

Detection of Bitcoin miners from

network measurements

Bachelor degree in Informatics, mention in Information

Technologies.

Author: Jordi Zayuelas I Muñoz

Supervisor: Pere Barlet Ros

April 2019

Abstract

In the last few years, cryptocurrency mining has become more

and more important on the Internet activity and nowadays is even

having a noticeable impact on the global economy. This has

motivated a surge of cryptojacking, a cyberattack which consists

on using compromised machines resources to mine

cryptocurrencies for profit. In this context, it is of particular

interest for network administrators to detect possible miners that

are using network resources without permission. Currently, it is

possible to detect them using lists of IP addresses from known

mining pools, using information from DNS records, or directly

performing Deep Packet Inspection (DPI) over all the traffic.

However, these methods can either miss miners that use unknown

mining servers or being too expensive to be deployed in real-world

networks with considerable traffic volume. In this project I will

present a method based on machine learning that detects

cryptocurrency miners using Netflow/IPFIX network

measurements. This enables to achieve an accuracy close to DPI-

based techniques and considerably save resources, since it does

not require to inspect all the packets’ content.

 Keywords: Netflow, mining, Bitcoin, Ethereum, Monero,

cryptojacking, Machine Learning, Traffic analysis.

Acknowledgments

I would like to thank Dr. Pere Barlet-Ros, director of this thesis, and José

Suárez-Varela for their help and guidance in this project. Their help and

support made this research project possible.

I would also like to thank my family, friends, and my partner, Clàudia, for

their support during the course of this degree.

1

Table of Contents

Abstract .. 2

Acknowledgments ... 3

1 Introduction and Context .. 4

1.1 Problem Formulation ... 4

1.2 Stakeholders .. 5

1.2.1 Target audience .. 5

1.2.2 Users ... 5

1.2.3 Beneficiaries ... 5

1.3 State of the art .. 6

2 Scope .. 8

3 Project planning .. 9

3.1 Methodology .. 9

3.1.1 Waterfall .. 9

3.1.2 Extreme Programming ... 9

3.2 Schedule ... 10

3.2.1 Considerations .. 10

3.3 Project planning ... 10

3.3.1 Initial work ... 10

3.3.2 First phase ... 10

3.3.3 Second phase ... 11

3.3.4 Third phase .. 12

3.3.5 Final work .. 12

3.4 Action plan .. 12

3.4.1 Gantt Chart .. 13

3.5 Resources .. 13

3.5.1 Human ... 13

3.5.2 Material ... 13

4 Budget ... 15

2

4.1 Hardware costs .. 15

4.2 Software costs ... 15

4.3 Human Resources ... 16

4.4 Indirect Costs .. 16

4.5 Total Costs .. 16

4.6 Budget Monitoring .. 17

5 Sustainability .. 18

5.1 Environmental .. 18

5.1.1 Project Put into production ... 18

5.1.2 Useful life ... 18

5.1.3 Risks ... 19

5.2 Economic ... 19

5.2.1 Project Put into production ... 19

5.2.2 Exploitation .. 19

5.2.3 Risks ... 19

5.3 Social.. 20

5.3.1 Project Put into production ... 20

5.3.2 Exploitation .. 20

6 Data Overview .. 21

6.1 Stratum .. 21

6.2 Netflow ... 24

7 Data Capture .. 26

7.1 Stratum .. 26

7.2 Data from other applications .. 27

8 Data analysis .. 29

8.1 First analysis .. 29

8.2 Learning Models ... 33

8.2.1 Support vector machines .. 34

8.2.2 CART ... 34

8.2.3 C4.5 .. 34

3

8.2.4 Naïve Bayes ... 34

8.3 Weka Tests .. 34

8.3.1 Mining classification ... 34

8.3.2 Coin Classification ... 39

9 Results ... 42

10 Conclusions .. 43

10.1 Future work ... 43

11 Bibliography Error! Bookmark not defined.

4

1 Introduction and Context

 Problem Formulation

Cryptocurrencies are alternative currencies that are designed to work in a

digital context. One of these currencies is bitcoin, which is the first and

most well-known decentralized cryptocurrency.

Most of this currencies are decentralized cryptocurrency. A decentralized

cryptocurrency is any form of a currency which uses cryptography to verify

transactions, and is not controlled by a single central server, but by all the

nodes of the network working independently. Through this method it

achieves to distribute the verification process over the whole network, since

not a single person/institution controls the currency. Furthermore, it is

protected against nodes failing, because when one node crash the others

can keep on working unaffected.

During these last years, cryptocurrency use skyrocketed, and, with

this, its price followed, which attracted lots of people wanting to make

money.

In Bitcoin and other Altcoins (Bitcoin alternatives), this decentralization is

achieved by miners. These miners use their computational power to

validate transactions and get new bitcoins as a reward. Because of the

growth of Bitcoin market price, along with the price of other

cryptocurrencies, like Ethereum, lots of people decided to start mining

cryptocurrencies to try and get some benefits from the growth of this

technology. [1] [2] [3] [4]

This new potential profits also attracted the interest of people of dubious

morality. Cybercriminals have been installing malware to infected

computers, using their resources to mine bitcoin, which allows them to get

bitcoin without having to use their computational resources nor having to

pay the electricity bill This practice is increasing at an alarming pace,

becoming a notable threat in cybersecurity. [5]

Bitcoin uses a huge amount of computational resources, which greatly

increases the electricity bill and reduces the life expectancy of the electronic

assets used to do it. Because of this, we may be interested in being able to

find if computers in a network we’re supervising are being used to mine

Bitcoin, either to find possible malware infections, employees that decided

to get an extra pay at the cost of company assets installing Bitcoin miners

on them, or to monitor legit Bitcoin mining machinery.

5

To mine bitcoins, users rarely mine alone, since it would be really difficult

to get rewards while racing against rest of the Bitcoin mining network.

That’s why most people mine in pools. Pools are groups of miners that share

computational power and then split the rewards. When mining in pools,

miners will send proof of their computations (called shares) to the pool,

then, when splitting the reward, thanks to this, every miner will get a

reward proportional to their work. [6] [7]

With the constant expanse of the traffic in networks, both public and

private, with an expected growth of 370% between 2017 and 2022, it’s

becoming more and more difficult to analyse the data in networks. [8] [9]

Netflow is a CISCO router feature for analysing network traffic that

aggregates all packets that share some values like source and destination

IP and port, protocol and type of service, in a single flow, that has some

relevant information about this group of packets. Even though lots of

information is lost during this process, the amount of information to process

is also greatly reduced. [10]

This project’s objective is to analyse network traffic flows using CISCO

Netflow traffic from routers that we control to find Cryptocurrency traffic

that passes through the infrastructure, and use this to identify the miners

and analyse the properties of the found miners, and find out how much

information about the miner we can extract from Netflow.

 Stakeholders

1.2.1 Target audience

The targeted audience of this project are either network analysis companies

that are interested in researching mining in their network, or companies

that are interested in finding if they have infected machines with malware

that is mining bitcoin, or computers that are not supposed to be running

bitcoin mining software but have it running anyway.

1.2.2 Users

The users of this product would be the IT workers assigned to integrate it

to the network and the analysts that are going to analyse the information.

1.2.3 Beneficiaries

The beneficiaries would be the companies that would be able to find and

put a stop to unintended Bitcoin mining, which would reduce the potential

6

loss this would produce, or the network analysis companies that would

benefit from the data acquired from studying the miners on the network.

 State of the art

This topic is widely researched, especially by security and networking

companies. CISCO even offers filters for their Intrusion Detection System

(IDS) and Intrusion Prevention System (IPS) that create alerts when Bitcoin

miner activity traffic or Stratum Bitcoin mining protocol is detected.

There are multiple methods that are used to find bitcoin miners in the

network:

The first one consists on reading the network traffic and try to find known

IPs from mining pools used by miners.

There are some limitations to this method, miners that are not part of a

pool won’t be detected because they create little traffic and don’t connect

to this known addresses. Thankfully, solo mining is no longer profitable and

it’s rarely used.

Another option is to use deep packet inspection to find signs of a mining

protocol being used, using signatures of these protocols and comparing

them to the network traffic.

Both of these methods add lots of computational load, since all packets of

the traffic must be analysed to try to find potential Bitcoin mining traffic.

This is not feasible in big networks where there are too many packets to

inspect, especially in deep packet inspection, where all the contents of the

packets have to be analysed too. Moreover, the simple act of capturing all

network traffic requires lots of resources. [11] [12] [13] [14]

Another less expensive way to find them is to log DNS requests and search

for addresses that may be related to bitcoin mining. This may not be a

definitive indicator that there is mining software on the network (it could

be just one user visiting the webpage of that mining pool), and, with the

expanding DNS over TLS it may even be evaded completely, but it should

be taken into account, and it is still used nowadays. [7] [15] [16]

There are other papers about detecting mining other methods focused to

detect the miners from the endpoint, using both static and dynamic code

analysis and machine learning to find browser miners. [17] [18]

In terms of analysing mining properties, there are some papers published

that estimate the power consumption of the Bitcoin network as a whole,

but to find an individual machine hash rate (Number of operations per

7

second it can achieve) and consequently its expected power consumption,

or which altcoin is being mined is yet to be researched. [19]

8

2 Scope

In this project, instead analysing all network traffic packet by packet,

Netflow traffic will be used. This relieves the router and the computer from

having to copy all traffic data and analysing it, improving their performance.

[20] [21]

To be able to analyse network traffic with Netflow we will need:

 A Netflow exporter, preferably a router, but for testing purposes the

same computer that is running the miner along with any other

software that produces network traffic will suffice.

 A collector to receive the Netflow traffic and store it in the computer.

 An analyser to look at the collected traffic and extract the relevant

information.

The first goal of the project will consist on creating the data, capturing

Netflow traffic made by mining software and other random traffic made by

a broad variety of applications. To be able to do this, since I have no access

to cisco routers that can provide Netflow traffic, the following software

solutions will be used: Softflowd as Exporter, nfcapd as collector, and

nfdump to transform the nfcapd files to readable data that we can analyse.

With the data that we will have collected, then the analysis can start,

comparing the flows created by mining with the ones created by the traffic

that we are not interested in (like amount of packets in the flow, size, time

that the flow lasted, etc.…), and use this information to find out a way to

separate flows coming from mining from those that we are not interested

in.

Then, with a way to extract the flows that come from mining, I will aim to

find as much information about the miner using only the data that can be

extracted from its flows.

One problem that this project has is the possibility that no access to a real

network is found. That would prevent the application from being tested in

real life conditions, and the project would only be tested on controlled

conditions where it might react differently to an uncontrolled network.

9

3 Project planning

 Methodology

To help with the development of the project, a schedule will be followed.

As mentioned earlier in the scope of the project, it will be divided in three

phases. Because of this I decided to take different approaches between the

phases.

During the first two, since they are pretty straightforward, the waterfall

method will suffice. It is known how to do it, the only thing left to do is to

design, implement and test it.

On the other hand, the third phase of the project is anything but

straightforward. There is no known solution and to find a solution we will

need to apply trial and error until a solution is found (Or not, because of

the research nature of this part of the project, not finding a reliable solution

is a possibility). That’s why I decided to use extreme programming.

3.1.1 Waterfall

The waterfall methodology consists on a set of stages that we have to get

through sequentially, only starting the next stage when the one before is

complete. The stages stated on the original waterfall model are:

1. Requirements (Hardware and software)

2. Analysis

3. Design

4. Implementation

5. Testing

6. Operations (installation, maintenance, etc.)

The stages that we are interested in are 1 – 5. Since we are going to use

this method for the first two phases, operations won’t really be important,

since once testing works the next phase will start. Also, stage 1 won’t be

needed in the second phase, since they will use the same

hardware/software. [22]

3.1.2 Extreme Programming

The third phase of the project is unpredictable, so an agile method will work

much better. Even though agile methods are not designed to work

individually, some of it can still be applied to this project, and, because of

the nature of the last part of the project, it works really well with it.

10

This is because it is based on short cycles and focuses on testing. This

allows for changes on the original plan of the product. Since on this phase

of the product we are not sure what will work or not, this allows us to try

different possible solutions and modify de project depending on what works

and what doesn’t. [23]

 Schedule

Estimated project duration

The estimated project duration is little less than 5 months, starting on the

middle of September to the end of January.

3.2.1 Considerations

Even though the first two phases of the project are pretty straightforward,

because of the research nature of the last phase of this project, it is bound

to need some changes during its duration. Because of that, the project

planning will probably need to be modified.

This is to be expected, especially with the selected extreme programming

methodology that will be used while working on this phase.

 Project planning

The project is divided in three main tasks, plus the initial and final work.

During the duration of each task, along the work done related to the task,

the corresponding part of the final report will be added to it.

3.3.1 Initial work

The initial work consists on studying the context, scope, state-of-the-art,

sustainability and budget of the project, along with creating the schedule

and describing the project.

This is done during the course management course.

3.3.2 First phase

This is the first of the main tasks, and it will consist on creating the first

prototype of the network analyser. This will be a simple prototype

that will read the traffic information and find the data related to

possible Bitcoin mining traffic. This part of the project will follow a

waterfall methodology, thus it would be divided in five different

subtasks; requirements, analysis, design, implementation and

11

testing. Each subtask won’t start before the one before is not

completed.

The first subtask, requirements, collides with the initial work, so it will

already be completed during the first task. This leaves only four of the

subtasks.

In Analysis the problem and technologies will be studied to have better

knowledge of the task. Some part of this is also studied in the initial task,

so a short amount of time will be needed to complete this task.

Designing the prototype will be the next subtask, and it will take into

account the information discovered during the previous subtask to lay out

what will be the base of the project.

After designing the prototype, it has to be created. This will be done on the

implementation subtask, where the design arranged before will be followed

to get a working prototype.

At last, to finish this first phase, the prototype has to be tested to find and

fix all bugs that may be found in the code and to make sure the project

works as intended.

3.3.3 Second phase

After finishing the first phase, we will be able to start the second phase.

This will consist on taking the prototype created on the first phase and with

its output, find the differences with the data of the true positives and the

false positives, and then use this information to finely tune the prototype

to reduce the false positives to a minimum. Since this task also follows the

waterfall methodology, it will follow a similar organization.

The requirements of this task will be the same of those of the first task, so

we can skip this subtask and start with the analysis.

Unlike in the first phase, in the second phase analysis will be much more

important. In this subtask, the output of the prototype will be analysed to

find similarities between true positives and ways to discern the false

positives. This will require analysing a large amount of data, therefore, it

will take longer.

With these similarities and divergences, the next design subtask will start.

An efficient way to implement the changes to the prototype will be created.

Then, on the next subtask, implementation, the prototype will be modified

to add this changes.

To finish the prototype of the analyser and this second task, the modified

prototype will need to be tested.

12

3.3.4 Third phase

This third phase consists on studying how to find information about the

miners that are found with the analyser and how to find more information

about them. This is more unpredictable and it is not clear what will be the

result in the end. Because of this it will follow an extreme programming

methodology.

Since this task being unpredictable, it will be given the longest amount of

time, to maximize the probabilities that a working solution is found. It is

also possible that after finishing the task the result just that it is not feasible

to find enough information from the miner using just the flows of its traffic,

and deep packet inspection should be used instead, which would be outside

the scope of the project.

This task will be divided in 7 day cycles in which the possible solutions will

be implemented and tested. In every cycle the task will be replanned, a

new solution will be designed, and tested, then, the result will be analysed

to see if it fits with the objective of this task.

3.3.5 Final work

After finishing the third phase, the final report of the project will be finished

and reviewed, and a manual for using the product will be made. Then, the

project will end.

 Action plan

This project will try to adhere to the following Gantt chart as close as

possible, but if during the project we find that a task is not taking as long

as it was thought, once this task is finished the next one will start before

its beginning date, so that, in case something goes wrong there is some

time left to fix it and the rest of the tasks don’t have to be delayed.

At least once a month there will be a meeting with the project manager to

make sure that the project is in the right path.

The estimated amount of working hours of the project will be 25

hours/week. Like this, the total amount of work is approximately 470. In

case some problem arises that delays any part of the project, the working

hours would be expanded to 30 hours/week until catching up with the

schedule.

13

3.4.1 Gantt Chart

 Resources

3.5.1 Human

Approximate number of man hours to be dedicated to each task:

Initial work 150

Phase one 70

Phase two 80

Phase three 125

Final work 50

Table 1 - Work hours for each task

3.5.2 Material

For this project I will need the following resources:

Hardware:

 Custom desktop computer

 NVidia GeForce 670

 Laptop MSI MS-16GD

Software:

 Debian Linux

 Cgminer

 Softflowd

 Flowtools

Figure 1 - Gantt chart. Created using GanttProject.

14

 Windows 10

 Microsoft Office word 2010

 Microsoft Office excel 2010

 GanttProject

15

4 Budget

As mentioned on the previous deliverable, this project will require not only

man hours, but also hardware and licensed software. In top of that indirect

costs should be added. All this doesn’t come for free, thus, a budget should

be created to be able to manage all these costs and estimate how much

this project will cost.

 Hardware costs

This project requires two computers, one of them equipped with a graphic

card to mine bitcoin. A computer has a life expectancy of 4 years. With this

we can estimate the Amortization of each product.

The Desktop and the graphic card will be used during all three phases of

the project, where the software will be created and tested. On the other

hand, the MSI laptop will be used during all the tasks to document the

results.

Hardware Cost (€) Useful life

(Years)

Amortization

(€)

Desktop

Computer

600 4

20.54

NVidia GeForce

670

200 4

6.85

MSI MS-16GD 700 4 22.66

Total: 1500 - 50.05

Table 2 - Hardware costs

 Software costs

While most of the software used is open source, Microsoft Word and

Windows 10 will need a paid license. The useful life of the Operative system

windows 10 is expected to last until October 2025, when it will stop to

receive updates. The useful life of Microsoft Word is around 3 years.

This costs are mostly linked to the first and last tasks, where work will be

highly focused on working on the project report, but will be used in the rest

of the tasks when the results are written on the report.

Software Cost (€) Useful life

(Years)

Amortization

(€)

Microsoft Word 79 3 3.41

16

Windows 10 145 6 3.13

Total: 1500 - 6.54

Table 3 - Software costs

 Human Resources

This project is developed entirely by a single person, so all work hours fall

on a single worker. The price/hour is relative to the technical difficulty of

each task.

Task Price/Hour

(€)

Work Hours Cost (€)

Initial work 25 150 3750

Phase one 30 70 2100

Phase two 30 80 2400

Phase three 35 125 4375

Final work 25 50 1250

Total: - 475 13875

Table 4 - Human resources

 Indirect Costs

The indirect costs are those that are not specific to this project, but have

to be paid anyway. In the next table lay those expenses:

Concept Price month

(€)

Months Cost (€)

Optic fibre 70 5 350

Electricity 45 5 225

Total: - - 575

Table 5 - Indirect costs

 Total Costs

This table shows the expected total cost of the project, 10% of the original

expected cost of the project has been added to cover any possible

unexpected expense that might arise.

 Cost (€)

Hardware 50.05

Software 6.54

Human resources 13875

17

Indirect Costs 575

Unexpected

expenses

1450.65

Total: 15957.25

Table 6 - Total costs

 Budget Monitoring

To make sure that the project stays close to the plan, the budget will be

reviewed and updated every time one of the phases of the project is

finished, adding any costs created by unexpected events. This will allow

keeping an eye to the budget and to find possible deviations and correct

them.

A small amount of deviations is expected, since the planning of the project

is prone to changes, what would affect the budget in terms of man hours.

In terms of hardware and software costs, there shouldn’t be any deviance.

18

5 Sustainability

In the following chapter, the sustainability of this solution will be analysed,

in terms of its economic, environmental, and social sustainability.

 Environmental

5.1.1 Project Put into production

During the production of the project, a large use of computational resources

was used to mine cryptocurrencies. This is bad because cryptocurrency

mining uses all the power of the computer, which reduces the useful life of

the hardware and wastes lots of electricity. Reducing the useful life of the

hardware means having to renew the equipment more often; this creates

lots of waste in the long run.

To minimize this environmental impact, the computer only mined when it

was necessary to create traffic, and it was not left mining just to try to get

some of this currency. In addition, the computer used will actually be the

same computer that I usually use on my everyday life. Furthermore, the

miner was throttled down when mining to reduce the carbon footprint.

5.1.2 Useful life

The results of this research will help to find unwanted miners in networks.

These miners consume lots of energy and reduce the life expectancy of the

hardware being used. As explained before, this is bad for de environment,

and finding them will help to stop them, and with that stop this waste of

resources.

The current solutions to this problem use deep packet inspection, which is

really computationally expensive, and, using it, while is better than leave

the miner alone, still uses lots of resources, which in turn uses a lot of

energy, which increases the footprint of the product. With the solution

proposed on this project, the miners would be found through the Netflow

traffic instead, which is way smaller than the traffic it represents and easier

to analyse. Because of this, while creating a minimal overhead to the

machines running the program, allows us to find the miners and to stop

them.

It is difficult to estimate the amount of resources that this project would

save during the course of its useful life, because for this we would need an

estimate of what amount of cryptocurrency mining comes from unwanted

miners, which is, in terms of current research, unknown.

19

5.1.3 Risks

Beforehand is difficult to know how much mining data will be needed. There

exists the possibility that the needed amount of data is more than expected,

in this case, the amount of time needed to mine will have to be extended,

thus increasing the amount of time that the computer will be mining and

wasting resources and increasing the carbon footprint of the project.

 Economic

5.2.1 Project Put into production

The project expected budget was approximately 16000 €. This is not so

much for a project in information technology, but depending on the context

where it’s going to be applied, the project may be too expensive for the its

use.

During the project, it was fond that the changes of traffic between a miner

using its full power and minimal power are insignificant. This helped reduce

the amount of electricity and resources wasted on mining by throttling

down the speed of the miners.

5.2.2 Exploitation

If it is to be used on a single small network, it may not be a good idea, and

using any of the existent solutions might be a better alternative, since the

winnings on energy and hardware would be minimal in comparison. On the

other hand, in case that the system is to be sold and used in lots of

networks, or to be installed on a big network, this solution might be a better

alternative than the existing others, since this solution uses less electricity,

and, on the long run the saved energy will be worth more than the budget

of the project.

Deep packet inspection is a method that is not deployed in most companies.

On the other hand, Netflow is commonly already implemented in many

networks nowadays. This avoids the need to create a new extremely

expensive security solution able to inspect the contents of all the

transmitted traffic, adapting an already existing solution instead, reducing

the costs of adding a solution to find miners in the network.

5.2.3 Risks

When hardware is used for mining, its useful life is reduced. If the mining

software is not configured properly, there is the risk that the hardware

20

burns out and stops working. This would mean that new hardware would

be needed, adding to the cost of the project.

 Social

5.3.1 Project Put into production

While doing this project I learned about multiple protocols and concepts

about networking, like Netflow, how mining and pools work.

I also learned to evaluate the sustainability of a project and all its related

concepts, like social, environmental and Economic sustainability.

Lastly, I acquired experience in the academic world and research, which

has been an invaluable experience.

5.3.2 Exploitation

The problem addressed in this project is already resolved in other less

efficient ways, so, in terms of users, they wouldn’t notice. The only ones

that would notice are the ones paying the bills, so, socially speaking, it

wouldn’t make any changes.

On the other hand, the third part of the project, investigating the found

miners would make the life of analysts much easier, since with it you would

be able to find the power used and what kind of machine is mining bitcoin.

The only collective that will be affected in a wrong way by this project are

the operators of illicit mining operations that might be found, which will

have to stop their operations and may get charged for them.

21

6 Data Overview

 Stratum

The data we are interested in is the one coming from stratum protocol. This

is a protocol used by most pools to communicate between the miner and

the pool server, and consists of a set of instructions that the server can

send to the miner, and another set of requests that the miner can make to

the server.

This protocol is implemented on top of TCP, and there is no port that is

commonly linked to it, thus making the destination port useless when trying

to detect stratum connections.

This protocol uses JSON for all its methods.

From client to server, the most used calls are mining.subscribe,

mining.authorize, mining.extranonce.subscribe and mining.submit.

From server to client are mining.set_difficulty and mining.notify

Client – Server:

- mining.subscribe: The client asks for jobs to the server so it can

start mining.

- mining.authorize: Authentication from a miner in the connection

towards the server. (There can be more than one miner in a single

stratum connection).

- mining.extranonce.subscribe: Asks to the server for another

nonce to be used when mining.

- mining.submit: The client, after finding an answer for the block with

the difficulty set by the server, sends the information about the found

nonce to the server, thus getting a share of the block.

Server – Client:

- mining.notify: The server sends all the information needed to start

mining the current block, including the custom id, used as identifier

when submitting shares, the hash of the previous block, all the data

about the transactions and the merkle branch.

- mining.set_difficulty: Sets the difficulty the miners should use for

mining. This can vary, and depending on the difficulty a share was

mined it will be worth more or less.

[14] [24]

22

After a short capture made while mining bitcoin I was able to analyse the

connection between the miner and the server.

As it can be seen in Figure 2 and Figure 3, the server transmits most of the

data, while most of the packets of the client are Keep-Alive and ACK packets

that transmit no information, and when they transmit data it’s still a small

amount, since its methods transmit little information and are only used at

the start of the connection or rare occasion that a share is found or a new

nonce is needed.

On the other hand, the server transmits data on a steady pace, since it

keeps transmitting all the data needed to mine the block and refreshing it

to add the new transactions to it through the mining.submit method.

All this information obtained now will be useful later when dealing with the

Netflow traffic.

Figure 2– Stratum protocol data between the server (Blue) and the client (Red), Created
using Wireshark.

23

Figure 3 – TCP connection packets between Client (Red) and server (Blue) , Created using
Wireshark.

There exist some other protocols used by some of the mining pools. Every

other method found during the investigation also used Json messages, and

very similar communication patters. The methods allowed by these

protocols were sight variations of the original stratum protocol to allow

different authentication methods and other small variations.

24

 Netflow

Netflow is a CISCO router feature for analysing network traffic that

aggregates all packets that share some values like source and destination

IP and port, protocol and type of service, in a single flow, which stores

general information about the connection.

It must be taken into account that a flow goes in a single direction. The

client-server and the server-client packets of the same connection will form

two flows.

Netflow v5, the version that will be used for this project has the following

fields [25]:

 Source IP

 Destination IP

 Source Port

 Destination Port

 Next Hop

 Input SNMP interface

 Output SNMP interface

 Number of packets in the flow

 Number of bytes in the flow (layer 3 communications)

 Timestamp of the start of the flow

 Timestamp of the last ending of the flow

 TCP Flags

 Protocol

 Type of Service

 Source and destination autonomous system

 Source address mask

 Destination address mask

From all this information we have to extract all the data that could be

relevant in order to identify stratum traffic.

Since we don’t know every mining pool that exists, the IP address won’t

help for identifying stratum flows, since new pools may appear or a miner

might use a private pool that we don’t know about.

The ports won’t be of use either, since the stratum protocol doesn’t use any

port by default.

25

Next hop, input and output SNMP interfaces, Type of service, autonomous

system and the addresses mask won’t help either, since they mostly contain

information about where the flows are being captured.

This leaves us with start and end time, number of packets, number of bytes,

protocols and flags.

For starters, all traffic that doesn’t use TCP can be discarded.

As we’ve seen on the capture of stratum packets, the amounts of

information that get transmitted is completely different depending on the

direction, since the flows are not bidirectional, if we find the complementary

flows (client-server and server-client) we will have much more information

about the connection, increasing the chances of correctly classifying the

flows as stratum or not.

The data we have left, as it is now, is not easy to analyse to find common

characteristics that can help to classify them as stratum.

Since the number of bytes and the number of packets highly depend on the

duration of the flow, flows coming from the same application that had a

different duration would have completely different values. It can be solved

creating values that do not depend on the duration of the flow. That’s why

I decided to add the following fields to the data:

 Packets/second Inbound

 Bits/second Inbound

 Bits/Packet Inbound

 Packets/second Outbound

 Bits/second Outbound

 Bits/Packet Outbound

 Packets Inbound/Packets Outbound

 Bits Inbound/Bits Outbound

This new fields will make it easier to look at the data since it doesn’t depend

on arbitrary conditions that depend on how long the flow lasted, and show

data that actually can be compared between flows that lasted a different

amount of time.

26

7 Data Capture

 Stratum

After deciding which information about Netflow we will use, It’s time to

create the stratum Netflow traffic.

There are many altcoins, each one has different characteristics, like the

block time, how many transactions are recorded each block, the average

block size, etc. That may introduce small deviations in the results, so this

should be taken into account.

That’s why I decided to collect data from many different altcoins to get a

broader look at the characteristics of the stratum protocol as a whole.

I recorded data from the following coins: Bitcoin, Bitcoin-CASH, DogeCoin,

LiteCoin, Monero and Ethereum.

The pools used to mine Monero and Ethereum did not use the stratum

protocol, but similar custom protocols that also worked over JSON. Since

these protocols are designed for the same purpose as stratum, they share

the same basic properties, and created similar traffic.

Monero is a cryptocurrency that is commonly mined by malware when it is

installed on a machine, so it would be especially useful to detect that kind

of traffic, that’s why I decided to add this altcoin traffic to the mix.

In the following table contains some information about each cryptocurrency

that may be relevant: [26]

Coin Average

Block

time

Average

Block size

Average number

of Transactions

per block.

Hashing

algorithm

Bitcoin 10 min 787kb 2270 SHA-256

Bitcoin-Cash 10 min 50kb 115 SHA-256

DogeCoin 1 min 11kb 20 Scrypt

LiteCoin 2.5 min 20kb 42 Scrypt

Monero 2 min 16kb 6 Cryptonight

Ethereum 13 sec 20kb 96 Keccak256

Table 7 – Cryptocurrencies information [26].

To collect the traffic, I captured pcap files during various hours while mining

with various cryptocurrencies. Then, I used Softflowd as exporter and

27

nfcapd as collector to create nfcapd files. Then I extracted the data using

nfdump.

After starting capturing the flows, I realized that they are extremely long,

being between 10 and 30 minutes each. Therefore, they produce a very

little number of flows in comparison with other applications. This will reduce

the amount of stratum data that I will be able to create, and may have an

impact later when trying to find stratum flows that lay hidden among

millions of other flows.

For each coin, I captured data for 24-72 Hours, achieving the achieving the

following results:

Coin Flows

Captured

Bitcoin 303

Bitcoin-

Cash

77

LiteCoin 77

DogeCoin 85

Monero 58

Ethereum 91

Total: 691

Table 8 - Mining data collected.

Even though ideally I would have aimed for a larger amount of data, since

I only have one computer that can be used for mining, and of time

limitations, this is all the data I have been able to collect.

 Data from other applications

To test whether we can differentiate between stratum and other flows

or not, and to find if there is some information in flows created by stratum

connections that allows us to discern them from other flows, flows from

applications that use other protocols will be needed.

For an initial test I decided to record flows from various applications

commonly used. This includes http and https traffic from multiple different

websites (audio streaming, video, static sites, forums, etc.), data from p2p

applications (torrents with different max speeds and online games), and

other traffic from desktop applications that connect to their servers.

The tests were made with a windows computer, so, since windows is

constantly connecting to Microsoft servers, those connections also created

flows.

28

After one hour of data capture I managed to collect approximately

1.000.000 flows, way more than what I have been able to capture from

mining traffic. This shows that stratum barely creates any amount of flows

in comparison with other applications.

This might be a problem with identifying stratum traffic later on, since

a small number of false positives could be enough to hide the true positives.

29

8 Data analysis

 First analysis

After creating all the data, I decided to create some graphs to see if there

is an obvious difference between flows created by mining software and

flows created by other applications.

Figure 4 - This plot shows the amount of packets per second
sent and received each second. Created with matplotlib.
[31]

Figure 5 - This plot shows the average number of bits each
packets holds in each flow, sent and received. Created with

matplotlib. [31]

30

It should be noted that the choice of data fields used to create the plots is

arbitrary, with the sole purpose of showing the differences between the

flows created mining traffic and the rest of the flows

As It can be seen in the plots in Figures 4, 5 and 6, there is a vast difference

between most flows, which tend to have bigger bitrates and send more

packets per second, and stratum, which concentrates its results near the

lower parts of the graph.

We were able to find some interesting information from these plots, but

they still don’t have enough information to extract an easy rule that will

allow us to determine if a flow comes from a mining operation or not. The

fact that we can’t find a straightforward answer doesn’t mean that it’s not

possible to find a way to detect stratum traffic from this data. Since there

appears to be some differences between mining and other kinds of traffic

and there are more fields that haven’t been plotted, there could be a hidden

way to extract the mining flows using an unseen relation between the data

fields. That is why I decided to run some tests with machine learning to see

if we can find a model that allows us to find this stratum traffic.

As a side note, another thing I noticed on these plots is that there are

different patterns in the mining data, which may be created by the different

coins, this is why I created another group of graphs focused on mining data

only, to see if there is a relation to each coin and the data they create.

Figure 6 - This plot shows the amount of packets per second
sent and received each second. Created with matplotlib.
[31]

31

Figure 7 - This plot shows the amount of packets per
second sent and received each second for each coin.
Created with matplotlib. [31]

Figure 8 - This plot shows the average number of bits
each packets holds in each flow, sent and received for

each coin. Created with matplotlib. [31]

32

As it can be seen in the plots in figures 7, 8 and 9, it’s easy to differentiate

the data from the different coins, each one creates a separate cluster. Note

that Ethereum data for packets/second and bits/second is way higher than

the rest of cryptocurrencies. This is probably related to the fact that its

block time is really small while it maintains a similar amount of transactions

for each block and block size than the rest of cryptocurrencies. (Table 7).

Another thing that is shown in the plots is how Bitcoin has results all over

the place.

This might be because Bitcoin is the one with the largest number of

transactions, with on average ten times more transactions than the other

coins [26], which can affect the number of mining.notify messages that the

pool server sends to the miners so that they can verify the new transactions

while mining. Since the amount of transactions is not constant, as you can

observe in the Figure 10, this creates variations on the bitrate and the

number of packets that are received when mining.

Figure 9 - This plot shows the amount of packets per
second sent and received each second. Created with
matplotlib. [31]

33

Figure 10 – Number of transactions per second in Bitcoin. Extracted from blockchain.com.

[27]

Even though we can’t see an obvious way to differentiate between bitcoin

and the other coins, I believe that with the help of machine learning we will

be able to find a model that correctly classifies mining data in the coins

they are mining.

 Learning Models

As I stated before, the amount of mining traffic data I managed to collect

is rather small. If I divided the data in training, testing and validation tests

I would end up too little mining data in each set. Therefore, I decided to

use cross-validation to create the models.

Cross-validation consists on doing multiple tests when creating the model,

and dividing the data in different subsets that are used to train and validate

the models. For each test one random subset is used to validate the data

while the others are used to train the model. This way you get one model

for each test. Then, the resulting model that achieved the best results is

used. This allows to create a model with a small amount of data without

getting an overfitted model created by an insufficient validation data or lose

some information in the process that could have helped build a better

model. [28]

I decided to test the following models:

 Support Vector machine

 CART

 C4.5

 Naïve Bayes

34

8.2.1 Support vector machines

This method creates models by dividing the classes geometrically, creating

a hyperplane between the two classes that then is used to classify new

additions to the model. Depending on which side of the plane the new data

point falls in, it will be classified on one plane or the other. [29]

The implementation used will be SMO, a solution that trains support vector

machines.

8.2.2 CART

Cart, or Classification and Regression Trees, is a model to create binary

decision trees. This model does not use Information gain as reference to

create the splits in the tree, but uses Gini impurity, which is faster to

compute. [29]

8.2.3 C4.5

This model creates trees by recursively adding leaves if only one class is

left (or only a small number of nodes remain), or branches if not, using

either information gain or gain ratio, depending on the algorithm used. [29]

The algorithm that I will use is J48, an implementation of C4.5 that uses

gain ratio when deciding how to create the branches.

8.2.4 Naïve Bayes

A model that works by creating a set of scores that rate each of the input

variables and classify it depending on the resulting score, this is a simple

classification model that is easy to implement and that, in the right

conditions, can work really well. [29]

 Weka Tests

8.3.1 Mining classification

To test the different models, I decided to use Weka. Weka is a tool for data

analysis that contains multiple machine learning algorithms and allows the

user to apply them to his data and compare the results to obtain the best

one for the task at hand. [30]

To test this algorithms, I used the 691 stratum collected flows and 23670

flows from the flows collected by other applications.

35

After testing the five algorithms with Weka using the dataset with the traffic

collected at home, I obtained the results shown in table 9.

Algorithm TP FP TN FN Accuracy Precision Recall

SMO 0 0 23670 600 0.9753 0.0000 0.0000

CART 586 8 23662 14 0.9991 0.9865 0.9767

J48 590 5 23665 10 0.9994 0.9916 0.9833

Naïve Bayes 597 10371 13299 3 0.5726 0.0544 0.9950

Table 9 – Results of the model tests with Weka using created data.

The first thing that can be noticed from the table is that both Naïve Bayes

and SMO results were far from optimal.

SMO classified all the data as not coming from stratum applications. This

may be caused because the data coming from other applications was

distributed all over the place and the algorithm didn’t manage to create a

hyperplane that could separate the stratum flows from the others without

creating lots of false positives. Naïve Bayes actually got the bests results in

terms of Recall, since it only failed to classify 3 stratum flows, but was

incapable of classify data as not Stratum correctly, which ended up with

very bad results overall, since most of the data that will be classified will

be from other applications.

The models based on trees worked pretty well, and they got similar results.

The best resulting tree is the one created by J48, shown in figure 11.

Figure 11 – Decision tree created by the J48 algorithm.

With this we learned that it is possible to classify stratum flows from

stratum data, but this model only used traffic created artificially, and does

36

not accurately represents traffic from an actual network. Because of this,

this model may not perform well on a real environment.

To test this, I acquired 2 hours of traffic capture from a 10 Gbps access link

of a large university network, which connects around 25 faculties and 40

departments (geographically distributed in 10 campuses) to the Internet.

The flows from this traffic were tagged to show if they were from mining

applications or not using deep packet inspection to identify miners.

This was done by searching for two regular expressions in the traffic, one

to detect mining methods used by the clients and one used to identify

methods used by the server. This way we can identify who is the client and

who the server in the connection.

The regular expression used to detect mining connections client-server and

server-client are, respectively:

 \"method\" ?:

?\"(mining\.authorize|mining\.get_transactions|mining\.subscribe

|mining\.submit|getblocktemplate|submitblock)\"

 \"method\" ?: ?\"(mining\.notify|mining\.set_difficulty)\"

Since we used dpi to detect the mining flows, we don’t know if we missed

some flows that were actually mining traffic but we couldn’t detect because

they used encrypted protocols or other protocols that were unknown to us.

This means that some flows might be wrongly tagged as other traffic.

As shown in table 10, even though it correctly classified 10 out of the 14

flows coming from stratum, it was unable to correctly classify a 7379 flows

coming from other traffic, leading to an accuracy of 0.99589, a recall of

0.71429, and a precision of 0.00013. This amount of false positives would

make using this method to detect miners unusable.

 Classified as:

 Stratum Other

 10 4 Stratum Tagged

as: 7379 1788015 Other

Table 10 - Confusion matrix of the tests with the first model.

Even the bad results, this doesn’t mean that this method can’t be used to

identify miners using Netflow data. Looking at the wrongly classified flows

and comparing them with the flows used to create the data we can notice

that while the wrongly classified mining flows have similar properties to

37

those used to create the model, most of the false positives are really

different from the mining flows that we collected earlier. This is probably

caused by a model that is not complex enough, and a more complex model

created with more data would be able to correctly classify this data. The

discrepancies between the flows from can be seen in the plots in Figures

12, 13 and 14.

Figure 12 - Plot showing the bits/packet of the mining
flows used to create the model (blue), the true positives

(green), the false negatives (yellow) and the false
positives (red). The vertical axis represents the
outbound data (client-server), and the horizontal the
inbound data of the connection(server-client).

38

For this reason, I decided to create another model using the data from this

dataset. Since there are only 14 stratum flows, which is not enough to

Figure 13 - Plot showing the bits/second of the mining
flows used to create the model (blue), the true positives
(green), the false negatives (yellow) and the false
positives (red). The vertical axis represents the

outbound data (client-server), and the horizontal the
inbound data of the connection(server-client).

Figure 14 - Plot showing the packets/second of the
mining flows used to create the model (blue), the true

positives (green), the false negatives (yellow) and the
false positives (red). The vertical axis represents the
outbound data (client-server), and the horizontal the
inbound data of the connection(server-client).

39

correctly train a model, therefore I will add the data from stratum flows

that was created earlier to this dataset. The resulting dataset contains 705

flows from mining traffic and 1795394 flows from unidentified applications.

After testing with Weka using this new dataset we get the results shown

on table 11.

Algorithm TP FP TN FN Accuracy Precision Recall

SMO 0 0 1795394 705 0.9996 0.0000 0.0000

CART 657 13 1795381 48 0.9999 0.9810 0.9320

J48 694 15 1795379 11 0.9999 0.9790 0.9840

Naïve Bayes 702 182775 1612619 3 0.8982 0.004 0.996

Table 11 – Results of the model tests with Weka using the university campus traffic.

The results are similar from the ones in the first test. The Support Vector

Machine and the Naïve Bayes failed the same way, while both tree models

got decent results. The best model overall happened to be the one

created by J48, the implementation of C4.5. It should be noted that while

the number false positives and false negatives increased slightly in

comparison with the first model results, the total amount of flows from

other applications increased by more than 70 times.

Figure 15 shows the resulting tree created by C4.5. This tree is much

more complicated than the one created by the first dataset shown in

Figure 11.

8.3.2 Coin Classification

The same methodology was used to create a model to classify the flows

between the different cryptocurrencies, using the 691 mining flows. The

results are shown in table 12, showing the accuracy and the average F

Score of each model.

Algorithm Accuracy Average

F Score

SMO 0.844 0,815

CART 0.973 0.972

J48 0.978 0.978

Naïve Bayes 0.981 0.981

Table 12 - Results of the model tests for the coin classificator with Weka.

All models achieved decent results when classifying the different

cryptocurrencies. In this case, Naïve Bayes managed to correctly classify

40

98% of the flows, showing that using the information from Netflow we are

able to extract the cryptocurrency being mined with high confidence.

41

Figure 15 - Tree created with C4.5 using the dataset coming from the university campus.

42

9 Results

During the previous chapter we created a model that was able to detect

mining traffic using only Netflow. The results showed that using this new

method to detect miners is possible.

Using the new model against the data coming from the university traffic

again shows a great improvement from the results of the first model.

Shown in table 13 are the results of the model using this dataset.

 Classified as:

 Stratum Other

 13 1 Stratum Tagged

as: 15 1795379 Other

Table 13 - Confusion matrix of the tests with the definitive model.

In comparison with the first results, this new model results have improved

greatly from the results coming from applying first model to the same

dataset. This results lead to an accuracy of 0.99999, a recall of 0.92857

and a precision of 0.46429. The precision is still low, but if it is compared

with the 0.00013 of the previous model, it is a good improvement.

43

10 Conclusions

The aim of this research project was to create a way to find miners using

Netflow data and investigate what information could be extracted from this

data. After testing models with two datasets and four different machine

learning algorithms I created two machine learning models that are able to

find mining traffic and detect the currency being mined respectively, using

only the data given by Netflow.

The results have shown that both models had a decent performance. I

believe it could be added to a security solution, like a SIEM, which could

correlate the events created by the model and generate alerts of miners in

the network with high confidence.

The model used to classify between cryptocurrencies has shown the ability

to classify between the different types of coins we had data on. Sadly,

because of time limitations the number of cryptocurrencies used in the

dataset is small. This has been caused by the slow rate at which flows from

these applications are created.

 Future work

The next step in this investigation will be to collect more data from more

different cryptocurrencies and pools and use it to create new models.

The addition to this new data will give a wider look at the mining data as

a whole, and make the binary classifier more accurate. This would also

benefit the cryptocurrency classification model, which would be able to

detect more cryptocurrencies.

In addition, data from cryptojacking malware will be analysed and

compared with the known data. Afterwards, in case this data is too

different from the original mining data to be detected, this should be

added to the dataset to create a new model that can detect this traffic.

Furthermore, tests could be made to see if it is possible to discern

between normal mining traffic and cryptojackers using the Netflow data.

44

11 References

[1] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,”

bitcoin.org, pp. 1-9, October 2008.

[2] A. Berentsen and F. Schär, “A Short Introduction to the World of

Cryptocurrencies,” Federal Reserve Bank of St. Louis , 2018.

[3] “What is a Decentralized Application?,” in Decentralized

Applications: Harnessing Bitcoin's Blockchain Technology, O'Reilly Media,

Inc, July 2016, pp. 1-8.

[4] L. Wang and Y. Liu, “Exploring Miner Evolution in Bitcoin Network,”

NYU Polytechnic School of Engineering, 2015.

[5] A. Mizrahi, “Cryptojacking Rises as Ransomware Declines, Cyber

Security Researchers Find,” Bitcoin.com, 1 July 2018.

[6] M. Rosenfeld, “Analysis of Bitcoin Pooled Mining Reward,” Cornell

University, 2011.

[7] J. D'Herdt, “Detecting Crypto Currency Mining in Corporate

Environments,” SANS Institute, 2015.

[8] K. Coffman and A. M. Odlyzko, Internet Growth: Is There a 'Moore's

Law' for Data Traffic?, SSRN Electronic Journal, 2000.

[9] Cisco public, “Cisco Visual Networking: Index: Forecast and Trends,

2017–2022,” Cisco, 2018.

[10] “NetFlow Export Datagram Format,” 14 September 2007. [Online].

Available:

https://www.cisco.com/c/en/us/td/docs/net_mgmt/netflow_collection_en

gine/3-6/user/guide/format.html. [Accessed 21 November 2018].

[11] “Bitcoin Miner May Indicate Malicious Activity,” 9 October 2013.

[Online]. Available:

https://tools.cisco.com/security/center/viewAlert.x?alertId=31186.

[Accessed 22 November 2018].

[12] “Bitcoin Miner Client Activity,” 30 November 2015. [Online].

Available:

https://tools.cisco.com/security/center/viewIpsSignature.x?signatureId=2

737&signatureSubId=0. [Accessed 22 November 2018].

[13] “Port 8333 Details,” 16 June 2017. [Online]. Available:

https://www.speedguide.net/port.php?port=8333. [Accessed 22

Septebmer 2018].

45

[14] “Startum Bitcoin Mining Protocol,” 13 May 2014. [Online]. Available:

https://tools.cisco.com/security/center/viewIpsSignature.x?signatureId=4

238&signatureSubId=0. [Accessed 22 November 2018].

[15] D. Delaney, “How to Detect Cryptocurrency Mining Activity on Your

Network,” 3 May 2018. [Online]. Available:

https://www.netfort.com/blog/detect-cryptocurrency-mining-activity/.

[Accessed 21 September 2018].

[16] Ars Technica, “How to keep your ISP’s nose out of your browser

history with encrypted DNS,” 4 August 2018. [Online]. Available:

https://arstechnica.com/information-technology/2018/04/how-to-keep-

your-isps-nose-out-of-your-browser-history-with-encrypted-dns/.

[Accessed 29 November 2018].

[17] P. O. S. J. B. Domhnall Carlin, “Detecting Cryptomining Using

Dynamic Analysis,” 2018 16th Annual Conference on Privacy, Security and

Trust (PST), 28-30 Aug 2018.

[18] E. V. V. M. M. L. C. K. H. B. G. V. Radhesh Krishnan Konoth,

“MineSweeper: An In-depth Look into Drive-by Cryptocurrency Mining and

Its Defense,” Conference on Computer & Communications Security, Oct

2018.

[19] A. d. Vries, “Bitcoin's Growing Energy Problem,” Joule, 2018.

[20] Cisco Systems, “CISCO IOS NETFLOW,” Cisco Systems, 2004.

[21] D. Medina, “An IDS Using NetFlow Data”.

[22] W. W. Royce, “Managing the development of large software

systems,” 1970.

[23] D. Wells, “Extreme Programming,” Don Wells, 8 October 2013.

[Online]. Available: http://www.extremeprogramming.org/. [Accessed 23

November 2018].

[24] SlushPool, “Stratum Protocol,” 2012. [Online]. Available:

https://slushpool.com/help/topic/stratum-protocol/. [Accessed 20 1

2019].

[25] Plixer, “NetFlow Version 5,” 15 12 2016. [Online]. Available:

https://www.plixer.com/support/netflow-v5/. [Accessed 10 11 2018].

[26] bitinfocharts, “Block Time historical chart,” [Online]. Available:

https://bitinfocharts.com/comparison/confirmationtime-btc-ltc-bch-xmr-

doge.html. [Accessed 3 February 2019].

[27] blockchain.com, “Transaction Rate - Blockchain,” blockchain, 10 03

2019. [Online]. Available:

46

https://www.blockchain.com/charts/transactions-per-

second?timespan=3h. [Accessed 10 03 2019].

[28] S. Marsland, Machine Learning, An Algorithmic Perspective, Second

Edition, Boca Ratón: Chapman & Hall/CRC, 2015.

[29] Q. Yang, H. Motoda, A. Ng, B. Liu, Z.-H. Zhou, P. S. Yu, G. J.

McLachan, M. Steinbach, D. J. Hand, D. Steinberg, X. Wu, V. Kumar, R. J.

Quinlan and J. Ghosh, “Top 10 algorithms in data mining,” Knowl Inf Syst,

vol. 13, no. 1, pp. 1-37, 2008.

[30] M. A. H. a. I. H. W. Eibe Frank, The WEKA Workbench. Online

Appendix for "Data Mining: Practical Machine Learning Tools and

Techniques", Morgan Kaufmann, 2016.

[31] Project, Matplotlib, “Matplotlib,” [Online]. Available:

https://matplotlib.org/. [Accessed 27 02 2019].

[32] T. K. Ho, “Random Decision Forests,” 3rd International Conference

on Document Analysis and Recognition, 15 August 1995.

