
Non-Functional Requirements in Model-Driven Development of
Service-Oriented Architectures

David Ameller, Xavier Burgués1, Dolors Costal, Carles Farré, and Xavier Franch
{dameller|diafebus|dolors|farre|franch}@essi.upc.edu
Departament ESSI - Universitat Politècnica de Catalunya

Jordi Girona Salgado 1 - 3
08034 Barcelona, Spain

Abstract. Any software development process needs to consider non-functional requirements
(NFR) in order to deliver a system that complies with its stakeholders’ expectations. In a
previous mapping study about model-driven development (MDD) for service-oriented
architectures (SOA) we found a limited number of approaches managing NFR. The present
work aims at analysing in detail the state of the art in the management of NFR in MDD
processes which produce SOA. We have conducted a systematic literature review following a
rigorous protocol. We have taken as initial point the mapping study mentioned above and
have used the subset of the 31 papers from this study (clustered into 15 approaches) that
referred to NFR. We have analysed them qualitatively in order to answer six research
questions. We have built a Software Engineering theory to formalize this analysis. As result we
highlight that most of approaches focus exclusively on security and reliability and we observe
that NFR are expressed mainly as annotations of functional models represented in UML. From
our perspective, existing research on the topic of this study is still scarce and without any
evidence of transferability to industry. This situation suggests the need for further
investigation efforts in order to produce validated MDD methods capable of generating SOA
satisfying NFR stated by stakeholders.

Keywords. Model-Driven Development; Non-Functional Requirements; NFR; Quality
Requirement; QR; Service-Oriented Architecture; State of the Art; Systematic Literature
Review; Software Engineering Theory.

Funding: This work has been partially supported by the Spanish MICINN [project TIN2016-
79269-R].

1 Introduction
In the last fifteen years, the study of Service-Oriented Computing (SOC) [1] has attracted a lot
of attention from researchers and practitioners. There are several reasons for this success,
both purely technological (related to reusability, modularity, etc.) and business-wise
(outsourcing of development efforts, pay-per-use, etc.).

As with any other emerging computing paradigm, SOC is not an isolated discipline. Instead, it
has to be integrated into the software lifecycle. As a consequence, the relationship of SOC
with other orthogonal software engineering streams deserves careful consideration in order
to discover opportunities and uncover challenges. In this paper, we are interested in one such
stream, namely Model-Driven Development (MDD).

1 Corresponding author.

© 2018 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

According to Mellor et al., MDD pushes the vision that we can construct a model of a system
and then transform it into the real thing [2]. If we apply this description in the context of SOC,
the “model of a system” is actually a Service-Oriented Architecture (SOA) model, a model that
reflects the structure of the SOC application [1]. In fact, OMG released in 2012 a standard
named SOA Modeling Language (SoaML [3]) which links SOA and MDD.

Some of the authors of this paper participated in a mapping study that described the state of
the art of MDD approaches that produce SOAs [4]. One of the objectives of this mapping study
was to identify which of these approaches were able to handle Non-Functional Requirements
(NFR). From the 129 papers selected in the mapping study, only 31 mentioned some kind of
support of NFR management in their MDD approach. The mapping study, however, pointed
out the significant influence of NFR in software systems. It also hinted that the approaches
were providing in general very limited support to NFR. However, given the descriptive nature
of mapping studies, the evidence was rather sketchy and required further investigation in
order to be more conclusive. Petersen et al. recommend systematic literature reviews as the
natural research instrument for conducting such subsequent research [5].

Following this advice, we present in this paper a Systematic Literature Review (SLR) to delve
into the MDD approaches for SOA that support NFR and provide a detailed view of the current
state of the art on this particular topic. This SLR is based on the results obtained in the
previously mentioned mapping study (i.e., we consider as the starting point the 31 papers out
of 129 that mentioned some kind of NFR support in the mapping study). A more in-depth
analysis of the approaches is possible in this SLR due to the more manageable number of
papers. A greater number of issues can be studied in a more qualitative way and it is feasible
to cluster the papers reporting the same proposal in a single group for analysis purposes.
Moreover, we make a further step and propose a Software Engineering theory [6] in which
we summarize and formalize the results that we have obtained and the analysis that we have
made of them. Further research may take advantage of this theory by validating, refining
and/or extending its propositions.

The paper is organized as follows: Section 2, the necessary background for the paper; Section
3, the methodology used, including the research questions; Section 4, the results obtained for
each research question; Section 5, the discussion of the results; Section 6, the Software
Engineering theory that we derive from such a discussion; and Section 7, the conclusions and
future work.

2 Background
The three major research topics related to this SLR are described in the next subsections.

2.1 Model-Driven Development

Model-Driven Development (MDD) [2] is a generalization of the OMG’s Model-Driven
Architecture (MDA) initiative [7], which is proposing since 2000 a comprehensive approach to
develop, analyse and reason about software, specifications and related artefacts. Integration
and interoperability are the main goals of MDD and the use of models is the key driver to
achieve these goals.

Figure 1 shows the typical MDD process transiting through different models at different levels
of abstraction [8]. To structure the presentation, we use the MDA models classification
because it is a well-known classification and it provides a common ground to analyse the

different MDD approaches found in the literature. The Computational Independent Model
(CIM) describes the context and requirements of the system but does not address its structure
or processing. This model is transformed into another one, the Platform Independent Model
(PIM), through a Model-to-Model (M2M) transformation. Historically in MDA the term “CIM”
has been used for a pure business model, one that may need additional system design
decisions applied to produce a PIM for a system [7]. The PIM considers the operational
capabilities of the application in a platform-neutral way, showing only those parts that can be
abstracted out of any platform. Through a subsequent M2M transformation, the Platform
Specific Model (PSM) adds to a PIM the details related to the use of a specific platform or set
of platforms. Finally, the code (or other development related artefact) is produced by
transforming the PSM into a textual representation using a Model-to-Text transformation
(M2T). It should be remarked that Figure 1 shows a conceptual view of MDD, since there may
be lots of variations; some typical ones are: absence of CIM; coexistence of different PIMs
and/or PSMs; transformations over the same type of models; etc.

Figure 1: Models and transformations of MDD

Given such an intensive use of models, there is general agreement that metamodeling is an
essential foundation for MDD [9]. Defining the corresponding transformation rules, it is
possible to relate and to derive a target model from a source one. The extent to which this
process is supported by some tool is a fundamental characteristic of every MDD approach.

Besides the classical top-down development, in which the process starts with a CIM and ends
with code, there can also be contexts in which the interest is to derive a PIM from another
PIM or even from a PSM. In fact, any kind of transformation may be useful, depending on the
targeted activity (integration of legacy systems, coordination of services, etc.).

2.2 Non-Functional Requirements

Non-Functional Requirements (NFR) are one of the main research targets of the requirements
engineering research community [10]. There are dozens of definitions of the concept of NFR
(see [9, 11]). For example, they have been defined as: “(...) global requirements on [the
system] development or operational cost, performance, reliability, maintainability,
portability, robustness, and the like.” [12]. However there is no common agreement on the
concrete meaning of the term NFR [10].

Some other terms have been formulated with similar meaning than NFR. Among them, we
mention quality requirement (QR), defined as “is a requirement that pertains to a quality
concern that is not covered by functional requirements” [13]. For the purposes of this work,
we consider the concept of QR as a synonymous of NFR. Even if this decision could be a matter
of discussion, it allows increasing the scope of our study and providing a wider view of the
state of the art on this topic. Given our interest in SOA, another relevant term is Quality of
Service (QoS), defined as “the totality of features and characteristics of a product or service
that bear on its ability to satisfy stated or implied needs” [14].

One main issue in dealing with NFR is their classification into some taxonomy. Software
quality attributes (QAs) can be used with this purpose. There are many proposals, being the
ISO/IEC 25010 quality standard [15] the most widespread one. We will target NFR as specific

CIM PIM PSM Code
M2M M2M M2T

requirements of a particular software product, and NFR types (also known as non-functional
properties) as general quality aspects of a software product.

2.3 Service-Oriented Architecture

Service-Oriented Architecture (SOA) is a software architectural style that uses services as the
main building component [16]. A service, as a software component, is a mechanism to enable
access to one or more capabilities [17]. Some of the most distinguishing characteristics of SOA
are [16]:

 Reusability: Since services are defined as autonomous software components that expose
some generic, well-defined functionality, it should be easy to reuse them in a different
context or project.

 Scalability: Services can be deployed in more than one place. This characteristic brings
many opportunities, for instance, the possibility of increasing the number of available
services when there is more user demand.

 Flexibility: SOA provides means to publish and discover new services. These facilities allow
adapting the service compositions of the architecture in order to fulfil some goal at
runtime, normally related to some NFR type, e.g., performance. The flexibility of SOA is
highly aligned with business principles (e.g., service provider and pay-per-use). This
alignment with business is one of the keys to its success.

SOA is a technology-independent architectural style, although the most common
implementation of SOA relies on Web Services (the ones adhered to W3C/OASIS protocols
[18, 19]) and, more recently, on REST Services (also known as RESTful Web Services) [20]. One
of the reasons that favours the adoption of MDD approaches to produce SOAs is that
developers can reduce the learning curve of the related technologies and standards, for
example, in the case of Web Services, developers would have to cope with a huge amount of
notations such as WSDL, UDDI, SOAP, XML, WS-Security, WS-BPEL, etc.

2.4 Relevance of the topic

Dealing with NFR is a major challenge in software development. The lack of integration of NFR
with functional requirements can result in long time-to-market and more expensive projects
[11, 21]. Practical impact of NFR has been acknowledge by the research community [16] and
has been documented in many studies conducted in industry [22]. Neglecting NFR during
software development is a top-ten risk [23], and errors in considering them are the most
expensive and difficult to correct [21]. Their influence on the software architecture field is
paramount, including architectural design [24], component selection [25] and architecture
evaluation [26].

MDD is not an exception to this particular situation. Some mapping studies related to MDD
identify NFR-related topics as relevant topics in their studied areas. For instance, Wakil and
Jawawi identifies “testing & quality” which includes “security” and “QoS” topics as one of the
research focuses in model driven web engineering [27]. Meanwhile, Mehmood and Jawawi
identifies “Code generation from specification of non-functional requirements” as one of the
research topics in aspect-oriented model-driven web generation [28]. Being supported or not
by MDD approaches, practitioners have to deal with NFR in one way or another but as pointed
out in [4, 29], only a few MDD approaches include some kind of support for NFR (see Ameller
et al. [29] for details on concrete approximations). An ongoing interview-based study with

practitioners (whose protocol is reported in [30]) will help to provide more light to the current
state of practices at this respect. Last, it is important to remark that we have selected a
restricted scope (SOA systems) in purpose. NFR are a general concept to software
development, but they can be interpreted and operationalized in different ways depending
on a particular software domain or type of system like SOA systems are. We think that
opening the scope to other domains would have been an additional and unnecessary threat
to the validity of our results.

3 Research Methodology
The study conducted in this paper is a Systematic Literature Review (SLR). It has emerged as
a result of a previous mapping study performed by some of the authors in the broader topic
of MDD for SOA [4]. As reported by Petersen et al. [5], one of the objectives of a mapping
study is to call for SLRs that investigate in depth some particular aspect hinted in the mapping
study. In our case, one of the research questions in the mapping study was “Do these
approaches [MDD approaches for SOA] deal with NFR?” The conciseness in the response to
this research question in the mapping study was related to the type of analysis used
(quantitative) and the fact that only 31 papers mentioned support for NFR. To explore this
topic in more depth, in this SLR, we use qualitative analysis (see Section 3.3) and explore
additional research questions (see Section 3.1).

In the rest of the section we describe the methodology used for the SLR. We have adopted
Kitchenham et al.’s guidelines [31, 32] with the particularity that the initial steps of the SLR
correspond to the ones in the mapping study.

3.1 Research Questions

This SLR addresses six Research Questions (RQ), five on the topic of study and one to assess
the maturity of the primary studies. Table 1 lists the six RQs. It is worth to remark that RQ1
and RQ3 were also present in the mapping study, but in this SLR we provide more detailed
answers; furthermore, the type of analysis differs from the one used in the mapping study
(see Section 3.3).

Table 1: Research questions of the SLR

RQ1 What types of NFR do MDD approaches for SOA explicitly deal with?
RQ2 Which degree of genericity do the approaches present?
RQ3 What notations do the approaches use for specifying NFR for SOA?
RQ4 Which level of abstraction do the approaches present?
RQ5 What is the role of NFR in the MDD process for SOA?
RQ6 How much evidence is available to adopt the proposed approaches?

With RQ1 we intend to have a clear picture of the types of NFR that are being supported by
the surveyed MDD approaches. We consider that a given MDD approach supports NFR when
1) they are explicitly specified in some input models and/or 2) are taken into account when
generating the output models or code. We will also analyse the terminology used by the
researchers to refer to the NFR types and normalize it according to the ISO/IEC 25000 quality
standard [15]. This RQ has two dual goals: on the one hand, we will identify in which topics
researchers are investing the most effort to support NFR in MDD for SOA; on the other hand,
we will identify the types of NFR that are being omitted.

A second aspect of the study is the degree of genericity (RQ2), meaning the flexibility of the
MDD approach to deal with NFR. We classify approaches as generic when they deal with any
type of NFR, and specific when they treat a predetermined set of concrete NFR types. The
degree of genericity is relevant to understand the current state of the art because it shows
how deep or wide the studied approaches are.

RQ3 covers the notation for NFR used in the MDD approaches. With this RQ we want first to
record the different notations used in the approaches studied. Also, we will discuss to what
extent these notations are expressive (i.e., able to represent different types of NFR),
understandable, and reusable (i.e., can be extended/adapted in other contexts or
approaches).

Another aspect to consider is the level of abstraction of the NFR (RQ4) when represented with
the approach’s notation. By level of abstraction we refer to the conceptual distance of the
representable NFR from the solution space, in other words, how much operationalised are
the representable NFR.

With RQ5 we want to understand how the NFR are used in the MDD processes for SOA. To
answer this RQ we will provide a classification of the approaches by the given uses of NFR. In
particular, we want to identify at which stage of the MDD process NFR are introduced and
how they are incorporated into the solution together with the functional part. We also want
to identify how NFR are transformed from model to model.

Finally, in RQ6 we determine the maturity of the approaches by assessing their readiness level
based on the evidence provided in the primary studies. The insights to answer this RQ are
based on another SLR conducted by Alves et al. [33] together with the analysis of tool
availability to support the surveyed approaches.

3.2 From the previous mapping study to the current SLR

Table 2 presents the methodology followed in this SLR that consisted of 8 steps. As mentioned
above, the SLR started from an already published mapping study focused on MDD approaches
for SOA [4]. Steps 1 to 5 were conducted in the mapping study which included: a selection of
venues and digital libraries, a definition of a search string, a set of inclusion/exclusion criteria,
and a list of threats to validity. All of these steps apply to the present SLR. Next we provide
details on the remaining three steps.

Step 6 selected the set of primary studies for this SLR. We used as starting set the primary
studies of the mapping study and then we used the answer to RQ3 of the mapping study ("Do
these approaches deal with NFRs?") to filter out those papers that did not mention any NFR
support in the MDD process. We found four dominating NFR types: security, reliability,
performance and dependability. Some papers deal with NFRs in a generic way and few papers
deal with specific NFRs different of the four mentioned above. As a result, from the 129
papers in the mapping study, we kept 31 papers as preliminary set of primary studies for the
SLR.

In Step 7 we added a new exclusion criterion, namely: “the contents of the paper should be
sufficient to answer the SLR research questions”. We included this new exclusion criterion
because we found several papers that stated the support of NFR in their approach but no
details were provided, therefore we could not perform the deeper analysis required for this
SLR. As a result, 7 papers were excluded.

From the set of papers obtained in Step 7, we noticed that many of them belonged to the
same researchers and they were reporting the same approach from different points of view
or at different stages. Given the qualitative nature of this SLR, we decided to put the emphasis
on approaches instead of individual papers, therefore we grouped papers from the same
authors. As a result, we clustered the set of primary studies into 5 groups of works and 10
individual works for a total of 15 approaches reported in the SLR (see Table 3 and Figure 2;
the references are listed in the Appendix).

Table 2: From the mapping study to the SLR

 Step Number of items

M
ap

p
in

g
st

u
d

y

1. Papers obtained from search 1962 papers
2. Filter by topic 1385 papers
3. Filter by title and abstract 336 papers
4. Filter by fast reading 151 papers
5. Filter by full reading 129 papers

SL
R

 6. Filter by NFR-aware papers 31 papers
7. Filter by new exclusion criteria 24 papers
8. Group by approach 15 approaches

Table 3: List of approaches of the SLR

Approach References
A01 W1, W10
A02 W2
A03 W9
A04 W18
A05 W19, W20, W21
A06 W6, W3
A07 W13
A08 W5
A09 W12
A10 W22, W23, W24
A11 W7
A12 W11
A13 W14, W15, W16, W17
A14 W8
A15 W4

Figure 2: Approaches and year of publication

3.3 Analysis strategy

The analysis of this SLR is mainly qualitative. We use qualitative-oriented analysis because this
type of analysis works well with small samples [34], as it happens to be the case of this SLR
with 15 approaches. Content analysis is one of the most used mechanisms to perform a
qualitative analysis. As mentioned in Mayring’s book [34], categories are the central point of
content analysis and they constitute the central instrument of analysis. The techniques used
for content analysis of this study are: summarizing, explication, and structuring.

In particular, the analysis process performed in this study followed two steps. First, we
prepared the analysis of the approaches. In this step, we wrote summaries and made
presentations (i.e., verbal explication technique) of the approaches in several research
meetings. Some preliminary categories were determined in this step. Second, we provided
the results for each RQ. These results were obtained applying content analysis techniques
such as summarizing and structuring. In this part of the analysis, we determined the final
categories for each RQ, and compared their classifications with the ones proposed in the first
analysis step. In some cases, we discussed among all researchers the classification of some
approach during the meetings.

3.4 Threats to validity

The threats to validity identified in the previous mapping study also apply to this systematic
review. In this subsection we include two additional threats and their mitigation strategies:

 Incorrect grouping of approaches. The creation of groups from the primary studies may

be inaccurate. To mitigate this threat, we applied two steps. First, we grouped papers that

had a non-empty intersection of authors, which we considered a necessary condition to

be part of the same group. Second, we looked into the details in each group to verify that

all of the papers worked over the same approach. As a result, some papers were not

included in the same group even if some authors overlapped.

 Researcher bias. In addition to the mitigation actions made in the mapping study with

regard to the researcher bias, in the SLR the qualitative results could be biased by the

background, attitudes and practices of individual researchers. To reduce researchers’ bias,

the assignment of tasks was made in a way to ensure that all the studied works were

analysed by at least three different researchers (including the steps made for the selection

of the primary studies). In addition, we held periodic research meetings for discussion and

we followed a strict procedure for editing documents in which all subjective information

was annotated with comments and kept traceable until consensus was reached.

 Incomplete set of primary studies. As in any literature review, an internal threat to validity

is having missed some relevant primary study on the topic of interest. In this literature

study, we have not searched for any new primary study after those found in our previous

systematic mapping. As main mitigation action, we have made all the details of our

protocol fully available to the community, which makes it possible to update the set of

primary studies and analyse the validity of our findings after such update.

4 Results
This section summarizes the results found in this study.

4.1 RQ1: Types of NFR

The most evident result obtained for RQ1 is the high amount of approaches that address
security: all except 3 approaches provide some kind of support for security. Among the
security aspects that are supported by these approaches, the most usual ones are those
related to authentication and authorization (e.g., “we discuss the possibility of denoting the
security properties of access control, data integrity, and confidentiality”; A12 [W11]), and also
those related to communications channels and their encryption (e.g., “the language is
tailored to model cryptographic protocols and supports (…) several cryptographic operations
such as encryption, decryption, digital signatures”; A15, [W4]). The second most recurrent
type of NFR supported is reliability (in some cases is referred as fault tolerance, e.g., “Fault
Tolerance, the number of avoided fault patterns compared with the number of fault patterns
to be considered”; A08, W5) followed by availability which was mentioned in three
approaches (see Table 4 and Figure 3). In the case of A09, the paper refers to dependability,
but the authors clarified that “the term dependability means both system availability and
reliability” [W12]. NFR types related to performance were mentioned also in three cases
(mentioned as efficiency in A03; mentioned as response time, resource utilisation, and
throughput in A08).

Some of the approaches use the term QoS which may be more aligned with the SOA context.
In these cases, they normally refer to the NFR types that can be measured on execution time
(e.g., availability, response time, etc.), for example, “the catalogue of characteristics and
dimensions that describe the QoS of web services” (A06, [W6]), or “the means to specify
system properties related to the Quality of Services” (A07, W13). In Table 4, when we state
“OMG QoS” we mean that apart from using the term QoS to refer to the NFR types, they also
advocate for the OMG standard in QoS [35].

One of the approaches (A14) claims generic NFR support (as reported in Section 4.2), although
only security, performance, and reliability are fully addressed (see RQ2).

Table 4: Results RQ1

Approach Security Reliability Availability Performance QoS
A01 X
A02 X X
A03 X X OMG QoS
A04 X
A05 X
A06 X X X OMG QoS
A07 X QoS
A08 X X X OMG QoS
A09 X X QoS
A10 X X
A11 X
A12 X
A13 X
A14 X X X OMG QoS
A15 X

Figure 3. Venn diagram (RQ1)

4.2 RQ2: Degree of genericity

Almost all approaches deal with specific NFR types. The exception is A14 which presents NFR
support for security, performance, and reliability, but also defines a specific notation to
extend the approach to other NFR types (“The approach is based on a profile for modeling
services in UML, called UML4SOA […] which we extend to include very generic non-functional

specifications which are bound ‘per contract’ to the services in the structural model”, [W8]).
Such genericity is provided by a metamodel which has one or more NFR types (named
NFCharacteristics in A14) defined each one by one or more dimensions (NFDimensions). In
this way the software engineer can specify the required NFR types, e.g., Security, tagged as
NFCharacteristic as well as their relevant NFDimensions (e.g., Encryption, DigitalSignature). It
must be noted, though, that transformation rules have to be designed specifically for the
different NFR types (“we created PIM2PSM and model-to-code transformations to facilitate
service development for reliable and secure middleware. These transformations currently
handle reliable message communication and security in service-oriented systems” and “Its
modular implementation allows for future extension in other non-functional domains (e.g.,
logging) and other service platforms (e.g., SCA) as well”).

The rest of the approaches are specific to a range of predetermined NFR types (see Table 5
and Figure 4). This means that the approaches exploit some knowledge (in the form of
metamodel, technique, semantics, etc.) specific of 1 to 3 types of NFR (see Table 4). It is worth
to remark that some of them can be extended to support other types of NFR (even that they
do not necessarily provide the facilities included in A14). This is explicitly mentioned by some
approaches (e.g., “Additional characteristics about, e.g., service utilization, integrity,
scalability or accuracy, can be defined or existing ones be modified or removed in a similar
way”, A06, [W6]). The extension mechanism to apply is usually based on the extension of the
NFR specification languages and the definition of new transformation rules, as explicitly
mentioned by one of the approaches (“Because of the huge diversity of non-functional
properties, applications may require new non-functional properties and constraints that are
not supported in the current proposed MDD framework. In order to introduce new non-
functional properties and constraints, application developers are required to extend FM-
SNFPs, UP-SNFPs and transformation rules”, A10, [W23]).

The last column of Table 5 reports whether the method provided by the approach is
extensible to deal with other NFR types. Approach A14, although generic, is classified as
extensible, too. The reason is that its notation is generic while the transformations applied by
the proposed method must be designed specifically for different types of NFR.

Table 5: Results RQ2

Approach Generic/Specific Extensible
A01 Specific Yes
A02 Specific
A03 Specific
A04 Specific
A05 Specific
A06 Specific Yes
A07 Specific
A08 Specific Yes
A09 Specific
A10 Specific Yes
A11 Specific
A12 Specific
A13 Specific Yes
A14 Generic Yes
A15 Specific

Figure 4: Venn diagram (RQ2)

4.3 RQ3: NFR notations

The most recurrent observation of the studied approaches is that most of them use a
graphical notation (i.e., use of diagrams that represent concepts, entities, relationships,
attributes, constraints, interactions, etc.). Only one approach (A07) uses a textual notation, a
“Domain Specific Language (DSL) based on the SOA paradigm, which is a specialisation of the
[ArchWare] ARL language” [W13]. Among the graphical notations, UML is the most used (see
Table 6). Only one approach (A12) uses a graphical notation that is not based on UML. In this
latter case, flowchart-like diagrams describing business processes are enriched with special
“symbols” to represent confidentiality and data-integrity constraints.

UML-based approaches can be classified into three main groups according to the UML
extension mechanism that they use (see Table 6 and Figure 5):

 Plain models. No UML extensions are used. The metamodels are represented as UML class
diagrams and the models themselves are instance diagrams.

 Lightweight extensions. New stereotypes are defined using UML Profiles.

 Heavyweight extensions. The notation includes a well-defined metamodel.

Here we must single out three approaches, A02, A04 and A13 whose classification requires
some remarks. The notation in A02 uses basic annotations on UML activity diagrams to define
“security zones and boundaries” [W2]. Therefore, it may be argued that these annotations are
similar in purpose and syntactic appearance to stereotypes. In the case of A04, the approach
does not define its own notation but sketches some examples or just suggests taking
advantage of notations from the previous literature to, for instance, “model security policies
in UML using profiles, metamodels, constraints, or other mechanisms” [W18]. Approach A13
consists of several papers proposing two different notations, one is based on plain UML
models and the other one is a lightweight extension to UML.

Finally, two approaches (A09 and A11) do not provide any kind of notation to directly
represent the NFR but provide guidelines or patterns to realize them. In the case of A09, NFR
are not represented, instead “specific failures of components and web services and their
handling strategies” [W12] are required. A11 addresses “the non-functional requirements
separately from the functional requirements by embodying the security knowledge in the form
of security patterns” [W7]. Therefore A09 and A11 have been excluded from RQ3.

Table 6: Results RQ3

Approach Base Notation Language UML Extension
A01 UML Plain
A02 UML Lightweight
A03 UML Lightweight
A04 UML Lightweight / Heavyweight
A05 UML Lightweight
A06 UML Plain
A07 ARL (textual DSL) N/A
A08 UML Heavyweight
A09 N/A N/A
A10 UML Heavyweight
A11 N/A N/A
A12 Flow chart N/A
A13 UML Plain / Lightweight
A14 UML Heavyweight
A15 UML Lightweight

Figure 5: UML Extensions

4.4 RQ4: Level of abstraction

To facilitate the analysis of this research question, we have defined three possible levels of
abstraction for the supported NFR:

 High abstraction. The NFR represented are totally unaware of the solution. For example,

a NFR that states that “the system shall have a highly secured login mechanism”.

 Intermediate abstraction. The NFR represented are aware of the some aspects related to

the particular architecture or domain, but they do not go into the technical details. For

example, a NFR that states “the login service shall use encrypted communications

channels”.

 Low abstraction. The NFR represented are very tied to the concrete solution and its

implementation, including technical details. In fact, they can be considered as a design

decision. For example, a NFR that states “the LDAP service shall only allow SSL

connections”.

Most of the approaches surveyed represent the NFR at a high level of abstraction (e.g., “A
software architect applies security requirements in abstracted form to a service model”, A05,

[W21]; “In the QoS Profile, a QoS characteristic is a quantified aspect of the QoS […] which is
defined independently of the means by which it is represented, managed or controlled”, A06
[W6]). One common aspect among all the approaches that are considered of high abstraction,
is that the NFR notation refers to a characterization of the desired QoS of the involved services
(see Table 7).

Only two approaches are placed in the intermediate level of abstraction (A01 and A02). Both
require knowledge of the particular problem to specify the NFR. In A01 the classes are
complemented with OCL constraints that reference other classes of the domain, therefore
the approach needs knowledge of the domain model to represent the NFR. In A02 the
distribution of the services are noted with security requirements, therefore the approach
needs knowledge about the deployment architecture to note the NFR.

In the approaches classified as of low abstraction, the NFR notation was very close to the
solution that operationalizes the NFR. For example, “an Indexing Service requires an X.509
certificate” (A10) [W24], “Bank applies the stereotype <<TLS+SSA>>. This means TLS with
server side authentication” (A15, [W4]). In A12 and A13 this low level of abstraction was
hidden: by asking for the concrete technologies to implement the NFR during the MDD
process (A12) and by the definition of “profiles” that included the concrete technologies used
for the solution (e.g., “X509-Token”, A13 [W17]).

The approaches that did not provide any NFR notation (A09 and A11) were not classified
according to the level of abstraction.

Table 7: Results RQ4

Approach Abstraction Required knowledge
A01 Intermediate Domain, Class attributes, ID, etc.
A02 Intermediate Architecture, Boundaries, etc.
A03 High Desired characteristics of the services
A04 High Desired characteristics of the services
A05 High Desired security: integrity, authentication, etc.
A06 High Desired characteristics of the services
A07 High Desired characteristics of the services
A08 High Desired characteristics of the services
A09 N/A N/A
A10 Low Technical knowledge about the desired solution
A11 N/A N/A
A12 Low Technical knowledge about the desired solution
A13 Low Technical knowledge about the desired solution
A14 High Desired characteristics of the services
A15 Low Technical knowledge about the desired solution

Figure 6: Number of approaches per abstraction level

4.5 RQ5: NFR in the MDD process

The approaches can be grouped into three types (see Figure 7) with respect to the way that
NFR participate in the process. In all the cases, there is a top-down transformation of models,
starting at higher levels of abstraction that, in most cases (but not all), matches the CIM-PIM-
PSM transformations. NFR appear at the early stages of the process in the three types, but
we see differences on the way in which they are held and the moment in which they are
plugged into the system. The first type of approaches (leftmost diagram) attach the NFR
information to the models of the MDD process while the second one (middle diagram) creates
a series of models which represent NFR that run in parallel to the functional model until they
converge at some point. In the third typology (rightmost diagram) the sequences of models
do not converge but each one ends contributing to the final product.

Figure 7: Models and transformations of MDD

NFR attached NFR converges NFR in parallel

Higher
abstraction

level

Lower
abstraction

level

Process
output

Functional-related
artifacts

Non-functional-
related artifacts

Functional and non-
functional-related artifacts

This typology of transformation is used to classify the approaches (see Table 8 and Figure 8,
leftmost area). In most cases, NFR and functionalities run together in the models of the MDD
process, in a few cases they start separated before converging and only in one case they run
in parallel and at the end the final SOA is complemented or enhanced with some NFR-specific
output ("we introduced a model-driven approach to generate security policies", A13 [W14]).

We also show in Table 8 and Figure 8 (middle area) how NFR participate in the process, either
through transformations or acting as quality constraints. The model transformations are in
most cases specific to the supported types of NFR ("It is significant to observe that security
policies are specified and refined throughout the life cycle, undergoing transformations from
one phase to the next", A04, [W18]); the remaining approaches use the NFR as parameters of
the transformations or use the QoS properties to select the candidate services. Two
approaches, A07 and A13, propose some additional models to the classical CIM, PIM, and
PSM levels. These are the models that take into account architecture issues in the process
("the approach described here attempts to combine both formal architecture-centric and
model-driven paradigms", A07) which is not surprising to us as we stated in [29]. Actually,
these approaches deal with grid architectures that are considered as a special case of service
architecture ("we consider the Grid as a SOA and provide the means to specify system
properties related to the QoS" [W13].

We show in Table 8 and Figure 8 (rightmost area) the life-cycle activity supported by the
approaches. Their usual target is to contribute to the development of the final system but in
a few of them the target is to monitor the QoS ("In this paper we present an implementation
of a Model Driven Architecture (MDA) based framework for the runtime monitoring of QoS
properties", A08, [W5]). In either case, NFR appear at the very first stage of the process,
guiding the development of the system or the monitoring tool.

Concerning the development of the system, the majority of approaches focus on the creation
of new services complying with the NFR. However, two of them (A03, A06) are instead
oriented to the selection of the component services to be included in a service orchestration
by filtering the candidates according to the desired QoS which is monitored. In both cases,
QoS-annotated workflow models are constructed and algorithmically evaluated to find the
most desirable alternative. Approach A03 can address different QoS properties (execution
time, price, user satisfaction, etc.) whereas A06 only focuses on service reliability. Finally, in
approach A14 service orchestrations are also the object of “performance estimates and
reliability analysis using the stochastically timed process algebra PEPA as the underlying
analytical engine” [W8].

Table 8: Results RQ5

Approach N
FR

 a
tt

ac
h

e
d

N
FR

 c
o

n
ve

rg
e

s

N
FR

 in
 p

ar
al

le
l

Sp
e

ci
fi

c

tr
an

sf
o

rm
at

io
n

P
ar

am
e

te
r

tr
an

sf
o

rm
at

io
n

Q
o

S
se

le
ct

io
n

D
e

ve
lo

p
m

en
t

M
o

n
it

o
ri

n
g

A01 X X X
A02 X X X
A03 X X X
A04 X X X
A05 X X X
A06 X X X
A07 X X X
A08 X X X
A09 X X X
A10 X X X
A11 X X X
A12 X X X
A13 X X X
A14 X X X
A15 X X X

Figure 8: Classification of NFRs in the MDD process

4.6 RQ6: Approaches maturity

To analyse the maturity of the approaches we have assessed the kind of evidence provided in
the primary studies according to the evidence categories used in another SLR conducted by
Alves et al. [33]:

 No evidence.

 Evidence obtained from demonstration or working out toy examples.

 Evidence obtained from expert opinions or observations.

 Evidence obtained from academic studies, e.g., controlled lab experiments.

 Evidence obtained from industrial studies, e.g., causal case studies.

 Evidence obtained from industrial practice.

Furthermore, in the case of MDD, another aspect that clearly indicates the readiness level is
the availability of a tool implementing the proposed approach. This information will be also
used to answer RQ6. The following two subsections describe the results found related to tool
support and evidence provided, respectively.

4.6.1 Tool support

Eight out of the fifteen approaches report some kind of tool support while three mention that
it is still work in progress (e.g., “As the implementation of the security model view is yet still
work in progress, we are not able to provide a sufficient evaluation on the model’s
capabilities”, A12, [W11]), see Table 9. One of the approaches reporting tool support states
that it is limited to only a subset of the functionality (“WS-Security and WS-Policy standards
are not available in Biztalk”, A02, [W2]). In addition, three other approaches remark that the
reported tool is a prototype (e.g., “We have a tool prototype for MDS and Pattern based
configuration”, A05, [W21]) and none of the approaches reports to have developed a
commercial tool. In general, we observe that there is a lack of details about the tool support
in the studied approaches.

4.6.2 Evidence

The evidence provided by all the approaches but one consists in presenting toy examples and,
remarkably, one of these toy examples is extracted from a case study of an EU project (“This
example has been taken from one of the case studies of the Sensoria project”, A14, [W8]), see
Table 9. The exception is A10 that includes, in addition to a toy example, an empirical
evaluation of the proposal (“Empirical evaluation results show that BALLAD significantly
reduces the burdens/costs to implement and maintain non-functional properties in service-
oriented applications. BALLAD and FM-SNFPs are designed and implemented efficient and
scalable” [W23]). However, none of the approaches provides evidence obtained either from
industrial studies or industrial practice, although this is sometimes mentioned as part of the
future work (e.g. “Future work will necessarily encompass further validation of the approach
presented against larger projects. We plan to apply it to more complex case studies in
collaboration with industry”, A14, [W8]). By contrast, regarding to the industry affiliation of
the authors involved in the approaches, we have found that almost half of the approaches
involve at least one author from industry (see Table 9 and Figure 9, last column).

Table 9: Results RQ6

Approach Tool support Evidence provided Authors from
industry

A01 No (work in progress) From toy examples Yes
A02 Yes (for a subset of

the functionality)
From toy examples Yes

A03 No From toy examples Yes
A04 No From toy examples Yes
A05 Yes (prototype) From toy examples Yes
A06 Yes (prototype) From toy examples No
A07 Yes From toy examples No
A08 No (work in progress) From toy examples No
A09 Yes (prototype) From toy examples Yes
A10 Yes From controlled

lab experiments
Yes

A11 No From toy examples No
A12 No (work in progress) From toy examples No
A13 No From toy examples No
A14 Yes From toy examples No
A15 Yes From toy examples No

Figure 9: Tool support and authors from industry

5 Discussion
In this section we search for possible explanations to the results observed.

5.1 RQ1: Types of NFR

Results of RQ1 show that most of the approaches that handle NFR deal with security issues.
In fact, the number of approaches could be considered even greater if we adhere to the view
of some authors that include availability as a principle that supports security [36].

This result is in contrast with a recent survey on a similar topic [37], in which software
architects from industry mentioned dependability and performance as more important than
security when architecting service-based systems. One possible way to understand this
apparent contradiction is that there has been a great effort in the standardization of security
related issues for SOA systems, which has resulted in a bunch of proposals like WS-Security,
WS-Trust, etc. For an MDD approach, having a well-defined starting point is crucial in order
to define metamodels, transformations rules, etc. making the approach easier to implement.
This interpretation is aligned with the observation made by de la Vara et al. who mention type
of projects as one of the influencing factors on the relative importance of NFR types [38].

Another possibility for the discrepancy with [37] could be that academic interests and
practitioners needs are not aligned, but other facts contradict this possibility: a) even
considering the different frequency, the three top NFR types in the afore mentioned survey
[37] are the same top NFR types in this SLR (understanding dependability as reliability and
availability); b) as already commented, 7 out of the 15 approaches involved practitioners in
the research team and 6 out of these 7 approaches dealt with security (it remains open to
know if these practitioners also played the role of software architects).

Another interesting way to read the results is the dual one, i.e., NFR types such as usability,
portability, and maintainability are omitted. Our interpretation is that this is a consequence
of the type of software system addressed. Usability is disregarded because SOA systems,

implementing service-based systems, normally do not include a user interface. On the other
hand, portability is an inherent characteristic of services, and maintainability is an inherent
characteristic of MDD.

5.2 RQ2: Degree of genericity

The results obtained for RQ2 are clearly biased towards a low degree of genericity, i.e. they
tend to be specific of one particular type of NFR. This result already emerged in the review
included in [29]. The reason may be that NFR types are very heterogeneous, making it difficult
to provide a uniform specification and treatment for them. This observation aligns with the
observations by Whittle et al. [39] from practitioners’ approaches to MDD, which point out
that successful adoption of MDD is based on focused solutions in terms of system domain,
scope and notation used.

Nevertheless, a careful analysis of the surveyed proposals leaves the door open to more
promising results in terms of generalization because some of them claim to be extensible to
the support of additional NFR types (usually by extending the NFR specification languages and
adding new transformations). The adoption of the MDD approach contributes to well-
structured frameworks for the proposals mainly due to its foundation in metamodeling and
model transformations, e.g. it provides a clear separation of concerns between the
specification of the NFR and their impact on model transformations. The existence of
standards related to MDD such as UML which is extensible itself facilitates the addition of
new NFR types; for example, A10 explicitly mentions: “UP-SNFPs is built on the UML standard
metamodel with the standard extension mechanism, and application developers can add
stereotypes and tagged-values representing new non-functional properties” [23].

One more thing to consider is that when taking these academic approaches into practice,
practitioners will need support for more than one type of NFR in their project, therefore a
combination of MDD approaches will be needed. It is not clear (for the studied approaches)
if this combination is possible, but surely it would not be smooth.

5.3 RQ3: NFR notations

We remark the fact that most notations to represent NFR are based on UML. At first this
seems to be in sharp contrast with the findings by Whittle et al. [39] which report that in their
study MDD practitioners created or used languages specific for their domain (DSLs), rather
than using general-purpose languages such as UML. However, it should be also pointed out
that only a small fraction of notations that we have reviewed in this study use “plain” UML
models and that some of the DSLs reported in [39] are expressed as UML profiles. Moreover,
UML is also the most used notation to model functionality as we stated in the mapping study
in which this SLR relies. Other quite widespread notations are used in a few works only. BPMN,
for instance, is the notation found in only 5 (out of 129) papers. One of them [W23] is NFR-
aware and did pass the filter in step 6.

One possible reason for this dominance of UML to represent NFR is that in many of the
approaches reviewed in our study, NFR are not intended to be used to generate NFR-aware
functional code but to create different types of complementary and necessary artefacts:
deployment descriptors, policy specifications, etc. Those artefacts are typically XML
documents and, in this respect, UML to XML standards (e.g. XMI, XSLT) and tools are quite
mature and widespread.

Moreover, UML is a broadly accepted notation for software modelling, beyond MDD, as it is
reported by Forward et al. [40]. In that study, “communicate to others” and “readability” are
found to be the two most appreciated attributes of a modelling tool. That evidence supports
our view that the use of UML as core representation mechanism fosters the understandability
of the proposed notations.

Regarding the expressivity and reusability of the proposed notations, we have found that
those approaches that use a well-defined metamodel are the ones that are more able to
represent different types of NFR and/or can be easily adapted/extended to represent them.

A final thought on the use of UML as a base notation for representing NFR: a stronger common
ground on which different approaches could define their own UML extensions is missing. This
common ground should natively provide the common abstractions and constructs that we
find in SOA-based applications: services, capabilities, contracts, etc. SoaML [3], whose first
definite version was published later than any of the approaches considered here, could be a
good candidate for this “common ground” for future approaches. An interesting follow-up of
this SLR would be to report on the adoption of SoaML by the community.

5.4 RQ4: Level of abstraction

We found out that the level of abstraction for the representable NFR is polarized, meaning
that the approaches tend to be either in a very abstract or in a very concrete notation. In our
opinion, this happens because of the inherent nature of NFR. On the one hand, NFR can be
embraced in an abstract way (e.g., the goals that are sought for the SOA system) but at the
cost of losing the detail and the control of the implementation. One particular risk of this way
of handling NFR is that the MDD approach becomes the “golden hammer” (i.e., everything is
shaped by the same pattern). In this situation the approach may reduce the amount of work
of the developers, but at some point developers will need to manually adapt the “general
solution” to the specific characteristics of the software product. On the other hand, NFR can
be operationalised, meaning that the MDD approach will be narrowed to concrete known and
suitable solutions, but unable to evolve or adapt to new ones. Handling NFR as
operationalised solutions helps to produce fully operative systems, but developers become
unaware of the reasoning behind the decisions made by the MDD approach. One possible
way to reconcile both options is to embed a goal-refinement approach into the MDD process.
This view has not been found in any of the approaches surveyed in this paper.

We think that handling NFR in an abstract way is the best solution for SOA-based systems
because services can be seen as atomic elements isolated from the technology (e.g., when
accessing to an external service only the public functionalities are visible). In this situation,
what is necessary from the NFR point of view, is the possibility to characterize these services
(one particular notation that seems to recognise this is the OMG QoS [35] used by A03, A06,
A08, and A14).

In a different case, we found approaches in which NFR are embedded in the approach (A09,
and A11). In these approaches NFR are not noted in the models, instead there is a set of
implicit NFR used in a holistic way in all the parts of the system. In these approaches there is
no control at all on how the NFR are applied, and they cannot be considered abstract or
operationalised because they are not present in the models. Still these approaches can be
considered useful in highly specialized contexts. Again we may draw some analogy to Whittle
et al.’s study [39] in which they conclude that practitioners tend to use model-driven

approaches in focused domains; in this context, some NFR may be considered recurrent and
thus built-in in the MDD process’ core.

5.5 RQ5: NFR in the MDD process

We showed in Table 8 how most approaches considered NFR attached to functional models
instead of having independent models for them. We think that there are two main reasons
that may justify this trend: first, while there are a plethora of models for representing
functionality (especially when working with UML), this is not the case for NFR, therefore most
authors may prefer to consider NFR as annotations in the functional model; and second,
maintaining two models in parallel for merging them at some step of the MDD process is
challenging. An additional reason is that detailed NFR often refer to particular functions of
the system, therefore it may be natural to express this link at the modelling level. A
consequence of this dominance of this annotation-based approaches is the difficulty in
obtaining reusable solutions on NFR transformations due to the intertwining of their
treatment with the functional models.

A similar situation appears with respect to model transformation, where one approach
(specific transformation) dominates the others. We again refer to Whittle et al. observation
on the specificity of approaches [39]: creating a particular transformation delivers more
down-to-earth solutions at the price of sacrificing genericity. It is worth to mention how the
development-from-scratch view seems to be still more popular than reusing services (which
intuitively should be a dominant case in the context of service-orientation), according to the
scarcity of proposals that consider service selection in the MDD process.

In the extreme, results of the SLR show how development is still the dominant perspective for
the great majority of proposals. This is not surprising and in fact aligns to the general
observation made in our previous mapping study on MDD in SOA [4].

5.6 RQ6: Approaches maturity

The evidence provided by the approaches is placed on the weak end of the hierarchy from
[33] since it is mainly based on the presentation of toy examples and none of the approaches
provides stronger kinds of evidence such as industrial studies or, even better, industrial
practice. This is consistent with the fact that the tool support for the approaches is also weak
(mostly prototypes, work in progress or no tool support reported) even if effective tool
support is a precondition for transferring the approaches to the industry, e.g., the empirical
study reported in [41] finds that the maturity of the tools is an important determinant for the
adoption of MDE. This evidence weakness indicates that the proposals are still not well-
established and need to be improved to be applicable in real settings.

At the same time, a positive fact is that almost half of the approaches involve practitioners as
authors. This is quite a high share of approaches. For instance, it is significantly higher if we
compare to the mapping study on MDD in SOA [4]. This may point out to the interest of
practitioners when NFR come to play, as we already reported in [37] where a significant
majority of respondents stated that NFR are equally important or even more important than
functional requirements for architects developing SOA systems. We think that this interest by
industry demands for additional research on the topic.

We have compared the results of the present SLR with those of its preceding mapping study
[4], and in particular the issues that refer to the kind of evidence provided, tool support and
involvement of authors from industry. The most remarkable observations are:

 Kind of evidence provided. On the one hand, 16.3% of the papers from the mapping study

provided evidence from industrial studies while none of the NFR approaches from the SLR

provides this kind of evidence. On the other hand, the only kind of evidence provided by

all except one of the NFR approaches (93.3%) were toy examples while this was the case

of only 64.3% of the mapping study papers.

 Tool support. We do not notice much difference on this issue since 53% of the NFR

approaches report some kind of tool support and it was reported in 59.7% of the papers

from the mapping study.

 Involvement of industry authors. Nearly half of the NFR approaches involve authors from

industry (7 out of 15) while only 31.8% of the papers from the mapping studies do.

These results may indicate that, although NFR are considered interesting from the
practitioner side, the approaches that deal with them have not reached the same level of
maturity, at least according to the kind of evidence provided, as the general MDD approaches
for SOAs have.

6 Theory model
In this section, we consolidate the results and analysis from the survey in the form of a theory
for software engineering following the methodology provided by Sjøberg et al. [6]. The theory
may be viewed as the starting point for further research that may consolidate the findings of
this study, propose new ones or refute some of our propositions. Please note that Sjøberg et
al.’s methodology consists of five steps, but for the sake of brevity we present the results in a
more abridged way. We draw our conclusions including suggestions for further research in
Section 7.

Sjøberg et al. build a theory by first introducing its main constructs either as specializations
of one of four archetype classes (Actor, Technology, Activity and Software Systems) or as
attributes inside these new specialization classes; and then asserting propositions as
relationships among constructs. Explanations provide the justifications to the propositions.
The theory is summarized in Figure 10 and Table 10 and explained below.
In the diagram depicted in Figure 3, we follow the UML-inspired notation proposed by Sjøberg
et al. [6]. Constructs are represented as classes or attributes of a class. Classes are drawn as
boxes. A class may be a subclass (denoted by the UML generalization arrow, e.g. Security is a
subclass of Type of NFR) or a component class (drawn as a box within another box, e.g. Type
of NFR is a component of NFR-aware-MDD). The arrows in the diagram connect the sources
and the targets of the propositions.

6.1 Constructs

 Software System. It presents the scope of the study. We are focusing on one particular
type of system, namely SOA-based systems. As any other system, a particular SOA-based
system satisfy some NFR that belong to some Type of NFR.

 Technology. The main focus of the paper. In our case, we are evaluating the NFR-aware
MDD technology. Being NFR-aware, it is important to know the Types of NFR addressed

by the method; we introduce the criticality attribute to recognise the fact that some types
may be more important than others for a particular proposal. As in any MDD-based
approach, Models lie in the very heart of the method. According to our study, the main
attributes to consider in a method are: the notation used to represent the models; the
way in which NFR are represented (NFR representation); and the requirement abstraction
level in this representation. Being MDD, it is also important to know which types of Model
transformations are applied.

 Actor. The main actor in the theory is the Team that will build the SOA-based system. A
relevant attribute is their cost (we will be interested in knowing the impact of the NFR-
aware methods in the overall cost of the team). In the team we identify a crucial actor in
MDD approaches, the Modeller, for whom we need to know the training required by the
method at hand.

 Activity. We just identify the type of activity.

6.2 Propositions

We provide the facts surveyed in this study that support the propositions, organized by
research questions. The text links to the propositions Pk which are detailed in Table 10.

 RQ1. The great majority of approaches deal with security requirements, especially related
to authentication, authorization and encryption (P2). Reliability is the second most
supported type, whilst availability and performance are mentioned by a few approaches.
Several types are not even mentioned (P1).

 RQ2. Almost all approaches deal with a specific NFR type, except for one which claims to
be NFR-type generic through the use of a metamodel-based solution (P3).

 RQ3. Almost all approaches use a visual notation to represent the model (P4). UML
dominates with all the visual modelling approaches (except one) using it. UML-based
approaches range evenly from plain models to lightweight and heavyweight extensions.

 RQ4. Most of the approaches either represent NFR at a high level of abstraction (more as
goals than as requirements) or at a low level of abstraction (being almost an
operationalization of the requirement), but not in the middle (P5, P6).

 RQ5. In reference to the role of NFR in the MDD process:
- Relation to the functional model. A majority of approaches attach NFR as

annotations to the functional part, with a few approaches that start with both
models separated and merge them at some later moment (P7).

- Model transformation. A majority of approaches propose specific transformations
for the supported types of NFR, with a few of them using NFR either as parameters
of such transformations or as input for a selection of services to be integrated in an
SOA (P8).

- Life-cycle activity. NFR are addressed in relation to different types of activities (P9):
 Almost all approaches are conceived to support system development.
 A couple of approaches consider NFR for monitoring activities.
 Few approaches evaluate the NFR for different design alternatives by

building and analysing formal models with the goal of selecting the best
alternatives and/or improving the quality of the target system.

Figure 10: Theory constructs in a class diagram

Table 10: Theory constructs, propositions and explanations

Constructs

C1 NFR-aware MDD

C2 SOA-based system

C3 Type of NFR (identifier of a category of similar NFR according to the ISO/IEC 25010 classification schema)

C4 Security (a particular type of NFR, defined as in the ISO/IEC 25010 standard)

C5 Criticality (perceived importance of an NFR type in a given MDD method)

C6 Costs (perceived cost for a team applying a given MDD method)

C7 Model (a representation of reality)

C8 Modeller (an IT professional who writes models)

C9 Model notation (type of modelling language, including Visual and UML as values)

C10 Training (time required for modeller to master a new method)

C11 Requirement abstraction (level of abstraction in which a requirement is expressed, including as extreme values
goal and operationalization)

C12 NFR representation (strategy for representing NFR with respect to the functional part of the model, including
annotations as value)

C13 Model transformation (strategy for applying the MDD process over the model that represents the NFR,
including specific as value)

C14 Activity (including development and monitoring as values)

Propositions

P1 Not all types of NFR have the same criticality when developing SOA-based systems with NFR-aware MDD

P2 Security is the most critical type of NFR when developing SOA-based systems with NFR-aware MDD

P3 Dealing with more than one NFR type in NFR-aware MDD for SOA-based systems increases costs

P4 The use of visual notations in representing models involved in NFR-aware MDD processes for SOA-based
systems decreases modellers’ training

P5 Expressing NFR as goals decreases training in NFR-aware MDD for SOA-based systems

P6 Expressing NFR as operationalizations decreases costs in NFR-aware MDD for SOA-based systems

P7 Representing NFR as annotations decreases costs in NFR-aware MDD for SOA-based systems

P8 Defining specific transformations for NFR decreases costs in NFR-aware MDD for SOA-based systems

P9 NFR-aware MDD for SOA-based systems focus mainly on development activities. In some cases it supports
monitoring activities or NFR-evaluation of different design alternatives.

Explanations (explanation Ek explain proposition Pk)

E1 SOA systems are a family of software systems which some particularities. Qualities as security, performance
and availability are extremely important, while others as usability are less important or even do not apply

E2 In MDD, the existence of standards makes easier to developed models shared by a community, and security
has several well-defined standards in the context of SOA systems

E3 NFR are very different from each other, and dealing with them with the same models and techniques is hard
and requires more human effort

E4

Since natural language is not an easy option for MDD approaches, the next natural option for modellers is a
visual notation, over more formal representations like logic which could facilitate more sophisticated
techniques but are not easy to use by these modellers. Nowadays, UML is by far the most used visual notation
in software engineering.

E5 Goals are close to the modellers’ universe of discourse, therefore modellers may find easier to adapt the
proposed method

E6 Operationalized requirements are close to the final artefact to be delivered in the MDD process, therefore the
method is easier to implement

E7 Maintaining two simultaneous models for functional and non-functional requirements for merging them later
is conceptually challenging

E8 In concordance to P3 (E3), the conceptual diversity of NFR types from each other makes difficult to provide
generic transformation rules, and customized rules are preferred instead

E9 In general, MDD approaches is used mainly for software development, and SOA-based systems are not an
exception. In SOA-based systems, monitoring is a fundamental activity for ensuring service level agreements
(which are mainly stated over NFR types). NFR can also be analysed on different design alternatives using
analytic/formal models to produce feedback to designers for improving the quality of the software
development models.

7 Conclusions
In this systematic literature review we surveyed the state of the art in the management of
NFR in MDD processes used in the context of SOA-based applications. We designed and
followed a rigorous protocol (based on a former mapping study [4]) which uncovered up to
15 proposals to answer the different research questions that we identified. We analysed the
findings and formulated a theory to consolidate them and organise the knowledge for future
research on the topic.

As result of the work presented in this paper, we propose five important aspects to consider
in future NFR-aware MDD approaches.

 Completeness of the NFR support. We have observed that security is the most attractive

type of NFR when addressing NFR in MDD for SOA, but we also found approaches dealing

with reliability, availability and performance. Furthermore we can argue that types of NFR

such as compatibility, maintainability and portability are inherently supported by MDD,

SOA, or both. In addition to this, usability can be considered irrelevant in the case of SOA

because the user interface is normally not part of the designed software system.

Therefore we say that a full spectrum of types of NFR are supported in one way or another

when using MDD for SOA. However, we cannot say to what extent these types of NFR are

supported by these approaches. Our position is that further studies are needed to

measure this in more detail, but we believe that the approaches that use quality standards

(e.g., OMG QoS) to represent the NFR are better prepared to deal with a full extent of

diversity when dealing with NFR.

 Extensibility of the MDD approach. In this study, we found only one approach that claims

to have generic support for different types of NFR and several that claim to be extensible,

but the majority of approaches provide support for specific types of NFR and no means of

extension. Being computer science constantly evolving, approaches that do not support

any kind of extension have great chances of becoming obsolete in a short time. Real-life

projects usually require to deal with a wide range of different types of NFR and, from our

point of view, an MDD approach that only addresses one or two NFR types while

neglecting most of them will hardly appeal to practitioners.

 Integrability of the MDD approaches. The MDD approaches studied in this study are those

focused on handling NFR, however NFR are only one dimension of the problem. Other

aspects such as the concrete functionalities or the support of specific technologies may

be provided by a different MDD tool or framework, therefore the capability of integration

of the MDD approach that supports the NFR is a must. To facilitate this integration, a

possible strategy is to use UML. On the one hand, most MDD approaches are based on

UML, and on the other hand, integrating models from different languages would be

cumbersome (if even possible). Furthermore, from the integrability point of view, it seems

advisable to extend by lightweight UML extensions. Lightweight extensions are normally

limited to the description of several stereotypes for the UML standard elements, in this

situation it seems feasible to combine two or more MDD approaches (each one using their

own stereotypes). On the contrary, the case of approaches with heavyweight extensions

(additions or modifications to the UML metamodel) are difficult to integrate because

some of the integrated approaches will be unable to understand certain parts of the

models.

 High (or low) NFR abstraction. In RQ4 we analysed the types of NFR supported from the

perspective of the level of abstraction. We observed that the majority opted for a higher

abstraction but there are also several approaches (especially the most recent ones) that

opted for a lower abstraction. In this case, we see benefits and drawbacks on both sides,

therefore the best solution needs to be pondered for each situation. On the one hand,

higher abstractions favours the reuse of the approach among different software projects

but difficult the approach maintainability because of its complexity. On the other hand,

lower abstractions are less complex, and therefore easy to maintain, but since the

addressed NFR are very concrete in general it should be difficult to reuse the approach for

different projects.

 Lack of evidence. The lack of evidence is an indicator of low maturity. In this study we

checked the existence of tool support that implements the proposed approach and we

also checked if the approach was used on a case study. The results are not encouraging:

most approaches do not provide a tool (which should be considered a must in the context

of MDD) and especially concerning, none of the approaches was validated in industrial

settings. Our opinion is that the research community should make an effort to attract the

industry participation to validate the proposed approaches, and this, of course, cannot be

done without an implemented tool.

References
[1] M.P. Papazoglou, D. Georgakopoulos, Introduction: service-oriented computing,

Commun. ACM 46 (10) (2003) 24–28.
[2] S.J. Mellor, A.N. Clark, and T. Futagami. Guest Editors’ Introduction: Model-Driven

Development. IEEE Software, 20(5): 14–18, September 2003.
[3] OMG. Service oriented architecture modeling language (SOAML), version 1.0.1 (2012).

URL http://www.omg.org/spec/SoaML/1.0.1/PDF
[4] D. Ameller, X. Burgués, O. Collell, D. Costal, X. Franch, and M. P. Papazoglou,

Development of Service-Oriented Architectures using Model-Driven Development: A
Mapping Study, Information and Software Technology, 2015.

[5] K. Petersen, R. Feldt, S. Mujtaba and M. Mattsson, Systematic mapping studies in
software engineering, in: Proceedings of the 12th International Conference on Evaluation
and Assessment in Software Engineering, EASE’08, British Computer Society, Swinton,
UK, UK, 2008, pp. 68–77.

[6] D.I.K. Sjøberg, T. Dybå, B.C.D. Anda and J.E. Hannay. Building Theories in Software
Engineering. Book chapter at Guide to Advanced Empirical Software Engineering, F. Shull
et al. (eds.), Springer 2008.

[7] MDA Guide revision 2.0, http://www.omg.org/cgi-bin/doc?ormsc/14-06-01.pdf
[8] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software Engineering in Practice,

Morgan & Claypool Publishers , 2012.
[9] C. Atkinson and T. Kühne. Model-Driven Development: a Metamodeling Foundation. IEEE

Software, 20(5): 36–41, September 2003.

[10] M. Glinz. On Non-Functional Requirements. IEEE RE 2007, pp. 21–26.
[11] L. Chung and J.C. Sampaio do Prado Leite. On Non-Functional Requirements in Software

Engineering. In Conceptual Modeling: Foundations and Applications, Springer, 2009, pp.
363–379.

[12] J. Mylopoulos, L. Chung, and B. A. Nixon, Representing and Using Nonfunctional
Requirements: A Process-Oriented Approach, IEEE Trans. Softw. Eng., vol. 18, no. 6, pp.
483–497, Jun. 1992.

[13] K. Pohl and C. Rupp. Requirements Engineering Fundamentals. Rocky Nook Inc., 2011.
[14] ISO IEC, ISO 8402:1994 - Quality management and quality assurance - Vocabulary. 1994.
[15] ISO/IEC.25010, System and Software Engineering Systems and Software Quality

Requirements and Evaluation (Square): System and software quality (2010).
[16] T. Erl, Service-Oriented Architecture: Concepts, Technology, and Design, Prentice Hall

PTR, Upper Saddle River, NJ, USA, 2005.
[17] C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown and R. Metz, Reference model for

service oriented architecture 1.0, OASIS Standard (2006). URL http://docs.oasis-
open.org/soa-rm/v1.0/

[18] W3C: Web Services Activity. http://www.w3.org/2002/ws/
[19] OASIS: Standards. https://www.oasis-open.org/standards
[20] T. Erl, B. Carlyle, C. Pautasso, and R. Balasubramanian. SOA with REST: Principles, Patterns

&Constraints for Building Enterprise Solutions with REST. Prentice Hall Press, 2012.
[21] L. Chung, B.A. Nixon, E. Yu and J. Mylopoulos. Non-functional Requirements in Software

Engineering. Kluwer Academic, 2000.
[22] D. Ameller, C. Ayala, J. Cabot, and X. Franch, Non-Functional Requirements in

Architectural Decision-Making, IEEE Software, vol. 30, iss. 2, pp. 61-67, 2013.
[23] B. Lawrence, K. Wiegers and C. Ebert, The top ten risks of requirements engineering. IEEE

Software 18(6), 62–63 (2001).
[24] S. Kim, D. Kim, L. Lu and S. Park, Quality-driven Architecture Development Using

Architectural Tactics. Journal of Systems and Software 82, 1211-1231 (2009)
[25] X. Franch and J.P. Carvallo, Using Quality Models in Software Package Selection. IEEE

Software 20, 34-41 (2003)
[26] M.R. Barbacci, M.H. Kleiin and C.B. Weinstock, Principles for Evaluating the Quality

Attributes of a Software Architecture. Technical Report, SEI CMU (1997)
[27] K. Wakil, D.N.A. Jawawi, Model Driven Web Engineering: A Systematic Study, e-

Informatica Software Engineering Journal 9 (1), 87-122 (2015).
[28] A. Mehmood, D.N.A. Jawawi, Aspect-oriented model-driven code generation: A

systematic mapping study, Information and Software Technology 55, 395-411 (2013).
[29] D. Ameller, X. Franch, and J. Cabot. Dealing with Non-Functional Requirements in Model-

Driven Development. IEEE RE 2010, pp. 189–198.
[30] D. Ameller, X. Franch, C. Gómez, J. Araujo, R. B. Svensson, S. Biffl, J. Cabot, V. Cortellessa,

M. Daneva, D. M. Fernández, A. Moreira, H. Muccini, A. Vallecillo, M. Wimmer, V. Amaral,
H. Bru-nelière, L. Burgueño, M. Goulão, B. Schätz, and S. Teufl, Handling non-functional
requirements in Model-Driven Development: An ongoing industri-al survey, in 23th IEEE
International Require-ments Engineering Conference (RE), 2015, pp. 208-213.

[31] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P.W. Jones, D. C. Hoaglin, K. E. Emam and
J. Rosenberg, Preliminary guidelines for empirical research in software engineering, IEEE
Trans. Softw. Eng. 28 (8) (2002) 721–734.

[32] B. Kitchenham and S. Charters, Guidelines for performing Systematic Literature Reviews
in Software Engineering, Tech. Rep. EBSE 2007-001, Keele University and Durham
University Joint Report (2007). URL http://www.dur.ac.uk/ebse/resources/Systematic-
reviews-5-8.pd

[33] V. Alves, N. Niu, C. Alves, and G. Valença. 2010. Requirements engineering for software
product lines: A systematic literature review. Inf. Softw. Technol. 52, 8 (August 2010),
806-820.

[34] P. Mayring. Qualitative Content Analysis. Theoretical Foundation, Basic Procedures and
Software Solution. Social Science Open Access Repository, http://nbn-
resolving.de/urn:nbn:de:0168-ssoar-395173, 2014.

[35] OMG. UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics
and Mechanisms, August 2003.

[36] National Institute of Standards and Technology. An Introduction to Computer Security:
The NIST Handbook. Special Publication 800-12. October 1995.

[37] D. Ameller, M. Galster, P. Avgeriou, and X. Franch, A survey on quality attributes in
service-based systems, Software Quality Journal, 2015.

[38] J.L. de la Vara, K. Wnuk, R.B. Svensson, J. Sánchez and B. Regnell, “An Empirical Study on
the Importance of Quality Requirements in Industry,” SEKE 2011.

[39] J. Whittle, J. Hutchinson and M. Rouncefield: The State of Practice in Model-Driven
Engineering. IEEE Software 31(3), 2014.

[40] A. Forward, O. Badreddin and T.C. Lethbridge. Perceptions of Software Modeling: A
Survey of Software Practitioners, C2M:EEMDD@ECMFA 2010, pp. 12–24.

[41] P. Mohagheghi, W. Gilani, A. Stefanescu, and M.A. Fernandez, An empirical study of the
state of the practice and acceptance of model-driven engineering in four industrial cases.
Empirical Software Engineering 18(1) (2013) 89-116.

Appendix: SLR References
[W1] Alam, M.; Breu, R. & Breu, M. (2004), Model driven security for web services (MDS4WS),

in 'INMIC 2004: 8th International Multitopic Conference, Proceedings', pp. 498-505.

[W2] Anzbock, R. & Dustdar, S. (2005), Semi-automatic generation of web services and BPEL
processes - A model-driven approach, in WMP Van der Aalst; B Benatallah; F Casati & F
Curbera, ed., 'Business Process Management, Proceedings', pp. 64-79.

[W3] Bocciarelli, P. & D'Ambrogio, A. (2011), 'A model-driven method for describing and
predicting the reliability of composite services', Software and Systems Modeling 10(2),
265-280.

[W4] Borek, M.; Moebius, N.; Stenzel, K. & Reif, W. (2012), Model-Driven Development of
Secure Service Applications, in 'Proceedings of the 2012 IEEE 35th Software Engineering
Workshop (SEW 2012)', pp. 62-71.

[W5] Chan, K. & Poernomo, I. (2007), 'QoS-aware model driven architecture through the UML
and CIM', Information Systems Frontiers 9(2-3), 209-224.

[W6] D'Ambrogio, A. (2006), A model-driven WSDL extension for describing the QoS of web
services, in 'ICWS 2006: IEEE International Conference on Web Services, Proceedings',
pp. 789-796.

[W7] Delessy, N. A. & Fernandez, E. B. (2008), A pattern-driven security process for SOA
applications, in S Jakoubi; S Tjoa & ER Weippl, ed., 'ARES 2008: Proceedings of the Third
International Conference On Availability, Security And Reliability', pp. 416-421.

[W8] Gilmore, S.; Goenczy, L.; Koch, N.; Mayer, P.; Tribastone, M. & Varro, D. (2011), 'Non-
functional properties in the model-driven development of service-oriented systems',
Software and Systems Modeling 10(3), 287-311.

[W9] Gronmo, R. & Jaeger, M. (2005), Model-driven methodology for building QoS-optimised
Web service compositions, in L Kutvonen & N Alonistioti, ed., 'Distributed Applications
and Interoperable Systems', pp. 68-82.

[W10] Hafner, M.; Alam, M. & Breu, R. (2006), Towards a MOF/QVT-based domain
architecture for model driven security, in O Nierstrasz; J Whittle; D Harel& G Reggio,
ed., 'Model Driven Engineering Languages and Systems, Proceedings', pp. 275-290.

[W11] Jensen, M. & Feja, S. (2009), A Security Modeling Approach for Web-Service-based
Business Processes, in '16th Annual IEEE International Conference and Workshop on the
Engineering of Computer Based Systems, Proceedings', pp. 340-347.

[W12] Jiang, M. & Yang, Z. (2007), A model-driven approach for dependable software
systems, in A Mathur; WE Wong & MF Lau, ed., 'USIC 2007: Proceedings of the Seventh
International Conference on Quality Software', pp. 100-106.

[W13] Manset, D.; Verjus, H.; McClatchey, R. & Oquendo, F. (2006), A formal architecture-
centric model-driven approach for the automatic generation of Grid applications, in
'ICEIS 2006: Proceedings of the Eighth International Conference on Enterprise
Information Systems - Information Systems Analysis and Specification ', pp. 322-330.

[W14] Menzel, M. & Meinel, C. (2009), A Security Meta-Model for Service-oriented
Architectures, in '2009 IEEE International Conference on Services Computing', pp. 251-
259.

[W15] Menzel, M. & Meinel, C. (2010), SecureSOA Modelling Security Requirements for
Service-Oriented Architectures, in 'Services Computing (SCC), 2010 IEEE International
Conference on', pp. 146 -153.

[W16] Menzel, M.; Thomas, I. & Meinel, C. (2009), Security Requirements Specification in
Service-oriented Business Process Management, in '2009 International Conference on
Availability, Reliability, and Security (ARES), Vol. 1 and 2', pp. 41-48.

[W17] Menzel, M.; Warschofsky, R. & Meinel, C. (2010), 'A Pattern-Driven Generation of
Security Policies for Service-Oriented Architectures', 2012 IEEE 19th International
Conference on Web Services 0, 243-250.

[W18] Nagaratnam, N.; Nadalin, A.; Hondo, M.; McIntosh, M. & Austel, P. (2005), 'Business-
driven application security: From modeling to managing secure applications', IBM
Systems Journal 44(4), 847-867.

[W19] Nakamura, Y.; Tatsubori, M.; Imamura, T. & Ono, K. (2005), Model-driven security
based on a Web services security architecture, in '2005 IEEE International Conference
on Services Computing, Vol 1, Proceedings', pp. 7-15.

[W20] Satoh, F.; Nakamura, Y. & Ono, K. (2006), Adding authentication to model driven
security, in 'ICWS 2006: IEEE International Conference on Web Services, Proceedings',
pp. 585-592.

[W21] Satoh, F.; Tatsubori, M.; Nakamura, Y.; Mukhi, N. K. & Ono, K. (2008), Methodology
and Tools for End-to-End SOA Security Configurations, in 'IEEE Congress on Services
2008, Pt. I, Proceedings', pp. 307-314.

[W22] Wada, H.; Suzuki, J. & Oba, K. (2007), A feature modeling support for non-functional
constraints in service oriented architecture, in LJ Zhang; W Vander Aalst & PCK Hung,
ed., '2007 IEEE International Conference on Services Computing, Proceedings', pp. 187-
195.

[W23] Wada, H.; Suzuki, J. & Oba, K. (2011), 'Leveraging Early Aspects in End-to-End Model
Driven Development for Non-Functional Properties in Service Oriented Architecture',
Journal of Database Management 22(2), 93-123.

[W24] Wada, H.; Suzuki, J. & Oba, K. (2008), 'A model-driven development framework for
non-functional aspects in service oriented architecture', International Journal of Web
Services Research 5(4), 1-31.

