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Abstract. Wind Energy generation depends on the existence of wind, a meteorological
phenomena intermittent by nature, with the consequence of generating uncertainty on the
availability of wind energy in the future. The grid stability processes require continuous
forecasting of wind energy generated. Forecasting wind energy can be performed either by using
weather forecast data or by projecting (or regressing) the past time-series data observations into
the future. This last method is the statistical or time series approach. Wind Time Series show
non-linearity and non-stationarity properties, and these two properties increase the complexity
of the forecasting task using statistical methodologies. In this paper we explore the use of deep
learning techniques, which can represent non-linearity, to the wind speed prediction using the
largest public wind dataset available, the Wind Toolkit from the National Renewable Laboratory
of the US. Several deep network architectures like Multi Layer Perceptrons, Convolutional
Networks or Recurrent Networks have been tested on the 126,692 wind-sites and with the
results obtained valuable comparisons and conclusions have been obtained. The distribution
of the wind sites across the North American Geography has allowed to include in the analysis
relationships between terrain, wind forecast complexity and deep methods.With the developed
testing workbench and with the availability of the Barcelona Supercomputing Center new
architectures are being developed. This work concludes with the feasibility of deep learning
architectures for the wind and energy forecasting.

1. Introduction
The energy industry is changing its dependence on fossil fuels by investing heavily in the
generation using renewable sources. This transformation is a consequence of the Climate Change
impact in our economies, and is strongly pushed by international organizations and agreements
like the Paris Climate Agreement in 2015 [1].

This transformation has many challenges, being one of the them to cope with the inherent
intermittence of the renewable sources which it is related to the inner nature of the natural
phenomena that creates them (sun, wind, etc.) as they appear and disappear depending on
actual weather, day-night cycles, combination of temperature, clouds and humidity. To cope with
this intermittence it is required to develop forecasting strategies that will allow to understand the
future patterns of energy generation and to develop mitigating strategies for the different output
levels [2]. One specially important forecasting window is 12-24 hours, as it has intrinsically high
value (it is used as load confirmation from most network operators), but this forecasting horizon
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has a high level or uncertainty due to the physical complexity of the wind generation dynamics
at local level [3].

Research and implementation of Wind forecasting methods has been extensively developed
in the industry, as the requirement has been around for the last couple of decades and massive
investments have been done in developing the right tools for the problem [4], however, the use
of Machine Learning and Deep Learning techniques is still nascent in this area [5][6][7].

The application of Machine Learning to Time Series forecasting has shown good results in
some applications [8], and is currently a topic of research. The representation capabilities of
these techniques for non-linear modelling are being used with series that can’t be modelled with
traditional statistical models [9].

In this work deep learning models are applied to the U.S. National Renewable Laboratory
(NREL) Wind Toolkit, the largest publicly available wind dataset. This dataset contains 126,692
wind sites [10] with wind speed, humidity, pressure, wind direction measures sampled every 5
minutes during 7 years (2007-2013). This work has developed experiments with Several deep
learning architectures and applied them to all the wind sites, which has allowed to obtain
conclusions from a very large resource of data. This wealth of data has allowed to develop
geographical interpretations of the results.

This article is organized as follows. First the Time Series Forecasting task is presented as a
Regression problem, then the deep learning families of algorithms developed are analyzed, and
finally the experimentation is described in some detail. The final conclusions and future work
actually in place is described in the last section.

2. Wind Time Series and Forecasting
A wind time series is a set of several observations (wind speed at different heights, wind direction,
temperature, pressure, etc. ) recorded in a geographical point or site. Usually they are obtained
from the extensively sensorized turbines that generate the wind energy. A wind can series is
then composed of observations, defined formally as an observation tuple Oi

Oi = 〈Otemperature, Owind−direction, Opressure,···〉 (1)

There can be many elements in a observation tuple in one time stamp, like wind speed at different
heights, humidity, sun radiation and others. Then a wind time series X can be described as a
sequence of n observation tuples.

X = 〈O1, O2, · · · , On〉 or 〈x1,x2, · · · ,xn〉 (2)

A forecast Ŷ is a synthetic generated time series obtained by using inference methods in the
past observations or by integrating information from other sources (like Weather Meteorological
Data for instance). A forecast Ŷ will have two dimensions, an horizon H and a number of
predictions. Horizon defines a point in the future H steps ahead. A forecast can have be
a single step prediction (only for the horizon) Ŷ = ŷn+H or multi-step where a prediction is
obtained for each or all the future steps inside the horizon interval Ŷ = 〈ŷn+1, ŷn+2, · · · , ŷn+H〉.

The wind forecast problem can be considered as a Regression learning problem. A model M
is developed that, using the most recent observations X as an input generates predictions (with
an horizon H) as an output 〈ŷn+1, ŷn+2, · · · , ŷn+H〉. The objective is to develop a function (or
model) f : Rn → R that generates predictions from the existing observed data.

In Deep learning the regression function is obtained by learning the mapping f : Rn → R
from examples, the learning is acquired by the model in the training phase of the algorithm.
Training a Network consists in presenting a large set of data and the network, through its internal
optimization mechanisms, learns the relationships between inputs and outputs. Training in a
network has to converge to an optimum value, and this convergence is a key element in the
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Figure 1. wind time series and prediction

definition and development of network models. There are many optimization algorithms and
techniques for Network training [11]. In this work the optimizer used has been Adamax and
elements like early-stopping have been included in the architectures [12].

This model is then applied to real data and generates a prediction result that needs to be
rated based on the accuracy observed, and in our case we have chosen the R2 or coefficient of
determination which is a very informative measure for linear and non-linear regression problems
[13].

R2 = 1−
∑N

i=1(ŷi − yi)2∑N
i=1(yi − ȳ)2

(3)

For linear models R2 can be interpreted as the explained variance (of the regressed function)
divided by the existing variance. A value of 1 shows a very good fit, but can become negative
if the resulting function does not have good results.

The purpose of this work is to predict energy, but the kinetic energy of wind is transformed
to Energy through the energy formula E = 1

2ρAtv
3, however this transformation depends on

many factors, which make the transformation a more complex function like f : Rn → R where
the inputs are wind speed, direction, turbine model, technical loses, etc. There is a theoretical
Power curve developed by the manufacturer but practically the transformation is not linear and
has a level of uncertainty [14] [15]. There are some works that support the view of separating
the wind-speed problem from the energy conversion, problems that are of different nature [4].
In this article, we have focused only in the wind speed forecast problem as we have considered
it as a more general. To produce the conversion from wind speed into energy the specifications
of the sites and turbines need to be used and this conversion requires an approach based on
the real power curve function of the site. This specialized approach would use much more local
information about the site (geographically, turbine models used, transformation infrastructure,
technical loses, etc.). From now on this article when we refer to forecasting we understand
forecasting wind speed.

Wind Time series forecasting is a specific breed of general Time series prediction due to the
inner nature of the wind time series which are dependent on the physical characteristics of the
wind formation, like weather, terrain or even the application of the Coriolis force on air [16],
[3]. Linearity is the property of a time series defined by the possibility to adjust the time series
by a linear model like: Xt = α1Xt−1 +α2Xt−2 · · ·αpXt−p + εt Stationarity is understood as the
statistically property defined by observing a constant mean, variance or covariance in a time
series.

Wind Time Series present non-linearity and non-stationarity properties this added to the fact
that linear models applied to non-linear time series offer poor results, makes mandatory the use
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of non-linear modelling for wind time series. There are many non-linear models used for wind
time series in the literature [17], but there is limited application of Machine Learning or Deep
Learning models to the wind forecasting area [5].

Deep Learning and Machine Learning methods are able to represent non-linear relationships
and intuitively appear to be a good alternative for Wind Time Series Forecasting, defining the
motivation for this work.

3. Forecasting wind with Deep Learning
One practical example of Deep Learning application is the image classification task, where the
algorithm is trained with a set of images or examples. In this way the algorithm learns patterns
that exists in the images and constructs a model for the classification of new images. With the
Deep Learning techniques the models built have shown accuracy levels superior to the human
ability classifying images, specifically when the image is clear, [18], [19].

Regression can be considered a variation of classification, in this case the task consists in
adjusting a function or a model developed by learning all the examples in a training dataset.
The resulting model will apply the learned structures to new data in order to perform a forecast
or a regression of the curve (wind speed in this application).

The Deep Learning algorithm will require to be presented with a set of examples Z where
each example will be a series of length lag, Z : (Z1, Z2, ·, Zn). Each example will be a tuple
with the main variable (wind speed) and all the auxiliary variables that the dataset provides
us (wind direction, temperature, humidity, density), Zi = (Z(wind speed)i, Z(T)i, Z(ρ)i, · · · , ).
All the algorithms described below use this Examples dataset for its training.

Figure 2. Persistence method applied to all the wind sites. The worse rated sites (yellow-red)
mark high wind variability
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3.1. Multi Layer Perceptron MLP
Multi Layer Perceptron or Feed Forward Network can be considered as the traditional Neural
Network. All the neurons are fully connected to the next layer and the information flows in
one direction. The activation function most widely used is the ReLu function [11]. In order to
use the MLP architecture two possible approaches can be used. A Direct Regression approach,
where the network forecasts a single data point in one execution. Or a sequence to sequence
approach where the network forecasts a time series from n+ 1 to k where k is the horizon in one
execution. The Direct Regression approach is very expensive computationally wise, as multiplies
k times the number of executions and impacts training as well, some preliminary comparisons
between direct regression approach and multi-step approach have been performed and the multi-
step has shown better accuracy. With this conclusion all the models have been developed with
multi-step regression or sequence to sequence. The sequence to sequence approach was defined
for Recurrent Neural Networks (RNN) initially and has proven to be very effective for language
and voice data [20]. The network is presented with a sequence of values and predicts a sequence
of outputs, which is the predicted time series of length 12 (all the work has been done with 12
hours ahead prediction).

The training is performed using backpropagation and standard Gradient Descent with
ADAMAX as optimizer [12].

3.2. Convolutional Network CNN
Convolutional Networks are extensively used in the image recognition field. Their main capacity
is the application of filters to matrixes of data that can specialize in small patterns in the image.

There is some, but limited, experience on the application of CNN to time Series like [21] or
[22], which show applications of convolutional networks to time series with good results.

CNN are feed forward networks in the sense that information flows in only one direction.
The structure used in the experiments is a seq2seq CNN where the examples are presented with
one dimensional data that is the sequence to be trained on. The CNN generates a sequence as
an output which represents the sequence of horizon H to be predicted.

3.3. Recurrent Neural Network RNN
Recurrent Neural Networks are an evolution of feed forward networks, in this case the
information is able to flow backward and forward, allowing to process history or long sequences
of data. At each time step, RNN will take the input xi and the output of the previous node
hi−1, producing an output hi.

ht = f(xi + hi−1)

ŷt = f(ht)
(4)

RNN can be feed with sequence to sequence like MLP and Convolutional and with encoder-
decoder algorithms. An encoder-decoder architecture will take a sequence as an input and a
generate a sequence as an output.

There are several variants of RNN networks depending on how the function f behaves, which
inputs will process and how to gate them into the function. The two major structures in the
neuron are the Long Short Term Memory (LSTM) [20] and the Gated Recurrent Units (GRU)
cells [23].

4. Experimental application of Deep Learning to the NREL wind Dataset
The contribution of this work consists in the application of new deep learning architectures on
a very large wind dataset. The architecture models described in the previous section have been
used in many applications, but there are limited experiences of their use with time-series or with
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wind data. Regarding data there is not available a study on more than a handful of wind sites
using deep learning, for this reason using the NREL database with over 126,692 data sites in
North-America [10]

There are some works in the literature using this dataset [24], but, probably due to computing
resource availability there are not large exercises available yet. We have used the Super
Computing Center in Barcelona [25] as a key computing resource that has made the experiments
possible.

Figure 3. Map of US with the site comparison of MLP vs RNN comparison (blue better MLP,
red better RNN)

To perform the experiments we have developed a software framework that allows the
application of each architecture to all wind sites under the same conditions in order to obtain
comparable homogeneous results.

The algorithms try to learn the wind speed patterns by presentation of different examples,
which is accomplished by an sliding window technique.

X = 〈x1,x2, · · · ,xn〉 (5)

The Wind Series in (2) is then decomposed in multiple examples of width lag

X1 = 〈x1,x2, · · · ,xlag〉
X2 = 〈x2,x2, · · · ,xlag+1〉
X3 = 〈x3,x4, · · · ,xlag+2〉 · · ·

(6)

There are n Xi possible windows in the series being each one of length lag which are the
examples that will be used in the training process by the different architectures. Each model
generates a prediction series from n to n+12 steps (hours). The models tested can be seen in
table §1.

The data is z-normalized as a pre-process for training so the value obtained for the MSE is
also normalized, as a consequence R2 = 1−MSE, in this sense MSE can be considered an error
measure and then R2 is an accuracy measure, where the closer to 1 the more accurate is the
result.
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Table 1. Deep Models tested in Experiments

Model Variant Description

Multi Layer Perceptron seq2seq MLP sequence to sequence
Multi Layer Perceptron Direct MLP with Direct Regression
Convolutional Network seq2seq CNN sequence to sequence
Recurrent Neural Network seq2seq RNN seq2seq
Recurrent Neural Network encoder decoder RNN encoder decoder
KNN KNN neighbors trained like the Networks

A z-normalization consists on adjusting the scale of the the data obtaining mean of zero and
variance (σ2) of one. This is a usual data transformation process performed if working with
neural networks [11] [26].

The accuracy of each method has been calculated using the coefficient of determination R2.
Each one of the models has been applied to the 126,692 wind sites. The experimentation process
has followed several steps.

1 Baseline execution

2 MLP Direct Regression vs MLP seq2seq model

3 CNN model

4 RNN models

5 Comparisons and results analysis

The first step has been to perform the baseline models for comparison with the deep learning
architectures that will be executed later. The two baseline models chosen have been persistence
and k -Nearest Neighbor or k -NN method. Persistence consists in using the xn value as
〈ŷn+1 = xn, ŷn+2 = xn, · · · , ŷn+H = xn〉 this method obtains reasonable results up to 3 hours
and then it deteriorates and in its R2 becomes highly negative. An interesting finding with this
method is that the accuracy of the method marks the wind variability in a site, and the location
of these wind variability across the US geography is mostly located in areas with high wind
resources and variability like the west part of the central plains (see fig. 2).

The k -NN method is trained with examples 18hours long. The algorithm identifies the
nearest neighbors using Euclidean distance. With the 13 nearest neighbors selects the averaged
next 12 hours. This algorithm obtains as a sum of the R2 for the 12 steps ahead a value of 4.9,
much higher than persistence which is below 2.5, but lower than all the Deep Learning models
which are above 6.

The next step has been to determine which is the best regression strategy, and for this reason
an experiment with the MLP has been designed. A model with direct regression (one MLP
for each step) and a model for MLP seq2seq (input and output are sequences). Both models
are executed in a selected number of sites and compared. The comparison confirms the better
accuracy of the MLP seq2seq and the conclusion is to use seq2seq for all the experiments.

The third step has been to test each architecture.Each algorithm has been tested to identify
the best parameters for each architecture, and then it has been executed with the same set of
parameters with the whole dataset. The data has been divided in three sets, 5 years of data for
training (2007-2011), one year for testing (2012) and another year for validation (2013). Each
single execution on each site has been stored and used for the analysis.

From the comparison between the different methods we obtain valuable conclusions. The
comparisons between the different methods shows a slightly better accuracy of the MLP seq2seq
model than both RNN approaches and the CNN, however the four methods obtain very similar
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ratings. Another conclusion is that there is not something like the best model everywhere. We
find sites where the best model is CNN and others where the best is RNN or MLP. In figure
2 we can see the result comparison between MLP and RNN. MLP is better in most sites, but
RNN has areas from the Plains to the West Coast where it performs better, there is even a small
part in southern Florida where RNN is the best method.

Analyzing the boxplot of each experiment (see 4 we can analyze the performance of the
methods comparing the results between validation and test. Two observations can be made, one
is the differences between the two sets of data, which probably implies that the model should
be retrained in order to cope with the wind regime changes over time, and the second is the
difference of accuracy comparison hour over hour. Could it be that there are methods that
perform better in shorter time frames than others?

The results from the experiments can be summarized as follows:

(i) Persistence obtains poor results for the horizon of 12 h.(as it was expected).

(ii) Deep learning models are better than statistical baselines (k -NN).

(iii) MLP direct regression has worse results than the seq2seq regression approach.

(iv) MLP with sequence to sequence, as an average, has better accuracy than RNN or CNN
models

(v) The best model in a site depends on some characteristics of the site (terrain complexity or
wind regimes) showing a dependence between terrain characteristics and the most accurate
model (see figure §3).

(vi) There are some differences in forecasting year 6 or year 7, which explains changes in the
wind resource year on year. The conclusion is that the models need to be retrained, as the
wind is not constant over time.

Figure 4. MLP vs RNN boxplot for validation and test datasets

There are narrow differences between the deep learning architectures, and we believe there
is room for tuning the deep model structures in order to obtain better results.

5. Conclusions and future Work
The deep learning algorithms tried on the wind toolkit show better accuracy for 12 hour forecast
ahead compared to traditional models. The experiments have shown dependency between
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wind site characteristics and the best performing method. In areas with high and variable
winds (Southern plains, Gulf of Mexico and West Coast) the best method is the recurrent
neural network, while in other more stable areas the best method is MLP and in some points
CNN. This relationship between best method and site characteristics is an objective of future
experimentation.
As the best models differ site to site, and there is some model accuracy drifting between the
12 hour steps, the added accuracy of using different models could improve the overall accuracy,
with this finding, we can explore the combination of methods in ensembles in order to improve
accuracy.
It is common, with the statistical methods, to adjust the forecasting models by heavy manual
tuning, as the forecast is usually made at wind park level and not at turbine like in this work.
Defining several models and adjusting the best model to each terrain characteristics may generate
an improvement in accuracy, and using an ensemble approach will improve the overall results
of the architectures tried. Deep Learning ensemble methods applied to the NREL dataset is
another area of further work.
The experiments have been made only using past observations. The variables have different
levels of information. Wind speed is the most relevant, while temperature or humidity have less
information. From another point of view, temperature or humidity are low resolution variables
which can be predicted with great accuracy from weather forecasts. We propose a hybrid model
where the past observations will be combined with some low resolution variables from weather
forecast to improve the overall accuracy.
Finally, even though the 7 years of measures sampled every 5 minutes looks like a lot of data,
the experience shows us that Deep Learning exercises require much larger datasets to obtain the
best results. It would be desirable to have alrger datasets, and this could be accomplished by
using longer time series, but from the experimentation it has been observed that the use longer
series presents some challenges, like:

(i) Winds change over time (due to climate change impact) and this fact compromises the the
value of longer series of data [27].

(ii) There are limited sources of sites with longer series of data

Due to these challenges it will be interesting to use synthetic data, and one of the areas of future
work is how to use Generative Adversarial Networks to develop synthetic data to enrich training
and forecast processes like it is already made in other areas and applications[28]. In summary,
the authors believe that Deep Learning applied to wind prediction opens a whole new set of
tools to improve forecasting for the wind renewable industry.

Acknowledgments
We thank the Barcelona Supercomputing Center for the extensive use of their infrastructure in
this project, and the United States National Renewable Energy Laboratory (NREL) for the use
of their wind energy datasets.
This work is partially supported by the Joint Study Agreement no. W156463 under the
IBM/BSC Deep Learning Center agreement, by the Spanish Government through Programa
Severo Ochoa (SEV-2015-0493), by the Spanish Ministry of Science and Technology through
TIN2015-65316-P project, and by the Generalitat de Catalunya (contracts 2014-SGR-1051)

References
[1] United Nations Framework Convention on Climate Change (UNFCCC) Secretariat 2015 Report of the

conference of the parties on its twenty-first session, held in Paris from 30 November to 13 December
2015. addendum. part two: Action taken by the conference of the parties at its twenty-first session united
Nations Office at Geneva

[2] Fares R 2015 Scientific American – Nature Publishing Group



WindEurope

IOP Conf. Series: Journal of Physics: Conf. Series 1222 (2019) 012037

IOP Publishing

doi:10.1088/1742-6596/1222/1/012037

10

[3] Landberg L 2015 Meteorology for Wind Energy (John Wiley & Sons Ltd) ISBN 9781118913444
[4] Giebel G, Brownsword R, Kariniotakis G, Denhard M and Draxl C 2011 The State-Of-The-Art in Short-Term

Prediction of Wind Power: A Literature Overview, 2nd edition (ANEMOS.plus) project funded by the
European Commission under the 6th Framework Program, Priority 6.1: Sustainable Energy Systems
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J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar
K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y
and Zheng X 2015 TensorFlow: Large-scale machine learning on heterogeneous systems software available
from tensorflow.org URL http://tensorflow.org/

[13] Schneider A, Hommel G and Blettner M 2010 Dtsch Arztebl Int 107 776–782 ISSN 1866-0452 21116397[pmid]
[14] Sohoni V, Gupta S C and Nema R K 2016 Journal of Energy 18 ISSN 8519785
[15] Shetty R P, Sathyabhama A and Pai P S 2018 Frontiers in Energy ISSN 2095-1698 URL

https://doi.org/10.1007/s11708-018-0553-3
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