Kerr nonlinearity in the time
domain are

∇ × H(r,t) = ∂D(r,t)
∂t

, ∇ × E(r,t) = −μ0
∂H(r,t)

∂t
,

D(r,t) = ε0ε(r)E(r,t) + ε0χ
(3)(r)|E(r,t)|2E(r,t), (1)

where E and H are the real electric and magnetic fields, ε0

and μ0 are the permittivity and permeability constants, ε is
the relative permittivity, and χ (3) is the nonlinear coefficient.
Note that within the FDTD method the divergence equations
are automatically fulfilled for all times. Both the linear and
nonlinear response are assumed to be instantaneous, i.e.,
material dispersion effects are neglected.

The configuration to start with is displayed in Fig. 1(a) (for
details of the geometry parameters, see the caption). This can
be considered as an effective index distribution of a membrane
with finite thickness, for instance, in air. We restrict ourselves
here to a 2D system in order to keep the computation time
within a reasonable amount. Apart from possible out-of-plane
losses which reduce the quality factor of the cavity, the results
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FIG. 1. (Color online) (a) Geometry of the all-PhC resonator (air holes in ε = 12.25). The radius of the holes is 0.12 μm. The period of the
cavity PhC a = 0.3 μm (rotated by 45◦), of the mirror PhCs 0.67

√
2a in the x direction and

√
2a in the y direction. (b) Hz, (c) Ex , and (d) Ey

components of the field of a BCS (case R2) for � = −3 and
√

χ (3)Hz,in = 0.000 15 A/V. Displayed is the absolute value of the fundamental
component of the time Fourier series of the field components. The computing window comprises 99 periods

√
2a in the y direction of which

20 are shown. There are perfectly matched layers in the x direction and periodic boundary conditions in the y direction.

should also hold for a membrane. We consider here the TE
case, i.e., the nonvanishing field components in the (x,y) plane
are Ex , Ey , and Hz. In our geometry also the mirrors are made
of photonic crystals. This allows for integrated fabrication and
easy tuning of parameters, such as the cavity length and mirror
reflectivity and thus the resonance frequencies and quality
factor.

The linear and nonlinear properties of the resonator for
plane wave incident fields are described in Refs. [19] and
[20], respectively. In the latter the occurrence of bistability
as a prerequisite for the existence of BCSs is discussed. To
have bistability the cavity must be sufficiently detuned from a
resonance frequency (see also below).

Pumping the cavity homogeneously, sufficiently detuned
from a resonance frequency, and adding a spatio-temporal
Gaussian to the pump cavity solitons can be excited. In our
numerical experiments a line source in the y direction is added
to Hz. Usually the homogeneous pump is within a range
included in the region of bistability. Since CSs typically have
a finite homogeneous plane wave or, in our case, a Bloch
wave background, this one has to be stable for them to exist.
An example with all field components is displayed in Fig. 1
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FIG. 2. (Color online) Transmittance of the linear resonator as
shown in Fig. 1(a) as a function of the perpendicular wave vector
(in terms of the perpendicular lattice vector G⊥ = √

2π/a) and the
frequency. For the value of a, see Fig. 1. The dashed lines are fourth-
order polynomial fits.

(note that only a fraction of the computing window is shown).
Due to the diffraction properties of the PhC, the nature of
the cavity resonances can be different (see Fig. 2). In all
cases we found BCSs. Adding a sufficiently phase-shifted
spatio-temporal Gaussian to the homogeneous pump, the BCS
can be erased again.

From Fig. 2 three different resonances can be identified
(in terms of the mean-field coefficients D(2),D(4)—see be-
low). First of all, the lowest-frequency resonance at λres =
1.558 67 μm (resonance wavelengths are given for normal
incidence k⊥ = 0) with a leading second-order term of the dis-
persion relation [normalized frequency �res = ωresa/2πc =
a/λres as a function of k⊥, where D(n) = ∂n�res(k⊥)/∂kn

⊥]
corresponds to the usual cavity solitons (normal diffraction or
positive D(2), focusing nonlinearity). Because the width and
pump power of these BCSs are relatively large, we focus on
the two other cases, denoted by R1 and R2. In the second case,
R2, at λres = 1.509 71 μm, the next, fourth-order, term (D(4))
of the dispersion relation has to be included since this term
prevails over the second-order term (D(2)) for |k⊥/G⊥| > 0.1.
For |k⊥/G⊥| < 0.1 the diffraction is normal and hence the
nonlinearity has to be focusing to have BCSs. Figure 1 displays
an example of case R2. For this case the range of existence
of BCSs, together with the bistable curve of steady extended
Bloch states, is shown in Fig. 3. BCSs exist in and near the
domain of bistability. The lower branch of the bistable curve
is stable, and the upper branch is modulationally unstable.
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FIG. 3. Bifurcation diagram of case R2 for � = −3. Solid
lines denote Bloch waves, and dots denote BCSs. The diagram
is recorded at a particular point of the system (maximum field
strength).
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FIG. 4. (Color online) Comparison of BCSs from the direct
approach (black filled line, slice in y direction within the cavity)
and the mean-field model (red/gray line). Scaling refers to the latter
one (a⊥ = √

2a). (a) Case R2 for � = −3, (b) case R1 for � = 3,
and (c) case R3 for � = −3. The dashed line in (c) is a solution of
the homogeneous cavity.

In the direct approach only stable states are accessible,
although modulationally unstable ones are accessible since
one transverse unit cell was used. The fourth-order term
leads to radiating tails similar to Cherenkov radiation [cf.
Fig. 4(a), black line] caused by resonant linear coupling
(see Ref. [15]).

In the first case, R1, at λres = 1.464 16 μm, the leading term
of the dispersion relation is fourth-order (vanishing D(2)) with
the same sign as in case R2 (negative fourth-order diffraction).
To have cavity solitons the nonlinearity has to be defocusing
here [cf. Fig. 4(b), black line]. In case R1 self-guiding of the
cavity PhC is optimal (cf. also Ref. [20] for oblique incidence).
Quality factors are Q = 2240 in case R2 and Q = 2370 in
case R1. The quality factors can be adjusted easily by adding
and removing rows of holes to and from the PhC mirrors. The
minimum time to excite a BCS (decay of transient oscillations)
is ∼10 ps (R1) or 20 ps (R2). The switching time increases
with the external pump. Unlike in the mean-field model
below, the switching time can be read off directly from the
simulation.

Now the direct approach solving Maxwell’s equations is
compared to the mean-field model based on Bloch modes.
Deriving equations for the slowly varying amplitudes of
forward and backward propagating Bloch modes (cf. Ref. [21])
and applying the boundary conditions imposed by the mirrors

as described in Ref. [22], the scaled mean-field equation for the
transmitted amplitude u around one of the resonances (ωres) is

i
∂u

∂t
+ D(2)

2

∂2u

∂y2
− D(4)

24

∂4u

∂y4
+ γ (i + �)u + |u|2u = uin,

(2)

where uin is the external pump, γ is the loss, � is the detuning,
and D(2),D(4) are the coefficients of the leading second- and
fourth-order terms of the dispersion relation mentioned above
(cf. also dashed lines in Fig. 2). Deriving Eq. (2) the loss is
given by 1/γ = τph = 2Lng(ωres)ρ/c(1 − ρ2), where τph is the
photon lifetime in the cavity, L is the cavity length, ng(ω) is the
group index of the cavity PhC, and ρ is the reflectivity of the
mirrors (in terms of the field amplitudes). The quality factor
of the cavity is then Q = ωresτph/2. For a given frequency
ω the normalized detuning from a resonance ωres is defined
as � = τph(ω − ωres). Note that mean-field equations with up
to fourth-order diffraction terms were used in Refs. [23] and
[24] to obtain localized solutions. In Figs. 4(a) and 4(b) the
resulting profiles are compared to the direct approach for the
examples of cases R2 and R1 (red solid line). There is excellent
agreement between the direct approach and the mean-field
model, thus confirming that the latter can be used also for PhCs
with a large modulation, provided that it is based on Bloch
modes.

An important issue, e.g., for possible applications, are the
pump power and the width of BCSs. Both should be as small as
possible. To have a small external pump intensity Ip, the quality
factor has to be large (Ip ∼ 1/Q2). But, on the other hand, for
the purpose of fast all-optical switching, the photon lifetime
and thus the quality factor should be small. Assuming, for
instance, a maximum acceptable photon lifetime τph = 15 ps
(switching frequency of order 0.1 THz) corresponds to a
quality factor of approximately Q = 10 000. As the photon
lifetime, the width of cavity solitons also increases with Q. But
here the cavity filled with a nonlinear PhC has an advantage.
For a homogenous cavity the scaling of the width is as

√
Q.

In the defocusing case R1 it scales only as 4
√

Q, which is
due to self-guiding. Usually a defocusing nonlinearity, for
instance, operating a semiconductor near resonance (slightly
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FIG. 5. (Color online) Minimal and maximal width of BCSs for
the different cases versus the quality factor.

021808-3



RAPID COMMUNICATIONS

ETRICH, ILIEW, STALIUNAS, LEDERER, AND EGOROV PHYSICAL REVIEW A 84, 021808(R) (2011)

below the band gap), is associated with large absorption and
slow relaxation times.

Toward a more optimal design of the present all-PhC cavity,
we proceed as follows. First, adding two rows of holes to
the PhC mirrors of the resonator increases the quality factor
of the cavity to Q = 9840. Second, the cavity length L is
increased by adding one row of holes. This shifts the resonance
frequency and hence changes the sign of the diffraction
with a small leading second-order term retaining the self-
guiding mechanism. We refer to this design with a resonance
wavelength λres = 1.479 12 μm as case R3. In Fig. 4(c) a BCS
solution of the direct approach is compared to the mean-field
model, and the homogeneous cavity. At least, relative to the
latter, the width is approximately four times smaller for case
R3. This width corresponds to the free-space wavelength.

Since there is excellent agreement between the direct
approach and the mean-field model, we use the latter for a
more detailed analysis of the BCS width. First, from Fig. 5
we see that the optimal self-guided case R1 is much more
advantageous than case R2. It can be seen that, as compared
to the homogeneous cavity case (dashed line), the soliton is
significantly narrower. In the optimal case R3 the width is
almost independent on Q. Here the ratio between fourth-
and second-order diffraction terms determines the absolute
minimum of the BCS width [15].

In the direct approach it is easy to determine the pump
power. For the optimal case R3 of Fig. 4(c), for ex-

ample, the amplitude of the incident plane wave is ap-
proximately Hz,in = 3.8 × 10−5/

√
|χ (3)| A/V. From this the

time-averaged longitudinal Poynting vector (pump intensity)
is Ip = 〈Sx〉 = √

μ0/(ε0ε)H 2
z,in/2. For the compound semi-

conductor GaAs with χ (3) = 1.4 × 10−18 m2 V−2 this gives
Ip = 5.5 MW cm−2. For an experimental realization in an
air-suspended membrane of a thickness of 0.3 μm for a
sufficiently broad Gaussian (10 solitons width) pump beam, a
power of several 100 mW is required. The amplitude of the
switching pulse is of the same order as the plane-wave pump.
But due to the high Q, the switching time in case R3 is four
times higher than in case R2.

In conclusion, we identified branches of Bloch cavity
solitons in an all-photonic crystal resonator for different types
of resonances by solving Maxwell’s equations directly. We
confirmed the validity of a mean-field model based on Bloch
modes even for large modulation of the PhC, comparing it to
the direct approach. The width and pump power of the BCSs
were optimized by adjusting the quality factor and length of
the cavity.
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