
UNIVERSITAT POLITÈCNICA DE CATALUNYA

MASTER’S THESIS

Towards fast hybrid deep kernel learning

methods

Author:

Miquel LARA

Supervisor:

Lluís A. BELANCHE

A thesis submitted in fulfillment of the requirements

for the degree of Master’s Degree in Informatics Engineering

in the

Facultat d’Informàtica de Barcelona

April 15, 2019

https://www.upc.edu
https://www.fib.upc.edu/

i

“People worry that computers will get too smart and take over the world, but the real problem

is that they’re too stupid and they’ve already taken over the world.”

Pedro Domingos

ii

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Abstract

Facultat d’Informàtica de Barcelona

Master’s Degree in Informatics Engineering

Towards fast hybrid deep kernel learning methods

by Miquel LARA

This work studies the hybridization of neural networks and approximated kernel

methods. Different methods of approximating infinite-dimensional kernels are ex-

plored here for use within deep neural networks, as are various optimization meth-

ods used for training them. The objective is to obtain an optimal performance for

the resulting network while reducing training time as much as possible. While other

methods cannot yet be discarded as valid approaches from testing done in this the-

sis, in general the best results were obtained by using random Fourier features with

the adaptive optimizer RMSprop.

HTTPS://WWW.UPC.EDU
https://www.fib.upc.edu/

iii

Acknowledgements

Heartfelt thanks to all the people that have been by my side throughout this journey,

and without whom this work would not be possible. A full list with proper acknowl-

edgements would be far too long, but I must thank my mom, dad and brother for

putting me up and supporting me over the years, and Carla for putting up with me

more than anybody should. Of course special thanks must also go to my supervi-

sor Lluís Belanche, who has inspired my interest in machine learning and without

whom this paper would not be possible.

iv

Contents

Abstract ii

Acknowledgements iii

1 Introduction 1

1.1 Introduction . 1

1.2 Problem to Solve . 2

1.3 Aims and Objectives . 2

1.4 Related Work . 3

1.5 Thesis Structure . 4

2 Neural Networks and Kernel Methods 5

2.1 Deep Neural Networks . 5

2.2 Kernel Methods . 7

2.2.1 Approximating Kernel Functions 8

Random Fourier Features . 9

Nyström Method . 10

2.2.2 Radial Basis Function Kernels . 12

2.2.3 Dimension of the RBF . 12

2.3 Training Neural Networks . 13

2.3.1 Stochastic Gradient Descent (SGD) 15

2.3.2 RMSprop . 17

2.3.3 Simultaneous Perturbation Stochastic Approximation (SPSA) . 18

3 State of the Art 20

3.1 Hybrid Neural Kernel Networks . 20

3.1.1 Training Neural Network Architectures 22

v

4 Methodology 24

4.1 Approach and Objectives . 24

4.1.1 Hyperparameters . 25

4.2 Implementation in Tensorflow/Keras 26

4.2.1 Replicating SPSA Results . 28

5 Experimental Setup 30

5.1 Datasets . 30

5.2 Experimental Design . 31

5.3 Hyperparameter Tuning . 32

5.4 Experimental Conditions . 33

6 Results 34

6.1 Fashion-MNIST . 35

6.2 MNIST . 37

6.3 Titanic . 39

6.4 Spambase . 41

7 Conclusions and Future Work 44

7.1 Conclusions . 44

7.2 Future Work . 45

Bibliography 47

1

Chapter 1

Introduction

1.1 Introduction

Artificial intelligence is at the forefront of computer science research, with applica-

tions in almost every field and far-reaching consequences in everyday life. One of

the major advances in computers’ capacity to solve complicated and nuanced prob-

lems is in part due to the increasing popularity of deep learning, which allows us to

make inferences which historically have been simple for humans to make, but very

complicated for computers.

Although the concept of deep learning is some decades old, it is thanks to the

advances in hardware and the prevalence of distributed and cloud computing that

it has become viable to apply it on a commercial and industrial scale. This has lead

to the recent "Big Bang of AI"[1], which allows computers more autonomy and re-

quires less human fine-tuning when analyzing the massive data sets that are being

generated and stored.

Despite the processing capacity available nowadays, it is necessary to improve

the underlying algorithms in order to ensure that the hardware is used to its full

capabilities. Thanks to the creation of open-source machine learning libraries like

Tensorflow, and their ability to use consumer GPUs to speed up parallel calculations,

it is possible to train and experiment on deep learning networks of moderate sizes

even without specialized hardware.

Chapter 1. Introduction 2

1.2 Problem to Solve

The interest in deep neural networks has surged recently as a result of the high accu-

racy which deep learning can achieve compared to other statistical models. Histor-

ically, neural networks were outpaced in their predictive abilities by support vector

machines and other kernel-based methods, although this trend has recently been

reversed. Nevertheless, kernel-based methods are well understood from a mathe-

matical point of view, and being able to combine both approaches is an interesting

avenue to explore. It is hoped that the high-dimensional mappings of kernel meth-

ods can enhance neural networks’ predictive power.

At the same time, the increased computational cost of using kernel mappings

should be mitigated. One of the possible improvements is to apply derivative-free

training methods to the neural network, or to use adaptive algorithms that can ad-

just each parameter’s learning rate based on previous observations, instead of the

usual stochastic gradient descent methods. These methods have already proven to

be effective in training standard feedforward neural networks, and it is expected

that they can similarly aid in training neural networks when hybridized with kernel

methods.

1.3 Aims and Objectives

The main aim of this thesis is to train hybrid neural-kernel networks with different

kernel approximation and training methods, and to see whether they can improve

training times and model accuracy. In particular, the following comparisons will be

made:

• Random Fourier features (RFF) vs. the Nyström method (NM) for kernel ap-

proximations

• Stochastic gradient descent (SGD) vs. RMSprop vs. simultaneous perturbation

stochastic approximation (SPSA) for layerwise training

The hope is that by synthesizing various approaches to creating and training hy-

brid network architectures, it is possible to evaluate which approaches give the best

Chapter 1. Introduction 3

results in terms of performance and training time. Despite these ideas having been

studied in isolation, no thorough assessment has been undertaken to see how these

ideas can enhance neural networks when implemented in unison. It also remains to

be seen what the trade-off between training times and final model performance is

and whether it is worth it to pursue better performing models, even if it comes at

the expense of higher training times.

For simplicity’s sake during the implementation and evaluation of the experi-

ments, only classification problems will be considered. Whether or not the results

presented here extend to regression problems as well are left for further research.

1.4 Related Work

The main point of reference for this thesis is the work done by Mehrkanoon et al. [2],

which hybridizes a single or two-layer neural network with kernel methods. These

functions are typically used in support vector machines to apply linear methods in

nonlinear data, but as they are data-dependent representations they do not scale well

with large amounts of data. Mehrkanoon et al. show that by replacing the activation

function of a typical feedforward neural network by an approximated kernel, they

can obtain improved performance with large datasets than an equivalent SVM or

feedforward network.

Alternative approximations to the kernel function, in particular the Nyström

method versus the random Fourier features, have been explored by Yang et al.[3]

for both ridge regression and SVMs, which shows a significant improvement when

using the Nyström method compared to RFF, although is not clear how these results

will carry over when used in a hybrid neural kernel network. They further show

that due to the data-dependent nature of the Nyström method, this improvement is

dependent on the large eigengap of the kernel matrix generated by the input data, so

this result may not generalize easily if the data used does not display this property.

A further variation on current approaches to hybrid kernel networks is using the

derivative-free simultaneous perturbation stochastic approximation versus the typi-

cal stochastic gradient descent used for training neural networks. These approaches

have been explored in the context of standard neural networks by Wulff et al. [4],

Chapter 1. Introduction 4

but it is not clear how these techniques will hold up when using kernel methods.

On the other hand, the widely used adaptive optimization algorithms like Adam or

RMSprop have been studied by Wilson et al. [5] and found to perform worse than

stochastic gradient descent for the problem sets which were analyzed, so it is in-

teresting to see whether these results also hold for the hybrid networks considered

here.

Other types of layerwise training for deep architectures have been explored by

Mora [6], who expanded on the deep hybrid architecture proposed by Mehrkanoon

et al. by using layerwise training techniques, as well as applying several regulariza-

tion methods to prevent the overfitting. Regularization techniques are not widely

studied here, but some basic techniques will be used to prevent overfitting the data.

1.5 Thesis Structure

Chapter 2 gives the background knowledge of neural networks and kernel meth-

ods, as well as the kernel approximation and training methods which will be com-

pared. The hybrid neural kernel architecture which the experiments will be based

on are introduced in Chapter 3, as well as presenting the current state of the art for

these types of architectures, kernel approximations and training methods. Chap-

ter 4 presents the methodology which will be used for the experiments, as well as

introducing the frameworks used when implementing them, and Chapter 5 gives

an overview of the experimental setup and introduces the datasets which the ex-

periments are performed on. The results obtained are presented and discussed in

Chapter 6, while Chapter 7 summarizes the conclusions reached and outlines some

possible extensions to the research carried out here.

5

Chapter 2

Neural Networks and Kernel

Methods

2.1 Deep Neural Networks

In order to understand what changes have been made to standard neural networks

in this hybrid approach, it is first necessary to understand what is meant by a "deep

neural network". A neural network is a specific type of statistical model, with the

goal of approximating some unknown function f ∗, although the approach here is

somewhat different to that of a regression or other linear models. This paper will

only deal with feedforward networks, which do not have any loops or cycles in the

network.

The term "network" refers to the fact that the model is made up of intermediate

functions f (i), for i ≤ N, which are composed together in some way. The most

common way of doing this is through a simple chain, eg. f (3)(f (2)(f (1)(x)))), where

each of the functions is referred to as a layer. With this representation, f (1) is the

first layer, and the outermost function f (N) being referred to as the output layer.

The output of any layer before the final layer is not used when training the model,

and so they are referred to as hidden layers.

The number of layers is the depth of the model, and while "deep" is somewhat

subjective, it typically refers to any network where there is at least one hidden layer

between the input layer and the output. The ever-increasing depth of a neural net-

work is what gives birth to the phrase "deep learning". [7]

Finally, the "neural" refers to the fact that neural networks are inspired by the

Chapter 2. Neural Networks and Kernel Methods 6

functioning of the brain, where each input value roughly corresponds to a single

neuron, and each successive neuron receives input from the neurons in the previous

layers. Although neural circuits in the brain have been used as an inspiration for

neural networks, progress in this field is driven mainly by mathematical and engi-

neering principles, and not biological ones. A graphical representation of a neural

network can be seen in Figure 2.1.

FIGURE 2.1: Example of a simple ANN[8]

Hidden
layer

Hidden
layer

Input
layer

Output
layer

The "classical" approach to an artificial neural network is for each hidden layer

f (i) to be formulated as follows:

f (i)(x) = g(Wix + bi)

where Wi is the weight matrix, bi is a bias vector, and g is an activation func-

tion[2]. Each of the rows of W represent an input, with each column representing a

single neuron, so the value at Wij is the weight for the input i in neuron j.

The purpose of the activation function is to add some nonlinear component to

the layer, so that the neural network as a whole is not simply a linear model. This

general approach allows an artificial neural network to theoretically approximate a

wide array of functions, with only some loose restrictions on the activation func-

tions. Assuming that g is bounded, nonconstant and continuous, then this feed-

forward network architecture can approximate any continuous function arbitrarily

well, depending on the depth and width of the network. [9]

A standard recommendation for the activation function is the rectified linear unit

(ReLU) function, given by g(x) = max(0, x)[7], but in this paper, we will extend on

Chapter 2. Neural Networks and Kernel Methods 7

the approach taken by Mehrkanoon et al.[2], which essentially replaces the activation

function with a kernel function, as described in Section 3.1.

2.2 Kernel Methods

Machine learning and statistical methods are well understood and optimized in the

case of linearly separable data, but real data is often not so cleanly structured and

requires the use of nonlinear methods. Thanks to kernel functions, linear statistical

methods can be applied to nonlinear data, while maintaining the performance and

robust theoretical background of linear methods.[10] This is done by projecting the

data into a different space, which is normally of a higher (potentially infinite) di-

mension than the original space and where the data can be linearly separated. This

is visually represented in Figure 2.2.

Since linear statistical methods often only require the calculation of inner prod-

ucts, if these inner products can be calculated within the target space without having

to work explicitly within this space, it is possible to obtain rich representations of the

data at a fraction of the computational cost. This is what is referred to as the "kernel

trick".

FIGURE 2.2: Visual representation of kernel mapping into a higher
dimensional space[11]

Consider a function φ : X → H, which maps from our original input space X into

some new inner product space H, ie. a vector space with a valid inner product 〈. , .〉H,

then φ is said to be the feature map for the feature space H. The corresponding

kernel k : X× X → R is given by:

k(x, y) = 〈φ(x), φ(y)〉H

Chapter 2. Neural Networks and Kernel Methods 8

This kernel is essentially a similarity measure between two observations. [12]

This and other similarity measures can in some sense be considered to be the inverse

of a distance measure - the value for a similarity measure will increase when two

observations in the mapped feature space are a small distance from one another.

[13]

Part of the power of kernel functions is that instead of explicitly expanding the

feature space with general functions of existing features, it is only necessary to calcu-

late the similarity between previous observations. [12] In this sense, kernels can be

considered to be instance-based learning methods - that is, they learn based only on

the particular observations which they have already seen, and not based on math-

ematical generalizations. It is because of this fact, and the efficiency of the kernel

trick, that they are able to perform computations which would be very difficult or

impossible to generalize.

The kernel trick relies on the fact that linear statistical analysis often does not

require explicit calculations in the feature space H, as long as we know that k is a

valid kernel for some feature space, and k can be efficiently calculated. Whether k is

valid can be verified by looking at the Gram matrix of k, with respect to some inputs

x1, ..., xn ∈ X, defined as:

Gij = k(xi, xj)

It is possible to show [10] that a function k is a valid kernel if and only if it generates

a positive semi-definite Gram matrix, ie. if ∀x ∈ Rn, xTGx ≥ 0. Therefore, it is

possible to use the Gram matrix to generate valid kernels.

2.2.1 Approximating Kernel Functions

The Gram matrix relies on the observations that the model has already been seen, so

its size will grow quadratically with the number of training examples. Since large

training sets are ubiquitous in modern machine learning, it is often necessary to

approximate either the Gram matrix itself, or to approximate the kernel function via

some method. This paper will consider random Fourier features and the Nyström

Chapter 2. Neural Networks and Kernel Methods 9

method to approximate the kernel function in the hybrid neural network, which are

discussed in the next sections.

Random Fourier Features

Random Fourier features are an example of a random feature mapping, a family of

algorithms that use stochastic methods to generate a lower-dimensional approxima-

tion for a target kernel function k. Since this dimension does not necessarily need to

grow proportionally with the number of observations, it is possible to obtain much

better training performance even with large datasets, thus enabling the use of ker-

nels for "big data". [14]

Consider X = Rd, that is, our observations are real-valued vectors of dimension

d, and we wish to approximate some shift-invariant kernel 1 k with a corresponding

feature map φ and using D random features. Then a randomized feature map for

this kernel is a function z : Rd → RD which satisfies:

k(x, y) = 〈φ(x), φ(y)〉 ≈ z(x)Tz(y)

There are different types of randomized feature maps[15], but this paper will

only consider random Fourier features (RFF). An RFF map can be generated for a

kernel k with Algorithm 1.

Algorithm 1: Generating a RFF mapping [15]
Input: k a positive definite, shift-invariant kernel, D ∈N number of RFF

Output: A RFF map z : Rd → RD such that k(x, y) ≈ z(x)Tz(y)

begin

Compute the Fourier transform p of k

Take D samples ω1, ..., ωD ∈ RD from p

Take D samples b1, ..., bD from U(0, 2π)

Define zi(x) = cos(ωi
Tx + bi)

Define z(x) =
√

2
D (z1(x), ..., zD(x))

1k is shift-invariant if and only if k(x, y) = g(x− y) for some positive definite function g.

Chapter 2. Neural Networks and Kernel Methods 10

A formal proof of the validity of this algorithm is beyond the scope of this paper,

but can be seen in the work of Rahimi et al.[15]. However, it is possible to make the

following observations which justify this approach:

• It is valid to interpret p as a probability function from which ωi are taken be-

cause of Bochner’s theorem, which guarantees that for a positive definite ker-

nel, its Fourier transform (when properly scaled) is a probability measure.[14]

• Additionally, the fact that E[zi(x)Tzi(y)] = k(x, y) means that z(x) is indeed

a valid randomized feature map for k, and due to Hoeffding’s inequality this

will converge exponentially fast with D. [15]

• The higher the value of D, the closer the RFF approximation will be to the true

value of k.

Nyström Method

Unlike random Fourier features, which seeks to approximate the kernel function di-

rectly, the Nyström method seeks instead to approximate the Gram matrix itself with

a lower-rank matrix. Whilst RFF uses a data-independent probability distribution to

obtain samples, the Nyström method picks some of the training examples in order

to generate a lower-rank approximation. In this sense, the Nyström method can be

said to be data-dependent, while the RFF approach is not.

The Nyström method was originally used for kernel machines by Williams and

Seeger [16], where the approximation of the Gram matrix G was done by randomly

selecting, without replacement, a subset of of rows or columns from G, and using

these to construct an approximation G̃. Further generalization and formalization

was carried out by Drineas and Mahoney[17]. They present two algorithms, one of

them being a more constrained version of their more general algorithm.

The "Preliminary Approximation" is essentially the original Williams and Seeger

algorithm, with the main changes being that the columns are chosen with replace-

ment and using a generalized Moore-Penrose pseudoinverse (W+) instead of a stan-

dard inverse matrix (W−1). This is described in Algorithm 2.

Chapter 2. Neural Networks and Kernel Methods 11

Algorithm 2: Approximating a Gram matrix using the Nyström method [17]
Input: G an n× n Gram matrix, c ≤ n

Output: G̃ an n× n approximation of G

begin
Choose c columns of G according to a discrete uniform distribution with

replacement, let I be the set of indices of the sampled columns

Define the n× c matrix C which is formed of the chosen columns

Define the c× c matrix W, formed by Gij, ∀i, j ∈ I

Define G̃ = CW+CT

Drineas and Mahoney generalize Algorithm 2 into a "Main Approximation" al-

gorithm. [17]. This will not be taken into consideration here although it may be an

interesting avenue for further investigation, since it allows for the following gener-

alizations:

• The probability distribution used to choose the columns are not restricted to

the uniform distribution.

• The matrices used are scaled according to the probability distribution used.

• The rank of G̃ is parameterized separately from the number of chosen samples

from G.

The "Preliminary Approximation" algorithm is compared by Yang et al. with

Random Fourier Features for ridge regression and SVM classification tasks, and ob-

tained positive results when compared to RFF [3]. However, as the Nyström method

is data-dependent, the generalization error is dependent on the Gram matrix of the

kernel. When the Gram matrix has a large eigenspectrum ie. its eigenvalues have

large gaps between them, then Nyström is shown to have significantly better gener-

alization error than random Fourier features.

However, the Nyström method may require longer calculation times due to the

larger amount of operations required to obtain the approximated Gram matrix. The

calculation of the pseudoinverse is especially problematic, as it normally done via

the singular-value decomposition of the matrix, which for an m× n matrix is in the

worst case a O(m2n + n3) problem.[18]

Chapter 2. Neural Networks and Kernel Methods 12

2.2.2 Radial Basis Function Kernels

Before a discussion of the hybrid architecture can be carried out, it is first necessary

to introduce the kernel function which will be used in this paper - the radial basis

function (RBF) kernel, sometimes also referred to as the Gaussian kernel.

The RBF kernel can be defined as: [12][3]

k(x, y) = exp
(
−||x− y||2

2σ2

)

Or equivalently:

k(x, y) = exp

(
− 1

2σ2

d

∑
i=1

(xi − yi)
2

)

where the definition γ = 1
2σ2 is often made in order to simplify the expression for

k(x, y):

k(x, y) = exp(−γ||x− y||2)

When using this kernel, the Fourier transform for this kernel is the normal distri-

bution. In particular, the Fourier transform p(x) = N (0, σ2I), where I is the identity

matrix. This means that in order to generate RFF for the RBF Kernel, the ωi will be

sampled from a normal distribution.

The RBF kernel is often used in SVM and other machine learning algorithms,

partly due to a single hyperparameter which must be optimized. Because of this, it

is often easier to find good models when compared to kernels with higher counts

of hyperparameters - as an example, the polynomial kernel k(x, y) = (xTy + c)d

requires optimizing 2 hyperparameters. RBF also performs well in experimental

results in part due to its flexibility in finding nonlinear relations, since it maps into

an infinite-dimensional space.

2.2.3 Dimension of the RBF

The following section aims to both help the reader to see that the RBF indeed a valid

kernel, and that the inner product space which it projects into is infinite dimensional.

For this explanation, it will be assumed that γ = 1 and that we are dealing with

scalars, without any loss in generality.

Chapter 2. Neural Networks and Kernel Methods 13

Taking the definition for k above, we get that:

k(x, y) = exp(−x2) exp(−y2) exp(2xy)

By replacing the last term with its Taylor series [19]:

k(x, y) = exp(−x2) exp(−y2)
∞

∑
k=0

2kxkyk

k!

= exp(−x2) exp(−y2)
∞

∑
k=0

(√
2k

k!
xk

)(√
2k

k!
yk

) (2.1)

As this expression is separable into x and y, it is clear that this can indeed be

written as k(x, y) = 〈φ(x), φ(y)〉H), where φ will be a mapping into an infinite-

dimensional space. Specifically:

φ(x) = exp(−x2)(1,
√

2,
√

2,
√

4/3, ...,
√

2k/k!, ...)

This helps to explain some of the effectiveness of the RBF kernel, as this is essen-

tially a mapping into an infinite-dimensional space. Although an explicit mapping

will not be used in practice, the fact that RFF and the Nyström approximate this

kernel means that they should be able to find highly non-linear relationships in the

data. It should be noted that in general, models using the RBF are shown to be very

sensible to over- or under-fitting with different values of γ. In order to prevent this,

γ must be optimized via hyperparameter search.

2.3 Training Neural Networks

Before a neural network can be used to make predictions on the input, it must first

be trained. Training a neural network is a specific case of an optimization problem

- that is, minimizing or maximizing the output of some function f (x) based on its

input x. In the case of a neural network, we have some loss function defined in terms

of the model parameters θ, with a set of n training points X and labels Y [2]:

Chapter 2. Neural Networks and Kernel Methods 14

J(θ, X, Y) =
1
n

n

∑
i=1

L(xi, yi)

The loss represents how close the observations of the neural network are to the

known labels yi. This will be different depending on the problem being solved -

a standard loss for regression problems is the mean squared error (MSE), while in

classification problems such as those treated in this paper it is common to use the

negative log-likelihood of the softmax function. This loss is given by:

L(xi, yi) = − log Pr(yi|xi; θ)

Often, an additional regularization term is added to the cost function to penalize

the magnitude of the weights in the model parameters θ, as a measure to prevent

overfitting. The cost function which would be minimized would then be:

J(θ, X, Y) =
1
n

n

∑
i=1

L(xi, yi) + αΩ(θ)

This loss can take several forms, but this paper will use the L2 regularizer, which

takes the following form[7]:

Ω(θ) = ||w||22

Having defined the cost function to optimize, two optimization methods will be

compared in this paper. A standard approach in neural networks is to use stochastic

gradient descent (SGD), with the original aim being to compare it against simul-

taneous perturbation stochastic approximation. Unfortunately, due to replication

problems covered in section 4.2.1 with SPSA, it was not possible to optimize any of

the networks outlined here using the layerwise SPSA. However, the RMSprop algo-

rithm will also be compared against SGD, to evaluate their performance with hybrid

networks.

Chapter 2. Neural Networks and Kernel Methods 15

2.3.1 Stochastic Gradient Descent (SGD)

SGD is an adaptation from the gradient descent algorithm which is often used for

convex optimization problems. Gradient descent relies on using the derivative of a

multivariate function to find the direction of steepest descent of some function with

respect to its inputs, and shifting the parameters in that direction by some particular

distance. However, gradient descent is too computationally expensive to carry out

when applied to machine learning or neural networks.

For example, given the loss function for a neural network defined above, the

gradient descent algorithm requires calculating the following:

∇θJ(θ, (X), (Y)) =
1
n

n

∑
i=1
∇θL(xi, yi)

As this grows with the size n of the dataset being considered, this is not scalable

to large datasets.[7] In order to avoid this, we perform gradient descent on a smaller

minibatch of data of size m << n, selected randomly without replacement from the

original dataset. Because the minibatch is being selected from the entirety of the data

set, this will have the same mean as calculating the entire gradient, but at a fraction

of the computational cost. As the squared standard error is proportional to the size

of the dataset, a 100-fold increase in computation time with a larger dataset will only

reduce the error by a factor of 10.

This algorithm gives an approximation of the gradient:

g =
m

∑
i=1
∇θL(xi, yi)

The values of θ are adjusted by moving downhill in this direction, in other words

the parameters are adjusted as follows:

θ← θ− εg

where ε is the so-called learning rate of the SGD algorithm. In practice, this value

is normally reduced with the number of elapsed epochs, as the random sampling of

the SGD algorithm introduces a source of noise which will not disappear even as a

Chapter 2. Neural Networks and Kernel Methods 16

minimum is approached and which will prevent minima from being reached. ε is

often defined as:

ε(t) =
ε

1 + kt

where the value k is referred to as the learning rate decay factor and t is the number

of epochs. This will reduce the random oscillations as time decreases, allowing the

algorithm to reach minima more efficiently.

Finally, a further improvement to the standard SGD algorithm is the concept

of momentum. This is analogous to the concept of momentum in physics, where

an object with mass will tend to continue moving in the same direction. Similarly,

momentum in SGD will accumulate past gradients and continue to move in their

direction. Using momentum can help reduce the variance in updating the network

weights, since it will tend to move in directions which have in the past been proven

to be more advantageous. This can be seen in Figure 2.3.

FIGURE 2.3: Effect of momentum (red) when traversing a solution
space [7]

The magnitude of the past gradients can be controlled by a factor α ∈ (0, 1),

which determines how quickly the contributions of the previous gradients decay.

Instead of setting θ based on the gradient, momentum will determine its value based

on a "velocity" that will then be used to update the argument values:

Chapter 2. Neural Networks and Kernel Methods 17

v← αv− ε∇θ

(
1
m

m

∑
i=1

L(xi, yi)

)

θ← θ+ v

2.3.2 RMSprop

Adaptive gradient methods, such as Adam, RMSprop or are similar to stochastic

gradient descent, but with the crucial difference that the learning rate is adapted for

each parameter instead of being global. They modify the learning rate based on the

previous gradients which have been calculated, and use the partial derivatives of

the loss with respect to each parameter to determine what its individual learning

rate should be.[7] If the signs are the same, then the parameter learning rate will

increase, otherwise it will decrease as it will have passed a local minimum.

The RMSprop algorithm is an unpublished adaptive algorithm, first presented

by Hinton in an online course. [20] Despite this, it is widely implemented and used

due to the robustness of its hyperparameters and its empirical efficacy. This algo-

rithm is presented in Algorithm 3. Note that � represents elementwise matrix mul-

tiplication.

Algorithm 3: RMSprop Algorithm [7]
Input: loss function L, global learning rate ε, decay rate ρ, initial parameters θ,

small constant δ (normally 10−6),

while stopping criteria not met do

select m random samples {x1, ..., xm}, with corresponding targets yi

compute the gradient g← 1
m∇θ ∑i L(xi, yi)

accumulate the squared gradient r← ρr + (1− ρ)g� g

compute parameter update4θ = − ε√
σ+r � g

update parameters θ← θ+4θ

Although adaptive methods are very popular, there has been some question as

to how useful they actually are. In particular, Wilson et Al. [5] showed in their test-

ing that standard SGD showed generalized better to the testing set than RMSprop

Chapter 2. Neural Networks and Kernel Methods 18

and other adaptive methods, even when their training performance was similar. It

remains to be seen whether this is the case with the hybrid networks used here, and

how well RMSprop performs in both model performance and training time.

2.3.3 Simultaneous Perturbation Stochastic Approximation (SPSA)

SPSA is an optimization algorithm which only relies on observations of the objective

function, unlike SGD which requires evaluation of the derivatives of the function. It

does this by perturbing all of the vector elements at once in random directions, and

uses an estimate of the gradient which relies only on two point measurements. This

means that it can make gradient adjustments without knowledge of the underlying

model, even if it is non-differentiable.

SPSA relies on the fact that for a multivariate function f : Rn → R, its gradient

∇ f can be defined by its components:

∇ fi(x) = lim
ε→∞

f (xi + ε)− f (xi − ε)

2ε

This can be estimated by taking some random perturbation vector δ, and defining:

ĝi(x) =
f (xi + δi)− f (xi − δi)

2δi

The SPSA algorithm then uses this to compute a pair of perturbations x+ and

x− based on the current best solution xt.[4] Based on these points, the algorithm

calculates an approximation of the gradient and descends along this gradient.

Similarly to SGD, there are several scaling factors which reduce the size of the

perturbations as the number of epochs increases. The role of these scaling factors

can be seen in Algorithm 4.

Chapter 2. Neural Networks and Kernel Methods 19

Algorithm 4: SPSA to find x∗ = arg minx f (x) [4]

Input: function f , initial guess x0, factors a > 0, α ≥ 1 and c > 0, γ ∈
[1

6 , 1
2

]
Output: xtmax which approaches x∗

for t = 1, ..., tmax do

set at =
a
tα

set ct =
c
tγ

sample δ where δi ∼ U(−1, 1)

set x+ = xt + ctδ

set x− = xt − ctδ

take an approximation ĝ of the gradient, ĝi(xt) =
f (x+i)− f (x−i)

2ctδi

take xt+1 = xt − at ĝ(xt)

Although it is possible to apply this to the cost function of a neural network,

as has been shown by Song et al. [21], this approach may suffer from the curse

of dimensionality when large numbers of parameters are considered. In order to

mitigate this, a layerwise approach should be taken when using SPSA, as discussed

in Section 3.1.1.

20

Chapter 3

State of the Art

3.1 Hybrid Neural Kernel Networks

Given the good nonlinear separation qualities which the RBF kernel offers, and the

fact that the various kernel approximations can be used to apply it to larger datasets,

it becomes possible to formulate architectures which use both the depth of a neural

network and the richness of higher-dimensional mappings via kernels. However, as

kernel functions require higher computational times than other activation functions,

it will be critical to also reduce the training time for these hybrid neural networks

so that these networks can be trained efficiently. This will be done by comparing

various optimization methods, and seeing how they compare both in performance

and training time.

The reference network architecture which will be the basis for most of the work

in this thesis is the deep hybrid neural-kernel networks introduced by Mehrkanoon

et al. [2]. The fundamental change made by Mehrkanoon et al. is to a standard feed-

forward network is to change the activation function in each of the hidden layers of

the neural network with a feature map corresponding to a particular kernel function.

Looking at each layer of the neural network, defined as:

f (x) = g(Wx + b) (3.1)

g is be taken to be some feature map φ, instead of the usual nonlinear activation

functions used in neural networks such as the ReLu, sigmoid or hyperbolic tangent

functions. This feature map will correspond to some kernel function k, given by

k(x, y) = 〈φ(x), φ(y)〉H, as outlined in Section 2.2. In practice, instead of using the

Chapter 3. State of the Art 21

full feature map φ, Mehrkanoon et al. use the random Fourier feature mapping z(x)

described in 2.2.1.

The output layer is not changed so that the deep hybrid kernel network still

outputs a valid value, whether with a softmax function in the case of classification

problems or no activation function in the case of a regression.

The architecture defined by Mehrkanoon et al. in the shallow case can be ob-

served in Figure 3.1. They also define a deep architecture, which stacks 2 fully con-

nected layers interleaved with 2 kernel layers, as in 3.2.

FIGURE 3.1: Example of a shallow hybrid neural kernel network[2]

Dense
layer

Kernel
layer

Dense
layer

Input
layer

Output
layer

The deep architecture seen in 3.2 is trained based on the previous weights of the

shallow model. More specifically, the weights of the first dense layer are kept fixed

and taken from the best result obtained by the shallow model, and the last dense

layer is trained separately. In this way, it can be thought of as being semi-layerwise,

in the sense that the whole model is not trained via backpropagation.

The use of random Fourier features for machine learning is explored by Rahimi

and Recht [15] for use in support vector machines and ridge regressions, where they

approximate the full kernel using random Fourier features. They showed that even

though the data is not mapped into the same dimensional space as in a full-scale

kernel machine, it can still obtain favorable performance for both classification and

Chapter 3. State of the Art 22

FIGURE 3.2: Example of a deep hybrid neural kernel network

Dense
layer

Kernel
layer

Dense
layer

Kernel
layer

Dense
layer

Input
layer

Output
layer

regression tasks. Furthermore, Yang et al. compared the Nyström method and ran-

dom Fourier for ridge regression and support vector machine classification, and con-

cluded that Nyström is, for all the explored data sets, superior to random Fourier

features as a non-linear mapping for these algorithms, although this is dependant

on the range of the eigenvalues of the Gram matrix generated by the data. The hope

is that these results will carry over to neural networks, and will enable us to enhance

the hybrid neural-kernel network with a higher performance.

The Nyström method in deep learning has also been explored for convolutional

neural networks by Luc et al. [22], with the additional change that the Nyström

representation is learned as part of the network instead of being calculated previ-

ously. This has the advantage of reducing the number of computations required to

find the approximated Gram matrix, as otherwise it requires calculation of a matrix

pseudoinverse, which does not scale well with higher-dimensional feature approxi-

mations.

3.1.1 Training Neural Network Architectures

Mehrkanoon et al. introduce a semi-layerwise approach using stochastic gradient

descent to train neural networks, which serves the purpose of reducing the number

Chapter 3. State of the Art 23

of variables which are being trained at once, compared to training the whole deep

network at the same time.

Wulff et al.[4] proposed using SPSA in a layerwise fashion to train neural net-

works. Their approach uses the SPSA algorithm described in section 2.3.3 to opti-

mize cost function of the neural network, but keeping fixed any weights which are

not part of the current layer being trained. The whole algorithm can be seen in Algo-

rithm 5, where it can be observed that each layer of the neural network is perturbed

within a single epoch. The order which this is done in does not seem to have an ef-

fect on the training time or its efficacy. This algorithm was found to converge more

quickly than SGD for the datasets explored, but SGD ultimately obtained better per-

formance with a larger number of epochs.

Algorithm 5: Layerwise SPSA for neural networks [4]
Input: Neural network with layers L, cost function J

for e = 1, ..., emax do

for l ∈ L do

Keep weight matrices Wk 6=l
e fixed

Wl
e+1 = SPSA(J, Wl

e)

Wilson et al. [5] compared RMSprop, Adam and other adaptive training algo-

rithms with stochastic gradient descent, and found that adaptive algorithms in gen-

eral did not generalize as well as SGD. Although they trained more quickly at the

beginning, it was possible to obtain better testing performance using SGD, through

a thorough tuning of the hyperparameters.

24

Chapter 4

Methodology

4.1 Approach and Objectives

The aim of this thesis is to combine and synthesize the various approaches to hybrid

neural networks and the training of deep networks which have been discussed in

the previous section. To this purpose, the following comparisons will be made to see

how they affect the performance and training time of the proposed neural networks:

1. Random Fourier features vs Nyström method

2. SGD vs RMS vs SPSA

There are three main metrics that we will be concerned with and aiming to opti-

mize:

1. Maximizing test accuracy

2. Minimizing test loss

3. Minimizing training time

The progress over the epochs of training of will also be compared in order to ob-

serve the speed with which each algorithm converges. The network which will be

evaluated has layout described in Figure 3.2, but the kernel layers will use either the

Nyström approximation or the random Fourier features used in the authors’ original

study.

Due to the high complexity of performing the Nyström method with large fea-

ture sizes, the kernel layers will not use the Nyström method directly, but will in-

stead use the approach taken by Giffon et al. [22] This takes the required matrix W+

Chapter 4. Methodology 25

as a weight to be trained instead of being derived directly from the columns sam-

pled in the Nyström method. This reasons which complicate the calculation of the

Nyström method and the reasons for this approach are further discussed in 4.2.

In the case of the SGD and RMSprop algorithm, the same approach will be taken

- namely, the shallow network shown in Figure 3.1 will be optimized, the weight of

the first layers will be fixed, and the deeper network will be optimized by varying

only the values of the later layers. The SPSA approach is to perform layerwise train-

ing as outlined in Algorithm 5, although as is discussed in section 4.2.1, it was not

possible to replicate the results obtained by the SPSA algorithm even with the origi-

nal authors’ source code, and it has therefore been left out of the final comparison.

4.1.1 Hyperparameters

There are several parameters which are not tuned within the model itself, but which

nevertheless have an impact on its performance. Some of these hyperparameters

only apply to some variations of the model being considered, while others are uni-

versal. In order to optimize these hyperparameters, it is necessary to generate dif-

ferent models, train them, and evaluate which values generate the best models. The

details of the methods used to tune these hyperparameters are discussed in Section

5.3.

The list of hyperparameters which need to be tuned is as follows:

Global hyperparameters:

1. L2 regularization factor

2. Dimension of the densely connected layers

3. Dimension of the approximated kernels

4. γ parameter for the RBF kernel

RMSProp hyperparameters:

1. Learning rate

2. Learning rate decay factor

3. Fuzz factor

Chapter 4. Methodology 26

SGD hyperparameters:

1. Learning rate

2. Learning rate decay factor

3. Momentum factor

SPSA hyperparameters:

1. Perturbation magnitude factors a and α

2. Learning rate factors c and α

4.2 Implementation in Tensorflow/Keras

The implementation for all the experiments of this thesis has been done in Tensor-

flow, using Keras as a high-level API when possible and implementing the finer

details using the Tensorflow Python API. At the time of writing, Tensorflow 2.0 is

still in alpha, but this new version of will streamline and unify much of the code and

uses Keras as its central API [23]. Keras allows us to use higher-level abstractions

when possible, but still allows finer tuning in its Tensorflow backend when neces-

sary. Keras can also other backends, such as Theano or CNTK, but these are not

considered here.

Internally, Tensorflow does not immediately calculate the values of the inputs,

but rather builds a computational graph which the data is fed into at runtime. This

graph consists of of edges that represent tensors that the data is fed into, and nodes

that represent the operations on those tensors. This model allows it to perform au-

tomatic differentiation, as well as visualizing the operations which are being per-

formed by using Tensorboard, a built-in dashboard that allows the monitoring and

debugging of Tensorflow models. Tensorflow also has the option to work with GPUs

to accelerate learning models, which due to the parallel nature of the calculations in-

volved is orders of magnitude faster than using the CPU.

The principal abstraction used with Keras is that of a Model, which consists of

several Layers. A layer in Keras is an object which can hold different weights (both

Chapter 4. Methodology 27

trainable and non-trainable), and which is called as part of a model to process the

input tensors.[24] There are several built in layers, such as:

• Dense - a fully connected layer, equivalent to f (Wx + b), with an optional ac-

tivation function f .

• Activation - a layer which can apply an activation function to its input, such

as the Rectified Linear Unit (ReLU) or the softmax function.

• Conv2D - a convolutional layer for images.

Keras creates the required constructs in its backend in order to build these layers.

In the case of Tensorflow, it will create a series of nodes and tensors which flow

between them. An example of a fully connected Dense layer, with the corresponding

weight matrix (referred to here as kernel) and bias can be seen in Figure 4.1. Here, the

input tensor edges are fed into a MatMul node with the layer kernel, and the bias is

then added by the BiasAdd node.

FIGURE 4.1: A Dense layer representation in Tensorflow

In order to implement the required operations, it was required to build the fol-

lowing additional Keras layers:

Chapter 4. Methodology 28

• RffKernelLayer - a layer which approximates the RBF kernel by using random

Fourier features, with a configurable value for γ and the number of features to

be generated. The random tensors are sampled at build time.

• NystromKernelLayer - a layer which approximates the RBF kernel via the Nys-

tröm method. It requires a Keras callback to periodically resample the training

data used for the estimation, but it has not been used in practice due to its

reliance on a matrix pseudoinverse.

• PseudoNystromKernelLayer - a layer which approximates the RBF kernel via

the Nyström method, but which does not generate the W+ matrix using the

pseudoinverse. Instead, this is considered to be another weight which is then

optimized as part of the entire model.

The Nyström method, as outlined in Algorithm 2, relies on the calculation of

the Moore-Penrose pseudoinverse of the reduced-dimension Gram matrix. This is

a computationally expensive operation, which normally is derived from the singu-

lar value decomposition of the matrix. This operation is O(n3) with the size of its

input, which severely limits the ability to scale to large output dimensions. Addi-

tionally, it is a difficult operation to effectively paralellize, to the point where the

current implementation in Tensorflow is slower than the Numpy implementation,

which is executed on the CPU. [25] On the system used for testing, it frequently

caused slowdowns even when using native Tensorflow functions to compute the

inverses for modestly sized feature matrices (<150 features), and values of more

than 200 features would frequently cause out of memory errors. For this reason,

the NystromKernelLayer layer is not used in our testing.

4.2.1 Replicating SPSA Results

During testing, it was not possible to replicate the layerwise SPSA results obtained

by Wulff et al. [4]. Despite having the source code for the Tensorflow optimizer

available, it was found to have incompatibilities with the most recent version of

Tensorflow before the code would run without error, and the example provided with

the code was not truly layerwise as it only contained a single layer. Any attempts to

Chapter 4. Methodology 29

add further layers did not converge to any degree when training, even when these

were held fixed and later trained.

The attempts to refactor the code such that it worked for newer versions and

with multiple layers were not successful, in large part due to the deeply ingrained

functionality within Tensorflow that relies on automatic differentiation and gradi-

ent calculations. As the approach taken by SPSA is to calculate the gradient using

a random perturbation and by evaluating the cost function, the solution taken by

Wulff et al. was to use the Graph Editor from the tf.contrib library to make the

modifications to the Tensorflow graph manually, and evaluate the cost function in

this manner. Unfortunately, tf.contrib is explicitly labelled as volatile and exper-

imental by Tensorflow, and there is very little documentation provided for newer

versions for the Graph Editor[26] functionality, so it was not possible to test SPSA as

a result. The implementation of a more resilient layerwise SPSA algorithm is left as

an interesting avenue to explore in future work.

30

Chapter 5

Experimental Setup

5.1 Datasets

The datasets used in this work are:

1. MNIST, an image set of handwritten digits.

2. Fashion-MNIST, an image set of clothing items.

3. Titanic, a structured set of the attributes and survival outcome of passengers

on the titanic.

4. Spambase, a structured set of e-mail attributes and whether they are spam.

Fashion-MNIST and MNIST are somewhat similar, both of them being greyscale

image sets with the same structure and sizes. Indeed, the Fashion-MNIST authors

intend for it to be a drop-in replacement for the MNIST dataset, which is simple to

solve for most deep learning networks nowadays. Although convolutional neural

networks are normally used for analyzing image data, it is nevertheless interesting

to see how the hybrid networks fare with images.

The dimensions of these datasets are described in table 5.1.

TABLE 5.1: Dimensions of the datasets used

Name Instances Feature Dimension Classes

MNIST 70000 28× 28 10

Fashion-MNIST 70000 28× 28 10

Titanic 2201 3 2

Spambase 4601 57 2

Chapter 5. Experimental Setup 31

The datasets have been preprocessed so that the image features contain values

between 0 and 1, and the structured features have mean 0 and variance 1. Some

datasets additionally required the labels to be converted to a numerical value. Image

data is flattened as part of the first layer, so that it can be correctly processed by the

posterior layers.

For MNIST and Fashion-MNIST the standard test sets are defined at 10, 000 in-

stances. For Titanic and Spambase, 10% of each dataset were held for the final test-

ing. Additionally, at the start of each epoch 20% of each dataset were withheld from

training, and were used as validation data to evaluate the model performance.

5.2 Experimental Design

The experiments carried out were performed for each dataset by combining each

variation, and carrying out 3 trials per each dataset. After a period of hyperparam-

eter tuning, detailed in Section 5.3, the hyperparameters were fixed for each com-

bination of dataset, kernel approximation and optimizer method. 3 trials were then

carried out with these hyperparameters, and the average time and test errors were

averaged out.

Both the hyperparameter and testing phases were carried out with an early stop-

ping criteria callback that would stop the training if the accuracy did not improve

after 100 epochs. During the hyperparameter search phase, an additional early stop-

ping criteria was added to stop all training if the performance did not improve above

an accuracy of 50% after 50 epochs. This was done due to the high sensitivity of the

model to the value of γ, which when not properly tuned would not allow the model

to train at all, so as to reduce time spent training ineffective models.

After an initial hyperparameter tuning period, the following hyperparameters

have been kept fixed for all experiments, to better evaluate the impact of the changes

we have introduced:

• Dimension of the dense layer: 1024

• Dimension of the kernel layer: 2048 for RFF, 256 for Nyström

Chapter 5. Experimental Setup 32

In the case of the Nyström kernel layers, the components used to estimate the

kernel are resampled after every epoch through a custom Keras callback. The final

activation function chosen is always the softmax function, and the loss function is

always the negative log likelihood, using integer values for the class - in Keras this

corresponds to the sparse_categorical_crossentropy loss, with the L2 regulariza-

tion factor. This regularization has only been applied to the fully connected layer

weights.

5.3 Hyperparameter Tuning

Because finding appropriate hyperparameters add another level of abstraction on

top of the existing training of models, which only trains its weights, it can be very

time-consuming if done manually. The chosen algorithm used for hyperparameter

tuning is the Tree-structured Parzen Estimator, or TPE.

TPE is a Bayesian optimization algorithm which, unlike random or grid search,

uses previous estimates to build a Bayesian estimate of the cost function. Bayesian

optimization methods are effective even for stochastic and non-convex cost func-

tions, and TPE in particular has been shown to be more effective than grid search

and other optimization algorithms for multiple domains[27]. Because of its inclu-

sion in the hyperopt library, it is simple to implement for these experiments as an

alternative to manual tuning.

Hyperparameters were tuned semi-manually in batches of 5 to prevent memory

overflow problems. 5 different hyperparameter evaluations were carried out using

hyperas, a Keras wrapper around hyperopt, and if the optimal values were found

to be on one end of the specified range, then it was adjusted accordingly to evaluate

whether the original range was too restrictive. For example, if the value for the

L2 parameter was in the range [0, 0.5], and the best resulting hyperparameter was

found to be 0.49, then a series of 5 more tests would be carried out with eg. the

range [0.4, 1.0].

Chapter 5. Experimental Setup 33

5.4 Experimental Conditions

The experiments were all carried out on a desktop computer with the following

specifications, running Ubuntu 18.04.2, Python 3.6.6 and using the Tensorflow-GPU

1.13.1 package.

• CPU: AMD FX-6300 3.8 GHz Six-Core Processor

• 8 GB DDR4 RAM

• Nvidia Geforce GTX 960 with 2GB RAM

34

Chapter 6

Results

The graphs for the progress of the validation loss and accuracy for each dataset can

be seen in the following sections. As the training was performed in a two-stage

process, there are four separate graphs for each experiment, two which describe the

loss and accuracy of the shallow model, and a separate two for the deep model.

The specific results will be discussed in the following sections, but there are some

general observations we can make which are common to all the experiments carried

out. Firstly, the Nyström method approach required significantly greater training

times for almost all cases, as was expected due to the larger computational complex-

ity when compared to random Fourier features. It is also clear from the graphs that

there were some significant oscillations in both loss and training - this corresponds

to the resampling of the chosen features for the Nyström kernel layer, which initially

causes the loss to plummet, although it generally recovers quickly.

In retrospect, there are some cases where it is likely that the early stopping crite-

ria was too relaxed, as only a marginal improvement would cause the model to train

ineffectively. Nevertheless, the overall trends with regards to training time and test

accuracy can still be inferred from both the metrics included in the tables and the

training graphs included.

Another important caveat with regards to the training time is that this only

counts the time calculated after the initial hyperparameter search. In practice, RM-

Sprop required essentially no specific hyperparameter tuning when compared to

SGD, and default values were used throughout the tests performed. This is an im-

portant consideration, as it greatly simplifies the model generation process due to

the reduced set of hyperparameters to consider.

Chapter 6. Results 35

Reducing hyperparameters is especially important when considering that the

value for γ in the RBF kernel is extremely influential on model performance. A

bad value of γ will cause the model to not converge, and to perform no better than

chance. This value was relatively stable for all experiments with the same dataset,

but it should be kept in mind that an inaccurate range for γ can cause the hyperpa-

rameter search to spend excessive time trying models which will never converge, no

matter the other model parameters.

6.1 Fashion-MNIST

Fashion-MNIST is meant to be a more difficult replacement for MNIST, and it can be

seen in the lower test accuracy and higher losses when compared to the MNIST data

set in Table 6.2. For this dataset, Nyström with SGD did not perform well compared

to the other models, as it had a lot of trouble of training the shallow model, which

meant that the deep model had similar problems with training.

RFF with RMSprop proved to be the best combination here, training to a higher

degree of test accuracy, with a lower training time and epochs needed for the other

two approaches. While Nyström with RMSprop still proved to be competitive with

regards to the final test accuracy, it took almost twice as long to train when compared

to the RFF models, although it did so in fewer epochs than RFF/SGD. This shows

that the training time per epoch of the Nyström method is larger than with RFF,

likely due to the higher number of weights to train as well as the increased number

of operations.

TABLE 6.1: Results for Fashion-MNIST

Kernel Optimizer Test Accuracy Test Loss Epochs Training Time (s)

RFF RMS 0.8858± 0.007 0.410± 0.15 115 1054

RFF SGD 0.8694± 0.003 0.4238± 0.05 240 1755

Nyström RMS 0.8589± 0.032 0.5106± 0.12 154 3038

Nyström SGD 0.5149± 0.15 1.514± 0.23 258 2669

Chapter 6. Results 36

FIGURE 6.1: Validation accuracy and loss vs epoch for Fashion-
MNIST shallow models

Chapter 6. Results 37

FIGURE 6.2: Validation accuracy and loss vs epoch for Fashion-
MNIST deep models

6.2 MNIST

All of the networks achieved better performance in MNIST than Fashion-MNIST,

although as seen previously the combination of Nyström method with SGD did not

achieve good results, and it was not able to effectively train the shallow model. Al-

though its training time was not the longest, as can be observed in Table 6.1, this

is largely due to the early stopping criteria which stopped training once the model

was saw not to improve. Here the best result was still given by the combination

of RFF and RMSprop - this beat out all other combinations across all metrics, and

Chapter 6. Results 38

it could have potentially a much shorter training time if the early stopping criteria

were relaxed.

TABLE 6.2: Results for MNIST

Kernel Optimizer Test Accuracy Test Loss Epochs Training Time (s)

RFF RMS 0.9707± 0.01 0.0895± 0.01 205 2624

RFF SGD 0.8897± 0.06 0.9396± 0.1 462 5125

Nyström RMS 0.9508± 0.01 0.232± 0.05 210 7187

Nyström SGD 0.6694± 0.14 1.029± 0.21 308 3276

FIGURE 6.3: Validation accuracy and loss vs epoch for MNIST shal-
low models

Chapter 6. Results 39

FIGURE 6.4: Validation accuracy and loss vs epoch for MNIST deep
models

6.3 Titanic

The results obtained for Titanic show some of the same trends observed in other

datasets, such as the increased training time of the Nyström method, but although

the best combination remains RFF with RMSProp in terms of performance, here Nys-

tröm with SGD proved to be almost as competitive with RFF with RMSProp. RM-

SProp with Nyström did not prove to be as effective an alternative as seen with the

previous datasets.

Chapter 6. Results 40

TABLE 6.3: Results for Titanic

Kernel Optimizer Test Accuracy Test Loss Epochs Training Time (s)

RFF RMS 0.814± 0.05 0.463± 0.08 239 65

RFF SGD 0.651± 0.17 0.664± 0.05 267 59

Nyström RMS 0.696± 0.03 0.673± 0.1 205 430

Nyström SGD 0.810± 0.05 0.487± 0.05 281 798

FIGURE 6.5: Validation accuracy and loss vs epoch for Titanic shallow
models

Chapter 6. Results 41

FIGURE 6.6: Validation accuracy and loss vs epoch for Titanic deep
models

6.4 Spambase

Spambase proved to have very similar performance results for almost all of the ex-

periments, with the same trends in training time which have already been observed.

RFF with RMSprop is still the best performing in test accuracy, although only slightly

marginally, while obtaining a similar training time to RFF with SGD. Here Nystrom

performed almost as well, but at the expense of a much longer training time.

Chapter 6. Results 42

TABLE 6.4: Results for Spambase

Kernel Optimizer Test Accuracy Test Loss Epochs Training Time (s)

RFF RMS 0.932± 0.01 0.184± 0.005 204 118

RFF SGD 0.931± 0.01 0.204± 0.004 231 113

Nyström RMS 0.924± 0.01 0.220± 0.011 222 523

Nyström SGD 0.924± 0.01 0.234± 0.010 232 592

FIGURE 6.7: Validation accuracy and loss vs epoch for Spambase
shallow models

Chapter 6. Results 43

FIGURE 6.8: Validation accuracy and loss vs epoch for Spambase
deep models

44

Chapter 7

Conclusions and Future Work

7.1 Conclusions

The experiments in this thesis were carried out with the aim of evaluating the per-

formance of the Nyström method when compared to random Fourier features, and

how the choice of optimization algorithm affected results. By comparing how these

different approaches performed both in terms of model accuracy and training times,

it is possible to assess how hybrid neural kernel networks can be best implemented

and used in order to solve classification problems. The experiments carried out in

this thesis can help to guide the development of hybrid neural networks, by identi-

fying which areas have the most potential for future studies, as well as identifying

the state of the art amongst these approaches for solving classification problems.

In almost all cases, the best test performance was obtained with the combination

of RFF with the adaptive RMSprop method, while the Nyström method with SGD

normally performed the worst with the longest training times. SPSA could not be

replicated and so it is not possible to evaluate how well it performs with hybrid

networks.

Despite the testing performed here not corroborating the findings of Yang et al.[3]

when applied to neural networks, this has some caveats. The first is that the method

tested here is not a "true" Nyström method, in the sense that it attempts to learn

the generalized Gram matrix instead of calculating it explicitly from the input data.

However, given that this approximated method was used as a result of the high com-

plexity of the pseudoinverse matrix required for the Nyström method, it still stands

that the Nyström method is not a very good alternative to RFF for neural kernel

Chapter 7. Conclusions and Future Work 45

networks. Because the pseudoinverse calculation must be carried out periodically

when training, it is unlikely that the Nyström method will be a feasible solution for

deep learning until the SVD algorithm used is more easily parallelized or otherwise

accelerated.

Furthermore, it must be noted that the Nyström method is highly data-dependant,

and so it may be that these datasets simply do not have the optimal conditions to be

effectively used for the Nyström method. The Spambase dataset showed a very sim-

ilar performance, despite higher training times, which does show that the Nyström

method should be tested always in close relation to the input data which is used.

On the other hand, the dismissal by Wilson et al. [5] of adaptive methods can also

not be supported with these results. Despite stochastic gradient descent method dis-

playing a better performance than RMSprop for the Titanic dataset with the Nyström

method, this is the exception rather than the rule. In all other measures considered

(test accuracy, test loss and training time), RMSprop seems to perform better than

SGD for almost all cases, which shows that at least in the cases discussed here, RM-

SProp is a valid algorithm to consider for hybrid neural network optimization. In

general, RMSProp converges more quickly at the beginning of training than SGD,

and requires fewer epochs and a reduced training time in order to achieve superior

results. This, combined with the minor impact which the hyperparameters have on

the RMSprop performance, validates its position as one of the most widely used

optimizers for neural networks.

The combination of RFF and RMSprop proved to be the most robust across all

the tested datasets. In practice, the implementation of RFF and RMSprop required

the least tweaking in terms of hyperparameters, converged quickly and obtained

the best performance, which suggests that this combination should be singled out

for future research and experimentation, although as has been mentioned, the other

approaches cannot yet be discarded without further testing.

7.2 Future Work

There are several different paths which could prove interesting for further research.

The most obvious would be to attempt to validate the layerwise SPSA approach for

Chapter 7. Conclusions and Future Work 46

hybrid neural networks which could not be effectively tested here. A new version of

the optimizer, which worked effectively with newer versions of Tensorflow, would

be an interesting development to consider, as it could be that the Nyström method

here considered would work well with such an optimizer.

It is also not clear whether different approaches to the training could achieve

better performance for either the Nyström or RFF approaches. This thesis has kept

the first layers frozen when training the deep model, but it would be interesting to

see whether training the whole network at once using SGD or RMSprop would yield

better generalization performance, or whether it would be beneficial to fix the last

layers and re-train the first layers after the deep model has been trained.

Due to the Nyström method’s high sensitivity to the input data, it may be that

other datasets respond better to the Nyström method than what has been tested in

this thesis. It may be that these datasets are simply not appropriate candidates for

a Nyström approximation, or that a particular normalization or pre-processing may

help to yield better results for the Nyström method. Another possibility would be

to reduce the resampling frequency, so that it is only carried out every n epochs,

instead of doing it every epoch. Other types of data should also be considered, as

only structured and image classification problems have been considered here, but

it’s not clear how effective hybrid neural networks would be when applied to other

tasks like regressions or speech recognition.

Despite the widespread usage of the RBF kernel, it would also be interesting to

compare how other kernels perform when using hybrid neural networks, as this is

currently unexplored. This could also tie in with another possible avenue, which

is that of effective hyperparameter searching. A TPE approach was taken due to

its theoretical effectiveness over grid or random search, but it has not been tested

whether this is the case, or whether other methods could yield better results. This is

especially important in the context of hybrid neural networks having hyperparame-

ters which can have a drastic effect on the performance of the network.

47

Bibliography

[1] D. Takahashi, Nvidia ceo bets big on deep learning and vr, Apr. 2016. [Online].

Available: https://venturebeat.com/2016/04/05/nvidia-ceo-bets-big-

on-deep-learning-and-vr/.

[2] S. Mehrkanoon and J. A. Suykens, “Deep hybrid neural-kernel networks using

random Fourier features”, en, Neurocomputing, vol. 298, pp. 46–54, Jul. 2018,

ISSN: 09252312. DOI: 10.1016/j.neucom.2017.12.065. [Online]. Available:

https : / / linkinghub . elsevier . com / retrieve / pii / S0925231218302108

(visited on 01/19/2019).

[3] T. Yang, Y.-f. Li, M. Mahdavi, R. Jin, and Z.-H. Zhou, “Nyström method vs ran-

dom fourier features: A theoretical and empirical comparison”, in Advances in

Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou,

and K. Q. Weinberger, Eds., Curran Associates, Inc., 2012, pp. 476–484. [On-

line]. Available: http://papers.nips.cc/paper/4588-nystrom-method-vs-

random-fourier-features-a-theoretical-and-empirical-comparison.

pdf.

[4] B. Wulff, J. Schuecker, and C. Bauckhage, “Spsa for layer-wise training of deep

networks”, Artificial Neural Networks and Machine Learning – ICANN 2018 Lec-

ture Notes in Computer Science, pp. 564–573, 2018. DOI: 10.1007/978-3-030-

01424-7_55.

[5] A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing, “Deep kernel learning”,

CoRR, vol. abs/1511.02222, 2015. arXiv: 1511.02222. [Online]. Available: http:

//arxiv.org/abs/1511.02222.

[6] D. M. de Checa, “New hybrid kernel architectures for deep learning”, Master’s

thesis, Universitat Politècnica de Catalunya, Apr. 2018.

https://venturebeat.com/2016/04/05/nvidia-ceo-bets-big-on-deep-learning-and-vr/
https://venturebeat.com/2016/04/05/nvidia-ceo-bets-big-on-deep-learning-and-vr/
http://dx.doi.org/10.1016/j.neucom.2017.12.065
https://linkinghub.elsevier.com/retrieve/pii/S0925231218302108
http://papers.nips.cc/paper/4588-nystrom-method-vs-random-fourier-features-a-theoretical-and-empirical-comparison.pdf
http://papers.nips.cc/paper/4588-nystrom-method-vs-random-fourier-features-a-theoretical-and-empirical-comparison.pdf
http://papers.nips.cc/paper/4588-nystrom-method-vs-random-fourier-features-a-theoretical-and-empirical-comparison.pdf
http://dx.doi.org/10.1007/978-3-030-01424-7_55
http://dx.doi.org/10.1007/978-3-030-01424-7_55
http://arxiv.org/abs/1511.02222
http://arxiv.org/abs/1511.02222
http://arxiv.org/abs/1511.02222

BIBLIOGRAPHY 48

[7] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, ser. Adaptive compu-

tation and machine learning. Cambridge, Massachusetts: The MIT Press, 2016,

ISBN: 9780262035613.

[8] C. McDonald, Machine learning fundamentals (ii): Neural networks, Dec. 2017.

[Online]. Available: https://towardsdatascience.com/machine-learning-

fundamentals-ii-neural-networks-f1e7b2cb3eef.

[9] K. Hornik, “Approximation capabilities of multilayer feedforward networks”,

Neural Networks, vol. 4, no. 2, pp. 251–257, 1991. DOI: 10.1016/0893-6080(91)

90009-t.

[10] T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods in machine learn-

ing”, en, The Annals of Statistics, vol. 36, no. 3, pp. 1171–1220, Jun. 2008, ISSN:

0090-5364. DOI: 10.1214/009053607000000677. [Online]. Available: http://

projecteuclid.org/euclid.aos/1211819561 (visited on 01/21/2019).

[11] X. Yan, A. Song, and H. Yan, “A graph embedding method based on sparse

representation for wireless sensor network localization”, International Journal

of Distributed Sensor Networks, vol. 2014, pp. 1–13, Jul. 2014. DOI: 10.1155/

2014/607943.

[12] G. James, D. Witten, T. Hastie, and R. Tibshirani, Eds., An introduction to sta-

tistical learning: With applications in R, ser. Springer texts in statistics 103. New

York: Springer, 2013, OCLC: ocn828488009, ISBN: 9781461471370.

[13] Build with ai. [Online]. Available: https://deepai.org/machine-learning-

glossary-and-terms/affinity-matrix.

[14] J. Yang, V. Sindhwani, H. Avron, and M. Mahoney, “Quasi-monte carlo feature

maps for shift-invariant kernels”, in International Conference on Machine Learn-

ing, 2014, pp. 485–493.

[15] A. Rahimi and B. Recht, “Random features for large-scale kernel machines”,

in Advances in Neural Information Processing Systems 20, J. C. Platt, D. Koller,

Y. Singer, and S. T. Roweis, Eds., Curran Associates, Inc., 2008, pp. 1177–1184.

[Online]. Available: http://papers.nips.cc/paper/3182-random-features-

for-large-scale-kernel-machines.pdf.

https://towardsdatascience.com/machine-learning-fundamentals-ii-neural-networks-f1e7b2cb3eef
https://towardsdatascience.com/machine-learning-fundamentals-ii-neural-networks-f1e7b2cb3eef
http://dx.doi.org/10.1016/0893-6080(91)90009-t
http://dx.doi.org/10.1016/0893-6080(91)90009-t
http://dx.doi.org/10.1214/009053607000000677
http://projecteuclid.org/euclid.aos/1211819561
http://projecteuclid.org/euclid.aos/1211819561
http://dx.doi.org/10.1155/2014/607943
http://dx.doi.org/10.1155/2014/607943
https://deepai.org/machine-learning-glossary-and-terms/affinity-matrix
https://deepai.org/machine-learning-glossary-and-terms/affinity-matrix
http://papers.nips.cc/paper/3182-random-features-for-large-scale-kernel-machines.pdf
http://papers.nips.cc/paper/3182-random-features-for-large-scale-kernel-machines.pdf

BIBLIOGRAPHY 49

[16] C. K. I. Williams and M. Seeger, “Using the nyström method to speed up ker-

nel machines”, in Advances in Neural Information Processing Systems 13, T. K.

Leen, T. G. Dietterich, and V. Tresp, Eds., MIT Press, 2001, pp. 682–688. [On-

line]. Available: http://papers.nips.cc/paper/1866-using-the-nystrom-

method-to-speed-up-kernel-machines.pdf.

[17] P. Drineas and M. W. Mahoney, “On the nyström method for approximating

a gram matrix for improved kernel-based learning”, J. Mach. Learn. Res., vol.

6, pp. 2153–2175, Dec. 2005, ISSN: 1532-4435. [Online]. Available: http://dl.

acm.org/citation.cfm?id=1046920.1194916.

[18] G. H. Golub and C. F. v. Loan, Matrix computations. Johns Hopkins University

Press, 2013.

[19] Y. Abu-Mostafa, Lecture 15 - kernel methods, May 2012. [Online]. Available:

https://www.youtube.com/watch?v=XUj5JbQihlU&list=PLCA2C1469EA777F9A&

index=15.

[20] G. Hinton, N. Srivastava, and K. Swersky, Neural networks for machine learning.

[Online]. Available: https://www.cs.toronto.edu/~tijmen/csc321/slides/

lecture_slides_lec6.pdf.

[21] Q. Song, J. Spall, Y. C. Soh, and J. Ni, “Robust neural network tracking con-

troller using simultaneous perturbation stochastic approximation”, IEEE Trans-

actions on Neural Networks, vol. 19, no. 5, pp. 817–835, 2008. DOI: 10.1109/tnn.

2007.912315.

[22] L. Giffon, H. Kadri, S. Ayache, and T. Artières, “Deepström networks”, Dec.

2018.

[23] TensorFlow, What’s coming in tensorflow 2.0, Jan. 2019. [Online]. Available: https:

//medium.com/tensorflow/whats-coming-in-tensorflow-2-0-d3663832e9b8.

[24] Writing your own keras layers. [Online]. Available: https://keras.io/layers/

writing-your-own-keras-layers/.

[25] Tensorflow, Svd in tensorflow is slower than in numpy issue #13222 tensorflow/tensorflow.

[Online]. Available: https://github.com/tensorflow/tensorflow/issues/

13222.

http://papers.nips.cc/paper/1866-using-the-nystrom-method-to-speed-up-kernel-machines.pdf
http://papers.nips.cc/paper/1866-using-the-nystrom-method-to-speed-up-kernel-machines.pdf
http://dl.acm.org/citation.cfm?id=1046920.1194916
http://dl.acm.org/citation.cfm?id=1046920.1194916
https://www.youtube.com/watch?v=XUj5JbQihlU&list=PLCA2C1469EA777F9A&index=15
https://www.youtube.com/watch?v=XUj5JbQihlU&list=PLCA2C1469EA777F9A&index=15
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://dx.doi.org/10.1109/tnn.2007.912315
http://dx.doi.org/10.1109/tnn.2007.912315
https://medium.com/tensorflow/whats-coming-in-tensorflow-2-0-d3663832e9b8
https://medium.com/tensorflow/whats-coming-in-tensorflow-2-0-d3663832e9b8
https://keras.io/layers/writing-your-own-keras-layers/
https://keras.io/layers/writing-your-own-keras-layers/
https://github.com/tensorflow/tensorflow/issues/13222
https://github.com/tensorflow/tensorflow/issues/13222

BIBLIOGRAPHY 50

[26] Module: Tf.contrib.graph_editor | tensorflow. [Online]. Available: https://www.

tensorflow.org/api_docs/python/tf/contrib/graph_editor.

[27] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-

parameter optimization”, in Advances in Neural Information Processing Systems

24, J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Wein-

berger, Eds., Curran Associates, Inc., 2011, pp. 2546–2554. [Online]. Available:

http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-

optimization.pdf.

[28] T. Hastie, R. Tibshirani, and J. H. Friedman, The elements of statistical learning:

Data mining, inference, and prediction, 2nd ed, ser. Springer series in statistics.

New York, NY: Springer, 2009, ISBN: 9780387848587.

[29] M. Nielsen, Neural networks and deep learning, Oct. 2018. [Online]. Available:

http://neuralnetworksanddeeplearning.com/chap4.html.

[30] P. Domingos, The master algorithm: How the quest for the ultimate learning machine

will remake our world. Basic Books, a member of the Perseus Books Group, 2018.

[31] Rbf svm parameters. [Online]. Available: https://scikit-learn.org/stable/

auto_examples/svm/plot_rbf_parameters.html.

[32] J. C. Spall. [Online]. Available: https://www.jhuapl.edu/SPSA/.

[33] 10100885294624622, Hyperparameter tuning, Feb. 2019. [Online]. Available: https:

//towardsdatascience.com/hyperparameter-tuning-c5619e7e6624.

[34] I. Dewancker, M. McCourt, and S. Clark, Bayesian optimization primer - sigopt.

[Online]. Available: https://sigopt.com/static/pdf/SigOpt_Bayesian_

Optimization_Primer.pdf.

[35] Zalandoresearch, Zalandoresearch/fashion-mnist, Oct. 2018. [Online]. Available:

https://github.com/zalandoresearch/fashion-mnist.

[36] S. Ruder, “An overview of gradient descent optimization algorithms”, CoRR,

vol. abs/1609.04747, 2016. arXiv: 1609.04747. [Online]. Available: http://

arxiv.org/abs/1609.04747.

https://www.tensorflow.org/api_docs/python/tf/contrib/graph_editor
https://www.tensorflow.org/api_docs/python/tf/contrib/graph_editor
http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
http://neuralnetworksanddeeplearning.com/chap4.html
https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html
https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html
https://www.jhuapl.edu/SPSA/
https://towardsdatascience.com/hyperparameter-tuning-c5619e7e6624
https://towardsdatascience.com/hyperparameter-tuning-c5619e7e6624
https://sigopt.com/static/pdf/SigOpt_Bayesian_Optimization_Primer.pdf
https://sigopt.com/static/pdf/SigOpt_Bayesian_Optimization_Primer.pdf
https://github.com/zalandoresearch/fashion-mnist
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747

BIBLIOGRAPHY 51

[37] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht, “The marginal

value of adaptive gradient methods in machine learning”, in Advances in Neu-

ral Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H.

Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., Curran Associates,

Inc., 2017, pp. 4148–4158. [Online]. Available: http : / / papers . nips . cc /

paper/7003-the-marginal-value-of-adaptive-gradient-methods-in-

machine-learning.pdf.

http://papers.nips.cc/paper/7003-the-marginal-value-of-adaptive-gradient-methods-in-machine-learning.pdf
http://papers.nips.cc/paper/7003-the-marginal-value-of-adaptive-gradient-methods-in-machine-learning.pdf
http://papers.nips.cc/paper/7003-the-marginal-value-of-adaptive-gradient-methods-in-machine-learning.pdf

	Abstract
	Acknowledgements
	Introduction
	Introduction
	Problem to Solve
	Aims and Objectives
	Related Work
	Thesis Structure

	Neural Networks and Kernel Methods
	Deep Neural Networks
	Kernel Methods
	Approximating Kernel Functions
	Random Fourier Features
	Nyström Method

	Radial Basis Function Kernels
	Dimension of the RBF

	Training Neural Networks
	Stochastic Gradient Descent (SGD)
	RMSprop
	Simultaneous Perturbation Stochastic Approximation (SPSA)

	State of the Art
	Hybrid Neural Kernel Networks
	Training Neural Network Architectures

	Methodology
	Approach and Objectives
	Hyperparameters

	Implementation in Tensorflow/Keras
	Replicating SPSA Results

	Experimental Setup
	Datasets
	Experimental Design
	Hyperparameter Tuning
	Experimental Conditions

	Results
	Fashion-MNIST
	MNIST
	Titanic
	Spambase

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

