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extend that, in particular, at least one member of the set 
(referred to as deputy within the scope of this paper (in 
literature also referred to as chaser or slave)) has to track a 
desired state relative to another member (referred to as chief 
(in literature also referred to as target)) and the tracking 
control law must depend upon this relative state. The second 
point is declared critical since it differentiates a formation 
from a constellation, e.g. the GPS satellites, in which a 
relative position is actively maintained, too, but the orbit 
corrections are solely based on an individual satellite’s 
position and velocity (state) [3].  

In planetary orbital environments (POE), one cannot define 
an arbitrary formation design but only one that is legal, i.e. 
permitted by the law of physics: "To give an example: one 

cannot require two satellites to ’fly’ side by side infinitely. 

Their paths will cross before they finish the first orbit. Nor 

can one require a satellite to ’fly’ above or below another at 

the same speed. Satellites do not fly, they orbit" [4]. Legal 
satellite formation flying designs can be derived using the 
linearized equations of relative motion of two objects under 
the influence of nothing but a point-mass gravitational field, 
commonly known as Hill [5] or Clohessy-Wiltshire equations 
(CW) [6] and expressed in the Local Vertical Local 
Horizontal (LVLH) rotating coordinate system centered at 
the reference spacecraft (chief). A detailed derivation of the 
CW equations can be found in [7]. Throughout the course of 
this paper, the LVLH coordinate system is defined following 
the definition of Vallado [7]: the �� -axis points from the 
Earth’s center along the radius vector towards the chief 
satellite as it moves through the orbit. The ��-axis points in 
the direction of (not necessarily parallel to (in the case of non-
circular orbits)) the velocity vector and is perpendicular to 
the radius vector. The �̂-axis is normal to the orbital plane.  

For the sake of simplicity, the derivation of the CW equations 
completely neglects natural perturbations. In reality, though, 
every orbital element dependent perturbation pulls the 
formation apart (certain invariant relative orbits exist [8] but 
they remain an exception). Thus, in order for the formation 
to keep its intended design despite present perturbation 
(commonly referred to as formation keeping / maintenance), 
or for any change in the formation design (rendezvous 

maneuvers or reconfiguration) control forces need to be 
generated. To this day the method of choice is to use 
chemical/electrical or cold gas thrusters. However, the 
limited availability of the propellant shortens the expected 
lifetime of a mission. This is especially critical in the case of 
CubeSats, since: 

1. They are subjected to very stringent mass and volume
constraints.

1 At the same time, its kinetic energy is increased. This phenomena is often referred to as satellite drag paradox [[16]]. 

2. Constrains in volumes and pressures of stored
propellant, nominally to protect the primary payload, can
limit the capability and/or availability of on-board
propulsion systems if they are launched as secondary
payloads [9].

3. The related propellant exhaust might affect sensitive on-
board sensors.

As a consequence, propellant less techniques to generate 
control forces are of greatest interest for the CubeSat 
community. As will be introduced in the next chapter, 
differences in the magnitude of lift and drag forces 
experienced by satellites travelling through Earth’s 
atmosphere in Low-Earth Orbit (LEO) and Very Low-Earth 
Orbit (VLEO), the latter referring to circular orbits with a 
mean altitude lower than 450 km within the course of this 
paper, can be exploited as a means to control satellite 
formation flight. Moreover, other propellant less techniques, 
e.g. solar radiation pressure [10], the geomagnetic Lorentz
force [11, 12] or inter-vehicle coulomb forces [13, 14], are
envisaged as possible solutions to either reduce or even
remove the need for an on-board propellant. However, they
are not further considered in the course of this paper, as are
aeroassisted orbit maneuvers or aerobreaking. For an
excellent review, the reader is referred to the work of
Walberg [15].

1.1  Differential Lift and Drag 

The aerodynamic drag acting on a satellite can be expressed 
as a specific force (acceleration) as (Eq. 1-2) [7]: 

�⃗� =  − �
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with: 
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Here, CD is the drag coefficient, ρ the atmospheric density, m
the mass of the spacecraft and A its cross-sectional area 
normal to the velocity vector. The velocity vector �⃗���  is
measured relative to the atmosphere taking the Earth’s 
rotation and wind into account [8]. In POE, the specific 
mechanical energy of a satellite is defined as (Eq. 3) [7]:  

= − !
" (3)

where $ is the gravitational constant and � the semi-major 
axis. As atmospheric drag dissipates energy from the system 
it inevitably causes orbital decay and eventually re-entry1. 
Therefore, it is an unwanted perturbation. The magnitude of 
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the drag acceleration strongly depends on the design of the 
satellite, which is generally expressed in the so-called 
ballistic coefficient (BC) defined as the ratio  % &'�().⁄  If 
the BCs of two spacecraft differ, both experience different 
magnitudes of drag accelerations and the formation 
deteriorates over time. Vice versa, a desired differential 
acceleration between two satellites can be intentionally 
commanded via a well-chosen delta in their BCs. This 
method is commonly referred to as differential drag and was 
first introduced by C. L. Leonard in 1986 [17].  

Varying the mass is in general an irreversible process and 
considered no option. However, there are several options 
available to reversibly adjust the surface area perpendicular 
to the flow. Leonard proposed to use dedicated drag plates 
(e.g. solar panels) and to adjust the magnitude of the drag 
acceleration by rotating the plates. The latter is visualized in 
Fig. 1, in which the chief is currently in a maximum drag 
configuration whereas the deputy aims to minimize drag as 
best as possible. In this case, the satellites are assumed to 
have a constant attitude which is controlled by other means. 
A second option frequently discussed is to rotate the satellite 
itself e.g. by using reaction wheels. The latter postulates that 
the satellite is asymmetrically shaped such that a noticeable 
difference in the corresponding surface area can be created. 
The reaction wheels are expected to be powered using solar 
panels so that no propellant is consumed. A third possible 
solution is to use a dedicated drag sail. However, different 
from a commercially available de-orbit sail, it needs to be 

able to be opened and closed multiple times (see e.g. [18]). 
Despite its promising benefits the method entails several 
limitations: 
 
1. The method is limited to VLEO and/or low LEO 

operations. As the density decreases with altitude, there 
is inevitably a maximum height for which a meaningful 
control authority is available.  

2. The disturbance force caused by the J2 effect of the 
Earth’s oblateness 2  increases with the inter-satellite 
distance. Consequently, there exists a maximum 
separation distance (depending on the altitude) up to 
which the formation is controllable.  

3. Every control action inevitable cause orbital decay and 
there is no option available to reverse this process.  

4. The extended maneuver times renders the method 
infeasible for some applications.  

 
Its main disadvantage, however, is that its control authority 
is (mainly) limited to the in-plane relative motion. The drag 
force in the out-of-plane direction (occurring for inclinations , - 0 due to the rotating atmosphere) is shown to be two 
orders of magnitude smaller even for highly inclined orbits 
[19] and unable to provide meaningful control authority. 
Also, a potential indirect out-of-plane maneuvering by an 
adjustment of the secular drift of RAAN caused by Earth’s 
oblateness by changing the semi-major axis using drag can 
be envisaged but is neglected here. 

Fig. 1 Visualization of an in-plane formation [4], using the satellite’s solar panel as dedicated drag / lift plates. The origin of 
the LVLH coordinate system is centred at the chief and the axes are as previously defined

                                                           
2 J2 is the second order harmonic of Earth’s gravitational potential field  
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To bypass this disadvantage, Horsley [20] proposed to use 
differential lift as a means to control the out-of-plane relative 
motion in 2011. Satellite lift, defined as the aerodynamic 
force acting perpendicular to drag, can be expressed as a 
specific force as (Eq. 4-5) [21]:  
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with: 

��⃗ / =  &��⃗ 234×6�⃗ )×��⃗ 234
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where C9 is the lift coefficient and 6�⃗  is the normal vector of 
the respective surface under consideration. All other 
parameters remain as previously defined. Most frequently, 
satellite lift (which acts perpendicular to drag) is considered 
to be negligible. This is because satellites that are 
spinning/tumbling or satellites with certain symmetrical 
shapes tend to have the effect of aerodynamic lift cancel out. 
In addition, the lift coefficients CL experienced so far are 
noticeably smaller than the drag coefficients [20]. However, 
by intentionally maintaining a constant attitude relative to the 
velocity vector, the effects of aerodynamic lift is shown to 
essentially build up over time and generate measurable 
effects on the satellite orbit. This was first experienced during 
the analysis of the inclination of the S3-1 satellite in 1977 
[22]. Moore studied the effects of aerodynamic lift on near 
circular satellite orbits in closer detail in 1985 [23].  

Using a combination of differential drag and lift, all three 
translational degrees of freedom of the spacecraft relative 
motion become controllable. This can be mathematically 
expressed using the solutions to the Schweighardt-Sedwig 

(SS) equations [24, 25], which can be solved analytically. 
Although being surprisingly similar in form to the CW 
equations, the linearized equations are able to capture the 
influence of the J2 potential. The solutions to an intermediate 
set of SS equations including differential lift and drag 
accelerations expressed in Eq. 6 - 14 are generally taken from 
Shao et al. [26] but presented in the notation proposed by 
Smith et al [27]. A slight correction had to be included to 
make the equations fully correct.  
 � =  �̅ +  <   (6) 
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with �̅ , �>, < and ? being defined as (Eq.7-10): 
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The coefficients are defined as follows (Eq.13-14): 
 

a =  \1 + bcDdeDf�gD &1 + 3cos &2,Z))  (13) 

 

( =  Z
hZ²,  U =  hiZ²

Z   and  J =  √3a − 2       (14) 

Here, a is the SS coefficient which takes the J2 influence into 
account. ( , U  and J  are auxiliary variables introduced to 
simplify the equations. RE is the Earth’s mean radius, ω is the 
angular velocity of the chief spacecraft’s orbit, ic its 

inclination and rc its radius. �B , �B , �B, 
MNO

�E, <B and 
^O

√Z� are 

the initial conditions. �V, �S, �M are the relative accelerations 
generated using differential lift and drag. The equations are 
expressed in the LVLH coordinate as previously defined. In 
the linearized equations, the in-plane relative motion is 
completely decoupled from the out-of-plane relative motion 
and can be decomposed into a double integrator modelling 
the average location of the deputy with respect to the chief 
( �̅, �> ) as well as a harmonic oscillator modelling its 

eccentricity 3  ( 3 =  k< +  ?² 2a(⁄ ). The out-of-plane 
motion solely consists of a non-secular harmonic oscillator. 

The influence of differential lift and drag on the phase planes 
is displayed in Fig. 2 (figure design taken from [26]). As an 
understanding of the influence is critical to follow the gap 
analysis later on (chapter 3), the main features will be 
discussed shortly. Taking Eq. 6 - 14 into account, it follows 
that the �̅  can be only influenced by a differential drag 
acceleration �S. The latter causes the state to move along the 
depicted parabolas in the (�̅, �>) phase plane. The parabolas 
passing through the origin (indicated in bold in Fig. 2 (b)) are 
the so-called switch curves well-known from the time 
optimal control of a double integrator. At the same time, the 
acceleration causes the state in the (< , ? √2a(⁄ ) plane to 
follow a stable circular motion with the circle’s center being 
shifted towards a positive (negative) ? √2a(⁄ )  value 
proportional to the magnitude of the available positive 
(negative) differential drag acceleration �S. A differential lift 
acceleration in the radial direction �V  causes a similar 
circular motion of the (<, ? √2a(⁄ ) ) plane, however now 
with the centers being shifted towards a positive (negative) 
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alpha value, dependent of the respective sign of �V . This 
causes the �> to change linearly with time and proportionally 
to the magnitude of �V. In the depicted case, the deputy was 
initially located at the origin. With no acceleration being 
present, the (<, ? √2a(⁄ )  states circulate around the origin. 
The equations also show that in the linearized case, the out-
of-plane motion is completely decoupled from the in-plane 
motion, differential lift in the �̂-direction does not interfere 
with the in-plane relative motion at all. Vice versa, 

aerodynamic forces in the �� - / and �� -direction have no 
effects on the out-of-plane relative motion. Consequently, for 
a differential lift acceleration in the out-of-plane direction �M, 
only the (� ,  �N JK⁄ ) plane is of interest. This shows the 
characteristic pattern of a harmonic oscillator with the center 
of the circle being shifted towards a positive (negative) � 
value depending on the sign of the respective differential 
acceleration. With no acceleration being present, the state 
circles around the origin in a stable motion.

 

Fig. 2 Phase plane for differential accelerations in (a) the x-direction, (b) the y-direction and (c) the z-direction. A positive 
(negative) acceleration causes the state to move along the solid (dashed) trajectories. Figure design taken from [26] 
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