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Abstract: We obtain a characterization of observability for a class of linear systems which appear in multiagent
neural networks research. Due to the connection between mathematical concept of control dynamical systems
and cognitive control, there has been growing interest in the descriptive analysis of complex networks with linear
dynamics obtaining considerable advances in the description of the properties both structural and dynamical about
many aspects from everyday life. Notwithstanding, much less effort has been devoted to studying the observability
of the dynamics taking place on them. In this work, a review of observability concepts is presented and provides
conditions for observability of the multiagent systems.
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1 Introduction
As it is well known, many linear and time-invariant
dynamic systems can be conveniently expressed with
state space equations

ẋ(t) = Ax(t)
y(t) = Cx(t)
x(0) = x0 ∈ IRn

(1)

where x(t) ∈ IRn, and y(t) ∈ IRp are the system
state, control input and measurement output, respec-
tively. (A,C) ∈ Mn(IR) ×Mp×n(IR) are real con-
stant matrices.

Observability is a fundamental property for linear
time-invariant systems. The observability allows us
to determine if the initial states can be observed or
not from the exit, [19]. Observability character is an
important concept for neural networks systems.

Observability can be studied under different
points of view, for example structural observability,
on the other hand, analyze the property of a system
with its structure only, without the specific knowledge
of the values of its elements. The structural analysis
examines the connection between the structure of a
model and the functional dependence among its ele-
ments.

Another and not less important point of view to
analyze observability is the exact observability. The
exact observability reflects the same physical sense
that state x(t) is uniquely determined by output y(t)
(almost surely).

The brain can be structured is a deep recurrent

complex neuronal network. The term neural network
refers to a particular model for understanding brain
function, in which neurons are the basic computa-
tional units, and computation is interpreted in terms
of network interactions, (see [5]).

The brain neural systems permit humans to per-
form the multiple complex cognitive functions neces-
sary for daily life and these can alter their dynamics
to meet the demands of tasks, [5]. These aptitudes
are known as power control. The concept of cogni-
tive control is analogous to the mathematical concept
of control of dynamic systems used in engineering,
where the state of a complex system can be modu-
lated by the energy input. Neural network systems are
very attractive systems due to their structure predis-
poses certain components to specific control actions.
The neuronal sets of the brain can be designed as the
nodes of a complex system and the anatomical cables
of interconnection as the axes, this system exerts an
impact on the neural function. It is therefore plausi-
ble that the brain regulates cognitive function through
a process of transient network level control similar
to technological systems modelled mathematically as
complex systems, [10], [14]. Although the complete
understanding of the relationship between mathemat-
ical control measures and the notions of cognitive
control of neuroscience are difficult to achieve, small
advances in the study can favour the study and ac-
tion against learning difficulties such as dyscalculia or
other disturbances like the phenomena of forgetting,
(see [10], [9], for example).

The study of the control of complex networks
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with linear dynamics has gained importance in both
science and engineering. Observability of a dynami-
cal system has being largely studied by several authors
and under many different points of view, (see [1], [2],
[5], [20], [3], [12], [15], [7], [8], [16] and [21], for
example).

Another important aspect of control is the notion
of input observability that describes the ability of an
external data to move the output from any initial con-
dition to any final in a finite time. Some results about
can be found in [7].

In this paper we analyze observability properties
for multiagent neural network to be applied to neuro-
science problems.

2 Preliminaries

2.1 Algebraic Graph theory
We consider a graph G = (V, E) of order N with the
set of vertices V = {1, . . . , N} and the set of edges
E = {(i, j) | i, j ∈ V} ⊂ V × V .

Given an edge (i, j) i is called the parent node and
j is called the child node and j is in the neighbor of i,
concretely we define the neighbor of i and we denote
it by Ni to the set Ni = {j ∈ V | (i, j) ∈ E}.

The graph is called undirected if verifies that
(i, j) ∈ E if and only if (j, i) ∈ E . The graph is called
connected if there exists a path between any two ver-
tices, otherwise is called disconnected.

Associated to the graph we can consider a matrix
G = (gij) called unweighted adjacency matrix de-
fined as follows aii = 0, gij = 1 if (i, j) ∈ E , and
gij = 0 otherwise.

(In a more general case we can consider a
weighted adjacency matrix is A = (aij) with aii = 0,
aij > 0 if (i, j) ∈ E , and aij = 0 otherwise).

The adjacency matrix corresponding to the graph
given in figure 1,

Figure 1: Neural Network.

is as follows

A =



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

a13 a12 0 0 0 0 0 0 0 0 0
0 0 a34 0 a54 0 0 0 0 0 0
0 0 a35 0 0 a65 0 0 0 0 0
0 0 a36 0 a56 0 0 0 0 0 0
0 0 0 a47 a57 0 0 a87 0 0 0
0 0 0 0 a58 a68 a78 0 0 0 0
0 0 0 0 0 0 a79 a89 0 0 0
0 0 0 0 0 0 a710 0 0 0 0
0 0 0 0 0 0 a711 a811 0 0


The Laplacian matrix of the graph is

L = (lij) =


|Ni| if i = j
−1 if j ∈ Ni

0 otherwise
For more details about graph theory see [23].
A possible manner to study the control of the neu-

ral networks can be associating a dynamical system to
graph:

ẋ(t) = Ax(t)
y(t) = Cx(t)

(2)

where
x =

(
x1 . . . xn

)t
stands for the states nodes,

A = (aij) is the adjacency matrix to the graph where
aij represents the weight of a directed link from node
i to j and C is the p× n outputs matrix.

2.2 Observability Properties
The observability character can be computed by
means of the well-known Kalman’s rank condition

Proposition 1 ([13]) The system 2 is controllable if
and only if:

rank


C
CA

...
CAn−1

 = n (3)

or by means the Hautus Test for observability of linear
dynamical systems.

Proposition 2 ([11]) The system 2 is controllable if
and only if:

rank

(
sI −A
C

)
= n, ∀s ∈ IC

}
. (4)

To solve this challenging task of to ensure con-
trollability and observability, Y. Y. Liu et al. [18] pro-
posed the maximum matching algorithm based on the
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network representation of the A matrix to select the
control and observer nodes that ensure controllable
and observable systems.

We recall now the concept of structural controlla-
bility. Structural controllability is a generalization of
the controllability concept. It is of great interest be-
cause many times we know the entries of the matrices
only approximately. Roughly speaking, a linear sys-
tem is said to be structurally controllable if one can
find a set of values for the parameters in the matri-
ces such that the corresponding system is controllable.
More concretely, the definition is as follows.

Definition 3 The system ẋ(t) = Ax(t), y(t) =
Cx(t)is structurally observable if and only if ∀ε > 0,
there exists a completely observable system ẋ(t) =
A1x(t), y1(t) = C1x(t) of the same structure as
ẋ(t) = Ax(t), y(t) = Cx(t) such that ‖A1 −A‖ < ε
and ‖C1 − C‖ < ε.

Recall that, a dynamic system ẋ(t) =
Ax(t), y(t) = Cx(t) is has the same structure
as another system ẋ(t) = A1x(t), y1(t) = C1x(t), of
the same dimensions, if for every fixed zero entry of
the matrices A and C, the corresponding entry of the
matrices A1 and C1 is fixed zero and vice versa.

A dual concept is the structural controllability
concept, [17].

Definition 4 The linear system ẋ(t) = Ax(t)+Bu(t)
is structurally controllable if and only if ∀ε > 0,
there exists a completely controllable linear system
ẋ(t) = Ax(t) + Bu(t), of the same structure as
ẋ(t) = Ax(t) + Bu(t) such that ‖A − A‖ < ε and
‖B −B‖ < ε.

Analogously, a linear dynamic system ẋ(t) =
Ax(t)+Bu(t) has the same structure as another linear
dynamical system ẋ(t) = Ax(t)+Bu(t), of the same
dimensions, if for every fixed zero entry of the pair of
matrices (A,B), the corresponding entry of the pair
of matrices (A,B) is fixed zero and vice versa.

Definition 5 The system x(k + 1) = Ax(k), y(k) =
Cx(k) is called exactly observable, if for any T > 0,
it is verified that if y(t) ≡ 0,∀t ∈ [0, T ], then x0 = 0.

A dual concept is the exact controllability asking
for the minimum number of controls are needed to
make the system controllable. More concretely, given
a state space representation of a homogeneous linear
dynamical system ẋ(t) = Ax(t).

Definition 6 The exact controllability nD(A) is the
minimum of the rank of all possible matrices B mak-

ing the system 2 controllable.

nD(A) =
min {rankB, ∀B ∈Mn×i 1 ≤ i ≤ n (A,B)

controllable}.

Proposition 7 ([24])

nD = maxi {µ(λi)}

where µ(λi) = dimKer (A − λiI) is the geometric
multiplicity of the eigenvalue λi.

3 Observability of multiagent neural
networks

The complexity of the brain drives that in order to
study control problems, the global model is divided
into several local submodels, each with its complex
and interrelated network structure. Structuring, in this
way, the brain as a neuronal multi-network with a
common goal.

Let us consider a group of k agents. The dynamic
of each agent is given by the following linear dynam-
ical systems

ẋi(t) = Aix
i(t)

yi(t) = Cix
i(t),

(5)

xi(t) ∈ IRn, yi(t) ∈ IRp, 1 ≤ i ≤ k.

zi(t) =
∑
j∈Ni

C(xi − xj).

Writing

X (t) =

 x1(t)
...

xk(t)

 , Ẋ (t) =

 ẋ1(t)
...

ẋk(t)

 ,

A =

 A1

. . .
Ak

 , C =
 C1

. . .
Ck

 .
Following this notation, we can describe the mul-

tisystem as a system:

Ẋ (t) = AX (t)
Y(t) = CX (t). (6)

Clearly, this system is observable if and only if
each subsystem is observable, and the condition can
be written as
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rank



C1

. . .
Ck

C1A1

. . .
CkAk

...
C1A

n−1
1

. . .
CkA

n−1
k



=

rank


C
CA

...
CAn−1

 = n · k,

but we are interested in the case where the agents
of the system are interrelated by the communication
topology among agents.

Then, we consider the undirected graph G with

i) Vertex set: V = {1, . . . , k}

ii) Edge set: E = {(i, j) | i, j ∈ V } ⊂ V × V

defining the communication topology, and con-
sidering it, the outputs are modified as zi =
Ci
∑

j∈Ni
(xi(t)− xj(t)) for all 1 ≤ i ≤ k and defin-

ing

Z(t) =


∑

j∈N1
x1(t)− xj(t)

...∑
j∈Nk

xk(t)− xj(t)


the output of the system is rewritten as

Y(t) = CZ(t).

That using Kronecker product is expressed in the
form

Y(t) = C(L ⊗ In)X (t).

Theorem 8 The system Ẋ (t) = AX (t),Y(t) =
C(L ⊗ In)X (t) is observable if and only if

rank


C(L ⊗ In)
C(L ⊗ In)A

...
C(L ⊗ In)An−1

 = n · k.

Proof: The system Ẋ (t) = AX (t),Y(t) = C(L ⊗
In)X (t) is observable if and only if

rank


C(L ⊗ In)
C(L ⊗ In)A

...
C(L ⊗ In)Akn−1

 = n · k.

But taking into account Cayley-Hamilton theo-
rem, An =

∑n−1
i=0 Ai. Then

rank


C(L ⊗ In)
C(L ⊗ In)A

...
C(L ⊗ In)Akn−1

 =

rank


C(L ⊗ In)
C(L ⊗ In)A

...
C(L ⊗ In)An−1


ut

Corollary 9 Equivalently, the system Ẋ (t) =
AX (t),Y(t) = C(L ⊗ In)X (t) is observable if and
only if

rank



l11C1 . . . l1kC1
...

...
lk1Ck . . . lkkCk

l11C1A1 . . . l1kC1Ak
...

...
lk1CkA1 . . . lkkCkAk

...
...

l11C1A
n−1
1 . . . l1kC1A

n−1
k

...
...

lk1CkA
n−1
1 . . . lkkCkA

n−1
k



= n · k.

Example 10 We consider 3 agents with the following
dynamics of each agent

ẋ1 = A1x
1

ẋ2 = A2x
2

ẋ3 = A3x
3

(7)

with A1 = A2 = A3 =

(
0 −0.1
1 −0.5

)
, 0 , and C =(

0 1
)

.
The communication topology is defined by the

graph (V, E):
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V = {1, 2, 3}
E = {(i, j) | i, j ∈ V } = {(1, 2), (1, 3)} ⊂

V × V
The neighbors of the parent nodes are N1 =

{2, 3}, N2 = {1}, N3 = {1}.
The Laplacian matrix of the graph is

L =

 2 −1 −1
−1 1 0
−1 0 1


We have that

C(L ⊗ In) =

0 2 0 −1 0 −1
0 −1 0 1 0 0
0 −1 0 0 0 1



A =



0 −0.1 0 0 0 0
1 −0.5 0 0 0 0
0 0 0 −0.1 0 0
0 0 1 −0.5 0 0
0 0 0 0 0 −0.1
0 0 0 0 1 −0.5



rank

(
C(L ⊗ In)
C(L ⊗ In)A

)
=

rank



0 2 0 −1 0 −1
0 −1 0 1 0 0
0 −1 0 0 0 1
2 −1 −1 0.5 −1 0.5
−1 0.5 1 −0.5 0 0
−1 0.5 0 0 1 −0.5


= 4

Then, the system is not observable.

Remark 11 Notice that, if we consider the multisys-
tem without communication topology, then the system
is observable:

rank

(
C
CA

)

rank



0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
1 −0.5 0 0 0 0
0 0 1 −0.5 0 0
0 0 0 0 1 −0.5


= 6.

We are involved in possible output injections in such
a way that the new matrix of the system has arbitrary
spectrum, that is to say, we are interested in estimators

WCi

∑
j∈Ni

(xi − xj)

such that the system has prescribed eigenvalues.

Proposition 12 Considering the estimator
WCi

∑
j∈Ni

(xi(t) − xj(t)), for all 1 ≤ i ≤ k
the closed-loop system can be described as

Ẋ (t) = AX (t) +WZ(t).

whereW =

 W
. . .

W

.

Computing the matrixA+WC(L⊗In) we obtain


A1 + l11WC1 l12WC1 . . . l1kWC1

l21WC2 A2 + l22WC2 . . . l2kWC2
...

...
. . .

...
lk1WCk lk2WCk . . . lkkWCk


Example 13 Taking the multiagent system consid-
ered in example 10 we have that, t aking K =(
k `

)
The matrix of the system is


0 −0.1 + 2v 0 −v 0 −v
1 −0.5 + 2w 0 −w 0 −w
0 −v 0 −0.1 + v 0 0
0 −w 1 −0.5 + w 0 0
0 v 0 0 0 −0.1 + v
0 −w 0 0 1 −0.5 + w


Taking W =

(
−0.5
−0.2

)
the eigenvalues are

−0.5500 + 1.1391i, −0.5500 − 1.1391i, −0.2500 +
0.1936i, −0.2500 − 0.1936i, −0.3500 + 0.6910i,
−0.3500 − 0.6910i, then the system has a stable so-
lution.

As we can see in the example, all agents on the
multi-agent system, have an identical linear dynamic
mode. In this particular case proposition 12 can be
rewritten in the following manner (see [4], [22]).

Proposition 14 Taking the control ui(t) =
K
∑

j∈Ni
(xi(t) − xj(t)), 1 ≤ i ≤ k the closed-loop

system for a multiagents having identical linear
dynamical mode, can be described as

Ẋ (t) = ((Ik ⊗A) + (Ik ⊗ CW )(L ⊗ In))X (t)
Y(t) = C(L ⊗ In)X (t).
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4 Conclusions
The observability for multiagent systems with com-
munication topology are analyzed. We shown that
the observability of each subsystem is not sufficient
condition for observability of multiagent system with
communication topology.

In this paper, a criterium for checking observabil-
ity is presented.
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